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Abstract

The structural problem of a viscoelastically damped rod is considered. A
four parameter fractional derivative viscoelastic model rather than the tradi-
tional viscous model is used to describe the stress-strain relationship. The in-
troduction of fractional order derivatives leads to high order matrix equations,
which are cumbersome and time consuming to solve. Thus, there exists a mo-
tivation to seek alternate solution techniques. An existing technique, modified
matrix iteration, is presented, and a new one, employing spectrum shift con-
cepts, is proposed. The spectrum shift technique is shown to be significantly
more efficient.
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Introduction

The fractional derivative viscoelastic model has its earliest roots in Nutting’s
observations that fractional powers of time could model the stress relaxation
phenomenon [5]. Gemant later noted that stiffness and damping properties
of viscoelastic materials seemed proportional to fractional powers of frequency,
implying that fractional order time differentials might be used to model the be-
havior [14]. Scott-Blair combined the ideas of Nutting and Gemant by proposing
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the use of fractional order time derivatives [2]. Caputo applied the concept to
the viscoelastic behavior of geological strata [4]. Then he and Minardi showed
that constitutive relationships employing the fractional calculus described the
mechanical properties of some metals and glasses [5]. Bagley proposed incorpo-
rating fractional derivatives into finite element models of viscoelastically damped
structures. Since then, he and Torvik have jointly published several papers
demonstrating the feasibility and benefits of using fractional calculus. Of par-
ticular note is “A Theoretical Basis for the Application of Fractional Calculus
to Viscoelasticity” [5], which uses molecular theory to derive the existence of
generalized derivatives. Their efforts have shown that fractional calculus is an
attractive approach to modelling viscoelastically damped structures. The result-
ing model requires very few parameters and is often accurate over six decades
of frequency [2].

Generalized calculus is not a new concept — mathematicians have dealt with
it for some time [10, 115-118]. A generalized derivative is represented in this
paper as

D*[z(¢)).

The generalized derivative can be defined for complex a, but only real values
will be considered here. Fractional derivatives are generalized derivatives with
rational a. The term “fractional calculus” implies the use of fractional deriva-
tives. -
This paper reviews the properties of generalized derivatives and the ex-
panded equations of motion for a fractional order system describing a viscoelas-
tically damped rod. The technique proposed by Bagley to solve for the eigen-
structure is presented. A more efficient method is presented later, along with
some examples.

Generalized Derivatives Applied to Viscoelastic Materials

Before applying generalized derivatives to structural problems, it is neces-
sary to understand the properties of generalized derivatives and their use in
viscoelastic theory. As will be shown, generalized derivatives behave in much
the same way as conventional derivatives. When used to model viscoelastic
materials, generalized derivatives typically provide an excellent model over a
broad range of frequencies [4]. To show how generalized derivatives can be used
to mode! viscoelastic materials, it is appropriate to present first the properties
of generalized derivatives, especially the Laplace and Fourier transforms. The
generalized derivative is defined as [1, 2]

t
D"‘[z(t)]':‘fﬁ{_—a)%/o (tL_f‘?)-:dT for0<a<1 (1)

Note that this definition is only valid for & < 1. However, the definition requires
only a slight modification for a generalized derivative of order greater than one.
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Let m be a nonnegative integer, and « defined as before. Then 1, 11]

dnt! t
D™lelo)] = Frmg e J, (ti(rr))a ar @)

Although imposing in the time domain, in the Laplace (or Fourier) domain,
the generalized derivative manifests itself as a fractional power of s (or w). To
calculate the Laplace transform, let 7 = ¢ — 1. Then,

Dot = ey 5 . 0 @)

Applying Leibnitz’s rule,

D)) = gy [ L gat-nm 20 @
Noting that the integral is a time convolution, and that
t—°
iy = s ©®
the Laplace transform is
LD®[e(0)]] = w5 (sLl=()] - 2(0)) + 2C) ®)
or, more simply,
L{D®[(t)]] = " L[=(2)] Q)
where o0
Liz(t)] = /o 2(t) e dt @)

Notice that for initial conditions equal to zero, the Laplace transform of a gener-
alized derivative of order o has the same property as the conventional derivative:
the transform is 8% times the transform of the function. In fact, the generalized
derivative satisfies many of the same properties as the conventional derivative,
particularly linearity and the composition property [1, 8-10]

