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ABSTRACT 

It is well established that an undamped infinite dimensional mathematical model of a 
flexible structure cannot be stabilized with finite bandwidth control; the required gain 
stabilization beyond the bandwidth is negated by the infinite structural gain at each 
resonance. Thus, even a mathematical model with no modeling uncertainty will show that 
passive damping is critical to enabling active control. What is less well known. are the 
benefits of passive damping for the robust control of real structures. There has been a 
tendency, in the research literature, to define the research problem to consist of developing 

control approaches for the broadband control (many modes in the control bandwidth) of 
poorly modeled, lightly damped, modally dense structures. There is ample reason to believe 
that such control is practically unachievable and that the attribute "lightly damped" is one 
of the most easily and readily remedied characteristics of such a problem structure. 

This paper reports upon the enabling effect of passive damping in the control of uncertain 
flexible structures, particularly with non-eollocated actuators and sensors. Quantative 
~esults are all single-input single-output and the benefits of passive damping are then 
understandable in terms of classical ideas of gain and phase stabilization. The paper derives 
approximate expressions for the minimum acceptable level of passive damping in terms of 
modeling uncertainty and desired bandwidth. These relationships can then be interpreted 
as specifying either a minimum level of passive damping or a minimum level of modeling 
fidelity. If the requirement is not met, robust control with the bandwidth including 
uncertain flexible dynamics is not possible with linear time invariant (LTI) compensation. 

INTRODUCTION 

In this paper, "bandwidth" implies "that frequency ranfie over which the loop transfer 
function magnitude ratio varies by no more than 3dB. This definition is sensible for 
reference command following and for disturbance rejection when the respective input 
command and output referenced disturbance signals are expected to be broadband. It is 
possible that neither condition is met in an application of feedback control to a lightly 
damped flexible structure. A common goal for flexible structures is disturbance rejection 
rather than command following. Typical output-referenced disturbances are narrow band, 
either because they were generated by a time periodic process (typically an operating 
machine) or because they have been filtered through the resonant structure. With reference 
to rejection of such disturbances, another definition of bandwidth may be appropriate. 

This paper addresses the problem statement: "The control bandwidth must include many' 
poorly modeled, lightly damped, closely spaced modes." This problem statement is 
figuratively depicted in Figure la. The fundamental point made in the paper is that no 
linear time invariant compensation exists which will robustly (in the sense of stability 

* This paper is an edited version of a previous draft presented at the 61st Shock and 
Vibration Symposium, Pasedena, CA, Oct 1990 and in present form will be presented at 
tt.e VPI+SU Conference on Recent Advances in Active Control of Sound and Vibration, 
April 1991 and the Air Force Damping '91 Conference, San Diego, Feb 1991. 
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robustness as opposed to performance robustness) achieve what is suggested by Figure la, 
unless a significant amount of passive damping is present. The required level of passive 
damping is-sketched in Figure lb. 
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Figure 1. (a) Figurative depiction of problem statement for bandwidth to include many 
poorly modeled, lightly damped, closely spaced modes. (b) Required level of passive 
damping to meet problem specification. 

The obvious approach to eliminating undesirable dynamics from the controlled plant is to 
generate control signals which cancel these motions rRossi]. This "plant inversion" 
philosophy is what all control design techniques, both linear and nonlinear, SISO and 
MIMO [Williams], strive to realize when the aim is to achieve bandwidth greater than the 
frequency of the dominant modes. In benign _systems, the effect of reasonable levels of 
model uncertainty is not such as to yield instability and is thus tolerable. For lightly 
damped oscillatory systems which typify the broadband structure control problem, 
however, the undesirable result of high gain/performance plant inversion, is instability of 
the closed loop system when sufficient model mismatch ocurs. A question which arises is 
how much damping is required to maintain closed loop stability if the structural dynamics 
are known only with a given level of uncertainty? 

Some specialized literature dealing with design of controllers for uncertain lightly damped 
structural dynamics exists [ACC, Bryson, Bontsema, Rosenthal, Rossi, Wedell, Wie, et all, 
but the authors assume a plant given and unable to be modified, leading to a disregard of 
prescribing increased passive damping as part of the control solution. "Modern" (LQG, H2, 
Hoc, L1) control design techniques revolve around parameterizing of the uncertainty into the 
design model [Bontsema, Bryson, Wie, Wedell], often leading to rather convoluted design 
and robustness evaluation procedures. Not-able for also ignoring passive damping is a large 
body of literature on combined optimal design of the structural dynamics and the active 
control system [JPL, Venkayya, Rao, Belvin]. Much of this literature implicitly defines 

structural dynamic design as the appropriate selection of stiffness and mass parameters. 
Passive damping levels are assumed to be very low and beyond specification by the 
designer. This leads to elegant mathematics and numerics, but also leads to results of 
questionable engineering relevance. 

