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ABSTRACT 

The dynamics of a class of stmts with one viscous chamber at one end of the 

strut is developed using formulation and methods consistent with finite element 

dynamic analysis of structural system. This technique is developed to enable 

consistent and systematic design and analysis of large truss structures passively 

damped by viscous struts. Modeling and model reduction methods for accurate 

analysis with a minimum number of design parameters are developed. Design 

par,uneters for optimum damping characteristic, and the associated dynamic 

stiffness and bandwidth characteristics are derived. A design procedure and design 

curves to size the struts for system level integration are presented. 
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INTRODUCTION 

Large flexible structures are characterized by many flexible modes within the disturbance and 
control bandwidth. For most precision structures, the performance requirements are very 
stringent. However, this class of structures often has very low intrinsic damping, less than 0.1 % 
equivalent viscous damping ratio1, which results in significant dynamic responses, For truss type 
structures, a strut with good stiffness and damping characteristics will significantly enhance the 
structural performance. 

Struts with viscoelastic materials have been designed, tested and implemented in demonstration 
test articles and structures2. Modal Strain Energy method is often used in the .design and analysis 
of this type of struts and structures3• The mathematical problem of struts and structures are posed 
in a frequency dependent form. Results from this approximate solution technique matched quite 
well with test data2. 

Viscous energy dissipation is a well understood damping mechanism. Incorporating a 
damping chamber in a strut can provide the necessary damping chJ!aCteristics. An cffcc.tivc design 
of this type of viscously damped struts has been implemented by Honeywell4 . In order to 
successfully integrate the viscous struts into a system level design, the dynamics of the struts must 
be totally understood. The same analysis method should be used to study the strut dynamics and 
system level dynamics so that the integrated design and analysis can be perfonried consistently and 
systematically5. Also, in order to understand the behavior of the struts as contributing members of 
a large structure, the problem must be simplified to a few key design parameters by applying 
engineering assumptions. Simplified design procedure with design curves are presented · to 
compute the kdy strut design parameters. However, the details of the mechanical design is not the 
subject of this paper. 

VISCOUS STRUT CONFIGURATION 

The viscous strut is a mechanical device comprised of three basic elements: an outer tube, an 
inner tube and a small viscous damper. A typical strut configuration is shown in Figure 14. The 
damper is placed in series with the inner tube. The outer tube is placed in parallel with the 
damper/inner tube. An axial displacement across the strut produces a displacement across the 
damper. The damper forces fluid through a small diameter orifice, thereby causing a shear flow in 
the fluid. For Newtonian viscous fluids, the fluid shear is actually proportional to the displacement 
rate across the damper and thus, a velocity dependent viscous damping force is obtained. Under 
quasi-static load, the fluid flows and provides no resistance and the outer tube provides the static 
stiffness to the strut. The stiffness of the inner tube is important to impart sufficient 
displacement/velocity to the damper. The damping coefficient of the damper is a function of the 
fluid material properties and the geometry of the viscous chamber. Since the strut has other small 
components, they will introduce additional flexibility to the strut and degrade the performance. It 
is important to account for these flexible elements accurately. 

Figure I Configuration of Viscously Damped Strut4 
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The formulation presented here is applicable to a general class of viscously damped struts 
which are axially symmetric with the viscous chambers rigidly attached to one end of the struts. 
This considerably simplifies the mathematics and lead to a design model with a minimum number 
of key parameters. 

STRUT ANALYTICAL MODEL 

A viscous strut is a structural component which can be analyzed by standard structural analysis 
methods. As such, it can be analyzed using conventional structural analysis techniques and tools. 
For a complex strut design, a finite element model can be developed easily using a combination of 
beam, plate, solid and viscous elements. The analysis is quite straight forward except for the 
viscous element which is not often used in conventional structural analysis. In general, the 
governing differential equation for a strut can be expressed as: 

Mii + Cu + Ku = p g(t) (1) 

The damping matrix has contributions from two sources: the intrinsic material and joint damping, 
and damping from the viscous dashpot. The intrinsic damping is insignificant compared with the 
contribution from the viscous dashpot and hence ignored. Equation (1) is normally cast in the first 
order form for solution: 

[~ ~] [:] + [~ - ~] [~] = [~] ~(t) (2) 

The strut can be modeled by many structural nodes to provide a general description of its 
dynamic behavior in 3 dimensional space. Let one end of the strut be fixed, the displacement 
vector of the end node be u 1, and the displacement vector at the viscous chamber be u2. Many 
other interior structural nodes may be needed to model the stiffness distribution in the finite element 
model (see Figure 2). 

