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ABSTRACT
 

In this paper a theoretical examination is made of the 
potential structural damping increments that could be obtained 
by the insertion of a linear visco-elastic interfacial layer
between the plates of riveted joints. Consideration is given 
to a lap joint having anti-symmetry about its single rivet, and 
being subjected to harmonic longitudinal loading. 

Certain simplifying assumptions have been made which 
effectively reduce the analysis to that of a one dimensional 
system. 

An expression is obtained for the energy dissipated in 
the layer per cycle of load. The magnitude of this energy
dissipation has been computed for a wide range of joint
dimensions, dynamic properties of the layer, and rivet stiff ­
nesses. It has been found that as the thickness (or shear 
modulus) of the layer is varied, a maximum value of the energy
dissipation occurs. The conditions for this maximum are 
examined, and a simple design rule is established whereby
the maximum damping may be achieved in a joint using a given 
material. 

It is shown that the elastic deformation of the plates
has a significant effect only when high values of rivet stiff ­
ness are considered. For lower values of rivet stiffness the 
energy dissipation may be found to a sufficient degree of 
accuracy by neglecting altogether the plate flexibility. 
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1. Introduction 

It is well known that structural damping is an 
important parameter in controlling vibration amplitudes
of aircraft structural systems. This type of damping
originates at bolted and rivet joints in such structures. 
In the joint the mechanisms of elastic hysteresis, plastic
deformation, and relative slipping of the joint plates
against dynamic friction, all cause energy to be dissipated
(a detailed description of the damping mechanism is given
in reference 1). This damping could be increased by
permitting greater dynamic friction and rivet slip. However, 
it is obvious that control of this damping is strictly
limited, since any reduction in rivet stiffness and increased 
fretting enhances the probability of fatigue failure. 

In 1946 Cooper (Ref. 2) showed experimentally that an 
increase in damping of several times could be obtained by
the insertion of a thin layer of a suitable visco-elastic 
material between the joint surfaces of a riveted structure. 
It is evident that if an interfacial layer of visco-elastic 
material is inserted the former frictional shear stress will 
be replaced by shear stress in this layer. Being visco­
elastic, the material will absorb and dissipate energy.
Until recently the possible potentialities of this method 
had not been explored but detailed investigations are now 
being carried out at the University of Southampton. 

In this paper a theoretical assessment is made of 
the energy dissipation per cycle of load in a single
riveted "anti-symmetric" lap joint containing a linear 
visco-elastic interfacial layer (see Fig. 1). The joint
is assumed to be subjected to a simply-harmonic longitudinal
force. The problem is simplified by reducing it effectively 
to a one dimensional system. In order to do this certain 
assumptions have to be made: 

(i) Bending of the plates is not considered 
(ii) The rivet action is assumed to occur at the joint 

centre on a transverse plane x = 0 (see Fig. 1). The rivet 
flexibility (oc l/stiffness) is assumed to include the 
shearing and bending deformations of the rivet together
with the "bearing" deformations o:f the plate adjacent to 
the rivet. Using this line rivet system at x = 0 the stress 
distribution across the width of each plate is considered 
uniform for all x. 

The visco-elastic layer is assumed to have a linear 
dynamic shear modulus and its direct stress carrying capacity
is ignored. 
Manuscript released by the authors August 1961 for publication as an ASD
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It i8 evident that the dynamic properties of the layer,
the joint dimensions, and the rivet stiffness will all have an 
effect on the energy dissipated at the joint. The magnitude
of the rivet stiffness will in general be fixed by static 
strength and fatigue life requirements. Por the same reasons, 
the possible variation in the ~oint dimensions will also be 
restrioted. In order to investigate the maximum possible 
amount of energy that can be dissipated per load cycle for 
a given rivet stiffness, a wide range of the independent 
parameters have been examined and the optimum joint configura­
tions established. 

. In the theoretical work a general solution is obtained 
for the energy dissipated per cycle, including the effects of 
the elastic deformation of the plates. It is also shown that 
for a wide range of rivet stiffness (~Eb<O.003)t a further 
approximation - that the ~oint plates are rigid (E(plates)-.oo)­
enables simple formulae to be established for obtaining the 
correct joint configuration to give the maximum energy
dissipation. The formulae are shown to give the energy
dissipation to a sufficient degree of engineering accuracy
when compared with the results computed using the theory for 
elastic plates. 

Certain problems attend the use of such inserts. The 
damping properties of the interfacial layer should not be 
greatly affected by changes of temperature nor of the frequency
of the exciting force, since large variations in the damping in 
a system are obviously undesirable. The fatigue life of the 
joint should not be impaired by th6 presence of the interfacial 
layer. 

A second paper is to be published comparing experimental
results with the theoretical work and examining closely the 
properties of the interfaces and the fatigue lives of various 
joint configurations. 

