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the project engineer on this contract. Professor Holt Ashley
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ABSTRACT

This report investigates the equations represent-
ing the dynamic, torsion-bending motion of a wing which
is one major component of an ultra-high performance
manned vehicle. Preliminary work required for this
investigation is included as an integral part of the
report. This preliminary work includes (1} the deriva-
tion of an exact two-dimensional linearized aerodynamic
theory for an accelerating unsteady supersonic airioil,
(2) the re-derivation of “piston theory" aerodynamics
for arbitrary motion, and (3) a derivation for the
torsional stiffness loss of an aircrait wing that includes
the effects of a specified time-dependent wall temper-
ature due to the given flight mission and that includes
the effects of mid-plane stretching.

Tsuper ¥-15"

The computer studies consider a
type wing performing two specified flight missions and
provide answers in the form of pitch and plunge impulse
response time histories. The 'exact” solutions are
compared with two approximate solutions. The results
of the comparisons indicate that a quasi-steady aero-
thermoelastic analysis is adequate for all manned
vehicles of the foreseeable future. This statement does

not apply to the dynamic stability analysis (rigid-body)
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of these vehicles since their lower rigid-body frequencies

permit a moderate to strong coupling between the governing
equations and their time-varying coefficients.

PUBLICATION REVIEW

This report has been reviewed and is approved.

FOR THE COMMANDER:

/w ("fwéo/

WILLIAM C, NI
Colonel, USAF

Chief, Flight Dynamics Laboratory
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SECTION 1

PRESENTATION OF THE REQUIRED AERODYNAMIC
AND
AEROTHERMOELASTIC THEORIES

1.1 Introduction

The object of Part II of this report is to
formulate and investigate the equations representing the
dynamic, torsion-bending motion of a wing which is one
major component of an ultra-high performance manned
vehicle that is performing some specified flight mission(s).
A necessary step in obtaining this object is the derivation
of the terms required to compute the time-varying co-
efficients of the governing equations. The derivation
of these terms is necessary for the following reasons.
Firstly, it is noted that a highly accelerated flight
mission performed at supersonic speeds may introduce
conditions that invalidate the well-known solution (Ref. 1)
for the torsional stiffness loss of an aircraft wing
that includes the effects of a specified time-dependent
wall temperature due to the given flight mission and
that includes the effects of large wing deformations due
to the large magnitude transient thermal stresses
produced by the given flight mission. Secondly, it -is
noted that although '"piston theory'" aerodynamics is
widely in use throughout the aeronautical industry, its
use as a mathematical representation for arbitrary
motion may be unfamiliar. Thus it is felt that a brief
re-derivation of this topic may be useful to the reader.

Manuscript released by the author December 1960 for

publication as a WADD Technical Report.

1
WADD TR 60-484 Part 11



Thirdly, in order to provide an aerodynamic theory that
does not yield the simplified quasi-steady results of
piston theory and additionally accounts for the direct
effects of acceleration, it is necessary to consider the
exact two-dimensional linearized aerodynamic theory for
an accelerating unsteady supersonic airfoil. Isolated
accounts of this theory have appeared during the last
decade but none of these works possess the details
necessary for the purposes of this report.

Thus the following three sub-sections present
the derivations necessary to determine the time-varying
coefficients that” will be used in the latter sections of
this report.

1.2 Loss of Torsional Stiffness due to Aerodynamic

Heating Including the Effects of Mid-Plane Stretching,

Finite Acceleration and Varving State Values

In recent years several articles (Ref. 1,2,3,)
have appeared concerning the loss of wing torsional
stiffness due to aerodynamic (kinetic) heating. The
solution most widely known to the members of the aero-
nautical profession however, adopts a mathematical model
that considers an infinite acceleration to attain some
final Mach number. Thus a constant wall temperature
exists during the time that the wing is undergoing a
torsional stiffness loss. Additionally, this model is
based on the small deflection theory of elasticity.
Since this model may be inadequate for the supersonic
velocity, finite acceleration flight missions envisioned,
the important features of Reference 3 are incorporated
into the model presented in this sub-section as well as
a means for including the effects of arbitrary finite
acceleration and varying state (density, etc.) values.
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To this end, consider a plate-like wing as
shown in Figure 1, which is assumed to have an x-direction
uniaxial stress and strain distribution. Utilizing the
finite bending theory of thin plates, the total strain in
the x~direction is given by

"L
- —z 9 Wo | /3w, -
Ex=€ox = F 5= ++(2%) (1.1)
where
€,x = mid-plane strain at}::o

T
W, ) .
Eﬁ;f = strain due to bending
IWa\" ) .
%(5;3 = strain due to finite transverse

displacement

Now assuming that the mid-plane strain is given as &= J:"Ff’
where & and @ are as yet undetermined time-dependent
coefficients, and by using Singer's approximation for

W,= kx7,*where R is the angle of twist per unit length,
the total strain is given as

ex=4’+py+—2'—kty" (1.2)

Hence the total stress, including thermal gradients, is

given as

g Yz t)= E{J'f"e}’ + ?':kiy’:- &[T()}%,‘E)-Tw(‘f,%,o)]} (1.3)

where
i= Modulus of elasticity

“Reference 3 demonstrates that this extremely simple
formula yields at most 5% errors in deflections when
compared with exact solutions.
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Tyt)= actual wing temperature at (y,z,)
during time t

TWY#&°)= a reference temperature, chosen to be
the wing equilibrium temperature at
t=0

In order to insure zero force and moment resultants at all
wing cross-sections it is required that

=0
L‘TX‘M (1.4)
A
where A is the cross-sectional area.
However, the choice of the W, function and the additional
assumption of a thermally thin wing dictates thatEEE==O
throughout the wing, thus Eq. (1.4) is replaced by the
following simpler statement.
IB
hqu = O
Jhody
b (1.5)
J hjogd}=0

where h = h(y) is the local wing thickness. Now if E is at most
E = E(t)¥ the introduction of Eq. (1.3) into Eq. (1.5)
yields the results

a  a%l(§ oL TE

*

1

L%
A Iy ||B] |amtEy (1.6)

* In other words, not a function of y and =z, Actually E=const.
is a good approximation for the work that follows and is thus
considered as such,

4
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where

b
A= IHJ'&, = cross sectional area
S

b
A‘t-:.( h.aclz_ (= o for a symmetrical cross section)
b

If-s:h'}'ﬂ'} = moment of inertia

b
Lf=j h'&acl} (= o for a symmetrical cross section)
-b

o B

'r(t)=[ h(TE-Twe)]d ‘
“b

. b

M&)‘-‘-S h %[T(t,y) -Tw {o}]&‘&
...b .

thermal force

thermal moment

Solving Eq. (1.6) yields the following results:

e ' * % ST 2
5ty = (AR-A") ({1, Tlo-A"M i) +& (A1, ]}
(1.7)
27! * * kR p*
F(f):—.(,qlf,q* ){a[AM(t)-A*'Nt)]+—?_-[A IY—A?_]}

At this point, Gx(y,t) is completely determined once k and
Té,y) = Twle) have been specified. The next step in the
calculation is to relate the stress distribution to the
ensuing loss in torsional stiffness. Following the
simplified development given in Reference 1, attention

is focused on Figure Z which pictures a longitudinal "fiber"
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originally in the position A-B of a wing structure located
at a distance ¥ from the axis of twist, which has been
given an incremental twist of magnitude -J?dx ; thus the
fiber is now in the position A'-B'. 1f the stress Ok is
still axially aligned with the fiber, now in the position
A'-B', it is secen that a small component of this stress
acts in the plane of the wing cross-section. This stress
component is given by a;rhéi .  Thus the incremental
tw1st1ng moment about the axis of twist is given as 4=

gﬁd/-\ Integration over the cross-section yields
the result

- 38 [

When Eq. (1.8) is added to the usual Saint-Venant torque,
the total torqueor becomes

T= {G-J'+j;c;‘ v-‘dﬂ}g-g

It is immediately seen that the bracket term is physically
Jjust an effective torsional stiffness which will be de-
noted by GJ,gg+ Thus,

CTer2 GT+[oirdA

Where GJ is now more descriptively termed an iso-thermal
torsional stiffness and will be denoted by GJtso-thermal®
The next reduction is to incorporate GJ off. into an
expres51on for the square of a wing torsional frequency
Gd“ since this is the term in which the stiffness appears

in the equations of motion. This is accomplished by

WADD TR 60-484 Part 1II
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utilizing the Rayleigh method. Thus, for a constant
- L ;
cross-section wing of semi- span L, Wy is given by

= GJ&»I(?Q Jx/jqwx

where ¢ is simply chosen as

=aim ITX
CPMZL

Thus, a simple integration yields the result that

'TT'.LG'J-eps:G:} (1.11)
41T 2

The last step in the calculation of &l{t)is to determine the
temperature distribution time history of the wing.

Proceeding and assuming a solid thermally-thin wing, the

heat balance equation governing the temperature at any
chordwise distance y is given by

wylt) =

a@-:-F@ =FD (1.12)

with the initial condition

Bly)=0
where
Oty)= TEY-Tw®) h* = heat-transfer coefficient
’ TowE-TwE P = mass density of the wing
Cw = specific heat of the wing

D ) = T ) ~Twie)

hy)= wing thickness

TfE)-Tout> Thy)= wing temperature
Fi)= _}_l'f_(f_:fl_ T{)= wall temperature
7 pCmhly)
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Twle) = equilibrium wall temperature at t = O N
T.&0= final equilibrium wall temperature at t = t

Fortunately, Eq. (1.12) is a first order linear
differential equation in @(&y)with time-varying coefficients.
Furthermore, y only plays the role of a parameter.

Utilizing a standard technique, the left-hand side of Eq.
(1.12) is made an exact differential by multiplying the
entire equation by an appropriate integrating factor V.
This integrating factor is given by eIthﬁ)dr.

The solution for @(t,y) then becomes,

%
-f f=<f,1)4§ t S FGgddy
@(t,a)= e {cousr. + 5 F(h..aﬂS('() € dl\ (1.13)

where the constant term is determined by the condition
Bheg)=0

Thus, once a particular flight mission is
specified and the wing properties are given, the required
square of the torsional frequencyéqut)can be calculated.

1.3 Arbitrary Motion Piston Theory

Although Ashley and Zartarian (Ref. 4) have
suggested the use of piston theory in problems involving
arbitrary motion, no work of this nature exists to the
authors knowledge. Thus, it may be useful to retrace the
formulation of the piston theory equations, retaining
the arbitrary motion characteristics of the airfoil in
question.

