From ADA309667 Downloaded from Digitized 02/25/2015

Optimization of Dynamic Vibration Absorber
~Case of Cantilever Boring Bar

E. I. Rivin, H. L. Kang
Department of Mechanical Engineering
Wayne State University
Detroit, MI 48202

Abstract

Passive dynamic vibration absorbers (DVAs) are very popular for vibration
control/enhancement of effective damping in various structures. This paper
describes techniques which allow one to substantially enhance the effectiveness
of DVAs, specifically for long overhang cantilever structures (on the example of
cantilever boring bar). A so-called combination structure is designed, in which
the root segment is made of a high stiffness material, while the overhang segment
is made of a light material. Optimization of such -a structure results in a stiff
but light system with greatly increased dynamic stiffness K& Optimal parameters
of a DVA for main mass under self-excited vibration and random excitations are:
discussed. Test results are given for an optimized combination boring bar and
DVA parameters with length-to-diameter ratio L/D=15.

1. Introduction

Passive dynamic vibration absorbers (DVAs) are very popular for vibration
control/enhancement of effective damping in various structures. In boring bars,
like in many other cantilever structures, vibrations are easily developed due to
their weakness in both structural stiffness and damping, and thus DVAs are often
used. But, due to the intrinsic limitations of the space available for installation
of inertia mass, the mass ratio is limited and the DVAs often have curtailed
efficiency. Thus, boring bars with length—-to-diameter ratios exceeding L/D=9-10
were generally considered not feasible. This paper will describe several techniques
which allow one to enhance effectiveness of a DVA for long overhang cantilever
structures, specifically for cantilever boring bars.

A so-called combination cantilever bar was designed [1], in which the root segment
is made of a high stiffness material, possibly having high specific density, while
the overhang segment is made of a light material, possibly having a low Young
modulus. Optimization of such a structure results in a rigid but light system,
usually with greatly increased natural frequency. and mass ratio of DVA, and with
reduced usage of expensive materials.

Self-excited vibrations and random excitations are often encountered in structural
vibrations, especially in the cutting processes, and they are the main factors of
system instability. Classical (DenHartog [2]) optimization for DVAs' parameters is
based on a case of harmonic external excitation applied to the main mass. Frequently,
however, optimal parameters for this case are considered as a universal approach
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for DVAs' design. It will be shown that for other practical cases, such as random
excitation of the main mass and the case of self-excited vibrations, optimal
parameters of a DVA are quite different. :

Test results will be given which show that a boring bar designed as an optimized
combination structure and furnished with’ a properly optimized DVA demonstrates
substantially lower vibration amplitudes during cutting and can operate with
L/D=15. The proposed concept are applicable for a wide range of cantilever
structures.

2. DVA attached to the main mdu which is under sélf—exéitation conditions -

In the self-excited vibrations case the alternating force that sustains the motion
is created or controlled by the motion itself: when the motion stops the alternating
force disappears. The general expression of the dynamic cutting force can be
written as [3]:

ax,

Fx=‘_chXl—ch dt

1)

where Kcx is stiffness coefficient and Cex is damping coefficient, and Kecx, Ccx can -
be defined as "effective cutting stiffness" and "effective cutting damping", -
respectively. At some combinations of parameters, force (1) can lead to self—
excitation of vibrations. o

Dynamic vibration absorber can be modeled as a absorber mass Mz attached by
a spring with stiffness Kz and a damper Cz to the main system whose mass M
is subjected to the excitation force F(t). A model of the main mass with a damped
vibration absorber is given in Fig.1 where Ki and C; are stiffness and damping
of the main mass. ’

Equations of motion of this system can be written as:

] ! , : E(t

X1+ 205,w, + By u) X, + (W2 + WIN) X, - 28,w,u Xz - wipX, = —A% (2)
l N

A?z“'zgzwaxz*ngz‘ZEiwzx;-ng,'0 (3)

with

—-;w —aw?: &'H‘ .L_-zg : __GL._-zg
Ml v MZ' 2 le ' JKlMl 'l. \}KzMz‘ 2

where Xi, Xz are vibration amplitudes of the main mass and absorber, w, W, are.
partial natural frequencies of the main mass and absorber subsystem, W is the
mass ratio of absorber mass to main mass, and &, .§.are damping ratios of the
main mass and absorber subsystems, respectively.