D®[y(t) + ()] = D[y(®)] + D*[=(2)] )
D°[D°[z(t)] = D***[x(t)] (10)
The Fourier transform is defined as
Flz(t)] = / °° z(t) e~ dt | (11)
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If z(t) = 0 fort < 0, then the Fourier transform can be written as

o0
Fla(t)] = / a(t) e~ dt (12)
0
It is easily seen that the Fourier transform of a generalized derivative is
F[D[2(t)] = (iw)* F[2(1)] (13)

In the preceding discussion, the only restriction placed on o was that it be a
nonnegative real number less than one. However, for engineering applications,
an irrational number can be approximated by a rational number. So a will now
be restricted to be rational as well. Using the term “fractional derivative” will
indicate this additional restriction.

To illustrate the use of fractional derivatives in viscoelastic theory, consider
the standard linear viscoelastic model relating stress and strain [2]

o(t) + Z b d::',ft) = Eoe(t) + Z En d';:ff) (14)

ms=1 n=1

Recalling Scott-Blair’s proposal, replace the conventional derivatives by deriva-
tives of fractional order. The result is the general form of the fractional deriva-
tive viscoelastic model [2]

M ‘ N
o(t) + Y bm DP~[o(t)] = Eoe(t) + 3 EnD*[e(t)] (15) g

m=1 n=1

A large number of materials can be modelled by replacing each sum in Equa- :
tion 15 by a single term involving a fractional derivative "

o(t) + b DP[o(t)] = Eoe(t) + EyD*[e(t)] (186)

Invoking the Second Law of Thermodynamics requires that [3]

E, 2 0 E
E1 Z 0 «
b > 0

bEo
s (7)

niv

These constraints ensure nonnegative energy dissipation and nonnegative work.
The stress-strain relation in the Laplace domain is

0’(0) _ Eo+ E: 8%
€(s) = 1+bs>

(18)

This is known as the four parameter model, and has been shown to be very ,
accurate over several decades of frequency [4, 14, 185]. .
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Figure 1: Finite Elements of Rod

Expanded Equations

Although the fractional derivative viscoelastic model may provide an ex-
cellent description of a material’s properties, in order for it to be useful, its
application to a structure must lead to a solvable problem. This section il-
lustrates the existence of a solution by examining the finite element model of
a viscoelastically damped rod. The equations of motion are developed using
the elastic-viscoelastic correspondence principle, which states that a viscoelas-
tic problem is equivalent to an elastic problem with the elastic moduli replaced
by the appropriate viscoelastic moduli [7, 42]. This section develops the fi-
nite element model of a viscoelastically damped rod, constrained at each end.
Figure 1 shows a five degree-of-freedom rod, constrained at each end, with vis-
coelastic damping pads at each node. Assume the rod is uniform and purely
elastic. Using standard finite element techniques, the stiffness matrix for the
elastic rod is of the form [8, 300]

2 -1 0 0 ©
-1 2 -1 0 O
A
[Kg] = ET 6 -1 2 -1 O (19)
0 0 -1 2 -1
0O 0 o0 -1 2

where E is the Young’s modulus for the material in the rod, A is the cross-
sectional area, and L is the length of one element. Assume the modulus of the
viscoelastic material is

o= 33 - B3R o

as derived in the previous section. The damping pads provide an out of phase
shear stress to the rod. The shear stress is partially elastic and partially viscous.
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due to the real and imaginary parts of the modulus. As an example, let a = 1/2,
b =0, and s = iw, where w is an observed frequency of the system. Then

EWw) Eo + Ey(iw)'/3
Eo + (w)!/2E,ef™/4 (21)

(Eo + (w)*/3Ey cos §) + i(w)'/?Ey sin £.

