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ABSTRACT

Unsteady pressures on a thin two-dimensional airfoil
pitching and plunging in transonic flow have been computed
by numerically solving the governing partial differential
equation. The effect of wing thickness has been retained
by using the steady flow potential on the wing in the
coefficients of the equation in a manner which generalizes
Oswatitsch's parabolic method. The results are compared
with other methods and with experimental data.
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SECTION I

INTRODUCTION

The fundamental difficulty in the study of transonic flow
is due to the presence of interaction of advancing and receding
dispersive waves which results in the well-known Riemann steep-
ening of the wave fronts [1]* at sonic speeds. This phenomenon
is reflected even in the first approximation equations of
small perturbation theory by the presence of a non—-linear fterm
in the governing equation. The resulting non-linear equation
of mixed type is further complicated by the fact that the sonic
line along which the type changes is determined by the solution
and is not available a priori.

The solution to the non-linear steady equation may be
accomplished by finite difference techniques or by various
heuristic approximation methods [2]. Only recently have finite
difference techniques been improved sufficiently to solve the
two-dimensional and axisymmetric body non-linear equations with
sufficient accuracy in a reasonable time [for instance, 3].
Progress has also been made in solving the three-dimensional
problem [4]. However, these are very time consuming methods
and if repeated several times, as would be necessary for unsteady
calculations over a range of frequencies and for a variety of
oscillation modes, would become prohibitively costly [5, pp.
10-13].

By treating unsteady motion as a small perturbation of
steady motion, one may split the total unsteady flow into two
parts as was done by Landahl [6]. For large frequencies or very
slender bodies, Landahl showed that the two parts were decoupled
and thus was able to solve the unsteady problem without solving
the steady problem. Liu, Platzer, and Ruo [7] and Kimble, Ruo,
Liu and Wu [8] have extended this method for bodies of revolution
and pointed slender wings (hence, a limited three~dimensional
geomtery) to include a first approximation to the effect of the
steady soltuion by the use of the parabolic method.

~ The above solutions as well as that of Teipel [9] for the
two~-dimensional case have been given in asymptotic form. This
is not wholly satisfactory since the series are not uniformly
valid near the nose or leading edge.

Also the asymptotic methods are impractical if the influence
of the steady part is approximated more realistically by a func-
tion which varies with position in the flow field rather than
by the parabolic constant [see 2].

*Nunbers quoted in brackets are references citéd at the end of

the report.
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A numeric procedure has been devised to solve the unsteady
equation very rapidly for Mach number near one. If{ takes
advantage of the extent of the sonic pocket in such flows result-
ing in an equation of parabolic and hyperbolic type near the
body.

Solutions were obtained for the pitching and plunging
parabolic arc airfoil as well as the oscillating control surface
problem for which Tijdeman and Bergh [10] obtained experimental
solutions. The theoretical solutions are quantitatively similar
to those of Tijdeman and Bergh but show much smoother trends.
This discrepancy and its possible causes are discussed in the
conclusions.



SECTION II

TECHNICAL DISCUSSION

1. Statement of Problem

Assuming a uniform two-dimensional flow of velocity Uo
directed in the positive x direction for points far upstream
and a thin body of length b oriented mainly along the x axis
with leading edge at x = 0 and executing small transverse
vibrations it is permissable to assume that the flow has a
velocity potential & such that

U=0 (/%) I/=Up.f_3:a )

where U and V are the velocity components in the x and y
directions respectively. It has been shown, e.g. [6], that the
small perturbation assumptions give

Ut 2 O 1) B, | B 1—'@:7?_1&;-5;%/% -4, /a> _ o 2@

for the equation to be satisfied by ¢ in the first approximation
for small thickness. Here Mw is the Mach number at upstream
infinity, y is the ratio of specific heats, and a, is the sonic
velocity for upstream. After the change of variables

z=b% y=bp  T=b¥/l, ,Z6¥ @

the potential equation becomes

—

[1—/1001__/1:(}’1-/) j%ﬁ -};;?7 —lﬁwl%? __/ZOI%JZ/ = O )

Further, v must approach zero far upstream and at large
lateral distances from the boedy. The condition of tangential
flow on the body gives



Uy dyy = ®

odly

where 11 = H( £, 1) for points on the body and where the body
is assumed to be thin. The body may be described by

§ex)=eq@) +§Ral (FG) e RT) @

where ¢ is the thickness ratio and & represents the oscillation
amplitude at reduced frequency k = ®b/U, (w is the frequency
while g(£) and £(£) both of order 1, are the distributions of
thickness and "oscillation amplitude'", respectively.)

