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SANDWICH BEAMS

Mohan D. Rao*and Shulin He**
ME-EM Department

Michigan Technological University
Houghton, MI 49931

(906) 487-2551

This paper describes an analytical model for the coupled flexural and
longitudinal vibration of a curved sandwich beam system., The system consists
of a pair of parallel and identical composite sandwich beams with a
viscoelastic damping material forming the core. The ends of the beams may
have any physically realizable boundary conditions, but, in this case are
assumed to be simply-supported. The governing equations of motion for the
forced vibration of the system are derived using the energy method and
Hamilton’s principle. Both shear and thickness deformation in the adhesive
layer is included in the analysis. The solution of the governing equations
for the system resonance frequencies and loss factors are obtained in closed
form using the Rayleigh-Ritz method. A parametric study has been conducted
to evaluate the effects of curvature, core~thickness and adhesive shear
modulus on the system natural frequencies and loss factors. The implications
of this parametric study on the damping effectiveness of the system along
with some design guidelines are included in the paper.
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I. INTRODUCTION

The use of viscoelastic material as a core material in constrained layer
and sandwich layer arrangement is an effective way of damping vibration and
noise in structures subjected to dynamic loading. Many structural components
such as the wing of an aircraft, body panel of an automobile are curved in
shape. In the analysis and design of passive damping treatments of such
panels, it has been customary to use straight beam theory approximations,
because of lack of better analysis methods that are simple and accurate. The
objective of this research effort is to develop simple yet accurate analysis
and design procedures for passive vibration control of curved sandwich panels.

Considerable research work has been done on the vibration of straight
sandwich beams. The classic work in this area is reported by Ross, Ungar and
Kerwin [1], and Kerwin [2]. They have derived an expression for an effective
complex flexural stiffness for the system consisting of a damping layer
sandwich between two face-plates. Mead and Markus [3] have studied the forced
vibration of a sandwich beam with arbitrary boundary conditions. They have
derived the sixth-order differential equation of motion for the flexural
vibration and obtained solutions. Rao [4] has studied the frequency and loss
factors of sandwich beams under various boundary conditions using the energy
approach. Miles and Reinhall [S] have déscrlbed an analytical model for the
vibration of laminated beams including the effects of both shear and thickness
deformation in the adhesive layer. Some work has been done on the vibration
of curved sandwich beams. Petyt and Fleischer [6] have investigated the free
vibration of a curved homogeneous beam. Ahmed [7]) has .studied the free
vibration of curved sandwich beams by the finite element method. Vaswani,
Asnavi and Nakra [8] have derived a closed-form solution for the system loss

factors and resonance frequencies for a curved sandwich beams with a
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viscoelastic core by the Ritz method. But the thickness of the adhesive core

was not considered in their analysis. Furthermore their analysis does not
include the longitudinal inertia effects.

In this papper, the authors have used the energy method and Hamilton’s
principle to derive the governing equation of motion for the coupled flexural
and longitudinal vibation of a curved snadwich beam system. Both shear and
thickness deformations of the adhesive core are included. The longitudinal
kinetic energy of the beam system is also considered. A closed-form solution
of the system modal loss facotrs, resonance frequencies and mode shapes is
derived for a system having simply supported ends by the Ritz method. The
effects of curvature, core-thckness and adhesive shear modulus on the system

natural frequencies and loss factors are also studied.

Il. THEORY

Fig. 1 shows the curved sandwich beam system chosen for study. Both the
upper and lower beams are constrained in the radial (transverse) direction at
the two ends, and the upper beam is free to deform in the circumferential
(longitudinal} direction. The governing equations of motion for the coupled
flexural and longitudinal vibration under radial distribution load are derived
by MHamilton's Princple. The following basic assumptions are made in the
analysis.

{.  Both upper and lower beams are elastic and isotropic. The adhesive
core is viscoelastic whose elastic and shear moduli are modeled using
the complex modulus approach.

2. Both beams and the adhesive core are assumed to be under plane stress

R
state. The shear strain in the adhesive is proportional to [—c]

R + z
c c
where -hc/2 = zcshc/Z. hc being the adhesive thickness and R the
c

radius of curvature of the middle surface of the adhesive layer. But
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the radial deformation of the adhesive is assumed to be constant
through its thickness.

3. The transverse shear strains in both beams and the longitudinal
deformation of the adhesive are neglected. Furthermore, rotational
kinetic energies of both beams are also neglected.

