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This paper describes an analytical model for the coupled flexural and 
longitudinal vibration of a curved sandwich beam system. The system consists 
of a pair of parallel and identical composi te sand\ot'ich beams wi th a 
viscoelastic damping material forming the core. The ends of the beams may 
have any physically realizable boundary conditions, but, in this case are 
assumed to be simply-supported. The governing equations of motion for the 
forced vibration of the system are derived using the energy method and 
Hamil ton's principle. Both shear and thickness deformation in the adhesive 
layer is included in the analysis. The solution of the governing equations 
for the system resonance frequencies and loss factors a~e obtained ill closed 
form using the Rayleigh-Ritz method. A parametric studJ has been conductedo 

to evaluate the effects of curvature, core-thickness and adhesive shear 
modulus on the system natural frequencies and loss factors. The implications 
of this parametric study on the damping effectiveness of the system along 
with some design guidelines are included in the paper. 
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I. INTRODUCTION
 

The use of viscoelastic material as a core material in constrained layer 

allu sandwich layer arrangement is an effective way of damping vibration and 

noise in structures subjected to dynamic loading. Many structural components 

such as the wing of an aircraft, body panel of an automobile are curved in 

shape. In the analysis and design of passive damping treatments of such 

panels, it has been customary to use straight beam theory approximations, 

because of lack of better analysis methods that are simple and accurate. The 

objective of this research effort is to develop simple yet accurate analysis 

and design procedures for passive vibration control of curved sandwich panels. 

Considerable research work has been done on the vibration of straight 

sandwich beams. The classic work in this area is reported by Ross, Ungar and 

Kerwin IJl, and Kerwin (2). They have derived an expression for an effective 

complex flexural stiffness for the system consisting of a damping layer 

sandwich between two face-plates. Mead and Markus (3) have studied the forced 

vibration of a sandwich beam with arbitrary boundary conditions. They have 

der·jved the sixth-order differential equation of motion for the flexural 

vibration and obtained solutions. Rao (4) has studied the frequency and loss 

factors of sandwich beams under various boundary conditions using the energy 

approach. Miles and Reinhall (S) have described an analytical model for the 

vibration of laminated beams including the effects of both shear and thickness 

deformation in the adhesive layer. Some work has been done on the vibration 

of curved sandwich beams. Petyt and Fleischer (6) have investigated the free 

vibration of a curved homogeneous beam. Ahmed (7] has studied the free 

vibr'ation of curved sandwich beams by the finite element method. Vaswani, 

Asnavi and Nakra (8) have derived a closed-form solution for· the system loss 

factors and resonance frequencies for a curved sandwich beams with a 
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viscoelastic core by the Ritz method. But the thickness of the adhesive core 

was not considered In their analysis. Furthermore their analysis does not 

include the longitudInal inertia effects. 

In this papper, the authors have used the energy method and Hamilton's 

principle to derive the governing equation of motion for the coupled flexural 

and longitudinal vibation of a curved snadwich beam system. Both shear and 

thickness deformations of the adhesive core are included. The longitudinal 

kinetic energy of the beam system Is also consIdered. A closed-form solution 

of the system modal loss facotrs, resonance frequencies and mode shapes is 

derived for a system having simply supported ends by the Ritz method. The 

effects of curvature, coni-thckness and adhesive shear modulus on the system 

natural frequencies and loss factors are also studied. 

II. THEORY 

Fig. 1 shows the curved sandwich beam system chosen for study. Both the 

upper and lower beams are constrained in the radial (transverse) direction at 

the two ends, and the upper beam is free to deform in the circumferential 

(longitudinal) direction. The governing equations of motion for the coupled 

flexural and longitudinal vibration under radial distribution load are derived 

by Hamilton's Princple. The following basic assumptions are made in the 

analysis. 

l.	 80th upper and lower beams are elastic and isotropic. The adhesive 

core is viscoelastic whose elastic and shear moduli are modeled using 

the complex modulus approach. 