Novel nonlinear techniques, not LTI, such as that due to rBalas] or [Kop~, where use is 
made of phase-locked loops to track modal frequency and adjust compensation accordingly, 
also exist. These techniques may offer much promise for the broadband control of poorly 
modeled lightly damped structural dynamics, but are beyond the scope of this paper. 

This paper makes the strong quantitative statement that sufficiently lightly damped and 
poorly modeled structural dynamics can never be within the bandwidth of an LTI cont~ol 
system. This statement is ~upporte~ with some ~ISO case studies, w~~h s.erve to quantl~y 
the level of passive dampIng reqUIred to permIt robust phase stabIlizatIon of uncertaIn 
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structural poles. Uncertainty in eigenfrequencies and in mode shapes is considered. Mode 
shape uncertainty is recognized as more serious since it is the mode shapes which govern 
the locatio!! of plant zeros. In the common situation of lightly damped poles and zeros such 
mode shap~ ':l~certainty makes th~ location of the ~eros highly uncertain, leading to the 
strong pOSSIbIlity of transfer functIon phase uncertaInty of 1800 or greater for dislocated 
sensor/actuator pairs. 

This paper implicitly assumes that the poles of the plant transfer function are spaced much 
more widely than their bandwidth; Wi - iii.! >> re Wi. In this case of low modal overlap, 

each pole can be considered practically in isolation, interacting at most with local plant 
zeros. The uncertainty in structural dynamic transfer function gain and phase as a function 
of modal overlap has been studied from a statistical perspective by [Lyon], and is inversely 
related to modal overlap. 

GAIN STABILIZATION BEYOND THE BANDWIDTH 

The result we report here is well known and has been reported elsewhere in many different 
forms (Gran, Spanos, Hughes, von Flotow]. The basic idea is that a poorly modeled or 
unmodeled flexible mode beyond the bandWIdth must be gain stabilized. Since the gain of a 
flexible structure (from applied force or torque to displacement, rotation etc.) is maximized 
near each resonance at a value inversely proportional to damping ratio, the conclusion 
emerges that an undamped flexible mode can never be gain stabilized. How much damping 
ratio is required to ensure gain stabilization of modes beyond the control bandwidth 
depends then upon the gain roll~ff of the loop, upon the spectral separation between the 
modal natural frequency and the control bandwidth and upon the modal participation or 
residue. The relationship is rather obvious and has been reported elsewhere [Gran, Spanos, 
Hughes, von Flotow]. It is this requirement that leads to one curve sketched in Figure lb. 

PHASE STABILIZATION WITHIN THE BANDWIDTH 

If, for the purposes of disturbance rejection or command following, the control bandwidth 
must be broad and include one or several flexible modes, then each of these flexible modes 
must be robustly phase stabilized. In the absence of modeling error, this presents no 
particular difficulty; notch compensation or some other equivalent inversion of the 
structural dynamics is then an acceptable approach. Unfortunately, modeling errors are 
always present. In single-input, single-output LTI systems, the effect of these modeling 
errors upon control design can be summarized in terms of uncertainty in the location of the 
structural dynamic transfer function poles and zeros. Broadband control is then enabled by 
a sufficient level of passive damping, since approximate plant inversion is then feasible. 

ROBUST POLE-ZERO CANCELLATION 

If the closed loop bandwidth (bandwidth as defined in Figure 1a) is to extend past the 
eigenfrequency of a number of flexible modes, the only solution is pole-zero cancellation. In 
the absence of modeling errors, all flexible modes may be canceled and the closed loop 
bandwidth extended arbitrarily. When uncertainty regarding the eigenfrequencies exists, 
however, extra care needs to be taken in this strategy. A root locus departure angle 
argument serves well to explain the effect of uncertainty in eigenfrequency on the stability 
of the closed loop system where pole-zero cancellation is employed in compensation. Here, 
a single oscillatory mode system is considered and the damping is considered to be very 
small. Figure 2 assumes that the loop phase due to all other dynamics is ~ at the 
nominal value of the eigenfrequency in question. ~ 
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Figure 2. Departure angles due to pole-zero cancellation of single oscillatory mode. 