Referring to Figure 3 and noting that (1) 1lift
is defined positive downward (2) moment about the elastic
axis is defined positive nose up and (3) moment about the
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aileron hinge line is defined positive trailing edge down,
the expressions for the lift and moments are given by

X-€
i—g _[ (A Pw]dx+Ix[Puu)— R.(0}dx

X;-e

e = [ (o -Ro0)(xxdex +J (Reo-Reolfx-xc1dx (1.14)

;,3 :|z

J (Rx-Rw](x~x] dx
€
At this point the ''piston' assumption is
introduced by using the second order binomial expansion
expression for the pressure difference in a tube with
asmoving piston to represent the pressure(s) on the upper
and lower surface of an oscillating wing. The pressure

difference [Pu(“)“ﬂ.“)] of Eq. (1.14) is then given as

vo+ndr
R-R=-20%0 'U"F("yt)[-_' T ZFas ax (1.15)

where
foo = free stream density

Qe = free stream speed of sound
V = airspeed

¥ = specific heat

T&)= non-dimensional thickness

and 'F(x,t), which describes the oscillatory motion of
the wing, 1s given as

), i) +2RAB[X%]  j osxex,
£0x,8)= I (1.16)
JE)=

B, o024 2 &) (x-xa] + B+ 22 FO[-x]
U U

where y lzx2 X

hit)= dimensional plunging motion
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()= airfoil angle of attack
gt)= aileron angle of attack relative
to the angle ot
and it has been tacitly assumed that the airfoil has an
aerodynamically unbalanced flap so that €=0.

Using Eqs. (1.15) and (1.16) the lift and moments
given in Eq. (l.14) can be written as

?.f,oaau'lfj [' + 11(::) j:)][ 3 * 224 0((* xa)]dx

(1.17)
i) (0 422 **)1t@+-—e<x-mldx
[ ra '

-.rix.? =2 r”aij [I“‘ v (%KI)][% "?{Tb' l;((x- xo)]fx— Xo]dx

e (1.18)

rapav|(1+ LEATI 04 2o 1)) [x-x.)dx
%y

My

4b*

(1.19)

zr.,q.,vj[u-vm" dr J[b-+o<+ E2&(x-Xo)+ B+22 p(x n)][x -x]dx

Since the above equations will be utilized, for
the purposes of this report, only in their zero-thickness
(r=0) form, the '371: term appearing in Egs. (1.17), (1.18),
and (1.19) will be set equal to zero when performing the
integrations. However, if the reader wishes to retain the
thickness terms, the following summary of integrals that
involve thickness terms in the above formulas may be of

interest.

10
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1
j’ dx = T - () Jx dTdx = T~ T®)
1
Aw AT dx = - AE.
I EI- - 1‘(')"(25) j X dx A T(l) x1 ‘r(X| (Zb)-"

@

' 1.d1‘ zMe
j y- 2Mw J dx TU)= Xy T(X)- ~Th
© (‘Lb)" Xy

where
Aw = total wing cross-section area
AF = flap cross-section area

=

L= first area-moment of total wing cross-
section about the leading edge
MF = first area-moment of flap cross-section

about the leading edge.

Proceeding, the integrated values of L, Mko’ and M (for
zero-thickness) become 1

~-L= 46&, a,,;:—+ 4Af°°a,,voc +4 b]b,,a,,o (-2 %) ot + 4bﬁ,a¢v0—x.)p

+ 45},«»0—&)",& (1.20)

Mx.= 4-b"r,,a..(x. [_z+7<.]-|)t 4-4-b"|o,,q.,°v(x, &.-t-x.]-a) oL
"l"'-g' bar”qu (3 Xo U"xl]‘l"“ X|Cx:."3l - 7—) 0.( - 4‘ btf.g‘hn v("‘x,)‘—P

28500, ([-K]-3%L1- %)

(1.21)
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M, = 4b}waw(zx,-|)':ﬁ'+ 45},‘,«“1}(2 Xo=1) & + 4b'}:“a,°[4 Xo (1~ %)~ & ot
+4bRAV(-X)Exe-1-K)B + & bipoa, (Bxel-x] = X,(x-3)-2)F (4 5y

1.4 Exact Two-Dimensional Linearized Aerodynamic Theory

for an Accelerating Unsteady Supersonic Airfoil

The preceeding sub-section has dealt with a
theory that utilizes an instantancous point function
relationshin between the vertical component of the airfoil
velocity and the pressure at any point on a two-dimensional
wing. This relationship has been found to be quite
satisfactory for constant flow velocity problems in which
the flow velocity is within a rather wide range of super-
sonic speeds. At the lower supersonic speeds however, the
piston theory concept yields less accurate results
since the time history of the airfoil downwash contributes
appreciably to the pressure expressions. Additionally,
the piston theory concept is unable to show the direct
effects of airfoil forward acceleration in any velocity

regime.

In order to overcome these possible deficiencies,
this sub-section presents the exact two-dimensional
linearized aerodynamic theory for an accelerating unsteady
supersonic airfoil. This presentation will then permit
a comparison of this more exact theory with the linearized
version of piston theory. Since it is not possible, in
general, to obtain exact solutions for the theory given
in this sub-section, it was decided to solve the relatively

easy problem that leads to the determination of the various
impulse responses of the airfoil.

12
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As will be seen, these impulse responses provide
a clear indication of the effects of both the time history
of the ajrfoil motion and the forward acceleration as
well as providing the kernel functions necessary for an
integral formulation of the 1ift and moment expressions
for arbitrary motion. This work will be facilitated
by utilizing a remarkable analogy that exists between a
two-dimensional accelerating unsteady airfoil problem and
a three-dimensional steady flow airfoil problem in which
the main stream Mach number is fixed at M=VZ . It
is perhaps easiest to understand this analogy by first
considering the two-dimensional accelerating unsteady
airfoil problem and the three-dimensional steady flow
problem separately, and then note the conditions under

which they are identical. A necessary part of this
identification process will include the matching of the
boundary conditions of each problem. To this end the state-
ments of both problems are now given, and then compared.

The analogy will then be apparent.

Two-Dimensional Accelerating Unsteady Airfoil Problem

Fixing a planar x,z, axis system in space and
permitting a two-dimensional airfoil to translate along
the negative x-axis with a supersonic velocity U(t), the
unsteady equation of motion of this airfoil in terms of
its velocity potential@is given (see Fig. &) by

Puxt P = afz; Poym (1.23)

with the moving boundary conditions

= W, X't*) on the airfoil (1.24)
¥la=o? ’

13
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At any given time t* the position of the airfoil along

«F,

the x-axis is given by

A new variable t‘=d..‘t*, which has the dimensions of a
length, is now introduced so that Egs. (1.23) through (1.27)

become

w

off the airfoil

*

...I Uff)df £X<1h -LtU(T )dr

and the pressure difference across the airfoil is given as

R-R T2 e Pn

cPtt- CPXx- ?zz =0

ﬁ] =Wa(¥,t) on the airfoil

z=0f

q’.&'-'- o

off the airfoil

t t
-;':LUQJJT £Xe zb—al;j ug)dg

To reiterate, Eqs. (1.28) through (1.32) represent the
unsteady motion problem of a two-dimensional airfoil
moving through a fluid with a supersonic velocity U(t).
Since the axis system is fixed in the fluid, the airfoil

R-R = Zf%,a,.?%

moves with respect to this axis.

conditions, imposed by the presence of the airfoil in the

WADD TR 60-484
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(1.25)

(1.26)

(1.27)

(1.28)

(1.29)

(1.30)

(1.31)

(1.32)



fluid, must be applied along a moving line segment of
length 2b in the fluid. Various details of this problem
may be obtained in References 5, 6, and 7.

Three Dimensional, Steady Flow Problem

Fixing a spatial t, x, z, axis system on
a three-dimensional wing and letting a supersonic
airstream flow past this wing with a constant Mach number
M>1 , the steady flow equation of motion of this wing in
terms of its velocity potential @ is given (see Fig. 5) by

(Mz_')(Ptt—(PXX‘?u-zo (1.33)

with the fixed boundary conditions

‘P?:] '-'-\:/aLta“) on the airfoil (1.34)
2=o?
th:O off the airfoil (1.35)

Additionally, the pressure difference is given by

1.36
R =22UP (1.36)

where U is given by the relation U = MAa,.

Now that the formulations of both problems have
been presented, it is an easy task to determine under what
conditions Eq. (1.28) through (1.32) are equivalent to
Eqs. (1.33) through (1.36). The first observation is that
the boundary conditions (1.29) and (1.30) are identical
to (1.34) and (1.35), while the pressure difference
formulas (1.32) and (1.36) differ only by a factor of OJ/an.

15
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Additionally, if Mzis given the value M2=2, Eq, (1.33) is
identical to Eq. (1.28). The final matching condition

is concerned with Eq. (1.31) which gives the position of
the Eyo-dimensional airfoil along the x-axis as a function

of t . This information could have been presented in a
slightly different form by explicitly writing down the x
coordinates of the airfoil leading edge xL.E.and the
airfoil trailing edge Xn g, as @ function of t . Thus
(1.31) would have yielded the informatiom that

X.e.= fb) (1.37)
Xrg =
te. = £ (1.38)
where

t
fr ==L L Utpdy (1.39)

*
‘F—;({')=Z.|=-al;.[ U(‘)Af (1.40)

Thus if the three-dimensional wing planform is now defined
by the relations X, e—-f@d)=o0 and Xre~£#)= 0 , the
analogy between the two-dimensional unsteady, accelerating
airfoil problem and the three-dimensional steady flow
problem is completely established.

Utilizing this analogy it is possible to treat
the entire forward speed range, subsonic and supersonic,
of the two-dimensional airfoil flying at a constant
altitude. However, since a subsonic forward speed

16
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requires that the three-dimensional "analogy' wing possess
subsonic leading and trailing edges, the computational
labor (for example see references 8 and 9) becomes
prohibitive. For this reason, the present investigation
was limited to speeds of sonic and supersonic magnitudes.

Rigorously speaking, the theory presented above
is valid only for constant altitude flight. However
the results and discussion contained in Appendix I show
that except at M¢lthe variable altitude cases may be
very setisfactorily treated by simply considering the
state variables as given functions of time.