TEIS END 
FIXED 

VISCOUS 
CHAMBER OUTER TUBE 

\r:#=-~===1~,- • FORCE 

rNNER TUBE 

NODE 2 INTERIOR NODES N~E 1 

Figure 2 An Ideal ized Viscous Strut 

(3) 

The lurr.ped mass matrix, damping matrix, and stiffness matrix can be expressed in the following 
form: 
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M11 0 () () () .. () K11 K12 Kin 
0 M22,. 0 0 C22 .. 0 K21K22 ~ 

M = ' 
C = ' 

K = (4) 

0 0 .. ~ 0 0 .. 0 ~l Kra· ~ 

Since there is no applied force at the interior nodes, the force vector is given by: 

p = [1'] (5) 

This finite element model is capable of predicting all the details of the global and local strut 
behavior. However, the strut is normally designed to act only as an axial load carrying member 
providing strength, stiffness and damping to meet 1he design requirements. The analysis model in 
this form also does not explicitly express the rdationship between the essential dynamic 
characteristics and the key parameters. It should only be used if the detailed local dynamics is 
important or as a verification model after the strut parameters are selected by other means. 

STRUT MODEL REDUCTION 

In order to understand the dynamic characteristics of the strut, the analytical model should be 
simplified to a small set of parameters. The reduction of the component level model will also 
significantly reduce the complexity of the system level model. For design purpose. only axial 
behavior of the struts are considered. Consequently, the analysis model is constrained to have 
displacement only in the axial direction. At each node, only the axial degree of freedom and two 
rotations are retained. For structural problem, the internal dynamics is generally not important and 
the internal inertial effect is ignored. 

There are only two degrees of freedom necessary to characterize the strut: u1 - the axial degree 
of freedom at the strut end for connectivity and u2 - the axial degree of freedom at the dashpot for 
damping. The standard static condensation reduces the stiffness matrix to a symmetric 2x2 matrix 
with only 3 independent terms: 

(6) 

Therefore, any complex viscous strut design can be reduced to only 3 equivalent stiffness 
constants. For the same 3 stiffness constants, there can be many designs having the same 
condensed characteristics. Since for the class of struts of interest, the dashpot is at the supported 
end, the condensed damping matrix is very simple: 

C = [~ ~] (T) 

As for the mass matrix, normally a simple lumping procedure is sufficient since the inertia 
effect of the strut is considered not important. 
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STRUT DESIGN MODEL 

Static condensation of a relatively complex strut design allows a simple equivalent mechanical 
modeling of the strut for understanding its dynamics. Due to the design details, many strut 
configurations also have an additional characteristic4 that k12 "" -k22. This allows a further 
simplification such that the abstract 2x2 stiffness matrix of Equation ( 6) can be represented by an 
equivalent lumped parameter model as shown in Figure 2. A viscously damped strut can now be 
represented by 3 frequency independent parameters, k1 - the outer spring, k2 - the inner spring and 
c - the dashpot. 

m p(l) 

Figure 2 3-Parameter 2 DOFs Viscous Strut Model 

The equation of motion of the 3-parameter viscous strut model can be written as: 

mii + cu + ku = p g(t) 

where, 

m = [ m o] [k1+k2 -k2J [o o] [P] 0 0 ' k = -k2 k2 ' C = 0 C ' p = 0 

(8) 

(9) 

If the strut is used to support a rigid mass which is include in the mass matrix, the characteristics of 
this structural system is given by the free vibration problem: 

mii + cu + ku = 0 (10) 

or, in the first order fom16: 

(11) 

For this three parameter model, Equation (11) can be written explicitly as: 

[g ~ ~ g] [~~] [k~;:2 k:2 g g] [~~] = [g] 
m O O O ti 1 + 0 0 - m O u1 0 
0 0 0 0 u2 0 0 0 0 u2 0 

(12a) 

The eigenvalue problem is therefore given by: 

(12b) 

CCC-5 



The eigenvalues, Ai, and eigenvectors. 'Vi, are generally complex. For a lightly damped 
system, there is one pair of complex eigenvalues which represent the under-damped mod.es and 
one real eigenvalue which represents the over-damped mode. Eigensolvers used in struc,tural 
codes normally assume the structures to be lightly damped and solve for complex pairs only. 
However, solving the eigenvalue problem does not give any physical insight into th~ design of 
struts. Therefore, a simpler design approach is more appropriate. · 

APPROXIMATE ANALYSIS OF DAMPED STRUTS 

When a strut is functioning as a member of a large structure or as an individual member under a 
harmonic force given by: 

g(t) = eirot (13) 

the steady state solution takes the form: 

u = [ ~~] eirot (14) 