The real part represents the elastic component of the shear stress, and the
imaginary part represents the viscous component, which is ninety degrees out

of phase.
The contribution to the structure’s stiffness matrix due to the viscoelastic
pads is
G(s)[Kv] = (22)
A /t1 0 0 0 0
GotGuan | 0 A/ta O 0 0
—l—:i_—zsa— 0 0 Aa/ta .0 0
0 0 0 Aty O
0 0 0 0 Asg/ts

where A; is the area of the pad attached to the rod at i*# degree of freedom and

t; is the pad’s thickness. The ratios A;/t; are the stiffness coefficients for the

damping material at the corresponding degree of freedom. Then the stiffness

matrix for the total structure is

Go + G18%
14 bs

The mass matrix for the rod is [8, 301-302]

[K(8)] = [KE] + [Kv] (23)

41000
14100

[M]:E%I_' 01410 (24)
0 01 41
0001 4

where p is the density of the rod, and A and L are defined as above.
The equations of motion in the Laplace domain are

[’ [M] + [K (s)]] {X(2)} = {F(s)} (25)

where {F(s)} is the Laplace transform of the forcing function. Setting {F(s)} =
0 yields the homogeneous equation, from which the eigenstructure is found.
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To clear the denominator in [K(s)], multiply through by (1+ bs*). Defining

[A4o] Go[Kv] + [KE] (26)
[4,] = Gi[Kv]+b[Kg] (27)

and expressing « as a ratio in lowest terms, ¢/m, gives

(8(2m+q)/m b[M] + 2™/ [M] + 8™ [A,] + [Ao]) {X(s)}

= (1+bs¥/™){F(s)} (28)

In order to obtain an orthogonal transformation and decouple the equations
of motion, cast the equations of motion in the following format

MM {X(2)} + [K] {X(8)} = {F(s)} (29)
o] o] - [0] b[M]
] [0 - B[M]
M]=| P 4]
[0] &[M] --- [A]
bM] ..o [A] .- [0]
[0] [0] o [0 -[M] [0]
[0] [0] e =b[M] - 0]
0 M - [-4] - 0]
-bM] - [-A] - o] [o]
[0] [0] a [0] 0] [Ad]

Gm-bim - (x(s))
am=dim {X(s)}

{X()} = :
st/m {X(9)}
1 {X(s)}
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[0] -
[0]
{F(9)} = :
[0]
(1 + bs?/™){F(s)}

With { F(s)} = 0, the problem is now in terms of real, square, symmetric ma-
trices. Thus, the eigenvalues will be distinct and either real or occur in complex
conjugate pairs. Also, the eigenvectors will be orthogonal to one another. It is
a straightforward matter to decouple the expanded equations of motion using
standard techniques [1, 67-68] Notice that for an n degree-of-freedom structure,
the order of the expanded equations is n(2m + ¢). From Equation 28, it can
be seen that there are (2m + ¢) branches to the problem, with n eigenvalues on
each, resulting in n(2m + g) eigenvalues. In a standard viscous formulation of
the problem, only 2n eigenvalues would be found. The additional ones are due
to the use of the fractional order derivatives. For a large structure, the higher
order of the equations of motion represents a significant computational burden.
Now that the existence of the solution has been proved, it will be beneficial
to consider solution techniques that avoid solving the expanded equations of
motion.

Modified Matrix Iteration Solution

The current method of determining the eigenstructure of the fractional order
system developed in the previous section is to use a modified matrix iteration
scheme on the homogeneous form of the original equation. Matrix iteration
avoids computing and solving the characteristic polynomial of the matrix. Un-
like using a Hessenberg matrix, which requires knowing the eigenvalue before
the eigenvector can be calculated, matrix iteration determines both at the same
time.

Matrix iteration is typically used to find the eigenstructure of undamped
systems. With some modification, the concept can be applied to damped sys-
tems. Two different algorithms will be needed to find all n(2m + ¢) modes.
For convenience, the modes on a given branch will be numbered beginning with
the one corresponding to the eigenvalue with the smallest magnitude. A mode
corresponding to an eigenvalue with larger magnitude will be referred to as a
higher mode. Lower modes are defined in the same way.