Let the transverse and longitudinal displacements of a fiber in the
middle surface of the upper beam be wl and '1 respectively. The same
variables with subscript 2 refer to those of the lower beam. The radial and
circumferential displacements of the fiber at any point p(e.zl) in the upper

beam are given by

Rl+zl zl awl
Wp = Wl ’ up = Rl ul - ‘R—l 5—9— . -hl/Z = ZIS hl/Z (l)
respectively. The strain in the fiber is given by
S & +w
€6 Rl+ z, ae p
€ =Lu’+l—w—.z_lw" 2)
or 1,6 Rl 1 (Rl+ z)| 1 Rl 1
au a’w
where u’ = — and w” = —1.
1 a6 1 aez
. l 2 -
Strain energy of the upper beam is Ux' 5 Elcl’edvl. As dvl = (Rl+ zl)dzlde,
v
1
for unit width, we have
I':lti’hl 2 h? 2
Ul = Q-Jﬁ-[(ul+ wl) vl (wl+ wl) ]de {3)
o 1 lZR‘

where El, Rl and hl are the elastic moduli, radius of curvature of the middle
surface and thickness of the upper beam respectively. z is the radial
coordinate from the middle surface.

Kinetic energy of the upper beam is approximated as

T = p'h‘R'¢(ﬁ2+ w?)de (4)
1 2 T
0
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du aw
where P, is the density of the upper beam material and u = 5?" w, = a—t'

Similarly, kinetic energy 'l"z and strain energy Uz of lower beam are given by

¢
p hR
222 .2
T, =3 I(uz + w_)de (S)
0
h2
” 2
u, =5 .[R [(u +w ) 12R (w2+ wz) ]de (6)

where Ez. Rz, h2 and p, are the young’s moduli, radius of curvature of the

middle surface, thickness and density of the lower beam respectively. Also,

au a%w au aw
u’=—3w"= zﬁ —zandw =__°
2 ae 2 692 2 at 2 at
The shear strain in the middle fiber of the adhesive core js approximated as
=UB-UA+_1'[_lawl+l_aw2]
L h 2R 38 "R, 38
[ 1 2
i h|+hc wl h +h w’
or Yowa = -h—c-[(azuz- alul) *—— 'RT R ] (7)

where a =1+ h /(2R )anda =1-h /(2R ).
1 1 1 2 2 2

Then the shear strain of the adhesive core is

Rc h1+hc w, h +h w’
7C—R+zh[(au-—au)+ 3 R_x 2 R] -h/2szsh/z (8
W~ W
The radial strain of the adhesive core is ccz = zh I
! [
Strain energy of the adhesive core is Uc =5 J G 1 + kE c ]dv , l.e.
v

[

*
hl*hc w'l h2+hc wlz 2 kEcRc 2
U ,[Zh [ IZR][(au-alu )+[ > ]R—+[ 5 ]R—] *Sh (wz—wl] de(?)
1 2 [

1 . . . . . * .
where k = =D v is Poisson’s ratio. Ec and Gc are the complex elastic

and shear moduli of the adhesive layer which are applicable only under
» *

harmonic vibration. E = E’(l+n ) and G = G’{i+n ), where E’ and G’ are
c c cl [ c c2 c 4

the storage moduli, and L and n, are the loss factors corresponding to

»
extersional and shear deformation of the viscoelastic material. Values of E
[ 4
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]
and GC corresponding to a frequnecy and temperature can be obtained from
material data sheets supplied by the manufacturers in the form of a nomogram.

Kinetic energy of the adhesive layer is approximated as

l -2 T2
T = §pcj[(uA+uB) + (W sw ) ]dvc, or

[

Vc
pcth¢ lhz- hn' 2, - ©2
Tc =—3 I{[a u + azu + —(R— w'2 - E—l w’l)] + (wl+ wz) }de (10)
0
. a‘w
where P is the density of adhesive and w’| = 5?6_; i=1 2
Work done by external forces is
¢
W= leq!(Rl- h /2)de (1)
0
¢ t,

Let ere = TI+T2+TC-U1-U2-UC+W. Hamilton’s Principle SI(T—V+W)dt = 0 gives

0 t
1

tz ¢

J{I&r(u ,u ,U',U'.l:l ,u W, W ,w’,w’,w”,w”,v'v’,v.v’.\;v W )de}dt =0 (12)
TR AR R Aa R LA R L T L R R T AR TR

t

0
{

From the principle of calculus of variations, we get the following governing

equations of motion of the system.