2.1. The Ener 
elastic 

Visoo-

A diagram of the lap joint to be considered is shown in 
Fig. 1.' The problem is effectively reduced to a one-dimensional 
case by ignoring non-uniform strains distributed across the width 
'b' of the plate which would normally be caused by stress 
concentrations around the rivet. We further ignore any bending
of the plates and therefore assume that the strain and displace­
ment across the depth of the plates are uniform. Under a 
longitudinal excitin~ force P exp(i~t), the relative displacement
of the plates u(x, t) is taken as (ul - u2) where 
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Ul = { U~ (x) + u~ ( X)} x exp(iLJt) 

and u2 = {U;(X) + u;(x)} x exp(iwt) 

The dynamic shear modulus of the layer is represented by the 
usual complex relationship: 

G* = G(l + if3) 
where ~ is the material loss factor. 

The forces acting on the section of an elemental length
of the plate are now considered (Fig. 2). It is readily seen 
that for equilibrium of the element of plate 1: 

Ebh( aul / a x + a2ul/ ax2 •dx) - 't' b. dx - Ebh "ul / d x = 0 
2i •e • Ebh. a2ul/ '3 x - 1=" b = 0 (1) 

and for the element of plate 2: 

Ebh( "3 u2/ 0 x + c 2u2/ 0 x2•dX) - 't' b. dx - Ebh au2/ 'a x = 0 
2i. e • Ebh 0 2u2/ d x + 't b = 0 ( 2) 

We now assume that the layer carries no direct stress. 
The shear stress and hence the shear strain across the layer 
are therefore constant. The shear stress is then given by: 

~ = G*(ul - U 2)/d (3) 

Substituting	 (3) into (1) and (2) we now obtain: 

-0 2ul/ ax2 - (G*/Ebh)Ul + (G*/Ebh)u2 = 0 (4) 

a2 
U 2/dX2 - (G*/Ebh)u2 + (G*/Ebh)ul = 0 (5 ) 

The general solutions of (4) and (5) are: 

U l =	 Al Coshvx + Bl Sinh~x + Clx + Dl (6) 

u2 = A2 Cosh" x + B2 Sinh v x + C2x + D2 (7) 

where \1 = (2G*/Ehb)t. 
The following conditions are necessary and sufficient to 
determine the constants of integration in these solutions 
and hence to find u(x, t): 
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(i) The total load across any cross section of the joint
(e.g. Y-Y in Fig.l) must be equal to the externally applied 
lOad i.e. 

F exp(iLtJt) = Ebh( aU /dX + oU2/ox) for all x, t.
1

(ii) When x =lr, Ebhcu lax = F exp(ic.Jt) and OU lax = 0 for 
all t. This condition ~ust also be satisfied whe~ x = -~ , 
but this is automatically satisfied if we consider only a joint
which possesses 'anti-symmetry' about the rivet. 
(iii) The total load transmitted by the damping interface and 
the rivet must be equal to the applied load P, i.e. 

+.1.
 

P exp(i~t) = b. f "t" dx + P(t)rivet
 
-l. 

where P(t)rivet = kr(ul - u2 )x=O 

and k is the rivet stiffness (load per unit shearing deflection)
whichr includes any reduction in the stiffness due to bearing 
stress concentration in the plates at the rivet location. 

Using these conditions to find the constant of integra­
tion, we find that the relative deflection of the two plates at 
any point is: 

Cosh v x - Tanh vi .Sinh V x + Sinh V x ()u(x, t) = P exp(i~t) Ebh" SinhvI + k EbhvCoshv£' 8 r 

The expression for the energy dissipated per cycle of 
harmonic loading may readily be shown to be: 

~ = 21tP[ u:LJx=l 

Now ~ in equation (8) is complex. The quadrature component
of displacement must therefore be found using the relationships: 

Cosh vA.- = Cosh n Cos m + i Sin m Sinh n 
Sinh v..t = Cos m Sinh n + Sin m Cosh n 

in which m and n are both real and are given by: 
m = Vp 1. Ih; n = wpi Ih . 

In these V = {!1 +,6 ~ 1'1- - I} t; 11' = [!1 + ~ ~) t + I} t (9 ) 

and p = (2Gh/Edr~. 