Then writing

?(;) 7}}))5 %(551?) +M{@(§J?)ez‘£7} (7)

and assuming

[/"/‘Z,cl“ /le()’"f-/)?ff]%j + ¢77 = O (8)

and

% Jioy, = €9(8) _ | ©

we have [6, p.7],

(1-11,.7) Qoﬁ -/ (71) (ﬁj» B +¢;,j @, )

“‘Cﬁ?? "Q,/‘?WIZ%C/E +/7w2,/?t(;9 = O (10)

and assuming the thickness ratio ¢ is small, the condition of
tangential flow becomes
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Defining p*(£, 1) = »p(E,— n) we see that o* satisfies the
same differential equation and boundary conditions as ¢ except
that

CP; (¥ +o)= —Jﬂéf—c‘/gf):“%(;j +o) (12)

Therefore, the uniqueness of the solution of the problem implies
that

Cp(;jﬂy)z Cﬂ*(/?/7):“cﬂffj/) | (13)

and setting n = 0 gives

Cp('ijo)lo j*‘ou:)<)?§_0 M/'Sj)<% (14)

‘Pressure coefficients may be computed for steady flow from

G = *olffg (15)

and for unsteady flow from

A
—~J

€P+i CP = -2 (q&g +z~,£qp) (16)

2. Parabolic Method

Equation 10 is a variable coefficient linear equation which
requires knowledge of the steady flow potential for its solution.
Oswatitsch [11] and Cole and Royce [12] have used simplified
representations of ¢ for M, very near 1 with great success to
predict pressures on the body. The principal argument is that
the sonic pocket 1is very extensive in the y direction and extends
nearly the whole length of the body. Hence the flow near the
body is largely supersonic and the governing equations (8) and
(10) are hyperbolic. The extent of the pocket prevents much

5



feedback from the wake intce the solution in the elliptic region
ahead of the body. Inaddition, little upstream influence is
generated by the body owing to the nearness of M, to 1.

Cole used an approximation which allowed for the hyperbolic
behavior of the equation (8):

B, = (r-¥7) C , Bex = C (17)

where x* is the sonic point and ¢ is a positive constant.
Oswatitsch used the fact that the characteristics are extremely
steep inside the pocket and concluded that the equation would
exhibit a nearly parabolic behavior inside the pocket. Oswatitsch

took advantage of this behavior by assuming ¢§ was a positive
constant, the parabolic constant [, hence giv gg a parabolic

equation
[/“/7”‘~/yw‘[/f/),% ] /_7% %/ﬂ =) (18)

for ¢. The behavior of this equation (as well as that of Cole)
is consistent with the above observations. The potential

may be assumed Zzero at the leading edge of the body and the
solution is then computed within the sonic pocket and is inde-
pendent of wake and upstream influence.

Various methods of assigning values to I’ and of improving
these approximations by allowing [' to change with £ have been
developed by Spreiter [13], Wu[l], Hosokawa [14], Teipel [9],
Zierep [15] and others. Platzer [16], Liu and Ruo [17] and
Kimble, et al [8] have calculated asymptotic solutions of (10)

=0, %y =" "

and Spreiter and Stahara [18] have included Spreiter's local
linearization scolution for # in a solution for the two-dimensional
case. For comparison purposes we have chosen the work of Teipel
[9] in which the constant ' is given by

%} = /7= 55 f(/?‘/)éjz/:i ’% =0 (20
and the work of Spreiter and Stahara in which I

— - — — : &)

F% ZL%‘E/&/VJU ~&"’§+a°§&+ 3/2}]

%, = 3% 53—_ (21)

9”55 a? §



where

7 cm )= 2 gLt el ™) iy |7

(22)

et /3
A (7F) CP

3. Present Method

The parabolic method gives good agreement with experiments
for values of the generalized force coefficients (total-damping-
in~pitch). These coefficients represent an "average" of the
flow effects over the entire body and hence it is not so sur-
prising that the simplified representation of the steady flow
provides reasonably good approximation for their values.