.
2
E h 8% 8w, aGR h h +h  h_+h
11 1 1 1 ¢ ¢ c a3 1 c 2 c
+ + 1+ (a_u-au)+ = w o+ w
22 11 1 2 2

R, aez ae hc lZRi 88| 2R 1 2R
2
8y ap hR (.2 . 3 h h 1
- PR ;- : ; - c[a—_z(anu vau) % aT{ﬁzwz—Tflwnll =0 (13)
PUL g at at°ae p
2 b 2
E h ,8°u dw aGR h h +h h_ +h
22[ 2, z] 2cc[l+c][(au_au)+a_[l Cw o cw]]
R2 692 ae hc lZR: 38| 2R 1 2R 2
2
d"u ap hR 2 3 h h
2 2"¢ ¢ ¢|d l a3 2 1
- p.h R - [———(au+au)+-———[—w——w]l=0 (14)
zzzatz 4 at2 11 22 ZatzaeRzle 1
3 L
E h” 3 3w E h ,0u kE R
! '[ +2 '+w] PO [——+lw] E S(w_-w )
lZR:: 3 4 aez 1 Rl ae 1 hc 2 1
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G R h 2 hl+hc h_+h h +hc aw
c [+
- 1+ ][—-(au-au)+—- w w]][ ]+th—
hc [ lZRi Jde 22 a6 2Rl | 2R2 2 ZR‘ 1 latz
ph R (.2 h 3 h h h
c c ¢c|d 1 d [ l[ 2 1 ]] [ 1
+ —(w +w_] + a U +a U +=|=—W -=—w = |R -=-|q (15)
4 at ZRzatza9 11 222R22Rl 1 12 )
-
Eh’a'w  d°w E_h_,du KE R
2 2 2 2 2 2 2 c ¢
[ +2 +Wz] * R [5§_+Wz] v,
12R§ et a8’ 2 c
. 2 2
G R h 2 ,h +h h_+h h_+h 3w
- = °[1+—°][§—(au-au )+—a [ | Cw +—2_Sw ]][——2 c] + phR 2
hc lZRi 48 22 11 ae2 2Rl 1 2R2 2 ZRz 22 2612
ph R (.2 h 3 h h
c c ¢|d 2 d [ l[ 2 1 ]]
+ Z (WHw ) = =—=— —|a u +a U +=| =W ——w =0 (16)
4 at 1 ZR2 atzae 222 R2 2 R1 1
The natural boundary conditions are given by
af af af a af 8 af af 3 af a af
[3o7%4, * 302" Gw ~geaw” a3t 2" Gw " @aw at 0%
) 2 ! 1 awl 2 2 aw2
¢
NANE gf—,,aw’] =0 €))
awI 1 aw2 2 0

We will first consider the free vibration of the system ané solve the
above four equations to find the system loss factors, resoance frequencies and
mode shapes. By using the forced and natural boundary conditions, it is
possible to set up the frequency equation which is a matrix equation with
complex elements. Using a numerical search technique, we can find the system
resonance f{requencies, loss factors, etc. The disadvantage of this method,
however, is that the natural frequencies and loss factors are not obtained in
closed form as it requires a numerical searching technique to obtain the
results. Since we are interested in finding only the first severa! modes of
vibration of the system, other approximate methods that are fairi: accurate
would yield closed form solution. One such method is the the Rarleigh-Ritz
method in which the mode shapes are first assumed to set up the eigenvalue
problem. The details of the application of Rayleigh-Ritz method to the

present problem are presented in the following sections.
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I11. NUMERICAL RESULTS
To find the system resonance frequencies w and the modal loss factors n