4 



It is now possible to write the expression for the 
energy dissipation in the form: 

6 = 1rp2 f/Eb (10) 
where f is a non-dimensional function given by: 

f _ oJ. { Pt:A 1 + (k/Eb) oC 2 + ~5 } (11) 
- 6 (k/Eb)2 + 2,t{(k/Eb) 0/ 3 + p2 c{4 JU 

This will be referred to as the tlEnergy Dissipation Function". 
0(1 = t {w Sin 2m Cosh 2n - Y sinh 2n Cos 2m} 

oL 2 = Sin m Sinh n 

eI... 3 = {w Cos m Sinh n - ! Sin m Cosh n} 

0/ = (W2 + y 2) { Cosh2 n - Cos2 m}
4
 

cI. 5 = Sinh 2n - Sin 2m
 
2(W2 + V2)
 

oL 6 = 1 
2cos m + 8inh2 n 

From the above expression it is seen that the energy dissipated 
per cycle of unit load on unit width of plate is dependent on 
the parameters: 

( .2. /h)­ - the 'Overlap Parameter', 
¢ the 'Shear Parameter', 
f?, - the Material Loss Factor 

and (k/Eb)- - the 'Rivet Stiffness Parameter'. 

2.2 The Ener 
Elastic 

We now consider the case where E -. 00 • The relative 
displacement of the plates is now the same for all x. Let 
this be u (t). The complex shear force being transmitted at 
any instaRt by the rivet and interfacial layer is now clearly: 

uo.kr + (Uo/d). 21. bG(l + ip ) = P exp(iwt) (12) 

This may be written in the form:­
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i4lttk(l + i't ) u e = P exp(i~) (13)o
where k = k + ki (14a)r 

ki = (21 bid) G (shear stiffness of layer) (14b) 

and (15),= 13 ki'*r + ki) • 

~ may be referred to as the "joint loss factor n• It is 
readily shown that the energy dissipated per cycle 9f load P 
is given by: 

~ = 'ffp2. ~ (16) 
8 lC (1 + '1 2) 

which shows that for maximum energy dissipation ~ must be 
unity, i.8. 

~max =1Cp2/2k = 1lp2/2(k + ki ) • (17)r 
For ~ to be unity, the corresponding value of f3 ) is( Poptobtained from equation 15, i.e. 

(18) 

This indicates the optimum loss factor for a given layer
stiffness ki • Equation (17) shows that the maximum possible 
energy diss~pation occurs when ki~ O. From (18), this 
implies that 

fJ opt • ki ~ k r (19) 

These are the properties of a purely nviscous"* material, which 
can sustain no steady shear stress. The corresponding maximum 
amount of energy dissipated is given by: 

t:a = p2/2k (20)
r r 

and is dependent only upon the rivet stiffness, and not upon the 
other joint dimensions. The properties of the layer are, 
however, dependent upon the interfacial area and thickness. 

* In fact, the material is not viscous but nhysteretic" since 
the damping stress is not proportional to the rate of strain 
but to the strain. 
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Now it has been established in equation (10) that the 
energy dissipated per load cycle in a joint of finite stiffness 
is given by the expression: 

tJ. = (1t p2/Eb ). f (kr!Eb, ~, .tIh, P ). 
Dividing this equation by A we obtain the useful dimensionless 
quantity: r 

~ I 6 r = -2 (kr!Eb) • f ( 21 ) 

This expresses the energy dissipation at the joint as a fraction 
of the maximum amount of energy that could be dissipated at the 
same load amplitude in the joint, having optimum layer properties
and infinite E. 

Substituting now for ~ and k (equations 14 and 15) into 
equation (16) we have: 

~ s = 11 p2 ,s kil { (k + ki )2 + P2ki
2} (22)r 

Supposing now that the loss factor of the material is 
specified, an optimum of k i may be obtained to maximise ~ s. 
Differentiating equation (22) with respect to ki and 
equating to zero, we find that: 

(ki)opt = kr!(l + f3 2)"1- • 

We notice that, as ~ becomes very large, this equation becomes:­

f3 •(ki )opt -+ kr (24) 

which is complimentary to equation (19). Substituting from 
equation (14b) into equation (23) we have: 

kr!b 
( 2G..e I d) opt = __---::~ (25) 

(1 + f3 2)* 
The foregoing theory relates to the case E = 00. It is clearly 
a good approximation to the rigorous theory of~.(3.1), if E is 
large. Assuming now that E is very large but not infinite, we 
may multiply both sides of equation (25) by liE, whereupon we 
have: 

2 (::) opt = (1 + f3 2ri 
which is recognized as: 

~2 opt (~) = _k...;;/~E.;;..b~~1 (26)
opt (1 + fJ 2)z 
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The values of p and .l/h given by this equation are the optimum
values required to maximise the energy dissipation when ~ , kr , 
E and b are specified. Normally, of course, if the interfac1al 
layer material is given, then G will also be known. Since £ is 
likely to be determined by static strength or manufacturing 
considerations, equation (26) gives the optimum thickness of 
the layer. 