Clearly, Figure 2b does not yield instability for small gains, as the departure angle is away 
from the imaginary axis. The phase lead added by the zero at frequency lower than the 
modal frequency ensures this. In Figure 2a, however, the departure angle is toward the 
imaginary axis, such that for sufficient uncertainty and sufficiently lightly damped poles, 
the closed loop system will be unstable. 

CRITICAL DAMPING FOR ROBUST POLE-ZERO CANCELLATION 

Considering the simple case of a single oscillatory mode, it is desirable to implement 
pole-zero cancellation as compensation in order to achieve a desired closed loop bandwidth. 
This, however, leads to possible instability if insufficient passive damping exists for a given 
level of uncertainty in modal frequency. This section serves to quantify ,to first order in 
relative uncertainty of the eigenfrequency, how much passive damping is necessary for 
stability (when employing this form of compensation) over the range of eigenfrequency 
uncertainty. 

Phase Gradient with resped to Frequency 

First, it is necessary to evaluate the "phase gradient" with respect to frequency, UJ. 

Consider the single oscillatory mode represented by the transfer function 

setting s =j"" and evaluating the phase at frequency fJJ 

~(w) = - tan-1( ~'lI1~W w2 )
D 

The gradient of this phase evaluated at W = Wn·can be shown to be 

-1 (1)= -;cw;; 

representing the phase gradient with respect to frequency at the frequency of maximum 
amplification of the amplitude ratio (vis-a-vis the Bode magnitude plot) as illustrated in 
Figure 3. Now, if the eigenfrequency is unknown to an uncertainty Ow = fIIn - UJactual, then 
the phase at the nominal eigenfrequency, Wn , will be uncertain by _as much as 

-OW (la)= eWn 
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Figure 3. Bode plot illustrating the phase gradient wrt w. 

This allows estimates of local phase contributions due to oscillatory modes. Clearly, the 
:phase gradient due to non-minimum phase oscillatory.zeros of frequency Wn and damping e 
(evaluated at Wn), is also exactly (1), while that due to minimum phase zeros is the 
absolute value of (I). 

Phase Excursions in Approximate Pole-Zero Cancellation 

Using the relation (la) it is now a simple matter to determine the relationship between the 
phase excursion due to inexact pole-zero cancellation. For the first uncertain mode in the 
system to be controlled, the Bode phase plot appears as in Figure 4, where the phase 
contribution due to the mod~ as well as the canceling zeros is depicted. Since afIJ is assumed 
positive, the actual pole occurs at a frequency lower than that of the canceling zero and 
local phase lag is introduced. 

Phase 

-1.80 

&aJ 

Figure 4. Bode phase plot of uncertain mode approximately canceled by compensator zeros 
in broadband structural control problem. 

If 6~DI represents the "phase margin" at the canceled mode: i.e. the amount of unmodeled 
l'hase lag tolerable at this frequency, and if the linear approximation to the phase gradient. 
(1) is assumed, a slightly pessimistic estimate of allowable 61JJ for a known level of passive 
damping, is given by this relation 

CUI ~ (';~m)e "'n 
and if 6~m = lrad 

aw ~ eUJn 

This defines a first estimate of permissihie modal eigenfrequency uncertainty in terms of 
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passive damping for any system with flexibility between the sensors and actuators and 
required bandwidth in~luding flexible eigenfrequencies. 

A more .precise expression for the maximum phase excursion due to pole-zero cancellation 
can be verified to be [Garcia] 

6, = 2tan-l(P~{~p~i) 

This expression is valid for large relative pole-zero spacing and correctly yields phase 
excursions limited to the range ocp E (-1800,1800). Since the zero frequency (Zi) is nominally 
chosen to cancel the pole, Zi=Wn and the actual pole location is Pi=Wactual, then for small 
angles 

1
.-= _ 1

. 
iP i~ 

-OW 
~ eiWn 

which is the expression (la). 

HOW MUCH eIS SUFFICIENT IN THE BANDWIDTH? 

For a system compensated by pol~ero cancellation, an estimate (to first order) of the 
passive damping (erequired) necessary to maintain stability over Ow may be determined. 

Assuming Ow « Wn and also Ow « (Wi - Wi-1) ("i" indicates i'th mode) ,ensures that the 
phase plot is approximately linear over this range (6w) about Wn. Assuming further that 
pol~ero cancellation is attempted and Ow is small enough that the effect of neighbouring 
poles and. zeros may be ignored (if modal separation is too small, the effect of other 
contributin~ modes to the total phase gradient is easily accounted for by including these 
extra terms), then the local phase excursion due to the pol~ero pair under consideration 
is approximately (by equation 1a) . 