At this point all the necessary mathematical
tools are available to calculate the time-varying pressure
distribution on the two-dimensional supersonic airfoil
by first obtaining the pressure distribution on the
steady flow, three-dimensional analogy wing and then
transforming the result according to Eqs. (1.32) and (1.36).
As previously explained the pressure distributions, and
eventually the integrated lifts and moments, will be
obtained that correspond to the various upwash impulse
responses of the two-dimensional airfoil. For the rigid
chord airfoil, two upwash impulse responses, corresponding
to impulsive plunging motion and to impulsive pitch
rate motion (i.e. constant and linear chordwise variation
in instantaneous upwash), are required to represent motion
dependent forces. The determination of these upwash
impulse responses requires careful integration techniques
since the already singular integrals inherent in the
formulation are further complicated by the required
singular upwash distributions. Thus a finite band of upwash
will be used in formulating the expressions for the upwash
responses and then a limiting process will be used to

17
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rigorously determine the true impulse responses. When this
limiting process is applied, many integration regions

on the three-dimensional analogy wing (these regions

being defined by intersections of various Mach lines)
vanish, thus these vanishing regions must be examined to
make sure that they leave no residual contributions

to the pressure distribution. This work, as well as

the rest of the details required to obtain the various
upwash impulse responses, is quite lengthy. Since

an outline of the procedure for obtaining the upwash
impulse responses is given in Appendix II, just the

final results of this procedure are now presented for

a rigid chord* airfoil with a constant forward acceleration.

Lift and Moment Due to Upwash Caused by Impulsive

Plunging.

r-4b‘o“a., dexy Region I

L tx)=1{-2bp ar J,_ (=EGx Region II (1.41)
| © Region III
( ___46"3”4» [J(X') - x'] Region 1

[ ' -ty . .
Mg(T?K)=‘ —%bij?,an[%-m I+F)(::;x) - Region II (1.42)
teFox) [ (r—:-mx'))“]

4 = X! Region III

As will be seen in Appendix II, upwash distributionsg of
higher power in the chordwise variable present no
difficulties, thus flexible chord airfoils may also

be treated by this technique.
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Lift and Moment Due to Upwash Caused by an Impulsive

Pitch Rate about the Leading Edge

r _4bg‘a¢[J¢k')/z ¥ K'/?.] Region I
, _4 X o =i+ FX) Region II
L,(vzu:{ T bpae| T @* "'""'""‘"")*‘
(1' B ((!—-F{r’x}
Region III
\
r ¢ [ .
81;"]9_4.,{ —-5’53 +-.:,§ Fn x)} Region I

] - y "- "-F ) )% *
Hyfﬂ*)‘-‘-ﬁ %Lﬂ&"w{(“ [I"( ,(.(r”)] Region II

L o Region III

where
x t-T
Fer) = MmiE-v) + ?&—ﬂ

,;‘}‘ =bn/a = Froude number
L- -]
A = vValue of the constant forward acceleration
J6) = unit impulse function (Dirac delta functionm)

( ), Refers to comstant upwash condition due to
impulsive plunging

( ). Refers to linearly varying upwash condition
! due to impulsive pitch rate about the leading
edge.

Region I is given by

Sl -t g '—4£L+JEQ3+31-__.

19
WADD TR 60-484 Part 11X

(1.43)

(1.45)



Region II is given by

Mo+l Nol <t < - Ml ”""’ ‘M"' A 1.45)
'5-"\’( a%)"’-} ts /g

Region III is given by

tzr- M""' M°“) +

If a non-constant forward acceleratlon is to be considered,
it is only necessary to re-define the F(r,t-*) term and
the integration regions. Thus for non-constant

acceleration beginning at t=T=20, the only changes in

the above equations are given as

F('r t-r) = - [ I Utg)dt Uif)c% ]

Region I is given by ostst,

(1.46)
Region II is given by t,2t4te
Region III is given by tzt,
where t, and t, are given by the following
implicit relations

te-T=-1+F(r, tev)

In order to obtain an indication of the effects
of airfoil time history and forward acceleration, Figures
6 through 9 present the lift and moment impulse responses
for instantaneous Mach numbers Mgy TYequal to 1.0, 1.5, and
2.0. Zero, moderate and very large accelerations are
considered in each case by choosing Froude numbers equal
to 0, 1 x 10"2, and 1 x 10"}, These Froude numbers
correspond to accelerations of O, 300, and 3000g for

a 1 foot semi-chord airfoil or to accelerations of O,

20
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30, and 300g for a 10 foot semi-chord airfoil. Additionally,
the influence of very large deceleration (1}=-4x164)is
shown for Mach number My(r)=2 . Figures 6 through 9

reveal the following features about the 1lift and moment
impulse responses:

A. The portions of the lift and moment impulse
responses containing the delta functions are
independent of Mach number and acceleration.

In fact they are equal to the impulse responses
calculated by piston theory aerodynamics.

B. The influence of increasing the Mach number
M,(r) and/or the acceleration (~#) is to
cause the lift and moment impulse responses
to attenuate more rapidly.

C. Except at Mach number Mo(}2 ! the influence of
acceleration is microscopic compared to the
influence of the Mach number My(™) .

D. Increasing the Mach number M} brings the
present theory rapidly into close agreement
with the simpler piston theory results.

Additionally, Figures 6 through 9 imply that it is
advantageous to distinguish between the influence of the
quasi-steady variation of Mach number (which is the time
history effect) and the direct influence of the acceler-
ation (which is embodied in the “F terms); since, once it
is shown that the quasi-steady variation of Mach number
dominates the direct acceleration effects, then the two-
dimensional airfoil calculations are somewhat simplified
and(perhaps more important for future work) some
justification is established for treating the accelerating
finite span wing in an approximate quasi-steady manner.
In fact, Figures 6 through 9 do show that, except for

21
WADD TR 60-484 Part I1I



M (=1 , even the large acceleration cases (F=Ixl6"} are
approximated very well by assuming F=0© and by just
considering the quasi-steady variation of Mo(T) .
Additionally, for a Mach number My)>»2.5, even the effect
of Mol) is very small so that piston theory aerodynamics
begins to be an accurate representation.

When considering a problem in which arbitrary
motion is involved, the 1lift and moment impulse responses
calculated in Eqs. (1.41) through (l.44) are the kernel
functions for the integral relations that determine the
1ift and moment due to a given arbitrary motion. Referring
to Figure 10, which illustrates the notation used in
describing the airfoils perturbed flight path, the
integral relations for the lift and moment about the

leading edge due to a given arbitrary motion are given by:
*

t" : t
L) = [ Lo (ham+ U <em]dr +J Lo ) S(1d T (1.48)
- 00 -0
t* . t*
M(’c>=J M ) [+ U@ae)dre j Mpr; x') S(ry dr (1.49)
- -0

Thus, the presentation of the exact two-dimensional
linearized aerodynamic theory for an accelerating unsteady
supersonic airfoil is completed.

Finally, as a thought towards further work, it
is suggested that a useful approximation of the exact
linearized theory may be constructed by considering
the lift and moment impulse responses as a collection of
weighted pulses. This would reduce the above integrals
(Egs. 1.48 and 1.49) to difference - differential
elements. Thus when these relations are substituted into
the equations of motion for some system, the system is
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described by a coupled set of difference - differential

equations. The solution of this set of eauations, perhaps

by Laplace transform methods, may be less time-consuming
than solving the original set of integro-differential
equations that describe the system's behavior. The
success of this method obviously depends on having a

large value of the ratio of the characteristic time period

of the unsteady motion to the time increment required for

the impulse load (lift or moment) response to go to zero:

since, if this ratio is large, the effect of an impulse
or of a finite load time history on the system will be
practically identical. However, if this condition is

not met it simply means that more pulses must be used

to more accurately describe the load impulse responses.
Clearly if the required number of pulses is too large,

the original integro-differential equations may still

be attractive.

However, referring again to Figures 6 through ¢
it is seen that the time increment required for the impulse

load responses to go to zero (excepting the M = 1 case)

is of the order of 2b x 1075 to 2b x 1072 sec., where

b is the airfoil semi-chord measured in feet. Thus,

at most, two pulses(in addition to the "piston theory
pulse') should be adequate for a wide class of problems.
Referring to Figures 11 and 12 it is readily seen how

the load time history areas are replaced by an 'equivalent
area' impulse centered at the x'-centroilds of the original
load time history areas. The distances of the centroids
from the x' = 0 axis as well as the original areas may

be plotted as a function of Mach number Myo(™ with the
Froude number Fas a parameter. See Figure 13. However,
as mentioned previously, probably only the F=0plot need be
used when Mo(‘f)¢'l . If successful, this "multi-pulse™
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piston theory should facilitate response and flutter
calculations in the Mach number range from slightly
above 1.0 to slightly above 2.5 where the usual piston
theory begins to be an accurate representation.

At this point the presentation and discussion of
the required aerodynamic and aerothermoelastic theories
terminates, the remaining Sections being devoted to
an example of high-speed vibratory wing response.
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SECTICN 1II

THE PURPGSE, DEFINITION AND DESCRIPTION OF
THE COMPUTATIONAL EFFORTS

This section states the purpose of the ensuing
computational efforts, briefly defines the problem
to be analyzed, describes the equations representing
the problem and then discusses the methods of solving
the problem. The definition of the problem includes
a presentation of the flight missions chosen and a summary
of the geometrical and structural properties of the wing
associated with the vehicle chosen to perform the flight
missions. The calculations necessary for expressing the
time-varying coefficients of the above-mentioned equations
are also displayed graphically. Finally, the equations
of motion are presented and the methods utilized in the
computational routines are explained. A short summary
of IBM 704 calculation times is presented in Appendix III
to give the reader some idea of the ''run-time" magnitudes
required to perform a study of this general type.

The purpose of the ensuing computational effort
is to answer, as completely as possible, the following
questions.

(A) When are time-varying coefficients of

importance in aercelastic applications?

(B) Do these instances of importance (if any)
correspond to aircraft performing flight

missions of practical importance?
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(C) Given a specific type of flight mission
and aircraft, what is the least complicated
theory that may be confidently used for
analysis purposes?

(D) Will in fact the answer to (C) be that a
quasi-steady linear analysis is adequate
for a large variety of flight missions
and aircraft®?

Emphasis has been placed on the possibility of an
affirmative answer for question (D) since this fact

would permit the aercelasticiam to utilize, with

confidence, the standard analysis techniques for a large
class of aircraft, performing their various flight missions.

Although it is desired to answer questions (&)
through (D) for all types of aeronautical vehicles, the
enoxrmous amount of computational effort required to
calculate even one exact* reference solution for a problem
involving time-varying coefficients necessitates that the
different types of aircraft considered and their numerous
possible flight missions must be severely limited so
that the computational work can be completed using
reasonable amounts of time and funds. Accordingly, it
was decided to concentrate on manned vehicles operating
within the atmosphere. Furthermore, in order to make the
computations as useful as possible, two flight missions will
be chosen that could conceivably represent the upper
bound performance of mammed vehicles of the foreseeable
future. This choice of flight missions should insure

*The term "'exact" here implies the use of the most accurate
system developed in Section I.
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clear indications of how approximately the time-varying
system coefficients may be treated and still yield the
correct system behavior.