For an undamped system, the homogeneous form of the equations of motion
in the Fourier domain is

- W [M]{g} + [K1{$} =0 (30)
(K1 [M]{$} = {4} (31)
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To demonstrate matrix iteration, select a trial vector,{t}, and express it as a
linear combination of the eigenvectors of [K]~![M]:

{v}= i ci{#i} (32)

i=1

This is possible since the eigenvectors of [K]~![M] span n-space. The only
restriction on the ¢;’s is that ¢; # 0. Premultiplying both sides of Equation 32
by [K]~*[M] produces

(K] M]{¥} = Z 7(¢i) (33)

|-'1

Subsequent multiplications produce

(1K1 M) {9} = E {#:} (34)

=1

Since for large k,
Wit guwit < W (35)

it is clear that Equation 34 converges to the lowest mode [11, 124- 125]. If
Equation 34 is normalized with respect to the same.element between premulti-
plications by [K]~![M], the the normalization factor reaches a constant value,
equal to 1/w? (since ¢; # 0), and the normalized vectors converge to the first
mode. To find higher modes, subtract off lower modes using Turner’s method
[6, 168-269]. Letting

[D] = [K]~}[M] - Z —5{¢.}{¢n}T[M] (36)
i=1
then 1
[D{4} = =14} (37
converges to the j*» mode. Note that the lower modes must be normalized such
that {8:}7[M]{¢} = 1.
To apply this technique to a fractional order system, let A = s!/™. Then
Equation 30 can be written as
N M]{e} + [K(N)]{¢} =0 (38)
or -1
(KON M8} = 3719} (39)

where [K(A)] is equivalent to [K(s)] in Equation 25. Each time the estimate of
A is updated, [K(A)] must be recomputed. Notice that for A3™, there are 2m
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possible values of A. The different values arise because z1/2m ig a multivalued
function and has 2m branches. The value of A on the k** branch is computed
using DeMoivre’s Theorem [13, 22]. Using the form A*™ = re‘,

A= rifim (cog 8t 2k + isin 6+ 2kx (40)
2m 2m
The primary branch is assigned the number “0”,

sok=0,1,2,...,2m~-1.
Since the stiffness matrix is a function of A, to find the higher modes Equa-
tion 36 must be modified:

j—-1
(D] = KW' [M] -3 M%{"*}{"*}"[Ml (41)

i=1

The quantities A; and {®;} are called pseudoeigenvalues and pseudoeigenvec-
tors. They are computed from the eigenvector problem:

KO [M1{®) = {2} (42)

It is important to realize that the pseudoeigenvalues and pseudoeigenvectors
are not modes of the system. Their computation is merely an intermediate step
in calculating the solutions of the equations of motion. In computing the jth
mode of the system, only the first j —1 pseudomodes of Equation 42 are needed.
Then Equation 41 is used to converge on the j** mode of the system. Notice that
for each new guess of A, j — 1 pseudoeigenvalues and pseudoeigenvectors must
be recalculated. This represents a significant computational burden. The next
section proposes a technique to reduce the amount of computation required.

Note that this technique produces 2mn eigenvalues, but Equation 28 pre-
dicted n(2m + ¢) eigenvalues. The remaining gn of the n(2m + ¢) eigenvalues
and eigenvectors are found using a scheme very similar to the one above [1,
80-83]. After clearing the denominator of Equation 38, it can be written as

AI™(1 4+ 5A9)[M){¢} + (1 + A1) [Ke]{g}+
(Bo + E1M)[Kv]{¢} = 0

(43)

Writing the equation in this form allows A? to appear explicitly in the equation,
making it possible to find the remaining roots. Notice that these additional
roots only exist for b # 0.

The solution method used to find the additional roots is somewhat subtle.

By defining
Q = bAIMHe I (44)
[K'(A)] = (1+4bAY)[KEg] + (Eo + E1AT)[Kv] (45)
DAC-11
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Equation 43 can be written in the more recognizable form
- -1
[K' (V)] [M]{¢} = g ¢ (46)

Matrix iteration is applied to this equation, with the i*» estimate of A determined

from
am \ 1119
Q- N1
M= || ST (47)
) Vil

The k** branch of the ¢*? root of the quantity in brackets is used to determine
the eigenvalue on that branch. _

Turner’s method is again employed to find the higher modes on each branch,
as in Equation 41, with Q();) replacing w?.

This section has shown that it is possible to find all n(2m+¢) eigenvalues and
eigenvectors without solving the expanded equations of motion. However, the
technique still requires a substantial amount of computation. In the next section,
a technique is proposed which greatly reduces the computational burden.