2.	 Both beams and the adhesive core are assumed to be under plane stress 
R 

state. The shear strain in the adhesive is proportional to (R + C Z ), 

c	 c 

where -h /2 ~ z:!ih /2, h being the adhesive thickness and R the 
C c c c c 

radius of curvature of the middle surface of the adhesive layer. But 
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the radial deformation of the adhesive Is assumed to be constant 

through Its thickness. 

3.	 The transverse shear strains In both beams and the longitudinal 

deformation of the adhesive are neglected. Furthermore, rotational 

kinetic energies of both beams are also neglected. 

Let	 the transverse and longitudinal displacements of a fiber in the 

middle surface of the upper beam be wand 
1 

tI 
1 

respectively. The same 

\'ariables with subscript 2 refer to those of the lower beam. The radial and 

circumferential displacements of the fiber at any point p(9,z)
1 

in the upper 

beam are given by 

w 
p U 

p 
= 

R +z
1 1 

-R- u11 

z
1 

- R 
1 

8w
1 

89 -h /2
1 

~ z ~ 
1 

h /2
1 

respectively. The strain in the fiber is given by 

£1,9 
1 (8U p 

= R + Z 89 + 
1 1 

or £1,9 = 
1 
R 

1 

u'
1 

I 
+ 

(R + 
1 

z ) (wI
1 

Z 
1 

R 
1 

w';J (2) 

8u 8 2 w 
wher'e u' 

1 
= I 

ae and w"
1 

= 
89 

2 

I 

Strain energy of the upper beam Is U = 
I 

-2
I
JE £2 9dv.

1 1. 1 
As dv 

I 
= (R + 

1 
z )dz d9, 

1 I 

V 
1 

for unit width, we have 

U 
I 

E 'h h 2 

= 21
JR

1[(u'+ W)2+ (_IJ(W + w")2]d9 
I 1 1 12R 2 I 1 

(3) 

o 1 

where E,
1 

Rand h 
1 1. 

are the elastic moduli, radius of curvature of the middle 

surface and thickness of the upper beam respectively. Z 
1 

Is the radial 

coordinate fl'om the middle surface. 

Kinetic energy of the upper beam Is approximated as 

T
1 

= 
hR'

~J('}+ w2
)d92 1 J 

(4) 

o 
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• • 

au 8w 
I I 

where PI Is the density of the upper beam material and u '"' at' wI = 
1 8"t 

Similarly, kinetic energy T and strain energy U of lower beam are given by 
z	 z 

hR; 
T = PZ2Z ZJ(u' Zz + W' 2) de (5)

z z
 
o
 

E ~h h 
2
 

2 Z

U = 2 JR [(u;+ wz)2+ _2) (w + W") 2]de	 (6)

(2 12Rz Z Z o Z z 

where E , R , hand P are the young's moduli, radius of curvature of the 
2 z Z 2 

middle surface, thickness and density of the lower beam respectively. Also, 

aZw au aw 
Z' 2 ' Zw" 

Z = ae z ' Uz = at and w2 = at""" 

The shear strain in the middle fiber of the adhesive core is approximated as 

u - U 
8 A 

lmld = h
 
c
 

h +h Wi h +h Wi 

or 1 [< au) J c I Z c RZ] (7)l'mJd = h azuz- 1 1 + -2- R + -2­
c 1 2
 

where a = 1 + h /(2R ) and a = - h /(2R ).
I I I Z Z z 

Then the shear strain of the adhesive core is 

Wi WiR	 h +h h +h 
c 1 [	 1 c I Z c 

l = - (a u - au) + -- -	 + -2- R Z]. -h /2 $ z $ h /2 (8) 
c R + z h 2211 2 R	 c c C 

c C C	 1 2 

W - w 
2 IThe radial strain of the adhesive core is E: = 

C,% h 
C 

- ZStrain energy of the adhesive core is U = .!. J[C-/ + kE C ]dv. i. e. 
C 2 c c c c,z C 

v 
c
 

t/> - 2 ­c R h [ h+h Wi h +h Wi 2kE R } 
u =I ~(l+_C ) (a u -a u )+(_l_C)_I+(~)-!] +_c_C(w -w )2 del?) 