Flight within the atmosphere yields definite
bounds on the flight missions possible due to temperature
induced material limitations and the specification of
a human occupant yields an upper bound on the g loading
time history that can be endured by the pilot. For
example, Reference 10 presents the maximum Mach number-
altitude trajectories permissible (assuming reasonable
material properties) due to kinetic heating and high
q loadings, while Reference 11 displays the human time-
tolerance intervals at different g loadings for various
body orientations. Considering the above bounds imposed
on the flight missions, a consistent choice of a manned
vehicle would be one of a ''super X-15" variety or of
a boost-glide type which will perform the following two
assumed flight missions.

The vehicle starts from a slightly supersonic
speed (M = 1.05) at 35,000 feet and initiates a . vertical
climb which culminates in an altitude of about 140,000
feet and a final Mach number M = 8; after which time
the vehicle remains at a constant altitude and Mach
number. The two flight missions are distinguished only
by the acceleration time histories used during the
vertical climb. The first time history is a constant
9g acceleration while the second time history is an
a / 2(l-cos Bt) type acceleration with o and g adjusted
so that the time to ¢limb, the final altitude and the
final Mach number are approximately equal. The variables
sunmarizing these two flight missions are now presented
as functionals of time, and are also given in graphical
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form in Figures 14 through 17. Additionally, the
q versus altitude

variation of the dynamic pressure

is shown for the 9g acceleration case in Figure 18.

Flight Trajectory Summary for the 9g

Vertical Acceleration

h(t) = 35000 + 144.9t2 + 1018t Ft.;
T 1137074 Ft.

'R}

-

M(E) = {%:83 + .2985¢

-

L(h(t)) = 0034e~h(t)/22,000

The wall temperature is not an analytical function of

0=t =23.26
t = 23.26

t < 23.26
t = 23.26

slugs/ft.3

time and is therefore expressed in tabular form.

Tw(t) deg. R.
471
850
960
1305
1450
1500
1540
1530
1525
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t sec.
0
5
6
10
13
15
20
23
25

h

sec. {2.1)

sec.

SecC. (2.2)

secC.,

(2.3)

(2.4)



Flight Trajectory Summary for the
a/2(1l - cos pt) Vertical Acceleration

a = 540 (2.5)
B = .2513
h(t) = {30723 + 4277 cos (. 2513t) + 1018t + 135 ¢ Fe.;
0%t =25 sec. (2.6)
144825 Ft. £ 225 sec. :

-~

O0=t=25 sec. (2.7)
3 t=25 sec.

P(h(t)) = .0034e-h(t)/22,000 slugs/ft.3 (2.8)
o

Tw(t) deg. R. t sec.

471 0

530 5

577 6

1108 10

1490 13 (2.9)

1630 15

1680 20

1600 23

149C 25
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Summary of the Geometrical and Structural Properties

of the Vehicle Wing

The wing geometry is described in Figure 19.
Although the planform is rectangular the wing area, wing
weight, etc., are roughly the same as the unclassified
estimates (available in periodicals) made for the X-15.
Structurally the wing is represented by a 3% unsymmetrical
(fore and aft) double wedge stainless steel multi-cell
thicl skin cross section. The number of cellg*is not
determined since this then allows the required freedom
in choosing the iso-thermal fundamental torsional
frequency. This freedom in choosing o, isothermal is
necessary since a wing must be found that is just slightly
stable (but not unstable) when analyzed by quasi-steady
techniques over some portion of the flight mission. This
slightly stable configuration gives some ''sensitivity" to
the results calculated using non-quasi-steady analyses.
In view of these remarks wﬁ is found by using a modified

x
form of equation 1.11 (&) ygorporma1 ~IKT74CTHeTE} )

2 . s s . .
where K is adjusted to give an adequate value
ot wg . After some mathematical experimenting
a 1isothermal : ‘

it 1s found the )‘2 = 4.00, which appears to be quite
high. However, this value of W™ corresponds to adding
only about 0.015 to the existing airfoil thickness ratio.
Hence this artifice produces the required changes well
within the error bounds of a design analysis.

.3
GJ(0) denotes the value of GJ at t = O when no nonlinear

mid-plane stretching effect is included.

*% gpanwise cells
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Using the assumed values,

M = 5.8230 slugs
I = 14,216 slug ft.?

= -3,6394 slug ft.

®h__ -0.20 @t=o

c = 2b=6.25 ft.
L =8 ft.

it is found that

wfx (t) = 0.01085 GJ(t)
GJ(O) = 5.932 x 10° .2

2 ~ A 2 2
@ (0) = 6.44 x 10" rad. </sec.
of (0) = 1.288 x 10* rad. %/sec.’

By assuming no degradation of elastic properties at
constant elevated temperatures,

—

of 0) = of (1),

Now by using equation 1.10 the GJEFF may be
calculated with just one modification, Equation 1.10
was derived assuming a solid wing, thus some correction
must be made for the fact that the wing to be analyzed has
a cellular structure. The desired correction has been
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made by introducing a thermal stress efficiency factor 7
into the equation for GJ(t) so that this result is now
given, referring to Figure 20, as

0
GI(t) = GJ(0) + 2 nfsso oxyztl(y)dy

.45C
2 %
+ 2 n'fo axyztz(y)dy ft.

0% is given by equation 1.3.

where
Again after a limited amount of mathematical experimenting,
7 was assigned a value of n = 0.5000 X* Additionally when
assessing ¢, it is necessary to specify the initial

twist rate k that introduces the nonlinearity into the
analysis. Figure 21 shows the effect of k on GJ(t) for

both flight missions and for three values of k.

As can be seen from Figure 21, large reductions
in torsional stiffness do not take place. This is primarily
due to the fact that, at the altitudes considered,
the heat transfer coefficient h ¥ is quite small since
it is directly proportional to the Q/Sths power of
the atmospheric density.

SUMMARY OF CALCULATICN PROCEDURES AND
METHODS OF SCLVING THE PROBLEM

The calculations described in this sub-section
were designed to numerically solve the system of equations
2.10 and 2.11 with an accuyacy of four or five significant
figures. Since the solution of these equations depends
on what aerodynamic theory is used to describe the 1lift
and moment, what flight mission is chosen, and how
exactly (or how approximately) the effects of the time-

varying coefficients are treated, it is obvious that

* This expression for GJ(t) assumes that x«y so that the r* term
appearing in equation 1.10 is given by r*xz yt.

** This choice of an "integrated average over the cross-section" value
of 2 = 0.5000 empirical%y makes the GJ(t) curve of the correct
magnitude and shape,
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several solutions of varying "exactness" will ensue and
that, possibly, each solution may be best obtained by

a different calculation procedure. TFurthermore, since

it is not knowi. a vriori how markedly the solutions
utilizing the time-varying coefficients and/or the
various aerodynamic theories will differ from the damped
sinusoidal sums that are characteristic of the quasi-steady
solutions, the more exact solutions must be the responses
to some suitable set of inputs such that these solutions
reveal a significant amount of information about the
effects of the time-varying coefficients and the various
aerodynamic theories. Clearly, several choices must

now be made as to what inputs are to be used, at what
times during the flight mission should these inputs

be initiated, how long after these input initiations
should the response be recorded, how many different
approximate solutions are to be attempted, and as to

what techniques should be used to obtain the various
approximate solutions. These choices are described in
the following paragraphs.

Suitable inputs are obtained by using
perturbation impulsive loadings (h or & ) at some timeT]

Cne advantage of impulsive inputs is their correspondence
to velocity initial conditions for a given system. Hence
it is possible to obtain the homogeneous response of the
system at time t due to specified velocity initial

conditions at time T . The above reference to perturbation

is underlined since it is tobe understood that the system
response is comprised of two parts. The first part being

that response due to intentional control and throttle
movenents throughout the flight mission; the second part being

the response to the chosen aerodynamic perturbation inputs
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occurring at time(s) T . This further implies that the
response of interest in this report, the perturbation
response, is zero until t =49 . Thus given a flight mission,
and a perturbation input at time T'i (the i denotes that
there may be several values of T at which one would

like to investigate the effects of the input), one will
obtain i traces of h and a perturbation motions, each
trace being zero until t = T ¥ These h and o motions

are combinations of the damped normal aeroelastic modes
(if they exist) of the system, thus unless one mode
predominates in the description of either h or o it may
be difficult to draw quantitative conclusions about the
effective damping ratios of the system, although qualita-
tive conclusions are easily obtained. 1In the special case
of the quasi-steady analysis utilizing piston theory aero-
dynamics, it is much easier to calculate the frequencies
and damping ratios directly with no consideration given
to the total h and a motion. Had time permitted, the
quasi-steady response to ﬁ and & impulsive inputs would
have provided a more direct correlation with the other
calculations.

The larger amounts of time required, on
even such an efficient high-speed machine as the IBM 704
computer, to calculate the response time histories made
it imperative to sparingly choose the times of input
initiations and the duration of the recorded response.
Thus the cases involving piston theory aerodynamics
were studied for inputs at O, 2, 4, . ., . ., 23, 30
seconds, with each time history having a one second
duration and the cases involving the exact unsteady
accelerating aerodynamics were studied for inputs at
O, 2, 4, 6, and 8 seconds, with each time history having
a_one-half second duration.

* This time is more simply denoted as ty in Section III of this
report. Thg use of ¢ and T; in this section is in accord with
current engineering symbolism.
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The solutions involving piston theory aero-
dynamics were found by first treating the time-varying
coefficients exactly and then by using a quasi-steady
analysis for the times t =0, 2, &, . . . 28, 30 seconds.

When considering the solutions involving the
exact unsteady accelerating aerodynamics the results of
a preliminary calculation involving the determination
of 1ift and moment responses to impulsive pitch and
plunge inputs indicated, for the accelerations involved
in the given flight missions and for the stated Mach
number range 1.05 £ M <€ 3, that the direct effect
of the Froude number % was negligible. Hence the & = 0
approximation is used with excellent justification for
all the exact unsteady accelerating aerodynamics relations.
Furthermore, it was decided to first compare the results
of the more critical flight mission (more critical in
the sense of simultaneous high q and high % occurring)
with the simpler piston theory solutions and then to
determine if the less critical flight mission should
be considered. This decision and its aftermath is
discussed in Section III. The calculation procedures
for these exact solutions and the approximate procedures
are now described in some detail.

The equations treated, referring to Figure 3, are

hw +—%’ X(t) + wy h(t) =~ Uﬂ/ﬁ (2.10)

S,/.ij(t) + o) + e ottty = M) /T (2.11)

where

M = mass = 5.3230 slugs
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I, = 1,

SO = Sa

14.216 slug fr.2

~3.6394 slug ft.