Substituting from (23) into (22) we find:
 
2
 

As = fk: { (1 + : 2)* + 1 J (21) 

and from (20) it is evident that 

£\ s = /3 (28) 

~r (1 + " 2,.t + 1 

3. Computed Results 

In order to obtain a comprehensive picture of the 
dependence of the dissipation function f upon the independent 
parameters p, 1. /h, and kr!Eb, a wide range of these parameters
has been considered. The corresponding values of f have been 
calculated using a digital computer. Some typical curves 
indicating the variation of f with 1. /h and p are shown in 
Figures 3 to 6. Each of these figures corresponds to particular 
values of k-iEb and ~. Only curves for low values of (kr!Eb) 
are considefed in these figures. 

An obvious characteristic of these curves is that for each 
value of L /h there is an optimum value of p which gives a true 
maximum to f. The maximum values of f in anyone figure are to 
a close approximation the same, i.e. independent of L/h for a 
given k~Eb and ~. This would be expected if the plates were 
rigid, as we see from equation (27). Figures (7) and (8) show 
the maximum values of f that can be obtained for values of 
k-iEb ~ 0.003 as functions of the interfacial layer loss factor. 
These figures also show the corresponding optimum overlap and 
shear parameters. 

The curves plotted in Fig. 9 are the same as the If' 
curves of Pigs. 7 and 8, but on a log-log basis and covering 
a much higher rane;e of ~. If the values of ~ / A obtained 
from equation (28) are plotted on Pig. 10, it issfound that 
the points fall very closely to the curve of A/ A obtained 
from the previous figures. The energy dissipated r in the 
joint within the range of parameters considered in Figs. 3 to 9 
therefore corresponds very closely with that of the rigid plate
approximation. However, at higher values of the rivet stiffness 
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parameter, the rigid plate approximation is inadequate and the 
energy dissipation in the "optimized" configuration depends 
upon the overlap parameter, the rivet stiffness parameter and fi . 
This dependence is shown in Fig. 11. Tables I to IV show the 
corresponding values of the optimum shear parameter. Fig. 12 
shows the curves of Fig. 11 normalized as before, in effect 
comparing the energy dissipated in a joint with flexible plates
with the maximum dissipated in a rigid plate joint. 

4. Discussion of Results 

It has already been pointed out that the maximum values 
of energy dissipation exist if particular values of ,5 and 1- /h 
are chosen, i.e. particular values of the interface stiffness. 
The existence of a maximum as the shear stiffness varies is 
suggested by the following argument: 

When the shear stiffness of the layer is small compared 
with that of the rivet most of the load is transmitted by the 
rivet. If the layer stiffness is slightly increased, the load 
transmitted by the layer increases, and the energy dissipated 
per cycle increases. If now the shear stiffness of the layer 
is much larger than that of the rivet, most of the load is 
transmitted by the layer. If the layer stiffness is increased 
now ( ~ being kept constant) deflections will be reduced and so 
also will be the energy dissipated, i.e. at low layer stiffness, 
increasing the stiffness increases the energy dissipated, 
whereas at high stiffnesses, increasing the stiffness decreases 
it. Between these regions, a maximum value must, therefore, 
exist. This is investigated in greater detail in the Appendix. 

As has already been shown when the rivet stiffness 
parameter is small (~0.003), the maximised energy dissipation
in the joint with elastic plates is virtually the same as that 
in the rigid plate joint, to a sufficient degree of engineering 
accuracy. At these low values of rivet stiffness, the shear 
strain in the interfacial layer due to the rivet deflection is 
very much greater than that arising from the unequal stretching
of the plates. The latter effect is therefore small enough to 
be ignored, implying that the rigid plate theory is sufficiently 
accurate when k__/Eb ~ 0.003. In this ran~e, therefore, the 
simple design role of equation (25) and (26) may be applied in 
order to find the optimum layer thickness (G, ~ and k being 
specified). r 

Equation (25) (rigid plate theory) rewritten in the form: 

(2Gb£ /d) (1 + /J 2)"~ = k 
r 

states that the modulus of the complex shear stiffness of the 
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interfacial layer should be equal to the elastic stiffness of 
the rivet for maximum energy dissipation. A reason for this 
is sought in the Appendix. Equation 26 is the alternative 
form of equation {25, and shows that if Llh is kept con~tant 
while the rivet stiffness parameter is increased, then P opt 
must be inc~eased in proportion to kr!Eb. Alternatively
the ratio P : k_/Eb must be kept constant. This fact 
assists in optthe &xplanation of the effect of plate flexi­
bility on the value of Popt , dealt with below. 

The effect of plate flexibility when kreEb ;> 0.003 is 
to increase the relative displacements of the plates over and 
above that associated with the rivet deflection. This in 
turn results in greater energy dissipation than in the rigid
plate joint. With increasing rivet stiffness, the energy
dissipation associated with rivet deflection becomes relatively
smaller, whereas that associated with unequal stretching of the 
plates becomes relatively larger. The net effect of 
increasing the rivet stiffness is, of cour.se, to decrease 
the energy dissipation at all values of kr!Eb. 