If the design provides a phase margin, 6<1>m, then for a pol~ero mismatch of ow a damping 
ratio of 

> 1 0111 (2) 
- ~fl/D 

will suffice. 

An alternative viewpoint is available by considerin'g the root locus in the vicinity of a 
nearly canceling pol~ero pair: 
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Figure 5. Root locus description of minimum damping ratio required to ensure stability of 
near pole-zero cancellation when assumed pole location is in error by OfIJ. 

PLANT ZERO UNCERTAINTY AND APPROXIMATE
 
POLE-ZERO CANCELLATION
 

The preceding sections have implied that the plant contributes only poles which must be 
compensated with compensator zeros. Often the plant will contribute zeros, although their 
location, depending upon mode shapes, is typically more poorly known than the pole 
locations. Figure 6, from Rosenthal's PhD [Rosenthal], shows the possibility of a pole-zero 
"flip" when the inertia of one of the disks in this four degree of freedom system is changed 
by a factor of two. Near 20Hz, the plant phase is uncertain to * 1800. In such a situation 
phase stabilization is impossible. 

Although the precise sequence of poles and zeros in a transfer function through a flexible 
structure is very uncertain, their approximate location can be known with more certainty 
[Lyon]. The plant phase can thus be viewed as an average phase related to a pole/zero 
density (with respect to frequency) and local phase excursions from this average phase. 
These excursions must be either small or well modeled if the plant is to be phase stabilized. 
If a close 'Kole/zero pair is identified, but the sequence is uncertain (as in the case of 
[Rosenthal]) then a sufficient level of passive damping is required. 

In this section the arguments of the preceding section are directly applied to such pole-zero 
cancellation, sugg~sting that approximate plant pole-zero cancellation is effectively perfect 
cancellation if sufficient levels of passive damping are present. 

(a ) . r~ 4' (b) 

III IIIt ~S·I t-~/, 
'1.0·l 

~ ~,:': : If% 
'------~ ---J.

Figure 6. 4-Disk example by Rosenthal. 

Poles and zeros in the loop transfer function are indistinguishable with respect to their 
origin; plant or. compensator. We can thus apply the results of the preceding sections 
directly. If the plant pole-zero pair are known to be within OIlJ of one another, then a 
passive damping level of 

" ..., ~ 
--=====-- t 
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will suffice to ensure that their contribution will not destabilize the loop. For Rosenthal's 
system, the pole and zero frequencies were such that a passive damping ratio of 10 to 23 
percent (for cases (a) and (b) of Figure 6, respectively) would have been sufficient. Such 
damping levels wowd then have permitted robust control of this plant with arbitrary 
bandwidth. For the intentionally low damping levels of Rosenthal's experiment (e ~ 0.004), 
the closed loop bandwidth could never be made to approach this uncertain region near 20 
Hz. Note that even for this laboratory system, the exact location of the plant poles and 
zeros was never known. For Rosenthal, this measurement uncertainty amounted to 1 to 4 
percent. This implies that even for carefully identified lightly damped structures, a 
minimum passive damping level of 1 to 4 percent is needed to permit robust plant inversion 
in feedback control. 

An Example. Bong Wie benchmark problem with pole-zero cancellation 

The Bong Wie benchmark problem [ACC] has transfer functio,n 

with uncertainty in modal eigenfrequency such that Wactual may lie in the range 1.0 < 
61actual < 2.0 (61 in rad/s) and nominally Wn = r2 rad/s. 

Figure 7. Bong Wie benchmark problem with dashpot providing passive damping.
 

For this .eigenfrequency uncertainty, the estimate (la) of necessary damping is evaluated as
 

= 0.29
 

Note that this assumes 6'm=1 rad. The rigid body compensation, however, yields a phase 
margin of 6, ~ 1.3 rad at the nominal flexible mode eigenfrequency, yielding 

e~ 0.22. 

The guidelines of the previous section, linear in 6w/ fJJ n, thus suggest that a passive damping 
level of 22 percent is needed for this huge uncertainty, if the nominal bandwidth is 
extended to beyond fJJn while maintaining stability. 