Now for an unsteady supersonic aerodynamic solution L(t)
and Ma(t) are given by
+

L(t) = f LeGyt-r) U('f)[ h () +oL("r')] dr

i)
.
+J L frtm) & rdT (2.12)
.t+
M (t) = j M.t r)um[_\j;’g).; et
* (2.13)

+ -{.M’ (t-v) «lrdr

while for a piston theory solution:

L(t) 'P”(t)U t) S [M(t) (Q,%),‘*““ )>+( (""q)

- (f+1) o) SO (2.14)

M, (t) f>°"(t)U’ ) Sc [ (Mw(q———)-i- (Kﬂ)ﬁ-)(_b(i +og(‘b))

(2.15)
+(ﬁ‘€.§ a(-a) - 3} (a’+|){zaﬁw 2 M }) C‘Cr(((\-&t))
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where

Aw = total wing cross-section area

M, = first area-moment of total wing
cross-section about the leading edge

The piston theory solution of the problem was
found first, as the differential equations could be solved
numerically with an accuracy of five significant figures
and could be compared with a difference equation solution

of the same set. This comparison is important, since it
gives the basis for a statement of accuracy concerning
the difference equations used to solve the unsteady

-aerodynamics set of equations. A preliminary study was
done to determine whether operational calculus methods
could be employed to reduce the exact solution of the
unsteady aerodynamics set to a feasible IBM 704 problem.
Results of this study showed that an estimated minimum

of 100 hours of machine time would be necessary for this
solution due to the presence of changing functions of

(t -T,) under the integral sign. Therefore, the
decision to use difference equation approximations was
made since the comparison of the exact solution with the
difference equation solution of the piston theory formulation
showed that 4 to 5 significant figure accuracy could be
obtained by using a At of 0.001 sec. and by approximating
the true value of h (t) and a(t) at the end of the first
0.001 second interval by the piston theory exact solution
values.

The entire study as described was done for an
acceleration of ng = 270 (1 - cos 0.2513t) letting “F = O
and the complete piston theory and quasi-steady study was
done for an acceleration of ng = 9g. Each of these
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accelerations was brolken up into two cases. Case 1

is a time history feollowing a unit impulse on ﬁ (t) at time
t, where & (to) = 0; Case 2 assumes R (to) = O and

& (to) = 1.0.

Before the main body of calculations could be
started, a suitable k had to be found (as mentioned
previously). By finding GJ(t) in a separate preliminary
calculation, it was determined that k = 0.006 was a
reasonable choice. Then GJ(t} was approximated by a
series of cubic equations yielding five significant
figures for use in solving equations 2.10 and 2.11 .

Substituting the given values into equations 2.10
and 2.11 the piston theory system for both ng's becomes:

—};L(t) —.,8250(t) = —aoa<h4ﬁ°(t){‘i',‘(t)—-.mzsaa(t)}

~1:288x10° h(t) ~208440 () Ul) x(E) (2.16)

~256h(t)+&t) = 85377 ﬁ,,(t){ -312 s‘f?(t) -3.3529t) }

+ { aée.SOﬁao(t)U(t)—-&)i(t)} ()
(2.17)

As stated previously, these equations were
first solved numerically and then the finite difference
formsof these equations were solved for several time
histories in order that the aforementioned comparison
could be made. Additionally, this set of equations was
solved in a quasi-steady manner, for times t = 0, 2, 4,

.28, 30 seconds. This quasi-steady calculation was
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dn

performed in the classical manner by letting p = on
t

in the equations 2.16 and 2.17 and then

solving for the roots of the resultant quartic in p.
One thus obtains four sets of roots in the form a + ib
and ¢ + id, where a and c are proportional to the
instantaneous (qQuasi-steady) damping ratio ¥ of the
system and b and d are the instantaneous frequencies
of the system.

To treat the unsteady supersonic aerodynamics
solution, equations 2,10 and 2,11 were written in
operational form:

X, (+) - Ly (0{x, (t)} L5 {x®} = o

+ai (t)j [ K emtmxn + K -y

RGO e %=Kgls Xy mldr g
{#]
(2.18)

where 1 denotes the h motion and 2 denotes the a motion
and

L (6)= a5 (t)—d— +b¥®

= di0 2 +aftosd 1)
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It is most convenient to remove the dirac portion
of the expression from under the integral sign yielding
equation 2.19 , where Ek}"and Ek! are the coefficients
of the dirac porti?il of thi kernel multiplying xﬂand )'(!
respectively, and Kk! and Kuare the kernels with the
dirac portion removed.

Yoo = U { el + Lo {xo) + 4760 { Soxipr+ 8 o
e % ¥ Jt,\_,
+Cec Xl + T X0+ F €0 + G (0 | { e etm)

+ Ry Y + K %+ Ky X0 Y

(2.19)
where -f’-:*(t) =0 a'ﬁ: _-_-,-a?} =0
dip= S/ dat =-Se/r,
b:f:"": bl =-wx b;.=o
* *_

—C_;| = Lroo Qe C cleszooqoocl(%hQ) T{H =R;l= o
— e . —_— 3 I

G = Lfo0 R0l (a-=%) Cir =—2R,A,C ('g "—Q(I—q))
X' =% (t-T)

f= Fx1) = I:'l('r)x'
Xy = [1+M('r)j-

* The subscripts k and L denoting any particular value of the
free indices i and j respectively,
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By using central difference approximations, set

X (‘l’.) fad Xnﬂtt) Xn-y (t) - er(b)-'Xh—l S
2(tpay=tn) 28

. o X ) = ZXn(B) + Xnall)
xh(t): n+1(E) AL ( Lt

and replacing the integral occurring in equation 2.19 by
4x €))
Tmg B v DR 5tk 4 Rog (B St X

(9] ()
K+ ™ XK— )

+ K\\. ttkjth “)(X

+ K (tk, -'tr.)(xm- - X&:}—): )J

(where Wy is the weighting factor corresponding to the

trapezoidal rule of numerical integration) one obtains

the difference equations,

«) W _ &) ) (0
P(_L,h xV\‘H + LJHXV\TE - F xh '[-EJ Xh ALLhXh i
)
+4 tn xh—l""Iijn (2.20)

where

v
*

%
oo oL Qiin _FiCicn
Fim=R~"38 " za

A —
. =—é_"&.——a—€ﬂ_&_c_ﬁ,ﬂ
PU" =~ 27 2B
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To start the solution of these difference equatioms, Case 1 and
Case 2 initial conditions were used, the values from the piston

theory solution at t, + 0.001 sec. (the piston theory solution
the unsteady aerodynamics solution to five significant figures
at t_ + 0.001 sec.), and the exact derivatives at t = t,
rather than the difference approximations., These measures
were taken to insure at least 4 figures of accuracy in the
results, since it was found that a sizeable error can be
introduced by using the stated difference equation between

t, and t, + 0.001 sec.

Since the GJ(t) calculation, the piston theory
differential equation solution, and the difference equation
solution utilizing the exact unsteady accelerating aerodynamic
theory were all done by means of an IBM 704, programs written
in the Share Assembly language are available for future use
by interested people or agencies. Problems similarly
formulated with different parameters could be solved by
making only minor modifications to the existing programs,
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SECTION III

PRESENTATION AND DISCUSSION OF THE SOLUTIONS

Once the calculations described in Section II have been completed
the resulting plethora of information must be presented in an organized
fashion such that the answers to questions (A) thru (D)*, posed in the
first page of Section II of this report, may be obtained. To this end, the
impulse response time histories h and a were examined over their full time
range and then grouped into the following two categories. The first cate-
gory contained h and a time histories, utilizing piston theory aerodynamics,
for the two acceleration time histories and both Case 1 and Case 2 inputs.
The second category contained h and « time histories, utilizing first piston
theory aerodynamics and then unsteady accelerating aerodynamics, which were
examined over the time interval 0 stos 8 seconds for the ng = 270 (l-cos.2513t)
acceleration time history and both Case 1 and Case 2 inputs. Note that the
h and o time histories grouped in the above two categories are exact solutions
of the problem within the framework of the mathematical model chosen for the
aerodynamics, et cetera. Thus these time histories yield the most accurate
response curves of the aircraft wing. A third category of information was
formed by compiling the quasi-steady frequency calculations, as well as
the instantaneous frequencies obtained from the exact solutions utilizing
first piston theory aerodynamics and then unsteady accelerating aerodynamics,
over the entire time range for both acceleration time histories. This bloc of
information obviously vields the crudest possible, and most easily obtain-

&, %k
able, description of the wing motion . At this point, the "best” and the

For the chosen class of "manned vehicles".

In order to directly compare the quasi-steady portion of the category three
information with categories one and two, a quasi-steady analysis of the wing
response due to Case 1 and Case 2 inputs should have been made.

However, time limitations dictated the approach pursued here.

* %

44
WADD TR-60-484 Part II



"worst" solutions are available for inspection. Note that if additional
solutions intermediate to the "best* and "worst" are required, the theories
developed in Part I of this report are then applicable. The need for these
additional solutions must be a consequence of a poor correlation between
the "worst" and the "best" solution; therefore, the comparison of these
latter solutions should be first pursued.

Since categories 1, 2 and 3 contain so much dataﬂ,'r these data were
re-examined and then sorted, within each category, into its essential and
non-essential elements**, the essential elements of each category being
presented in this report. The essential elements of the first, second and
third categories are contained in Figures 28 thru 43, Figures 44 thru 55 and
Tables 1 thru 5, respectively.

Thus Figures 28 thru 43 present h and & time histories utilizing
piston theory aerodynamics near the times t = t0 and t E'to + .45 seconds,
where to = 0, 10, 20 and 30 seconds, for the two acceleration time histories
and the Case 1 and Case 2 inputs., This category of information should demon-
strate whether the Eand a impulse responses are similar to the general type
of impulse response W(T,t -7T) for a time-varying system or if indeed they
are more nearly like the impulse response W(1-7") for a constant coefficient
system. The above-mentioned demonstrations may be carried out by noting
the behavior of the delayed trace at t'E' t0 + .45 seconds with respect to
the trace observed just after the application of the impulsive input at t = to'

Figures 44 thru 55 present comparisons between the h and o time
histories obtained by first using piston theory aerodynamics and then using
unsteady accelerating aerodynamics in the exact analysis. The to time

range for these comparisons is concentrated in the early portions of the

Necessarily so, because the only feasible calculational procedure
dictated a step by step (time-wise) method as described in Section II
of this report.

Non-essential being used here to indicate a redundant or repetitive
type of information.

* %

45

WADD TR-60-484 Part II



ng = 270 (1-cos.2513t) flight mission since it is in this time interval that
the greatest solution differences should appear due to the two aerodynamic
theory representations. This category of information should establish the
relative merits of using the "more accurate" (but computationally difficult)
unsteady accelerating aerodynamic theory as opposed to using the "less
accurate" (but computationally simpler) piston theory aerodynamics.