Spectrum Shift Technique

While the modified matrix iteration technique is effective, it is not very
efficient. In this section, spectrum shift methods will be combined with the
matrix iteration technique, reducing the amount of computation required. The
purpose of spectrum shift is to shift the eigenvalues of the system so that the
desired eigenvalue becomes the fundamental one. Matrix iteration will then
produce the desired eigenvalue. If spectrum shift methods could be used to
compute the higher modes in the viscoelastic model, the pseudoeigenvalues and
pseudoeigenvectors of the corresponding [K(A)]~![M] would not have to be
computed. Determining the appropriate spectrum shifts is not easy, and requires
certain precautions, which will be presented later.

The spectrum shift technique is usually used in elastic systems when a par-
ticular frequency and corresponding mode shape are of interest. To illustrate
the theory behind the spectrum shift technique, consider again an undamped

system
[[K] - «?[M]] {¢} =0 (48)
Picljcing the shift factor, u, close to the desired w? gives the shifted equations [8,
330
[[K] = u[M] - (w? - w)[M]] {¢} =0 (49)
Letting
[R]=[K]-pM] and @i=uw?-pu (50)
Then

(B1-Pa] =0 o RIMUI==(6} @D
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Applying matrix iteration to this equation produces the mode closest to .

Now consider the matrix [K(A;)]~![M] of the viscoelastic model. Only the
itk eigenvalue and eigenvector are desired. By letting A = st/m = (iw)t/™,
Equations 50 and 51 can be written as

am = Y
RO = [KQ)] - ulM] (52)
[ROOITUMI{8) = sk{4)

As a first guess of the appropriate shift factor for the i*» mode, the eigenvalue
of [K(Mi-1)]~2[M] closest to A;_1 is used. It is computed by using Turner’s
method. The dynamical matrix is

[D(Xi-1)] [I?('\i—l)]—l[M]";—;?{¢i-1}{¢i—l}T[M] -
[D(i-1)]{$} #={4}

If 4;—1 was the shift used to find A;_,, then by Equation 52, the new shift factor
is

Pi = pi-1 — A (54)

Since the magnitude of the i** eigenvalue must be larger than the magnitude of
'\i—ls if

|l < |mi-al (55)

then A2™ was in the wrong direction. The shift is recomputed as
Bi = pi-1 + A (56)
Notice that matrix iteration on

[R5, )]~ [M] = I’z%{"‘} (57)

will converge to the i — 1 mode if the magnitude of u; is not large enough. If
this occurs, p; is adjusted by adding the new A2™ (as in Equation 56).

For undamped systems, the j'* eigenvalues on all 2m branches have the
same magnitude and are evenly spaced on a circle about the origin. For lightly
damped systems, the j** eigenvalues lie near the those for an undamped system.
This is portrayed graphically for a single degree of freedom system with o = 1/2
in Figure 2a. Since A?™ is roughly the same magnitude for all the eigenvalues,
the method can be modified slightly to use the A?™ values on the principal
branch to calculate shifts for the other branches. This modification is valid for
systems with less than a 0.01 damping ratio.

To understand the location of the A? values in the s-plane, it is necessary
to realize that the Riemann surface for the function w = 2!/2 consists of two
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o — undamped system
x — damped system

si/2 'V |s
Xo x0 X
22
x© Xo
Xd
a b

Figure 2: Locations of A and A? values

Riemann sheets, joined together at the branch cut. Taking the branch cut along
the negative real axis, the sheets can be defined by

So

-7 <
- {z| - = < arg(2z) < =} (58)

{z| < arg(z) < 37}

So the eigenvalues in the first and fourth quadrants of the s/3-plane map
into the second and third quadrants, respectively, of Sy. These are shown in
Fiqure 2b. But the eigenvalues in the second and third quadrants of the s!/3-
plane map into the fourth and first quadrants, respectively, of S;. To see this let
ref(37/4+¢) represent the second quadrant eigenvalue, where § is an small angle.
Then

arg(?) = 3?" +26 (59)
Since this angle is greater than 7, A? is on S at the angle given by Equation 59.