Assuming tthat he mass at the internal degree of freedom, u2, is small, and the internal dynamics of 
the strut is not important to the problem, the governing differential equation is given by: 

(15) 

The equations of motion are described by frequency independent coefficient matrices. The internal 
degree of freedom, u2, is not subject to any external force. Again, the static condensation 
technique is used to reduce the internal degree of freedom by considering the second equation of 
Equation (15): · 

-k2 U1 + (k2+ic.oc) U2 = 0 

k2 
U2 = U1 

k2+icoc 

Therefore, the effective strut dynamics is given by: 

(16a) 

(16b) 

(17a) 

The term in parenthesis is the strut dynamic impedance which is frequency dependent. However it 

is more useful to describe the strut in terms of complex stiffness (i.e., k(w) = kR(w) + ik1(w) ): 

(17b) 
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where, 

kR = k1 k22 + (k1+k2)(cw)2 

k22 + (cw)2 

kl= k22 (cw) 

k22 + (cw)2 

(18a) 

(18b) 

The complex stiffness can further be expressed in a different form in terms of the real part of the 
stiffness and the loss factor as: · · · 

(19a) 

where , 

ki2 (cw) 
Tl = ----'=------

k 1 k / + (k 1+k 2)(cw)2 
(19b) 

These relationships can be presented in a more useful form for design purposes in terms of 
normalized parameters. Define the stiffness ratio as: 

the strut frequency constant as: 

k1 
(I) = -

C C 

and the normalized excitation frequency as: 
(I) p = -

(J)c 

Rewrite the strut real stiffness and loss factor in terms of the normalized ratios: 

(20a) 

(20b) 

(20c) 

(21a) 

(21b) 

. 
In this normalized form, useful design curves can be generated to aid damping design. The 

damping and frequency relationships of a few selected stiffness ratios are shown in Figure 4. The 
loss factor has a slope of one and negative one at the low and high frequency range on the log-log 
scale and has a distinct maximum at the mid frequency range. The damping loss factor increases 
with the stiffness ratio. 
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For design purposes, it is important to understand the frequency and damping characteristics of 
the damped strut in terms of an equivalent single degree of freedom (SDOF) syst-em. This 
approximation bypasses the eigenvalue problem of Equation (12). An equivalent SDOF system is 
shown in Figure 5. The equation of motion of this system subject to steady state force is given by: 

(-w2m + k + iwc) u = p (22) 

k 
~ u(t) 

m P,(t) 

C 

Figure 5 Equivalent Single Degree of Freedom System 

Comparing Equation (22) to Equation ( 17), for lightly damped systems, say ~ < 0 .2 , the 
equivalent natural frequency of the damped strut system can be approximated by: 

(23) 

The equivalent viscous damping ratio can be found by equating the energy loss of the strut to that 
of an equivalent SDOF viscous system. The energy dissipated per cycle of the strut as described 
by Equation (19) under a harmonic force is given by 7: 

D _ kR 2 
Tl - 1t'Tl U1 (24) 

The damping of an equivalent SDOF viscous system is given by: 

(25) 
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Equating the energy dissipation at resonance, w = wcq: 

F - TJ(Weq) 
~ - 2 (26) 

OPTIMUM STRUT BEHAVIOR 

For a given a design, i.e. k1, k2 and c, the strut dynamic stiffness and damping can be 
computed using Equations (21a) and (21b). A typical plot of the stiffness and loss factor of a strut 
is shown in Figure 6. 
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Figure 6 Typical Viscous Strut Stiffness and Loss Factor vs. Frequency 

For design purposes, it is important to find the optimum performance region of the strut so that 
the strut can be designed to perform effectively, i.e. high damping at the desired frequency range. 
The maximum loss factor with respect to frequency can be found by setting the derivation of 
Equation (19b) to be zero: 

dTJ = 0 (27) aw 
The condition at which the damping is at maximum is denoted by the subscript op. 

, lC 
(28a) 11op = 

2~ 

kR -
2(l+K) 

(28b) op - k1 
2+K 

lC 
(28c) Wop = 

~We 
lC 

~op 
lC 

2 Tlop (28d) = = 
~ 
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It is important to note that the maximum loss factor is governed by K', the ratio of the inner and 
outer stiffnesses. A flexible inner tube is not effective in providing force to the damper 10 activatt.: 
energy dissipation. A stiff inner tube is very desirable for high damping but the strut will also be 
heavier. It is also important to note that there is not much damping at low and high frequency. 
The stiffness corresponding to maximum loss factor is at the transition between the static stiffness, 
k1, and asymptotic stiffness, k1+k2. The frequency at which the maximum loss occurs is 

proportional to the damper non-dimensional frequency, we. As a matter of fact, the normalized 
optimum frequency is twice the maximum loss factor. Using these relationships, frequency 
independent parameters can be computed easily to match the key points of test data in order to 
characterire the dynamic behavior. Comparisons between analytical and test data were excellent. 