Now tables I to IV show that the values of p for 
the elastic plate joint (popt e' taken from compute8Pfesults)
become less than the values corresponding to the• of Poptrigid plate theory (p r). This may be accounted for inoptthe following manner: • 

The effect of unequal plate stretching is to increase 
the shear strain in the interface layer above that corresponding 
to the rigid plate theory. With a given applied load, there­
fore, more load will be transferred through the interfacial 
layer when the plates are flexible than when they are rigid.
This is tantamount to a relative reduction of the rivet stiff ­
ness compared with the interface stiffness. Now according to I
the rigid plate theory, optimum conditions obtained when the 
ratio, interface stiffness (p2 ): Rivet Stiffness (krtEb), is 
kept constant. If the effect of plate fleXibility is equi­
valent to a reduction of rivet stiffness, then the interface I
stiffness Popt must be reduced to keep the ratio the same. 
The value of p for the flexible plate condition will 
therefore be less ~Rln that for the rigid plate condition. I 
This effect is more marked as ,t/h increases. 

The curves of Figs. 9 and 11 demonstrate the asymptotic
behaviour of the maximized energy dissipation function as ~ 
gets very large. (The extremely high values of ~ that have 
been considered - i.e. up to 64 - are not representative of 
those which are practically obtainable. They have been 
considered only in order to determine the ultimate trends 
and asymptotes). When k/Eb <:: 0.003 and .Llh <: 50, the 
asymptotic value of the energy dissipation is virtually the 
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same as the "absolute maximum" amount of energy that can be 
dissipated in a rigid plate joint (~). For larger values 
of k-lEb the effect of plate flexibility is to increase this 
asymptotic value. The reason for the asymptotic behaviour 
is outlined in the Appendix. It should be noted in Figs. 10 
and 12 that 80% of the theoretical maximum is obtained with 
~ = 4.0, using the optimum configuration. 

5.	 The Potentialities of Interfacial Layers for Increas~ng 
Structural Damping 

The foregoing theory, computations and discussion relate 
entirely to a joint in which the insert is subjected only to 
shear strain, i.e. the joint is subjected to an 'ideal' 
longitudinal load. Such idealization is approached, for 
example, in the chordwise skin joints of an aeroplane wing
undergoing flexural vibration, or in the circumferential skin 
joints of a fuselage in flexural vibration. Considerable 
increase in the mode damping should be obtainable using visco­
elastic inserts at such joints. 

When a fuselage is subjected to acoustic excitation, it 
is possible for modes of vibration to be excited which involve 
distortion of the whole cross-section of the fuselage (ref. 4).
These modes will cause the circumferential and longitudinal
skin joints, and joints in the stringer and frame flanges to 
be loaded longitudinally. Again, the damping of the modes 
should be considerably increased by visco-elastic inserts at 
the joints. These modes will also cause shear loads to be 
transferred through the rivets attaching stringers to skin and 
frames to skin, by virtue of the transverse shear forces in the 
stringer-skin and frame-skin beam combinations vibrating in 
flexural modes. The loads on these rivets, however, will be 
much less than the loads on skin-joint rivets since they are 
proportional to the local shear force, and not to the local 
bending moment. The wave-lengths of the flexural modes that 
are likely to be excited are such that stringer skin joints
will be lightly loaded compared with the joints transmitting
bending moment loads. Furthermore, unlike the rivets at skin­
skin joints the pitch of these rivets is not determined in the 
first place from considerations of strength, but from considera­
tion of surface smoothness and/or inter-rivet buckling. There 
are, therefore, many more rivets that are required to carry any
static load. It follows that the load received by these 
rivets in flexural vibrations is very small compared with the 
load on the skin-skin joints. 

Now the energy dissipated at a joint (or rivet) is 
proportional to the square of the joint load. The total energy
that could be dissipated at the stringer and frame-skin joints 

11 



'

•
..is therefore likely to be very much less than that dissipated 

at skin-skin joints. Por the same reason, the energy dissipated 
at spar boom to web joints in spar boom-skin surface joints in a 
wing undergoing flexural vibrations, is likely to be much less 
than that dissipated at the chordwise joints. 

Consider now the vibrations of skin panels riveted to 
stringer or frame boundary members. Longitudinal loads on 
these joints can only exist if large amplitude, non-linear 
flexural vibrations take place, in which stretching of the 
plate middle surface is important. Such stretching is only
likely to be important if the boundaries of the panel are very
stiff, and the average stringer or frame would be unlikely to 
provide the necessary stiffness. That non-linear vibrations 
of such panels do occur is due to the stiffness of adjacent
panels, and not to the stringer or frames. It follows, there­
fore, that no 'longitudinal' load is likely to pass through the 
joint at the boundary member. If, however, a skin to skin 
joint exists at the boundary then the longitudinal load 
transferred from one panel to the next may dissipate energy 
at the joint, and it would be advantageous to insert a visco­
elastic interface. 

