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ABSTRACT

Experimental results on single mode free response using the SCOLE
configuration at NASA Langley Flight Research Center exhibit significant

nonlinear damping effects. To account for the observed behavior a class of

nonlinear damping models is proposed for energy conservation systems.

The Krylov-Bogoliubov technique provides a remarkably good approximation at
all reasonable damping constants., It also shows that many of the known
damping models such as constant friction, air-damping in flow at high
Reynolds numbers among others cannot be distinguished from one generic
model -- the "energy" model -- appropriately specialized, based on free
response alone. This in turn raises the question whether forced response
-- in particular response to random white noise -- could help resolve the
ambiguity. Some exact analytical results for the non-Gaussian distributions
that arise are presented based on the Fokker-Planck equations. Finally,
several nonlinear damping models for distributed-parameter systems are
suggested which would exhibit the observed single-mode free response.
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1. INTRODUCTION

Although the inherent damping phenomena in flight structures are still
little understood, many studies of free response -- such as the recent
experiments with SCOLE [1] -- would indicate nonlingar behavior especially
at high amplitudes. A typical free response curve is shown in Figure 1,
which shows the characteristic "convex-downward" or CUP feature. Many
nonlinear models have been proposed in the literature [2]. Thus in terms of
the basic second-order dynamics for the displacement variable x(t) in free
response:

g%g + wlx(t) + yD(x(t), x(t)) = 0 (1.1)

where ® is the mode frequency and Yy the (small) damping constant, we have
for "Coulomb Friction" Damping:

D(x(t), %x(t)) = wsign %(t) . ' (1.2)
For high Reynolds number flow:

D(x(t), ®(t)) = [x(t)] %(t) (1.3)
modifications of which include "nonanalytic" functions (see [2]):

x(t)|* x(t) , O<a<l. (1.4

D(x(t), x(t)) =

Our purpose here is to examine these models particularly from the point
of view of System Identification (from orbit data, for example). We shall show
that these models cannot be distinguished based on single-mode free response
data. In particular we also suggest a new class of models based on the
instantaneous total energy in the system. We also present some explicit
results on response to random excitation using the Fokker-Planck equations,
still in the single-mode case. Finally we present a variety of models for
distributed parameter systems such as in vibrating strings and beams which
can exhibit the kind of single-mode response discussed.

2. NONLINEAR DAMPING MODELS: SINGLE MODE RESPONSE

The basic dynamics are described by:

2

Q.

X 4 olx(t) + yD(x(t), k(t)) = O . (2.1)

U

To determine possible nonlinear damping models, we note first that the
instantaneous energy E(t) 1s given by

B(t) = 1(ux(®)? + 23 . (2.2)

rof -
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The rate of change is

LR = (ox(e) + (1)) ®(t)
' = -yD(x(t), %(t)) x(t) . (2.3)

Hence, since we are only considering energy conservative systems, we must
have that ’

D(x(t), %(t)) %(t) 2 O . (2.4)

In terms of independent variables x, y, the function D(°, *) must be such
that

D(x, y)y 2 0 for all x, y .

Note that this condition is satisfied by the models (1.2), (1.3), (1l.4) in
Section 1, taken from the literature. We may generalize these to:

D(x, y) = x2%|x[® y?** |y|B (2.5)

where m and n are positive integers and 0 S a, B S 1, first presented
in [1]. The primary question is whether we can identify the parmaeters
involved m, n, a, 8 from free response data. For this purpose since the
damping is small (small y) it 1is convenient to use the Krylov-Bogoliubov
approximation [3] to determine the solution of (2.1), which we shall now
rewrite separating out the linear damping part:

®(t) + wlx(e) + 2Cuk(t) + yD(x(t), %(t)) = O . (2.6)
The Krylov-Bogoliubov approximation.is the slow varying sinusoid:
x(t) = A(t) sin (vt + ¢)

where, defining

An = A(nT)
where T 1s the period:
T = -2_1'
w
we have: | 20 K(Ak)
log Ak+1 = log Ak - 27 - Y5 why, (2.7)
where the function K(*) 1s determined by:
1 27
K(A) = o f D(Asin 6, Aw cos 8) cos 6 df . (2.8)
: 0
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For D(*, *) given by (2.5) we have

log Ak+1 = log A - 2y - 2wyum2n+8-1A§n+2m+a+8 (2.9)
where
1 2%
"o

and is easily evaluated -- see [1]. But the exact value is not important
from the identification point of view since it is multiplied in (2.9) by the
unknown damping constant Y. Comparison between the solution given by (2.9)
and that obtainable by numerical solution of (2.6) using multi-step (Runge-
Kutta) techniques has been examined in [4], especially the behavior for

high y. It should be also noted that the exponent of Ay involves a
combination of m, n, a, B and makes apparent the difficulty in resolving
them.

An unexpected consequence of the validity of the Krylov-Bogoliubov
approximation is that we can now present a new class of damping models --
"energy" models -- which can yield the same Krylov-Bogoliubov approximation.
Thus let

2 2 ] 2y114
Dx(t), %(t) = &(t) E()Y = () [{x(E)_3 &(e) )] (2.10)
where q > 0. This clearly satisfies (2.4) and moreover the Krylov-
Bogoliubov approximation is (see [5])
log A, = log A - 2m - 2myw2 (a1 —i—Aiq ) (2.11)

2q+1

Thus, as first observed in [5], we can obtain the same kind of response as
in (2.7) by choosing q appropriately, viz. taking

2q = 2n+2m+a+ B . (2.12)

This clearly underscores the difficulty in identifying nonlinear dmaping
models from flight data. Hence we may want to examine the possibility of
using forced response -- in particular response to random (white noise)
excitation.