These relationships can easily be used to sire the key strut parameters. For a desired level of 

damping, llr, use Equation (28a) to find the requir~d stiffness ratio, Ky. 

(29) 

Then use Equation (28c) to compute the damping coefficient, Cr, required to locate the frequency, 

Wr, where the maximum damping is required. 

(30) 

STRUT BANDWIDTH 

Another important performance parameter is the bandwidth of the strut over which there is 
signifipant amount of damping. The effective bandwidth can influence the design of struts for a 
large structure with a wide range of natural frequencies. 

The bandwidth of the strut can be defined as the frequency range over which the strut has a 

damping efficiency y. 

y = 211_ 
llop 

(31) 

The bandwidth can be found by solving Equation (21 b). For a given damping efficiency, there are 
two frequency points: 

~1 .2 = 
JC I ± ✓ 1 - y2 

y ~ 
(32) 

The corresponding normalized frequency bandwidth is given by: 

(33) 
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The actual frequency bandwidth is given by: 

(34) 

The damping bandwidth is shown graphically in Figure 7. The damping within the bandwidth is 
guaranteed to be higher then the specified efficiency. The bandwidth concept can be used for many 
other design reasons. The recipricol of damping efficiency can be interpreted as a safety factor for 
damping design. The bandwidth can be used to cover the uncertainty in the natural frequencies of 
a large structure. 

llop 
1,/ I\ ,, 

\ A 
11 = Yllop 

I I\ 
I l ,. 

V ~ 

~ 

., ... -... -
Figure 7 Strut Damping Bandwidth 

DESIGN EXAMPLE 

The method developed can be used to size the key parameters of a strut. Only simple algebraic 
equations a: solved and an eigenvalue problem is totally avoided. Suppose a 20-pound weight is 
supported bf a strut. The system is required to have 20 Hertz natural frequency and 5% viscous 
damping. By using the design equations, the strut parameters were computed to be: k1 = 758.8 
lb/in, k2 = 166.86 lb/in, c = 1.2 lb-sec/in. The frequency and damping characteristic of the system 
with these parameters were checked with an exact eigensolution. The results compare favorably 
and are summarized in Table 1. 

Table 1 Comparison of Results 

Parameters Design Goal Eigensolution Error 

Frequency 20.0 Hz 20.2 Hz 1% 

Damping 5% 5.25% 5% 
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CONCLUSION 

The dynamics of a class of viscously damped struts is presented. The derivation is based on 
the principles of structural dynamics and governing equations of motion of a finite element model. 
This approach is consistent with the system level analysis methods, The use of condensation 
technique allows a complex strut design to be reduced to 3 stiffness parameters which are further 
reduced to 2 lumped stiffness parameters. The dynamics of the struts can be understood through 
non-dimensional design variables. Design curves can be used to facilitate eomponent sizing. The 
bandwidth characteristics of the struts provide funher insight into the perfonnance of this class of 
struts. Results from using this method compared favorably· with the e~act solution from a ~omplex 
eigenvalue problem. Therefore, a 3-parameter model can be used to characterize the performance 
of a viscously damped strut for system level design and analysis , The method can be used to 
derive component specification to meet system level design requirements5. 
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Symbols 

C,c,c = 
D = 
g = 

= 
K,k,k = 
M,m,m = 
p = 
u,u = 
~ = 
y = 
f1 = 
'A. = 

'V = 
11 = 
lC = 
s = 
(I) = 

NOMENCLATURE 

viscous damping matrix or scalar 

energy dissipation per cycle 

forcing function 

imaginary unit, ~ 
stiffness stiffness or scalar 

mass matrix or scalar 

spatial force vector 

displacement vector and axial displacement degree of freedom 

non-dimensional forcing frequency 

damping efficiency factor 

change/bandwidth 

complex eigenvalue 

complex eigenvectors 

loss factor 
stiffness ratio of inner spring to outer spring 

damping ratio 

frequency, radian/second 

Subscripts 

eq = equivalent 
C = pertaining to damping 

= for the i-th mode 

op = condition at maximum loss factor 

r = pertaining to the required conditions 

s = pertaining to viscous damping 

11 = pertaining to viscoelastic (hysteretic) damping 

Superscripts 

I = Imaginary 

R = Real 
T = matrix transpose 
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