corresponding to w , we consider the free vibration of the system and assume
r

wl(e.t)=wl(9)elm,- ul(e.t)=Ul(9)e|m.wz(e,t)=wz(e)elm and uz(e.t)=U2(9)elwt,

t
where w = w (1 + i n). From the variational integral 6I (T-Vidt = 0, we get
r

t
1

¢ X L phR h, h
j w [(UlGU’+Wl<SWl)+p2th2(U26U2+W26W2)+ [(a U ‘a, u +2sz2 2R —W’ )(a au
0
h. h h2
+a_sU +__<sw' —«sw )+«w +W)(8W [+OW )] + | ew HSU’ +8W )+ S(W
2R 2R 1 1 1
12R
= = 2
Eh, ) kEcR‘R
" " ’ ) " ” c
+W)EW +8W )+ — 2[uysw S (BUL+8W )4 ——(W_+W)(SW +8W )] +—rr—3 (W,
R IZRZ 1 ¢
2 GRR hz h,+h, b _+h
[ c ’ ’ -
W) —%m [l ][a Vo Uiz Vit =R wz] [azauz 3,3y,
1 ¢ 12R I 2
h +h h,+h
+—g W 45 oW ]] de = 0 (18)
h R R E '
P h o) E
2 52 2 2R =2F =-S5 =R =F =_-2F =_%
whereh-—E—l.p2 p'Rz R.hc P, p,RC R'Ez E'Ec e

]
i
Q

_.c _E_‘: w = g; and w_ = (/ E17p1)/R1'

To define to mode shape of the curved sandwich beam system, it is assumed
that both the lower and upper beams are simply supported in the transverse
direction but the upper beam is free to move in longitudinal direction. The
forced boundary conditions will then be Wl(O) = “'2(0) = 0, UZ(O) = 0, Wl(¢) =
w2(¢) = 0. Also the mode shape functions of the curved beams are approximated

with the mode shape functions of straight Euler-Bernoulli beams. Then the

mode shape functions can be chosen as
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W (0) = z ¢ sin(=5%)

r=1i ¢
N rne
Ul[e) = § COS(T)
rne
W (0) = [ ¢ sin(75%)

r=1
UZ(G) le Sin[(r —
r=s

which satisfy all the forced

(19)
(20)
(21)
l);:_e (22)

(essential) boundary conditions. The coefficient

C for the shape functions are chosen to be the same for all four functions so
r

that the resulting eigenvalue

problem would yield the required N resonance

frequencies and N loss factors of the system. Substituting the expressions of

W,, Un‘ W2 and U2 into equation (18), we get,

N h2 2
1/ 2 jTy 2
) z{(;—n'l) *?[1'(3—) ]+
{ 1

2

el o]

12R?
[+

GRR h a jn
c 1 ¢ c 2 2 ] |

i(i-3) y 3,3, (-3  (i-3) R I
+(l-.‘.) 2:2] [(J__;_)g )Z_JZJ]}CI 8C, v w JEI {(sz 2R,
SRR anjh_ h . 2,h_ h.z N2h aac (i-}
S e G e L
-4 a, ilj-5 j i--l-
+(,_(;]§)_i] 'y [R R ] [(J_(;]z)_iz (:(% Z')_jz]}c. <SCJ =0 (23)

Writing the above equation in matrix form, we have

[KU]{C} =2 [M”]{C} (24)
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where [K”] and [M”] are N x N matrices, called stiffness and inertia matrix

respectively. A = w’ = wi(l+in) and {C} =[c c - Cu]r. Here w s the
r 1 2 r

systemn resonance frequency and 7m is the modal loss factor corresponding to w .
A computer program has been written to solve this eigenvalue problem.
Numerical results were generated to observe the effects of curvture, core-
thickness and adhesive shear modulus on the system resonance frequencies w
and modal loss factors n for the first four modes.

The adhesive shear modulus plays a very important role on the damping of

the sandwich system. The variations of the normalized resonance frequency w
v

W
(= a—r-) and modal loss factor n with respect to the normalized shear modulus
0
Gl(= real part of 5C) are plotted in Figures 2 and 3 for the first four
c
modes. The input data used here were n_ = n‘l =7 , = 0.1, hx: hz =4 mm, ¢
[ [+

= 1.0, hc = 2 mm and Rc = 1,2 m. It can be observed from Figure 2 and Figure
3 that when Gcl < 10'5 (soft adhesive material), the system resonance
frequencies Er increase very slowly (or almost constant) with Gcl‘ but the
system loss factors m vary almost linearly with Gd. For values of Gc1 such
that 107%¢ G, ¢ 107>, both Br and 7n increase rapidly with G, which means we
can increase the system damping capacity without sacrificing the stiffness of
system. Usually this is what the designers require in the design of
constrained layer damping treatment for the system. When G':l > 10'3 {hard
adhesive material), the system loss factors n remain almost constant with Gcn’
but the resonance frequencies Gr increase linearly with Gc:'