So far, the possibility of bending of either of the joint
plates has been ignored. Such bending is likely to be 
important at the boundaries of a vibrating panel, as above. 
The effect will be to cause the two plates to 'open' and 'close' 
relative to one another, and energy will be dissipated by the 
alternate tension and compression of the interfacial layer.
A separate analysis is required to deal with this mechanism, 
but its potentiality has already been recognized in work by 
Mentel (ref. 5) and theoretical work is already proceeding. 

The overall usefulness of the addition of interfacial 
layers at joints can only be assessed by comparing the modal 
damping increment achieved thereby with the damping of the modes 
without the layers. This initial damping derives from three 
or more principal sources: 

(a) The hysteresis of the material of the structure 
(b) The damping deriVing from the joints before treatment 
(c) The acoustic radiation damping 

(b) depends upon the size and disposition of the rivets, and 
also upon the modal stress distribution. (c) depends upon the 
panel shape, frequency and mode of vibration. It is evident 
that a comparison of the interface damping with the initial 
damping can only be made for specific configurations, and no 
broad generalizations may be made. However, some typical
values of the damping due to (b) and (c), in relation to the 
modes of vibration of a fuselage, are given in Ref. 4. For 
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comparison with these values, the interface damping must be 
expressed as a damping ratio of the appropriate mode of 
vibration. This is obtained by calculating the total interface 
energy dissipation per cycle of displacement of the configura­
tion in the relevant mode, and dividin~ by 4rrx the maximum 
strain energy stored during the cycle {see Ref. 3). 

The maximum potentiality of interface damping at riveted 
joints can only be achieved if interface materials with high
loss factors can be developed. In particular, if loss factors 
of 4 can be achieved, 80% of the maximum possible damping will 
be obtained. It must be pointed out, however, that at the 
time of writing loss factors as high as this have not been 
achieved. The value of 4 therefore sets a target-ror high­
polymer research work. There is no stipulation with regard 
to the real part of the shear modulus of the material, as the 
geometry of the joint may be adjusted to correspond with any
value of this. 

This maximum damping obtainable is also dependent up~n 
the stiffness of the rivet. Experimental work is in progress 
to measure this stiffness, and with this knowledge, a better 
idea will be obtained of the potentiality of interfaces at 
riveted joints as a means of increasing structural damping. 

6. Conclusions 

This paper develops a theory for the energy dissipated
in a singly-riveted lap joint having a visco-elastic interfacial 
layer and subjected to longitudinal harmonic loading. The 
effects of elastic deformation of the plates are included. 

It has been shown that the energy dissipated per cycle
depends upon a number of dimensionlens parameters. 

(a) The rivet stiffness parameter (rivet shear stiffness T 
plate	 stiffness) 

(b)	 The interface shear parameter (interface shear
 
stiffness + plate stiffness)
 

(c)	 The interfacial layer loss factor (normalized imaginary 
part of the complex shear modulus) 

(d)	 The overlap parameter (length of plate overlap : plate 
thickness) 

In general, the energy dissipated passes through a true 
maximum when anyone of the parameters (b), (c), (d) is varied. 

When the rivet stiffness parameter is low ( « .003) an 
approximate expression for the energy dissipation, derived 
assuming the joints plates to be inextensible, has been shown 
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to be sufficiently accurate for engineering purposes. This 
permits the formulation of a simple rule to design a joint with 
an interfacial layer which dissipates the maximum amount of 
energy as follows: 

If the rivet stiffness and the interface material shear 
modulus are known, then provided the rivet stiffness parameter
is less than .003, the modulus of the complex shear stiffness 
of the layer should be equal to the rivet elastic stiffness. 

The energy dissipated per load cycle will then be given 
by the expression 

1t" p2 fJ 
2kr x (" 2 + 1)i ~ 1 

The effect of the plate flexibility is to increase the relative 
plate displacements above those associated with rivet deflection 
alone~ Only when the rivet stiffness parameter exceeds .003 
does this begin to affect the energy dissipation significantly.
The energy dissipated per cycle is then given by 

1t' p2
 
E'l) • f(p, J.. /h, " ' k:lEb)
 

in which f is a non-dimensional function of the non-dimensional 
parameters. The value of the shear parameter at which f passes
through a maximum has been found to be less than that predicted
by the inextensible plate theory in corresponding conditions. 
This effect becomes more marked with increasing values of the 
rivet stiffness and overlap parameters. 