It is necessary to verify if this estimate of the required level of passive damping is 
adequate. To this end, Figure 8 displays a root locus versus gain of the closed loop 
dynamics where broadband compensation using pole-zero cancellation is used. In the spirit 
of classical control design, the rigid body modes are first compensated by means of a low 
frequency zero. The flexible mode is then canceled by zeros at the nominal location of the 
flexible poles, with suitable high frequency poles yielding the desired roll-off, for a 
compensator transfer function 
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K(s) - (6.668 + 1~~82 + 2'z(in8 + (i~)16 
- ( 8 2 + 5. 68 + 1 )61~ 

where the damping ratio of the compensator zero is 

ez = 0.19 

The loop gain is chosen to yield closed loop bandwidth of 4 rad/s, greater than the 
uncertain mode frequency. The system is evaluated for stability when the modal frequency 
is "'actual = 1 rad/s (worst case, but including 22% passive damping ratio) and found to be 
stable (figures (8a and 8b)). Clearly the estimate yields a good first guess; the root locus of 
figure 8b doesn't quite cross into the right-half plane. Unfortunately, the lightly damped 
closed loop dynamics remaining due to imperfect pole-zero cancellation in Figure 8b limit 
the bandwidth to less than Wn (bandwidth defined as in the introduction). 

(b) 5,--~.--------- 

·~r ./ 

"4 ___.auc .. 
~ ~~.-_ 

...........,
 
. '-----------

Figure 8. Root loci for Bong Wie problem. (a) shows the nominal case and (b) the nominal 
compensator implemented for the plant with eigenfrequency at the lower end of the 
uncertainty range. 

Since it may not be practicable to implement the required amount of passive damping to 
achieve stability robustness for perfect cancellation of the nominal plant flexible modes, it 
is possible to exploit whatever passive damping, is guaranteed by placing the compenastor 
zero somewhere inside the uncertainty bound for the achievable damping and ensuring 
stability over the entire uncertainty range as well as improving the nominal performance 
over conservative compensation with. the zero at the lower end of the uncertainty range. 
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Figure 9. S-plane plots showing intermediate pole-zero cancellation achieving stability 
robustness and improved nominal performance over undamped uncertain design. 

Figure 9 shows the transition in designs from exact pole-zero cancellation of the nominal 
flexible modes to approximate cancellation at the lower end of the eigenfrequency 
uncertainty range. For each case the uncertainty is the value 661 and the zero frequency for 
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cancellation may be estimated using equation la and the guaranteed level of passive 
damping e. Notice that in the case of this example, the rigid body compensation yields 
"phase margin" of approximately 750 (~ 1.3 rad) in the frequency region near the uncertain 
poles. The Irequency of the compensator zero should then be 

~ lUlower + t5,e (3) 

where "'lower is the lower bound on the eigenfrequency range. A sequence of such designs for 
the Bong Wie benchmark problem yield Figure 10, showing the limiting value for the 
compensator zero as a function of plant damping ratio. This suggests that use of equation 3 
is warranted for estimating the required zero frequency when a fixed level of passive 
damping is available and stability robustness with near pol~ero cancellation is desired. 

C 1.5 
z wit' 
t.tJ 

g ~ 

Unstable 
~ 
t.t. 

Stableo 
~ ~, 
UJ
N 1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 
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Figure 10. Stability boundary on lUz vs e curve showing that equation 3 yields a good 
estimate of the zero frequency (wz) for near pol~ero cancellation of an uncertain mode 
where the minimum guaranteed level of passive damping is e. 

INFERENCES FOR MIMO CONTROL 

The preceding sections have presented simple arguments supporting the claim that 
broadband control of uncertain structural dynamics is impossible with LTI compensation 
unless a sufficient level of passive damping is present. Although it is not possible to 
extrapolate these arguments to MIMO systems with confidence, there appears to be little 
reason to believe that such systems are more benign. Each scalar transfer function of a 
MIMO system has pole-zero patterns like those described in the preceding sections. Worse, 
the mapping from actuators to sensors is a strong function of frequency, changing 
drastically in the near vicinity of. each zero of any of the individual scalar transfer 
functions. The rate of change with frequency of these directions varies inversely with 
passive damping ratio. 

Thus, in MIMO systems both the "directionality" and the phase behaviour of individual 
channels are comparably influenced by passive damping. Absent a better guideline, one 
might suggest that equation (2) yields a reasonable rule of thumb for the passive damping 
levels r~quir~d for such syste~s. ~~re, relative uncertainty ~hou1d ~r~aps be re~ative 
uncertaJnty In the zeros of the IndiVIdual scalar transfer functIons. This IS not obVIously 
correct and much remains to be understood about such MIMO situations. 

SUMMARY 

This paper has argued, simply but quantitatively, that a critical level of passive damping 
can be specified which will permit robust non-eollocated LTI control of structural 
dynamics with the control bandwidth including many flexible eigenfrequencies. We have 
suggested that this level is as high as 1 to 4 percent, even for carefully identified l~boratory 
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structures and much higher for uncertain structures. Figure 1 perhaps summarizes the 
thesis of this paper most succintly. 
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