However, in order to represent the unsteady pressure dis-
tributions on the body accurately, more detailed descriptions
of the steady solution values on the body must be used.

Since experimental results generally include measurenment
of the steady flow conditions, the method should be able to
accept these results as input in order to calculate the unsteady
conditions. Also, many numeric solutions have even been
obtained for the steady case. It should be possible to use these
as well.

The only method of solution of equation (10) which can
accept such data as input is a numeric method. Consequently, a
numeric solution procedure similar to that of Crank—-Nicolson was
used to solve equation (10).

The steady flow ahead of the hody is assumed to have no
effect. The solution is computed to the hyperbolic equation (10)
forward from the leading edge along the x axis until & < ©
This is the point at which the steady flow shock £ 2
is encountered. Since near M, = 1, the shock is near the trailing
edge, computation is terminated. : )

The ¢ derivative terms are approximated by a difference
.scheme which gives good accuracy and stability regardless whether
equation (10) is hyperbolic or parabolic and makes the comparison
of the various methods more convenient. [Let

C = /Zozfﬁ///gf ((A’?‘VZ)A§ y 0) (23)
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Denote by /_ the central difference operator in the 7 directiocon

1
and by I % * % {0 evaluate at_n and n + 1 and add as

opposed to the usual meaning of ]n + 1. Then the basic difference
equation for the parabolic method is

n)n+l

pm”l [CP] = Cm'/z [CP;] - 2,1}7 [ ? CP +/L° '2 ] =0

¢ n

From this we may define the scheme for the hyperbolic equation as

55 @, +A§ &[}Oqua |+ 70"”/2[09 ]} O @5)

where

0, :(/"ffool)“/?wl(/’f/)/@’f (/m.g jc) (26)

ThlsEScheme has the advantage of retaining truncation error

Nats + An ) for either hyperbolic or parabolic methods. It

is unconditionally stable and we believe takes full advantage

of the fact that the equation (10) is actually nearly parabolic,

a fact which is reflected in the small magnitude of the coefficient
D.

In addition (and before differencing) the equation was trans-

formed so as to give a finite region of sclution. The transfor-
mation is

) - E ln (57

By this means the. boundary condition at 1 = «» becomes a condition
at M = 1, making consideration of far field solutions unnecessary.



SECTION IIT

RESULTS

1. Teipel' s Parabolic Method

Calculations were first carried out according to Teipel's
procedure since in that case an analytic solution may be
obtained and an appraisal of the error in the numeric method
obtained. Figures 1 - 3 show that the error is less than 1%
except near the nose singularity. Various values of z_, the
value of 1 beyond which the solution is assumed zero, were used
and it was found that only at 2z, = 8 was the influence of the
far field negligible., This gives some idea of the persistence
of the unsteady flow far from the body. The transformation (22)
decreased greatly the number of 7 points necessary to obtain
an accurate solution. The values of pressure coefficient
differed by less than 2% from those for case for z_, = 8. Note
that the wing occupies the region -1 < x < 1 on the x scale.
Here x = 2£ - 1. This is done in agreement with Teipel's paper
in Wthh also Cp 8 represent the real and imaginary parts
of the unsteady pregsure

2, Spreiter-Stahara's Local Linearization Method

The steady flow solution of Spreiter-Stahara was used in
the present program to predict the unsteady potential and the
results compared in Figures 4 - 7 with the local linearization
method of solving the same equation. As reduced frequency k
increases both solutions approach that of slender body theory
as they should. However differences on the order of 50% occur
as k is reduced to .1. In both methods, the steady flow is
assumed independent of n) in both methods no influence of flow
ahead of the body nor shock nor wake influence is assumed. In
short, both solve the same mathematical problem. No mathematical
justification has been given for the local linearization method;
however, the numeric method has been well studied. We conclude
that the local linearization method is not sufficiently accurate
to be used for values of reduced frequency near .1.