3. FORCED RESPONSE WITH RANDOM NOISE EXCITATION

Especially in the Civil Engineering oriented literature there is
considerable work reported on the respomse to random noise excitation applied
to nonlinear damping models in one dimension (single mode) [6]. One
particular tool used is that of equivalent linearization because of the
difficulty in obtaining exact distributions which cannot of course be
Gaussian. The analytical tool for evaluating the first and/or second order

FDC-5

Confirmed public via DTIC Online 01/29/2015



From ADA309666 Downloaded from Digitized 01/29/2015

steady state distributions of the response is of course provided by (and only
by!) the Fokker-Planck partial differential equations. For the energy model
(2.10), exact solutions have been presented in [5] for the first order steady
state density, indicating explicitly the non-Gaussian nature. In particular
it can be used to test validity of the equivalent linearization technique,

at least for this example. Thus the first order steady state density of the
forced response:

£(t) + o’x(t) + 2tk(e) + x(0) (bPx(0)? + x))? = N (3.1)

where N(*) 1s white Gaussian with spectral density 02 given by:

y ~ x
+1
-20w( 2.2, 2 (w2x? + y2)9¢
px’i(x, y) = ¢ exp. {—EI—[w x“+y ] - v (q-f{)) (3.2)
where c¢ 1s a normalizing constant:
e [ 2Zwr rq+1
1 = o £ exp - [ o z Y 1] dr (3.3)

vhere the integrand in (3.3) is actually the density of the energy 2E(t).
The second term in the exponent in (3.2) clearly indicates the non-Gausssian
nature. Unlike the linear case, x(t) and %(t) are no longer independent.
We can calculate that the steady state covariance of the displacement x(t)
is given by

(- -] - - q+1
[ re L S
2 1
Elx(t)?] = 25 -2
2w ® -Ar -y £3*1
[ e e 'l dr
0
where
20w Y
A 0= * - .
Z "1 02(q+1)
For small enough y we have the approximation
- + 2
Elx(t)?] = [1 - ;]Yz(qﬂ)!_)\q 1] ?ZTJ . (3.4)

In particular the goodness of equivalent linearization can be assessed from
(3.4). The density corresponding to the first model, (2.5), would appear
to be more complicated than would be indicated by using the equivalent
value for q. Thus the possibility of distinguishing between models using
forced response to random excitation is yet to be explored.
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4. NONLINEAR DAMPING MODELS FOR DISTRIBUTED PARAMETER SYSTEMS

At the present time no nonlinear damping models for energy conservative
distributed parameter systems are available. Here we propose several models
for the beam torsion as well as beam bending modes for a uniform Bernoulli
beam. To yield the model (2.5) for the single mode response we suggest for
beam bending for a beam of length 24:

(s, t) + Au""(s, t) - 2z/xd"(s, t)

2 2(n+B)+1
- Y[f u'(s,t) 0'(s,t) ds] u"(s,t) = 0, (4.1)
)

-2 <s < 0<t

where s denotes the spatial variable, super-dots represent derivatives
with respect to time t and the primes derivatives with respect to s, and

1
0§B<§'

and A 1is the appropriate structure constant. And corresponding to the
energy model (2.10), we propose:

ik, 8) - 2z/2u"(t,s) + Au""(t,s)

L q
- y[f (w(t, 02 + ﬁ(t,o)z]do] a"(t,8) = 0. (4.2)
-%

For a proof that the single-mode response behavior corresponding to (4.1)
with clamped end conditions is given by taking

. 2n, 2n+l1 .

Dx(t), %(0) = x(®Px®™x@©)|? |2 |® (4.3)
reference may be made to [7]. A similar argument suffices also for (4.2).
The beam torsion mode case is more complicated because the linear model for

proportional damping is no longer a differential (local) operator (see
[8]). Thus the nonlinear damping model proposed is:
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L
. " , cos (7s8/2%) .y
ﬁ(t’ B) - Au (t’ s) + ZC/X -fz (sin ('"'8/22) - sin ("0/22)) u (t, 0) dO

ok cos (ms/24)

T :Q ;& u(e.) (sin(rs/2%) - sin(ro/2R)y O (t»0) do ds

]2(n+8)+1

(4.4)
- cos (ms/28) ,
_fz (sin (m8/22) - sin (mo/2L)) u'(t,0) do = 0.

X

The "energy" model is obtained by replacing the term containing y in (4.4)
by

L q 2
+ Y|:IE [Xu'(t,ﬂ)z + ﬁ(tsS)Z]dB:I fz I (“c:/szn()‘"s—/zsli)n 75T a'(t, o) do.

(4.5)

It will take us too far afield to show that the corresponding single mode
dynamics of (4.4) correspond to (4.3) and that of (4.5) to (2.10). It

should be noted that (4.1), (4.2), (4.4), (4.5) are fairly complicated
nonlinear partial differential equations requiring sophisticated mathematical
techniques for analysis -- see [9] for example. Computer simulation may be
an attractive alternative.
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