Tables 1 thru 5 present comparisons between the quasi-steady and
the instantaneous frequencies over the entire time range. This category of
information should give supporting evidence to the trends established by
an analysis of Figures 28 thru 55.

Now that the usefulness and purpose of the above three categories
of information has been delineated the conclusions obtained from these cate-
gories may be presented.

Figures 28 thru 43 generally demonstrate, in any given time interval,
that the T and o time histories exhibit the usual characteristics of a constant
coefficient system coupled mode response. One of a few exceptions to this
general statement is Figure 34 in which the « time history is seen to grow
slightly for to’“=' 10.45 seconds. However this growth may be predicted on a
guasi-steady basis since at this particular time GJ and fm are beginning to
show reasonable decreases. It is thus correct to state that the coupled h and
o impulse responses are not similar to the general type of impulse response
W(-r,t -7 ) but are indeed very nearly like the constant coefficient system
impulse responses W(t-71T).

Figures 44 thru 55 demonstrate that there is no justification for
employing the unsteady accelerating aerodynamics (linear) theory instead of
the second-order piston theory aerodynamics.,

Finally, an inspection of Tables 1 thru 5 reveals that in most cases
the quasi-steady frequencies and the instantaneous frequencies are almost
identical. The worst frequency correlation, which occurs in only a few

cases, is of the order of 5%.
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Thus evidences of the time-varying coefficients are seen but they are
small. It is seen that the omission of the ng = 9g calculations suggested
in the last page of Section II proved to be the correct procedure since the
more critical ng = 270 (l-cos. 2513t) flight mission produced such unspec-
tacular results.

The answers to questions (A) thru (D) posed at the beginning of
Section II may now be answered by the following statements:

(A} Time-varying coefficients are apparently of little importance

in the aeroelastic analysis of manned aircraft.

(B) It is suggested that time-varying coefficients would be of
importance in the aeroelastic analysis of an anti-missile
missile, et cetera.

{C) Quasi-steady analysis appears to be still a remarkably good
method of analysis. It is suggested that a more complete
quasi-steady analysis should be made, however, to obtain

both the frequencies and mode shapes as well as the response

to_some specified impulsive input. This procedure insures

knowledge of the pertinent amplitude growths.
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APPENDIX I. COMMENTS ON VARIABLE AITITUDE FLIGHT

Rigorous inclusion of a non-homogenous atmosphere adds considerable
difficulty to the aerodynamics problem. It is then of interest to determine an
order of magnitude check on the influence of the variation of state parameters
with altitude. For supersonic flight, the impulse response functions lend
themselves nicely to such a check since the load due to impulsive motion
must be identically zero for times after the airfoil frailing edge moves ahead
of the foremost leading edge disturbance wave. For vertical flight at constant
Mach number, this time is approximately

e
R(M-1)

and the corresponding vertical distance traveled is

at =

Aha Mc
(M-1)

Thus, except for M 22 1, the change in altitude is of the order of the airfoil
chord and hence negligible. * Positive acceleration reduces A h further, De-
celeration to subsonic speeds could allow past disturbances to reach the air-
foil. Solution to the latter seems out of the realm of practicability at the
present, since it involves at least analysis for subsonic unsteady flow and

at most inclusion of dissipation due to viscosity which is conceivably of
importance here. Thus, since loads due to arbitrary motion can be determined
from superposition of the impulse responses, one concludes that it is suf-
ficient to use the impulse response functions developed for the homogenous
atmosphere with a quasi-steady representation of the change in state variables,

This, of course, holds only for the supersonic case. The subsonic case is

*
Even Mach numbers close to M = 1 produce moderate altitude changes A h,
For example, when M = 1.05, Ah is given by: Ah &20¢
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more difficult to justify; but due to the complexity of the problem, it is not
felt that it is practical to proceed along these lines at present.
As a matter of interest, the difficulty in accounting for the non-

homogenous atmosphere is discussed in the following. The isentropic re-

B=h) e

whereas the altitude pressure-density relation is

lation is

1.23 0 £h £ 35,000 (Ft.)

:

K
Fo/p = (PM/PO) , K =

1.00, 35,000 <h=<oco (Ft.)

Hence one cannot establish the barotropic relation P =f (P ) so that the
quantity J-Fd(;a)L encountered in Kelvin's theorem and thus the Bernoulli pres-
sure formula is not a proper integral. Thus one cannot justify the existence
of a velocity potential. If one makes the approximation that K = ¥ , then the
linearized mathematical problem can be formulated as a potential problem, the
potential satisfying the wave equation with a variable speed of sound. This
would of course be limited to some relatively narrow altitude band for which
the above approXimation is good. The solution to this latter problem is no
trivial matter, particularly for the subsonic case for which its need seems

most apparent,
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APPENDIX II

Qutline of the Procedures for Obtaining the Upwash Impulse Responses

If a finite band of upwash (width € ) is present on the three-dimen-
sional wing planform, the planform possessing supersonic leading and trail-
ing edges, Figure 22 depicts the regions in which the velocity potential is
of interest and must be computed.

When € = ¢ and the upwash magnitude w is defined in general as
w =é f( £ “ ) we have the case in which a spacewise impulse of upwash
exists on the three-dimensional airfoil at T = 0. Referring to Figure 23, it
is seen that Regions I, II, and VI collapse onto the T = 0, ? = 0 point,
Region III collapses onto the T =0 1ine and all other regions cellapse onto
the Mach lines except I1X, VII, and IV. Also points 4 and 5, and 7 and 6
merge, and point 3 coincides with the origin, Thus, if the collapsed regions
yvield no limiting contribution to the three-dimensional wing pressure distribu-
tion, it is observed that one need calculate only the pressure in Regions IV,
VII, and IX. However, since one always expects a pressure distribution to
occur at the position of the applied upwash, at least Regions I, II and III
must contribute some limiting pressure distribution.

The first step in calculating the pressure distributions is to express
the velocity potential <P at some point {t, x) in terms of the wing planform
geometry and :he upwash w. As is well known, the velocity potential (Fo
is an integral of all properly weighted upwash elements that occur in the

forward Mach-cone emanating from the point (t, x). For any given point (t, %),

*
Consult References 5, 6 and 7 for the details of this integral formulation of cF .
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this forecone will intersect the wing planform at two positions. Thus, these

two positions may be on the leading edge T" = 0, on the side edge }: =-M¢;T'-3"r'"
or may be on both portions of the planform. Figure 24 illustrates the possible
forecone-planform intersections. The intersection points are labeled 1 and 2,
the point having the largest negative value of f being denoted as point 2.

For convenience the equations of the curves representing the wing geometry

and the forward Mach-cones are also shown on Figure 24, Calculating the
positions of points 1 and 2 in terms of the vortex coordinates of the forward
Mach-cone and whether these points are on the leading edge 7 = 0 or the

side edge ¥ = -( M7 + F7T?) it is seen that,

({0, t+x); if on leading edge T = 0

("7,%-)-4 ( p;.-l)‘-_t_%f_ ’ ; if on side edge

‘t+><+"‘;°,;' l&ﬁ ) F=-Mr+37)

r(t),,—t-i~>:); if on leading edge 1" = 0

ot _ﬂ&
(2,50 =/ ( ] ( ‘t rM°+i]+J(M ot +'L_". )
+X= 23 23 T ; if on side

. edge % =
~( M+ F )

The values of cP (t, x) for all nine regions are now presented in their
basic form, before simplification or integration. Notice that these expressions
must necessarily differ only in their integration limits providing the upwash

w( T, § ) is left in implicit form.
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Region VIII

X+t-1

wrpdydr
?m(tax) :-"'""'J J Y (x__pt,

n’—?‘r

where ’T;_ (Mo‘H +\[Mu+l 4 LoX ‘t-

Region KX

CPJx(‘t ,)=0

The second step in the analysis is to compute —::EL since the pressure
difference across both the two-dimensional accelerating airfoil and the three-~
dimensional steady flow (M =V2 ) planform is proportional to this quantity.
From this point on, the upwash is assumed to originate from a constant impul-
sive downwash on the two-~dimensional accelerating airfoil. Thus the final
quantities obtained will be L. and M, . Notice that the linearly varying up-
wash and indeed any upwash proportional to Xh causes no changes in the method
of analysis. The validity of the following arguments would still exist, only the
actual integrations being more complex. Thus, using the upwash w{“ , f ) = G '
the *—Q terms are now obtained. The two basic integrations over the dummy

variable § are,

x+t-T . x+t-r
T&mX) = [ct-w-)‘—(x-§>‘]'%§ @cm-.( (-7 -9 35
l ®-t+T" "M,’l""g"'l'
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Since the integrands are identical, both I, and .IL may be computed
by the same process. To this end, let A\ = X -} and B =t -*r since t ~T

1s a constant as far as this integration is concerned. These substitutions yield

the results that,

le =—d)\

as § —> “M=F, A= X+Mo T T
asg_._, x+t-7 | p—pr -t4r

as §—> X~t+1T , A—> t-7

Hence, T, and T, reduce to:
B B
dh —t
— = AL A
T(8,9= L,"r‘ = =]

di P XM+ F "

,]B‘—-}ﬁ - E_B

Evaluating the limits these integrals become,

___E-(B,’Y, x).-:: J

TE0=T-(-F)=T

. =1 ~
TG TN =sin (XMTAIT)
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Proceeding, the integrations over the “r dummy variable have the following

forms,
+ & o
ro L €
I e"L:ILd"' 15 =J;iI-de' i]i;J%I.L dv

where I, 1s etther [T, or I, .
When I;_ =Il , the integrals may be written down immediately.

T,=mt I, =Tre Te=T7
(i=1) (& (=0

I 6':"('[‘(7?.'77) Ih= T&"‘]{) Lg=T (6—7;‘)
(e=1) (‘.-" ) (""H")

When T, = I, itis most advantageous not to compute L3 through T ,
but instead to compute 9/zt ( I3 ) through ¥ /o+¢ ( T7 ) immediately.

These relations are now determined using Leibnitz's rule which states,

QUL Q)
d
%Jf&,‘r)drsj Eggﬁ?dr + f@Eya) _3‘%@ —~FEE, ) ii(t)
P& Pét)

Thus, noting that &/3+ TIs )(
c=e)
not be computed, the remaining quantities are given by

and /3¢ (I3) need
(=2
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t 42—1;J [A‘,N (x+Ma1*+°3-r")J dv

(Is) EMI(X +M°*v+°}1- )] dv + I 7raT“ +M(X+Mﬂ?.+‘3~’r{

A 5T

Ie.) jat[‘"’“ (X+M.‘!‘+°3"r)} dr- +7r T Iy g (XtMT+ T ) o

>t ot T~1% :"a'-?
)

X + M4 F )
—~ Mru 3't

t-1

'a'rE(Ia) J [%(X+Mo’]/1-?7“ ]JT’—- Waz‘“m(x’rf‘lo’!;ﬂ—?-ﬁ. )5%

By explicitly denoting T; and 17 interms of My, F , t and x the sin_l( )

terms reduce to the following values.