C {2h 12R2 Z 2 1 1 2 R 2 R 2h 2 I 
C	 1 2 c o c 

where k = C1-~)(l+V)' v is Poisson's ratio. E and C are the complex elastic 
C C 

and shear moduli of the adhesive	 layer which are applicable only under 

harmonic vibration. E.= E' (}+11 ) and G- = G/ O+11 ), where E ' and C' are 
C C cl c c c2 c C 

the storage moduli. 
/ 

and 11 and 11 are the loss factors corresponding to 
cl c2 

•extersional and shear deformation of	 the viscoelastic material. Values of E 
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•
and G corresponding to a frequnecy and temperature can be obtained from 

c 

material data sheets supplied by the manufacturers in the form of a nomogram. 

Kinetic energy of the adhesive layer is approximated as 

T = -Sip J[(U +u )2+ (..;.. +..;.. )2]dV, or 
c cAB ABc 

v 
e 

p h R ~ 
T = e CCJ{ [a u. + a u + (10) 

c S J 1 2 2
 

o
 
2a w 

where Pc is the density of adhesive and w~ = at a~' = I, Z. 

Work done by external forces is 

~ 

w = Jw q (R - h IZ)de (I I)
I I 1 I 

o 
t 

2 

Let Jfde = T +T +T -U -U -U +W. Hamilton's Principle 0JeT-V+W)dt = o gives 

~ 

I 2 C 2 C 

o t 
1 

t2{J~Ofeu ,u .u' ,u'.u .U .w ,w ,w' ,w' ,w".w",~' .~, ,..;.. .~ )de}dt = 0 (lz)
1212121212121212J

t 0 
1 

From the principle of calculus of variations. we get the following governing 

equations of motion of the system. 

2 h 2 
E h (a u OW) aG-R 

1 1 1 1 ICC( c)[-- --+- + h 1+---- (a u -a u ) 
R1 ae 2 ae C 12R2 

Z 2 • • 
C 

02 U · a p h R [02 . I 03 (h h )'II 1 C c e 2 I - p h R -- - -(a u + au) + - -- -w --w = 0 (13) 
I I I at 2 4 atZ I. 2 Z 2 at Zae Rz Z R. 1 J 

z • z
E h (a u OW) a G R ( h [ a h +h h +h ]2 2 Z 2 2ce C Ie 2 C 
-- --+-- - 1+-) (a -a ) + - (----w +---w )

R ae2 ae h c 12RZ 2 
u 

2 1 
u 

1 ae 2R 1 I 2R 2z Z 
C 

(14) 

kE•R 
1E 1 h (au • ) ___c_c(w -w ) 

+ -R- ~WI h z 1 
1 c 
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Z 
GeR h [a aZ h +h h +h ] h +h 
ee c ) 1 c Z c 1 c- __ +-- -(a u -a u +- ---w +--w - ­
he (I 12RZ) iJ9 Z Z 1 1 a9Z( 2R I 2R z z) (2R. )

1 
c 

hh R aZ 
+ e e c -(w +w ) (R -~)q 05)

1 2 14 at Z 1 Z~ 
•

E h3 a4 w aZw E h au kE Rz( Z 2) 2 z( ) -hec(w )Z Z -w-- --+2--+w + -R- a+w + 
Z 1I 2R3 a9 4 a9 Z Z 2 9 z e
 