The effects of the adhesive thickness hc on the system resonance
frequencies and loss factors are also studied. The input data in this case
were G_ = 107, n, = 0.1, h = hz =4 mm R =12 mand ¢ = 10 The

thickness h was increased from 0.5 mm to & mm in steps of 0.5 mm. The
c :

variations of Gr and n with hc are plotted in Figures 4 and 5. It can be seen
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from these two figures that both Gr and n decrease with hc. The decrease of
u}r with hc is obvious as the system stifness will decrease when hc is
increased. Furthermore, from section iI, we know that the shear strain of the
adhesive layer is mainly contributed by the term (uz- ul)/hc). Hence,
increasing hc will reduce the shear deformation of the adhesive layer and thus
decrease the energy dissipation capacity of the sandwich system. This
concludes that an increase in adhesive thickness does not always increase the
system loss factor. It is therefore the combination of Gcl and hc that needs
to be optimized to maximize the system damping capacity.

The third parameter which affect the system resonance frequencies and
modal loss factors is the the radius of curvature Rc of the middle surface
of the adhesive layer. There are two ways of changing Rc as discussed below.

In the first case, the angle ¢ is kept constant, while changing Rc. This
means the total length of the sandwich beam system will change with Rc.

Figures 6 and 7 shows the variations of Br and n with Rc. The input data

-4
were ¢ = 1.0, Gcl=lx10 .nc—ncl—nc2=0.l. h’=h2=4mm,hc—2mm

n

and w_ ‘/fy;; . R_ was varied from 0.1 m to 2.0 m in steps of O.I m. It
can be seen that Er decreases but n increases with Rc, especially when Rc <
0.7 m. The variations of Gr and 5 with Rc are obvious as the total length of
the curved sandwich beam system increases with an increase in Rc.

In the second case, the total length of the curved sandwich beam is kept
constant at 1.2 m, which means changing Rc will result in a change of angle ¢.
Figures 8 and 9 show the variations of Br and n with Rc. Gcn’ . hx' hz' hc
and w were kept same as case one, but ¢ = 1.2/Rc. R . Wwas varied from 0.3 m
to 2.2 m in steps of 0.1 m. It is observed from Fi’gure 8 that Er is almost
‘constant with Rc. In fact the change of Gr with Rc is very insignifcant for

the first and second mode when Rc > 0.6 m. For the third and fourth modes,

however, Br change slightly with R_ when R < 0.9 m, but after R_> 0.9 m the
[+
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change of E}r with Rc is not very obvious. In fact, in this range, as Rc
increases, the curved beam turns to a straight beam and so large values of Rc
will have little effect on the system resonance frequencies. The variation of
n with Rc has a somewhat decreasing trend as seen in Figure 9. In summary,
when the radius of curvature Rc is relatively small, Rc has some effect on Gr

and n, but the effects are negligible for large values of Rc.

1V. CONCLUSIONS

The coupled transverse and longitudinal vibration of a curved sandwich
beam system is investigated using the energy method in this paper. A closed
form solution for the system resonance frequencies and modal loss factors is
derivedvby the Rayleigh-Ritz method. Numerical results show that high values
of adhesive shear modulus will influence the resonance frequenies much more
greatly than the modal loss factors. Relatively small radius of curvature of
the beam system will affect the system resonance frequencies and modal loss
factors. But large values of radius of curvature will have very little
effect on the resonance frequencies and modal loss factors. Furthermore, an
increase in the thickness of the adhesive layer will decrease both the system
resonance frequencies and modal loss factors. The analytical model presented
here can be used as an effective tool in the design of constrained layer

damping treatinents for passive vibration control of curved sandwich systems.
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Figure 1. Configuration of the curved sandwich beam system

Figure 2. Variation of system resonance frequency with

adhesive shear modulus
Figure 3. Variation of system loss factor with adhesive shear modulus

Figure 4. Variation of system resonance frequency with

adhesive thickness
Figure 5. Variation of system loss factor with adhesive thickness

Figure 6. Variation of system resonance frequency with radius of
curvature of the central surface of the adhesive layer

(¢ = 1.0)

Figure 7. Variation of system loss factor with radius of curvature
of the central surface of the adhesive layer

(¢ = 1.0)

Figure 8. Variation of system resonance frequency with radius cf
curvature of the central surface of the adhesive layer

(¢ = 1.2/R )
[+

Figure 9. Variation of system loss factor with radius of curvature
of the central surface of the adhesive layer

(¢ = LZ/RC)
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