-Oat:rv

x"l"MaT;."‘" 5“% ) W‘

P (x+M°7‘+‘}'r" ) =T
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Using the accumulated information above, the ﬁ

a2t
may now be presented.

90 —_t__1 [®[ac! x+M°-r+"3’r"“)
3 =€ e'rrLS't[ t-T Jd‘r

2 q = Jat[ adn (XM AT )]d,r

gﬁ?ﬂ:”él'ﬁ]fat[ "'(X+M;r+°:}'r )]J'r’

? _ iw ! ><+Mo'r Fr
ot ch"—e]w-J ( > )]CJ'TJ

a—t(P]ZIlI"'_Jat[ I(HM"ﬂ?T):)dT

o
5t $x=©

terms for all regions

Since the lift at any station t is proportional to the chordwise

integration of the

=)
T terms, the method for determining whether limiting

(as €—» 0 ) values of lift remain due to the collapsed regions is now
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obvious. It is required that several carefully chosen chordwise integrations
be made and then take the limit as €—3» O . The collapsed regions may then
be inspected for lift contributions. The same procedure is then used to com-
pute a quantity proportional to the moment. Notice that this same technique,
when the proper constants of proportionality are supplied, determines the list
and the moment contributions of the non-collapsed regions also. Furthermore,
this method can be used when the upwash is any power in the variable X

In order to facilitate these proposed integrations Figure 25 presents
the equations of the various curves of importance and the following tabulation
gives the t stations at which various regions begin and end, these t stations

being denoted by the t coordinate of points 3 through 7 shown in Figure 25.

ty=£&[Mot1 +F €]
)
(M,,+|)+ ﬁ: )+ [eM+1+F+1 /5
() U S (14 Qam 145 95) g

The first integration to be carried out will be for the regions Oi'tS. €,
Thus choosing some t between O and € , the lift is proportional to the

following expression.
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-t + =ML -Ft
“"JEECPI‘J"‘ -+ 3‘t¢ CIX +J‘5%¢Idx
“Me-F t

=)
Since all three integrands contain - L , and in fact 2¢ ¢ is

) ) € ot A
identically equal to -—& , this -—z term can be removed and treated as a
single integration across the planform. Utilizing this equivalent expression

and writing out the remainder of the integrands explicitly yields the following,

|-Mgt-Ft € T
Lc.”"LJ dx ....-LJ dx fam«w X+M°T+?'T) T

€ €T 5
-Mo_t_?_t‘- - Mo-t "?ht
™ I, Fr
3 ~l fx+Ma1 +
I dx J Py (KT dr
[#]

As presently written, the double integrals are to be evaluated by first
holding X constant, integrating over the appropriate 7 interval and then inte-
grating over the indicated X interval. This integration is difficult to do by this
sequence of operations, thus a change in the order of integration is appropriate.
Referring to Figure 26, which illustrates the T°, A region of integration, the

expression proportional to Lc is given as,

X(T)
L~ "E""'""j dq,L(ﬂB M(x+M;r‘+"5-1*)dx

+ -MaFrstT

[y X+ Mov+F 1 dx
==z-z) T} Ve eI
Mt

Carrying out the integration, |~ -'—lé— .
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Noting that the upwash w = —é— or that weg =1 even as the €~-> 0 limit is taken,

it is seen that L. is proportional to a unit delta function at t = 0
L

Therefore,
c ~c§(t =~ 0) when t = 0. This value is in fact proportional to the zero-

thickness second-order piston theory value as should be expected.

Observing that the distance between some point X and the planform lead-

ing edge, at some time t, is equal to X + M,;t+‘3-tz , the expression proportional
to the moment foro<t <€ is given by

t - —(MrIT)rtr
Mool dr

~— ) T (x +Mer+ 21X +Mo-{:+°3-t") dx
¢ 2€ €’ t-v) N e (X 4 Mo T
o )y L I

Using the identity that X+Mzt+Ft= X+MeT+F T +Mole-1 + FE-T G2 r(t-1)

the integration is easily executed and yields the following result.

Mcf-w-l.__,_ z

_&1
As €-30 the product

z —> 0, since f_<_e . Thus Mcis also impul-
sive, as should be expected, at t = 0,

MC,-...: .?_'_. J(t-—o) 5 +t=0

The second integration to be carried out is for e<’ts‘tg . Making use

of Figure 27, the integrals for the lift and moment proportionals become,

| Ed? J( (x+Mat +F T¥)dx 577 = o
<€) 1) @-TI=(X+Mr+FTY) A T
“ o(t ™) -(M,T+"§-‘!’)-’t+£’ ]

e
t (1) L (e €
MC~Z‘IT‘I 2z ch/“""a'(-t
o

=)

Now as €-»0,t>0 if L4135 so that Mc for this 1" region goes to zero.
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In a similar fashion the lifts and moments can be computed for the limiting
case of €= . The results of these calculations have been presented in
Section 1.4 of this report, and reflect the results that no singularities occur
across the collapsed regions except those regions that contribute to the im-

pulse functions at t = 0.
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APPENDIX III
Approximate times on the 704 for the following programs

Time
1. Compute GJ(t) (one k) 9 mins.
o<t <23.2¢ sec.
n3_= 93_
2. Compute GJ(t) (one k) 3.5 mins,
2326 <t £1200 S€c
n%_= 53_
3. Piston theory differential equations 8 mins.
nq =270 (1-coa.2513t)
o<t 1.0 sec. y At=.001 sec,.
4., Unsteady Aerodynamics Difference Equations
ng= 270(1-co0.2513t)
ost £ 500 s&. ,1,=0 sec 110 mins.
8<t=285 se. ,1t,=8ssc. 7 mins.

It is to be noted that the computing time factor from computation {3) to

(4) is about 20 for the early time calculations 0 < t, = 4 sec.
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hiy)

e ——pfe—— O
X

e L ———>

Fig. 1 Wing Planform and Cross Section

For small angles,

cA'= "dx = pdx :r(_i&x)

Thus:

pergd

Fig. 2 Segment of Twisted Wing
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1———2bx|

fe————2b

A

Fig. 3 Non-Zero-Thickness Typical Section
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.
UL > X
Zb—bl &~
- j U(g’ﬁdg* -
Q
Fig. 4 Two-Dimensional Accelerating Airfotl
=
A
t
Mo

Fig. 5 Three-Dimensional Steady State Airfoil
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FLIGHT PATH;/ o — ——a
HORIZONTAL REFERENCE P

7~

.~
/_:_J_B (r)

- X

-—-'-¢

/
B(r):=a (r)
ZTANGENT LINE ):
TO FLIGHT AIRFOIL afr) a(rl-l-tﬂ'yU {r)
PATH ;

Fig. 10 Flight Path Variables
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PULSE REPRESENTING FINITE WIDTH LIFT-TIME HISTORY
OF GIVEN TOTAL IMPULSEA =AM, (T), F) =

AM 4 (1), 0)
!
d ? > tor

T="T (M)

="

Pig. 11 Pulse Representation

M M
A “’ A
f !
) }
T {
! >t ! >t
v Y
2 N
i |
i {
Fig. 12 Moment Pulse and Doublet Representation
xctu‘raoln A !

f Fm ) xio”

> M) > M

Fig. 13 Typical Pulse Strength and Pulse Centroid Plots
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5 10 /s 20 25
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Fig, 14 Altitude versus Time for the
Chosen Flight Missions
107 ng_:gi
8 - —_—— ni=avo(t- cre.253t)
&
b
4
z -

T Y T 1) ) |

5 o {5 2o A
t(sec)

Fig. 15 Mach Number versus Time for the Chosen
Flight Missions
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“3-"-' 31

nj-.:' 270( 1-coe.25:3t)

EXPONENTIAL ATMOSPHERE
AS GIVEN IN NACA TN 4047

£ xio" (scwe/rid)
»

0
t(sec)
Fig. 16 Ambient Density versus Time for the Chosen Flight Missions

20 25

1860+
i / - T~ ~
/ —
1460 -
/
[ 4 /
Eloso- / — - —— ng=z10(1-cn2sist)
860- /
660 /
_—-""'/ - /
s /0 Is zo 2§
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Fig. 17 Wall Temperature versus Time for the Chosen Flight Missions
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Fig. 18 Dynamic Pressure versus Altitude for the 9g Accelerated Flight Mission
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LLLLLL LG L L

WING AREA = 50 FT.2 WING WEIGHT T.2 =

800 304#/FT.
3% UNSYMMETRICAL DOUBLE WEDGE STAINLESS
STEEL HOLLOW n-CELL WING. THE NUMBER n

IS NOT SPECIFIED SO THAT ‘o"-IS OTHERMALL

MAY BE CONVENIENTLY CHQOSEN.

— U(t)

Fig. 19 Wing Geometry of the Vehicle Performing the
Flight Missions

‘i

t=-03334y +,09375 t,=.02727 ¥ +.09375

1l ~<

u)

!
TE @.45¢=22.81250 LE.@+55¢c=~3.43750

Fig. 20 External Wing Cross-Section Geometry of the Vehicle Performing
the Flight Missions
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Fig. 22 Supersonic Three-Dimensional Analogy Planform with a Finite Band
of Upwash on the Airfoil Betweenost=e€

I III ON THIS LINi

V ON THIS LINE

Fig. 23 Supersonic Three-Dimensional Analogy Planform with an Impulsive
Upwash Along the Leading Edge
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Flg. 24 'Wing Geometry and Forward Mach Cone Representations

81

WADD TR-60-484 Part II



xX=t
x=t-e{1+M,+eF)

Yt;r

Fig. 25 Equations Representing the Various Planform Curves and the
Mach Lines
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*
ORIGINAL FORMULATION

HOLDS x CONSTANT AND , 4 |

INTEGRATES OVER THE “y*
RANGE FIRST

*%
FINAL FORMULATION

HOLDS
T CONSTANT " /

AND INTEGRATES OVER

THE x RANGE FIRST x=~t -

Fig, 26 Integration

*X

x=t -

AR IR LY

T

X=t-1(i+M, ++F)

ATTITERERTTRONG

X= —t (Mo‘l't.})

Region foro4t=e

x=t-r(1+Me +TF)