3. Parabolic Arc Airfoil

The present method was used to compute the unsteady pressures
which result when a parabolic arc airfoil is oscillating in

pitch or in plunge at reduced frequency k = .1l. The steady data
was taken from the experimental results of Knechtel [21, fig. 7]
for a low Mach number of M = ,806 and a Mach number near 1

of M_ = 1.083. The results are shown in figures 8 and 9. It

was not expected that the present method would yield results
beyond x = .9 for M, = .806 since the equation is no longer
hyperbclic there. Some difficulty is experienced even before

9



this, however  7The coefficient of @ge is quite small and hence

when the real coefficient of @g becomes negative (x » .5) the
solution is rather inaccurate.

However near the leading edge only the parabolic equation
is used and consequently no difficulty with instability is
encountered.

Some inaccuracy is also due to the use of rather crude
interpolation of the experimental data. It would be much
better to use a parabolic interpolation rather than the linear
interpolation used here,

4. Control Surface Oscillation

The only experimental data available to us are the experi-
ments of Tijdeman and Bergh [10]. Although these are not
really satisfactory tests of the present method, an attempt
was made to determine whether reasonable results could be
obtained. The values of g¢ and ﬂe were derived from the
steady data given in [19, %ig. 2] %or M, = .94, .96, .98, 1.00.
These were used for computing the unsteady pressures as shown
in figures 10 -~ 15.

There is agreement between experimental and theoretical
results only in order of magnitude. The present method cannot
predict unsteady flow pressures behind the shock and hence
the graph has been terminated ahead of the shock position.
Interestingly the experimental data confirm the assumption that
the flow is only slightly affected ahead of the oscillating
surface for Mach number near 1. Thus in figure 10 of reference
19 pressures are virtually zero ahead of x/c = .75 for M, = .984,
. 994,

We feel that the experimental data must be viewed with great
care, however. There is not sufficient investigation of the
repeatability of the experiments. Although repeated runs were
made to measure aerodynamic derivatives and these did show
consistency, it is well known that most theories, even fully
linearized ones, give rather good predictions of the aerodynamic
derivatives. These derivatives are actually integrals of the
pressure over ithe body and tend to average out many errors
present. We are concerned that the unsteady pressure changes by
more than 50% from one x station to the next, in several cases,
particularly when M, is near 1.0 Additional tests should be made
to determine whether these data are repeatable.

The wind tunnel-model combination has a blockage ratio of
2%. Other investigators [20] have established that steady tran-
sonic flow requires a ratlo of less than 1% to alleviate wind
tunnel wall effects. These effects are worst near the trailing
edge where the reflected wave from the tunnel wall strikes the
airfoil. Unsteady flow perturbations would seem to extend
10



even further in the lateral direction than do the steady effects.
This may well account for the sharp variations in the experimental
data.

11



SECTION IV

CONCLUSIONS AND RECOMMENDATIONS

The numeric method presented here has been shown to be
more versatile and in some cases more accurate than other
methods which ignore the elliptic part of the flow field.

At the same time, the importance of including wake effect,
particularly for oscillating control surfaces is evident. The
present method is quite fast requiring less than 30 seconds

per case on the IBM 360/65. The method could be modified to
include wake influence at a fraction the cost of a full soluticn
of the mixed type equation (10). The effect of more accurately
modelling the steady flow by using a damping factor for its
value in the 7 direction should be investigated.

Perhaps the most important recommendation which can be
made is to the need of experimental data. Most theoretical
work done at present has only limited application to the
Tijdeman-Bergh experiments where shock influence, wake influence,
and tunnel wall effects are most severe. Only by comparison with
experiments in which the entire surface oscillates will it be
possible to sufficiently separate these effects to determine
how they cumulatively affect the current situation.

12
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