2
 

Ge R h Z a aZ h +h h +h )] h +h 
cc c 1 e 2 c 2 e 
-- +-- -(a u -a u )+- ---w +--w - ­

he (I 12R2) [a9 Z Z 1 1 a9Z( 2R 1 2R Z (2R )
1 z z 

e 

lR a2 c e e+ -(W +w ) (16 ) 
4 at Z I 2~ 

The natural boundary conditions are given by 

af w 1 Bf W (7)1]1'+~a +::;"":"""'a =0II II w 1 W 2 0
I 2 

We will first consider the free vibration of the system and solve the 

above four equations to find the system loss factors, resoance freq'Jencies and 

mode shapes. By using the forced and natural boundary condibms, it is 

possible to set up the frequency equation which is a matrix eq'.;ation with 

complex elements. Using a numerical search technique, we can find the system 

resonance frequencies, loss factors, etc. TI1e disadvantage of th!s method, 

however. is that the natural frequencies and loss factors are not obtained in 

closed form as it requires a numerical searching technique to obtain the 

results. Since we are interested in finding only the first several modes of 

vibration of the system, other approximate methods that are fairl:; accurate 

would yield closed form solution. One such method is the the Rayleigh-Ritz 

method in which the mode shapes are first assumed to set up the eigenvalue 

problem. The details of the application of Rayleigh-Ritz method to the 

present problem are presented in the following sections. 
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Ill. NUMERICAL RESULTS 

To find the system resonance frequencies Col and the modal loss factors lJ 
r 

corresponding to w , we consider the free vibration of the system and assume 
r 

Iwt Iwt Iwt Iwt 
w Ie, tl=W (ele , u (9,t)=U (91e ,w (9,t)=W (91e and u (9, t)=U (9)e • 

I 1 , I 2 2 2 Z
 

t
 
Z 

whel'e w = wr(J + i TIl. From the variational integral lSJ (T-V)dt = 0, we get 

t , 
.{ Ph R h Z h

I WZ[IU lSU +w tJw l+p j) R (U aU +W oW)+ c c C[(a U +a U +ZR W'-ZR' W')(a tJU 
I I I I 22222 Z 2 4 I 122 2 I I I 

Z I 
o 

h h h Z 

+a oll +~W' -~W' )+(W +W )(ow +aW )]] + [IU' +W HoU' +aW )+-'-(w 
2 2 2R Z 2R ' 1 Z I Z I'" 12RZ ,z l 

I 

E h h Z kE R R 
+W")(c3W +lSW")+~[(U'+W )(OU'+OW )+_Z_(W +W")(tJW +aW")]+ ~ ~ Co(W 

, I 1 R Z Z Z Z 12RZ 2 Z Z Z 2, c Z 
2 Z 

Z G R R h
Z

) h +h h +h
1 Z

-W ) + Ch \ C(1+_C_ [a U -a U + 2R ZW' + 2R C W/ ] [a tJU -a c3U 
I 1 12R 2 2 Z , liZ Z Z , I 

I C I 2 
c 

+h,+hCc3W,+hZ+hCOW/]]} d9 = 0 <I81 
ZR 1 2R 2 

I 2 

•
h R h P R E E 

Z - Pz 2 C - c c 2 c
where h = - , R = R , h = , P = R = R , E = r , E = ,

2 = h' P2 2 C h c c 2 c EPI , PII 1 I 1 I 

G
• 

f, c - w and w 
c [' w = w o 

, 0 

To define to mode shape of the curved sandwich beam system, it is assumed 

that buth the lower and upper beams are simply suppol'ted in the transverse 

direction but the upper beam is free to move in longitudinal direction. The 

fOI'ced boundary conditions will then be W (0) = W (0) = 0, U (O) = 0, W (¢) = 
1 Z Z I 

W {If>1 = O. Also the mode shape functions of the curved beams are approximated
Z
 

with the mode shape functions of straight Euler-Bernoulli beams. Then the
 

mode shape functions can be chosen as 
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N 

W (9) = [ C Sin( r~9) (9) 
I r Of'
 

r= I
 

N rn9 
U (9) = L C CosI~) (20)