)(:—'t -

x=-t +T(]—M¢—T‘.3') —/
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Fig. 27 Integration
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Fig, 28 E Time History Due to Case 1 Initial Conditions Applied at
t,= 0 and 10 Seconds Compared with Itself Approximately
.45 Seconds Later; ng = 9¢g
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Fig. 29 h Time History Due to Case 1 Initial Conditions Applied at
to= 20 and 30 Seconds; ng = 9g
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Fig. 30 h Time History Due to Case 2 Initial Conditions Applied at
t,= 0 and 10 Seconds Compared with Itself Approximately
.45 Seconds Later; ng = 9g
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Fig. 31 h Time History Due to Case 2 Initial Conditions Applied at

t,= 20 and 30 Seconds; ng = 9g
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Fig, 32 o Time History Due to Case 1 Initial Conditions Applied at
t,= 0 and 10 Seconds Compared with Itself Approximately
.45 Seconds Later; ng = 9g
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Fig. 33 oL Time History Due to Case 1 Initial Conditions Applied at
t,= 20 and 30 Seconds; ng = 9g
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Fig. 34 & Time History Due to Case 2 Initial Conditions Applied at
t,= 0 and 10 Seconds Compared with Itself Approximately
.45 Seconds Later; ng = 99
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Fig. 35 ol Time History Due to Case 2 Initial Conditions Applied at
t,= 20 and 30 Seconds; ng = 9g
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Fig. 36 h Time History Due to Case 1 Initial Conditions Applied at
t,= 0 and 10 Seconds Compared with Itself Approximately
.45 Seconds Later; ng = 270 (l-cos,2513t)
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Fig. 37 h Time History Due to Case 1 Initial Conditions Applied at
t = 20 and 30 Seconds; ng = 270 (l-cos.2513t)
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Fig. 38 h Time History Due to Case 2 Initial Conditions Applied at
t,= 0 and 10 Seconds Compared with Itself Approximately
.45 Seconds Later: ng = 270 (l-cos.2513t)
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Fig. 39 h Time History Due to Case 2 Initial Conditions Applied at

t,~ 20 and 30 Seconds; ng = 270 (1-cos.2513t)
95
WADD TR-60-484 Part I1



000

t (SEC.)
10.000

080
10.080

120
10.120

®®00(.45) SEC, DELAYED
TRACE

Fig. 40

& Time History Due to Case 1 Initial Conditions Applied at
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o{Time History Due to Case | Initial Conditions Applied at
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Fig. 42 o(Time History Due to Case 2 Initial Conditions Applied at
t,= 0 and 10 Seconds Compared with Itself Approximately
.45 Seconds Later; ng = 270 (I-cos.2513t)
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Table 1 Comparison of System Frequencies {cycles/sec.) Obtained by
Various Methods of Analysis dye to Case 1 lnputs for the Time
Interval 0 £t <8 Seconds; ng = 270 (l-cos.2513t)

to traf _ 2 .

(sec) | (seq) [ ¥Q.s.| “p.1.] “uvaa | “Q.s. | “rL U.A.A,
0 0 17.65 17.7 17.72 17.68 7.2 17.26
0 0.5 17.71 17.61
0 1.0 17.7 17.7
2 2.0 17 .67 17,7 17.72 17.67 17.2 17.27
2 2.5 17.71 17.63
2 3.0 17 .7 17.7
4 4.0 17.65 17.7 17.70 17.65 17.2 17.26
4 4,5 17.70 17.59
4 2.0 17.7 17.7
6 6,0 17.65 7.7 17.66 17.65 17.2 17.16
6 |6.5 17.65 17.62
6 7.0 17.6 17.7
8 8.0 17.63 17.6 17.64 17,63 17.2 17.14
8 8.5 17.64 17.61
8 8.0 17.6 17,7

Q.S. = Quasi-Steady
P. T. = Piston Theory with time-varying coefficients
U.A.A. = Unsteady Accelerating Aerody namics with time-varying coefficients
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Table 2 Comparison of System Frequencies {cycles/second) Obtained
by Various Methods of Analysis due to Case 1 Inputs for the
Time Interval 10 £ t, < 30 Seconds; ng = 270 (1-cos.2513t)

to tref n il

{sec) {sec) wQ.S. COP.T. '{OQ.S. C")l'-‘..'l',
10 10.0 17.62 17.5 17.62 17.8
10 1.0 17.5 17.6
12 12.0 17.60 17.6 17.60 18.2
12 13.0 17.5 17.5
14 14.0 17.62 17.6 17.62 18.2
1 15.0 17.5 17.5
16 16.0 17.62 17.5 17.62 18,2
16 17.0 17.5 17.3
18 18.0 17.63 17.5 17.63 18.1
18 19.0 17.7 17.2
20 20.0 17.65 17.6 17.65 18.1
20 21.0 7.5 18.4
22 22.0 17.65 17.5 17.65 18.1
22 23.0 17.6 18.9
24 24.0 17.65 17.5 17.65 18.1
24 25.0 17.6 18.8
26 26.0 17.65 17.6 17.65 18.05
26 27.0 17.6 18.6
28 28.0 17.65 17.6 17.65 18.0
28 29.0 17.5 17.7
30 30.0 17.65 17.6 17.65 18.0
30 | 3.0 | 17.6 17.4
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Tabie 3 Comparison of System Frequencies {cycles/second} Obtained
by Varicus Methods of Analysis due to Case 2 lnputs for the
Time Interval 0 £t, = 8 Seconds; ng = 270 (I-cos,2513t)

to tref o =

sec) | sec) || PQ.s.| Perr.| “uana | Xos. | @t | ©uana,
o | o 17.65| 17.2 17.26 | 44.47| 44.1 44.22
0 | 0.5 17.62 44.23
0 | 1.5 17.7 45.2
z | 2.0 17.67] 17.2 17.25 | 44.45] 44.1 44.20
2 | 2.5 17.63 44.24
2 | 3.0 17.7 45.1
4 | 4.0 17.65| 17.2 17.22 44.45| 441 44.17
4| 4.5 17.58 44.20
4 | 5.0 17.7 45.1
6 | 6.0 17.65| 17.2 17.15 a4.43| 44.1 44.11
6 |6.5 17. 61 44.24
6§ |7.0 17.7 45.0
g8 | 8.0 17.63]| 17.2 17.13 44,34 44.0 44.05
g | 8.5 17.61 44.16
g |9.0 17.7 44.8
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Table 4 Comparison of System Frequencies (cycles/second) Obtained
by Various Methods of Analysis due to Casa 2 Inputs for the
Time Interval 10 £t, £ 30 Seconds; ng = 270 {l-cos.2513t)

to | tref "

{sec} (sec) wQ.S. “p.r, wQ.S. Wop. 1.
10 10.0 17.62 17.5 44,07 43.7
10 1.0 17.6 43.3
12 12.0 17.60 18.0 43.61 43.2
12 13.0 17.5 44.0
14 14.0 17.62 18.2 43.05 42.6
14 15.0 17.35 42.3
16 16,0 17.62 18.2 42,52 42.1
16 7.0 17.3 43.7
18 18.0 17.63 18.1 42.14 41.8
18 19.0 17.2 42.2
20 20.0 17,63 18.1 41.89 41.5
20 21.0 18.5 4].4
22 22.0 17.65 8.1 41.73 4].4
22 23.0 18.9 41.4
24 24.0 17,635 18.1 41.65 41.3
24 25.0 18.8 41.4
26 26.0 17.65 18.05 41,60 41,2
26 27.0 18.6 41.4
28 28.0 17.68% i8.0 41.57 41,2
28 29.0 17.7 41.4
30 30.0 17.65 186.0 4]1.54 41.2
30 31.0 It 17.4 41.4
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Table 5 Comparison of System Frequencies {cycles/second) Obtained
by Various Methods of Analysis due to both Case 1 and Case 2

Inputs for the Time lnterval 0 <t, < 30 Seconds; ng = 9g

Case 1l Case 2
o tref ’rw hco W A @ hw w w
{sec) | (sec) Q.s.| P.T. Q.S. P.T, Q.8. P.T. Q.S. P.T.
0 0 17.65 | 17.7 | 17.65 | 17.2 || 17.65 | 17.2 | 44.47 | 44.]
0 1 17.7 17.7 17.7 45.2
2 2 17.63 | 17.6 | 17,63 | 17.2 || 17,63 | 17.2 | 44.47 | 44.1
2 3 17.6 17.7 17.7 45.2
4 4 17.62 | 17,6 |17.62 | 17.2 {| 17.62 | 17.2 | 44.37 | 44.0
4 5 17.6 17.6 17.7 44,9
6 6 17.60 | 17,6 | 17.60 | 17.3 || 17.60 | 17.3 | 44.12 | 43.7
6 7 17.6 17.6 17.6 44.2
8 8 17,60 | 17.6 | 17.60 | 18.1 || 17.60 | 18.1 | 43,73 | 43.3
8 9 17.6 17.6 17.6 43.1
i0 110 || 17.62 | 17.6 [ 17.62 | 18,2 || 17.62 | 18.2 | 43.30 | 42.9
10 |1 17.6 17.5 17.5 43.5
12 |12 J 17.62| 17.6 | 17.62 | 18.2 || 17.62 | 18.2 | 42.88 | 42.5
12 |13 17.6 18.4 18.5 42.3
4 |14 17.63 | 17.6 | 17.63 | 18.2 || 17.63 | 18.2 | 42.51 | 42.1
1 |15 | 17.6 17.3 17.3 42.8
16 |16 17.63 | 17.6 | 17.63 | 18.1 || 17.63 | 18.1 | 42.21 | 41.8
16 |17 17.7 17.3 17.3 42.4
18 |18 17.65 | 17.6 | 17.65 | 18.1 [[ 17.65 | 18.1 | 42.00 | 41.7
18 |19 17.8 17.3 17.3 41.5
20 | 20 17.65 | 17.6 [ 17.65 | 18.1 || 17.65 | 18.1 | 41.84 | 41.5
20 | 21 17.6 18.7 18.7 4.4
22 | 22 17.65 | 17.6 [ 17.65 | 18.1 [[ 17.65 | 18.1 | 41.75 | 41.4
22 |23 17.6 18.9 18.9 41.4
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Table S {continued)

Case l Case 2

to tref o 2 n

(sec)| (sec) wQ.&. wP.T. MQ.S. d")P. T. wQ. S. wP.T. %.S. QP. T.
24 24 17.65 17.6 17.635 18.1 17.65 18.1 41.3 41.68
24 25 17.86 18.9 18.9 4}.4

26 | 26 17.65 17.6 | 17.65 ; 18.1 17.65 18.1 [ 41.3 41.63
26 27 17.6 18.7 8.7 41.4

28 28 17..65 17.6 17.65 18,1 17.65 18.1 4l.2 41,59
28 29 17 .6 18.4 I 18.4 |4l.4

30 30 17.65 17 .6 17.65 18.0 17.63 18.0 41.2 41.54
30 {31 17.6 17.4 17.4 | 4l.4

117

WADD TR-60-484 Part 11