The third quadrant eigenvalue is a little more subtle. Its angle is —(3x/4+6),

arg(A?) = -37” - 26 (60)

80

But neither sheet contains values with this angle. When the value crossed the
negative real axis in the negative direction, its angle experienced a 4x jump
discontinuity from —= to 37. Therefore the angle is really

arg(\?) = —921 ~26+4r = §21r. - 26 (61)
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Technique t=0.Im: | t=0.05m
Modified matrix iteration 0:52.11 1:14.51
Spectrum shift 0:21.78 0:32.43
Modified spectrum shift 0:12.06 0:15.15

Table 1: Computation Times (in CPU minutes)

This angle is in the first quadrant of S;. Notice that for undamped systems, the
A2 values in S lie directly above those in Sp. To map back into the s!/3-plane,
the 47 must be subtracted off before taking the square root.

For a ten degree-of-freedom system, the spectrum shift technique more than
halved the computation time required by the modified matrix iteration tech-
nique. Storing the principal branch’s A>™ values reduced the computation time
by another 50%. (Exact computation times are given in Table 1.) Computed
eigenvalues were accurate to at least five significant figures.

Example Problem

To demonstrate the efficiency of this technique, a ten degree-of-freedom
model was considered. The rod was similar to the one in Figure 1, and its
equations of motion had the same form. The rod was assumed to be pure alu-
minum, with Butyl B252 damping pads. The values of the parameters were
[4](all values are in compatible mks SI units)

.{: p = 2.71.10% E = b5.516-101°
: A = 0.0625 Go = 176-10°
: A; = 0.0625 G, = 295.10°
L = 0909 b = 0.001
4 i = 0.1

These parameters resulted in low damping, on the order of 10~2, so it could be
solved using the modified spectrum shift technique, as well as by using modified
matrix iteration or spectrum shift. The computation times for two different pad
thicknesses are given in Table 1. The solution took longer than for the thinner
pad due to the increased damping.

The damping in the system was increased by decreasing the thickness of
the viscoelastic pads to 0.01m. For this case, the equivalent damping ratio was
0.069, as computed from the fundamental mode. For the principal branch, the
complex frequencies and mode shapes were found to be
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[ -107 + . 1545i )
~77 + 2962
—-66 + 4459
—-61 + 6051

] -60 + 7762i |
-61 + 9606
—-64 + 11566i
-69 + 13567
-74 + 15415

[ -79 + 16779 |

and

(10 10 10 10 10 10 1.0 10 10 1.0]
19 1.7 13 o08 03 -03 -08 -13 -17 -1.9
27 18 07 -03 -09 -09 -03 07 18 27
32 14 -04 -11 -05 06 11 04 -14 -3.2
35 05 -12 -06 08 08 -08 -12 05 3.5
35 -05 -12 06 08 -08 -06 12 05 -35
32 -14 -04 11 -05 -06 11 -04 -14 3.2
27 -18 07 03 -09 09 -03 -07 18 -27
19 -17 13 -08 03 03 -08 13 -1.7 1.9
| 10 -10 10 -10 10 -1.0 1.0 -1.0 1.0 -1.0 |

The first three mode shapes are plotted in Figures 3 to 5. The magnitude of the
complex frequencies for the first five modes is less than 10% higher than those
for an undamped continuum model, but the higher frequencies differ by up to
20%.

The spectrum shift method complements the finite element model. With
spectrum shift, finite element problems with viscoelastic damping can be solved
much faster than with modified matrix iteration. For a ten degree-of-freedom
model, the savings was more than 50% of the CPU time.

Conclusions and Recommendations

The spectrum shift technique is more efficient than the matrix iteration
technique. The computational burden does not increase as drastically with in-
creasing degrees of freedom. For lightly damped systems, the modified spectrum
shift technique represents even greater computational savings.

The existing program (presented in [9]) can be made more efficient by real-
izing that in real systems eigenvalues and eigenvectors appear in complex pairs,
and by taking advantage of the symmetry of the stiffness and mass matrices.
Also, for larger systems, it would be beneficial to examine matrix inversion
techniques that are designed to handle large matrices.
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Figure 3: First Mode Shape for Damped Rod
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Figure 4: Second Mode Shape for Damped Rod
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Figure 5: Third Mode Shape for Damped Rod
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