1 r Of' 
r=1
 

N
 

W (9) = L C Sin(~9) (21)
2 r Of' 

r=1 

N. 1 rna 
U (9) = [ CrStn[lr - Z)T] (22)

2
r=1 

which satisfy all the forced (essential) boundary conditions. The coefficient 

C for the shape functions are chosen to be the same for all four functions so 
r 

that the resulting eigenvalue problem would yield the required N resonance 

fl'equencies and N loss factors of the system. Substituting the expressions of 

w. U. W anti U into equation (18), we get,
I I 2 2 

G R R h Z [ a j n (h + h h + h ) . h +h h +h 2] }c 1 C (I c) Z Z I I c Z c I (J n) 2 (I c Z c) C+ +-- a +a --- ---+-- +- - --+-­
h h 12RZ 1 2 t; R R 4 t; R R J

I c 1 2 1 2 
c 

1 1-- a a J -- 1-­.(.l) (.1) ('1)}} N{{2 1 2 2 2 -2 - - ­
+ --- + C ~C + w O+p h R ) HJ'-/] • [(i-~J'-I' HJ')] J j~1 ,1 ' 1 

--- } N--- (I)P h R a ftj h h . 2 h h Z h R 2a a i- ­
+ c c c[la2+a2)+_1 (2_--.!) +!(In) (2_~) +4] Pc c_1_2[ 2C + \~

8 J 2 t; R R 4 t; R R J L 8 n (, I) 2 .2 
Z 1 Z 1 1-- -J

i=1 2 

(23) 

Writing the above equation in matrix form, we have 

(24) 
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where [Kl~ and [M1J are N x N matrices. called stiffness and inertia matrix 

Z
respectively. ,\ = w = w~(l+j'l) and {C} = [C C .. , CJ T. Here w Is the

I z ~ 

system resonance frequency and 'I) is the modal loss factor corresponding to w . 
~ 

... computer program has been written to solve this eigenvalue problem. 

Numerical results were generated to observe the effects of curvture, core-

thickness and adhesive shear modulus on the system resonance frequencies w 
~ 

and modal Joss factors 1) for the first four modes. 

The adhesive shear modulus plays a very important role on the damping of 

the sandwich system. The variations of the normalized resonance frequency w 
w 

~ 

(= ~) and modal loss factor 1) with respect to the normalized shear modulus 
w o 

G (= real part of G) are plotted in Figures 2 and J for the first four 
cl c 

modes. The input data used here were 1) = 1) = 1) = 0.1, h .= h = 4 mm, ¢ 
c cl c2 I Z 

= La, h = 2 mm and R = 1.2 m. It can be observed from Figure 2 and Figure 
c c 

3 that when G < 10-5 (soft adhesive material), the system resonance 
cl 

frequencies w increase very slowly (or almost constant) with G , but the 
~ cl 

system loss factors 1) vary almost linearly with G . For values of G such 
cl cl 

-s -3 ­that 10 < G < 10 , both wand 1) increase rapidly with G , which means we 
cl rei 

can increase the system damping capacity without sacrificing the stiffness of 

system. Usually this is what the designers require in the design of 

3
constrained layer damping treatment for the system. When G > 10- (hard

cl 

adhesive material), the system loss factors Tl remain almost constant with G ,
cI 

but the resonance frequencies w increase linearly with G . 
r cl 

The effects of the adhesive thickness h on the system resonance 
c 

frequencies and loss factors are also studied. The input data in this case 

were G = 10-
4

• 1) = 0.1, II = h = 4 mm, R = 1.2 m and ¢ = \.0. The 
cl cZ I z I 

thickness h was increased from 0.5 mm to 6 mm in steps of 0.5 mm. The 
c 

~ariations of wand 1) with h are plotted in Figures 4 and 5. It can be seen 
r c 
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from these two flgul'es that both wand TI decrease with h. The decrease of 
r c 

w with h is obvious as the system stifness will decrease when h is 
r c C 

increased. Furthermore, from section 11, we know that the shear strain of the 

adhesive layer is mainly contributed by the term (u - u )/'h l. Hence,
2 I C 

inel'easing h will reduce the shear deformation of the adhesive layer and thus 
c 

decrease the energy dissipation capacity of the sandwich system. This 

concludes that an increase in adhesive thickness does not always increase the 

system loss factor. It is therefore the combination of G and h that needs 
cl c 

to be optimized to maximize the system damping capacity. 