The potentialities of interfacial layers for increasing
aircraft structural damping have been discussed, with particular
reference to the choice of the most suitable joints for their 
inclusion. It is concluded that circumferential and longitudinal
skin-to-skin joints in fuselages, and the chordwise skin joints
in wings are best suited to this treatment. 
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APPENDIX 

The reasons for the occurrence of the observed maximum 
values of energy dissipation for particular joint configurations
and material properties can readily be seen from the rigid plate
theory by constructing vector diagrams of the forces and 
displacements involved in the harmonic deformation of the joints.

yy c\w 

B 
oo 

.... 
p 

Fig. a. Fig. b. 

In fig.(a), -P represents the harmonic exciting force. This 
vector can be considered to rotate anticlockwise with an angular
velocity corresponding to the frequency of the exciting force. 
The rotating vector ~o represents the corresponding joint
displacement and lags behind the exciting force by an angle 
(tan-l~ ). The vector ~"o is the component of the displacement 
in quadrature with P. The magnitudes of the actual force and 
displacement at any instant can be considered to be represented
by the projections of these vectors on the line OY. 

Equation (13) represents the equilibrium of the force P 
with the elastic restoring force of the rivet , krUo~ and the 
elastic restoring and damping forces of the ~ert X u and 
i.~ki.UO' res~ectively. The elastic restoring fo~c9s are~both 
in phase with u~ and may be represented by a vector along U as 
shown in fig.(bJ. The damping force is in quadrature with ou 
and ia therefore drawn at ri~ht_angles to U to complete the 0otriangle of forces (fig. (b». a, is the resultant COmpl!x
'restoring' force from the insert, acting at angle (tan- ~ ) 
to the direction of the displacement vector, uo ' and of magnitude 
ki (1 + j3 2)1- I uol , where IUJ indicates the modulus of the vector. 

Now the energy dissipated per cycle is given by 1'rlp\ 'u"1 . 
When examining the effect on the energy dissipation of varying 0 
the joint component properties it is sufficient, therefore, to 

16
 



-
to examine the variation of lu-" I, I PI remaining constant. When 
" 0Itt ' passes through a maximum so also does the energy dissipation.o 

The Effect of varying ~ , k and ki remaining constantr 
Here, an explanation is sought for the existence of an 

optimum value of the material loss factor, when the other joint
properties are specified. 

~ 
\ 

O~~--------"'------f ) 
/ 

Fig. c. Fig. d. 

In figs, (c and d) vector diagrams are shown for low and high
values of ~ ,respectively. Since k and k are fixed, the 
ratio OA : OB remains constant as ~ vKries. i uo is obviously
proportional to jhe total vector (k + k ) U ; un is then 
proportional to E which is drawn peFpend!culRrlyOtohP. The.~ 
effect of increasing ;:J is to increase the angle CAB whilst AljC
remains a right_angle. B, therefore, always lies on a circle 
of diameter I P..-f • 

When f3 is small: 
... ~ 

E ~ CB = k i '" uo..
and P ~ OB = (k + ki ) 

~ 

u •r o
Hence E ~ P k.~ • 

k!:+k. 
r 1 
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i.e. for small values of ~ , E is approximately proportional to f . 
When	 ~ is large:
 

OB <'4 BO •
 
~ 

hence	 AO ~ BO +P 
~ ....

and	 P ~ k i f3 U o •.. 
Also E ~ OB = (kr + ki)Uo 

therefore	 E ~ P k r + k i• 
kiP 
~ 

i.e. for large values of P , lEI is approximately inversely
proportional to p •	 ~ 

It is evident therefore that a maximum value of lEI occurs 
at some intermediate value of~. It is readily seen that this 
maximum occurs when OB = Be. We therefore have 

i.e. 

The effect of varying kit keeping k and ~ constantr 
This is equivalent to specifying the material properties,

G(l + i~), and then varying the thickness of the interfacial 
layer. ki is then inversely proportional to the thickness. 

o~c 
A B o	 A B 

Fig. e. Fig. f. 
18 



In Figs. (e) and (f), vector diagrams are shown for small and 
large values of k i , respectively. The angle C~ (and hence 

ctO) remains constant whilst k is varied. 'A' therefore 
moves on the circumference of aicircle with chord OC. Since k. 
is different in each figure, the relative values of u in the ~ 
two cases are no longer given by the relative lengthsOof the 
vector OA. kr.U is now propo~tional to U in each case. u~ ois therefore prsportional to F, which is arawn perpend1~ly 
to P. 

When k i is small: 
B is close to C 
AB and Be are 4. OA 

and	 p
-a. 

~ OA = k Ur o ... 
Also F ~ BC = f3 k i Uo ' .. ... 

hence F ~ P ki/krf3 • 
i.e. for small values of k i , IFI is directly proportional to k i • 
When k i is large: 

'A' is now close to 0 and therefore OC and AC nearly
coincide, i.e. 

P +k i .U (1 + f3 2)t. o 
1\ • 1\

Also, since COB ~ CAB,
 
F ~ OA Sin CAB
 
= k U • {3 ,
r o 

(1 + ~ 2)f 

hence,	 F ~ P k r • (6. ­
k i 1 + ~ 2 

~ 

i.e. for large values of ki , \F\ is inversely proportional to k i • ..... 
It is evident that a maximum value of 'F\ will occur at 

some intermediate value of k i • It can be seen~that, since A 
lies on a circumfe~ence of a circle of which P is a chord, the 
maximum value of IF\, and hence of \u~\, and the energy
dissipation, occurs when OA = AC. This gives 

k (1 + ~ 2)* U = k U •o r oiopt 

i.e.	 k = i opt 



The limit of the energy dissipation as {3 gets very large 

This may be examined by considering the diagram (g) with 
ki at the optimum value, i.e. with OA = AC. 

c 

-I 
tan ~ 

o k,.uo A k,tto 8 
Fig. g. 

As {3 increases. CA
approaches point A, 

B increases and approaches 
and AB -+ 0, or kioPt~ O. 

1t/2, 
The 

i. e. pojnt B 
vector F 

cannot exceed OAI ~, ho~ever large ~ becomes. OA (=kr_uo )
approaches the value OC= P 

7272 
.... ...... 

i . e • Iu~ I...... ill . 
2k r 

There is therefore a limit on the magnitude of energy that can 
be dissipated (for rigid plate theory), and this is set by the 
rivet stiffness. This limit is approached as /3 ... 00 and ki ~ 0 
such that the product k.~~ k. It is~evident from 
Fig. (g) that beyond a Value or {3 =:= 4, F will not increase 
very much for a further increase of ~ • 
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TABLES I to IV: Corresponding optimum values of the shear 
parameter obtained from 

(1) Elastic Plate Theory (popt.e) 

and (2) Rigid Plate Theory (popt.r) 

for particular values of l./h and f' ' and the range of 
kr : 0.01 to 0.3 
Eb 

TABLE I k/Eb = 0.01 

~ 

6.25 

0.25 

0.0384 

1.0 

0.0336 

4.0 

Popt 

0.0197 

16.0 

0.00999 

64.0 

0.0050 

Popt.e 
Popt.r 

1.0 

7.5 0.036 0.0307 0.0179 0.00912 0.00456 1.0 

10.0 0.0311 0.0266 0.0156 0.0079 0.00395 1.0 

15.0 0.0254 0.0217 0.0127 0.00645 0.00323 1.0 

25.0 0.0197 0.0168 0.00985 0.0050 0.00250 1.0 
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TABLE II k/Eb =
 0.03
 

I
I
I

I1.00.25 16.04.0 64.0~ 
popt •ePopt l«Sopt.r 

6.25 0.0682 0.0583 0.0314 0.008660.0173 1.0 

0.0623 0.02967.5 0.0532 0.0158 0.0079 0.999 

10.0 0.0461 0.0270.0539 0.0137 0.00685 0.997 

15.0 0.044 0.022 0.01120.0376 0.00559 0.995 

25.0 0.0341 0.0291 0.017 0.0087 0.00433 0.993 

TABLE III kriEb =
 0.1
 

~ 

6.25 

0.25 

0.1246 

1.0 4.0 

Popt 

0.01064 0.0623 

16.0 

0.0316 

64.0 

0.0158 

popt •e 
;Sopt.r 

1.0 

7.5 0.1137 0.0971 0.0569 0.02884 0.01443 0.99 

10.0 0.0985 0.0841 0.0492 0.025 0.0125 0.98 

15.0 0.0804 0.0687 0.0421 0.0204 0.0102 0.9 

25.0 0.0623 0.0532 0.0311 0.0158 0.0079 0.82 
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TABLE IV kriEb = 0.3 

~ 

6.25 

0.25 

0.2158 

1.0 4.0 

,tfopt 

0.01842 0.1079 

16.0 

0.547 

64.0 

0.0274 

,tfopt.e 
ltS opt •r 

0.88 

7.5 0.197 0.1682 0.0985 0.05 0.25 0.85 

10.0 0.1706 0.1456 0.0853 0.0433 0.216 0.78 

15.0 0.9393 0.1189 0.0696 0.03353 0.177 0.68 

25.0 0.1079 0.0921 0.0539 0.0274 0.0137 0.55 
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FIG.2 LOADING ACTIONS ON THE SECTION OF AN ELEMENTAL LENGTH OF THE 

JOINT. 
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