The third parameter which affect the system resonance frequencies and 

modal loss factors is the the radius of curvature R of the middle surface 
c 

of the adhesive layer. There are two ways of changing R as discussed below. 
c 

In the first case, the angle <P is kept constant, while changing R . This 
c 

means the total length of the sandwich beam system will change with R. 
c 

Figures 6 and 7 shows the variations of wand II with R. The input data 
r c 

were <p = 1.0, G = 1 X 10
-4

, "fJ = II = II = 0.1, h = h = 4 mm, h = 2 mm
cl c cl c2 I 2 c 

ant.! w = IE/PI R was varied from 0.1 m to 2.0 m in steps of 0.1 m. It 
0 c 

can be seen that w decreases but TI increases with R, especially when R < 
r c c 

0.7 m. The variations of wand TI with R are obvious as the total length of 
r c 

the curved sandwich beam system increases with an increase in R . 
c 

In the second case, the total length of the curved sandwich beam is kept 

constant at 1.2 m, which means changing R will result in a change of angle <p. 
c 

Figures 8 and 9 show the variations of wand "fJ with R. G, TI, h, hz' he: 
r c cl c 1 

and w wel'e kept same as case one, but t/J = l.2/R. R was varied from 0.3 m 
o c c 

to 2.2 m in steps of 0.1 m. It is observed from figure 8 that w is almost 
r 

constant with R. In fact the change of w with R is very insignifcant fore: r c 

the first and second mode when R > 0.6 m. For the third and fourth modes, 
c 

however, w change slightly with R when R < 0.9 m, but after R > 0.9 m the 
r c c c 
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c 

c 

change of w with R is not very obvious. In fact, in this range, as R 
r c 

increases, the curved beam turns to a straight beam and so large values of R 

will have little effect on the system resonance frequencies. The variation of 

T) with R has a somewhat decreasing trend as seen in Figure 9. In summary. 
c 

when the radius of curvature R is relatively small. R has some effect on w 
c c r 

and T). but the effects are negligible for large values of R 
c 

IV. CONCLUSIONS 

The coupled transverse and longitudinal vibration of a curved sandwich 

beam system is investigated using the energy method in this paper. A closed 

form solution for the system resonance frequencies and modal loss factors is 

derived by the Rayleigh-Ritz method. Numerical results show that high values 

of adhesive shear modulus will influence the resonance frequenies much more 

greatly than the modal loss factors. Relatively small radius of curvature of 

the beam system will affect the system resonance frequencies and modal loss 

factors. But large values of radius of curvature will have very little 

effect on the resonance frequencies and modal loss factors. Furthermore. an 

increase in the thickness of the adhesive layer will decrease both the system 

resonance frequencies and modal loss factors. The analytical model presented 

here can be used as an effective tool in the design of constrained layer 

damping treatments for passive vibration control of curved sandwich systems. 
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Figure 1. Configuration of the curved sandwich beam system 

Figure 2. Variation of system resonance 

adhesive shear modulus 

frequency with 

Figure 3. Variation of system loss factor with adhesive shear mo:fulus 

Figure 4. Variation of system resonance 

adhesive thickness 

frequency with 

Figure 5. Variation of system loss factor with adhesive thickness 

Figure 6. Variation of system resonance frequency with radius of 

curvature of the central surface of the adhesive layer 

(tIJ = 1.0) 

Figure 7. Variation of system loss factor with radius of curvature 

of the central surface of the adhesive layer 

(1/1 = 1.0) 

Figure B. Variation of system resonance frequency with radius 

curvature of the central surface of the adhesive layer 

(1/1 = 1.2/R ) 
c 

cf 

Figure 9. Variation of system loss factor with radius of curvature 

of the central surface of the adhesive layer 

(1/1 = 1.2/R ) 
c 
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