By letting F(t)=F, for the exciting force. in the equation (1), the system char-
acteristic equation from the equations of mo;ion becomes:
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S*+B,8%+B,S%+B ,S+By=0 (4)

where
By=2(§,w+§.w,(1+p))

B,= wz_"'wi(l +p)+ 45w,

B, = 2(§,ww}i+§,w,w?)

Bo’w2w§
K;*'K,m 2 Cl*ccx
AL AES -2

Ml M| Eﬂw

Here w is the self-excited vibration frequency which is close to but different
from the natural frequency of the main mass subsystem (due to addition of Kex)
and &, is damping ratio of the main mass subsystem during cutting. Parameter

¢, combines the damping of the main mass (always positive) and effective damping

from the expression for the dynamic cutting force (1). The latter can be positive,
thus assuring an unconditional dynamic stability of the system, or negative,
which then shouid be compensated by the positive damping of the main mass and
by the stabilizing effects of the absorber in order to achieve stable conditions.
Thus, effectiveness of the absorber can be judged by the critical value of §,,
which corresponds to the stability boundary of the system. And the maximum
effectiveness of the absorber can be characterized by the maximum magnitude
of negative critical value of §, which the absorber can still compensate.

Routh stability criterion states that for a system to be stable, all the coefficients
of the characteristic equation must be positive and also must satisfy inequalities
(21

B1 Bz Ba > B12+Ba? Bo (5)
From the former requirements, we arrive to conditions:
£, >-rE,(1+p) (6)
1 r(l*p,))
> - + 7
§a (452" 4§2 ( )
€2
§,>- (8)
where
w2
r T —
w

is frequency ratio of the partial frequency of the absorber subsystem to the
" gelf-excited vibration frequency of the main mass.

The critical value of &, can be obtained by replacing (6)-(8) with equalities, from

which the largest value can be determined and then checked with equation (5).
If the latter is not satisfied, the critical value of &, can be determined by iterations

to satisfy (5).
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Fig.2 gives the critical value of &, at various mass and frequency ratios of the
absorber. It can be seen that at a given mass ratio and damping ratio of absorber,
there exists a optimal (tuning) frequency ratio wjyw, at which critical negative
value of &, has maximum magnitude (maximum effectiveness of the absorber).

The influence of absorber damping on system stability under optimal frequency
ratio conditions can be seen in Fig.3. If the absorber damping is too low, it will
result in a poor system stability because of small effectiveness of absorber. If
the absorber damping is too high, it also gives poor system stability because
the absorber mass is in fact locked together with main mass and low effectiveness
will result. There is an optimal damping of the absorber which gives the maximum
negative value of &, and results in the main mass remaining stable at higher
magnitudes of negative damping induced by the.cutting process for a given mass
ratio.

Fig.4 gives the influence of mass ratios on system stability under both optimal
frequency and optimal absorber damping ratio. It is obvious that the higher mass
ratio, the better system stability.

The optimal frequency ratio at the optimal absorber ‘damping condition will be
called the global optimal frequency ratio. Since the absorber damping in practical
designs may not be optimal, the optimal frequency ratio at this situation can be
called a locally optimal, which means that if a value of absorber damping which
is not optimum is used, the. local optimal frequency ratio has to be chosen for
absorber to be the most effective at this damping. Optimal absorber damping and
global optimal frequency ratio for a given mass ratio are shown in Fig.5 and
Fig.6 together with the results for random (see below) and sinusoidal [2] excitations. _

3. DVA attached ‘to the »maln mass which is under random excitation conditions

Here optimal tuning parameters will be discussed for a case of random excitation'
having white noise characteristics with a constant spectral density function Se

and zero memory. In real circumstances random signal is rarely constant over

the frequency range 0- «, but it is frequently constant over a wide frequency

band. Thus white noise excitation is used in the analysis as an approximation of
typical random signals. The frequency response method is used to get the mean
square response of the system [4]..

In order to get the frequency response functions Hi(w) and Ha(w), let:
F(t) - e!wt

M, (9)
X, =H, (w)e™ (10)
Xo=H(w)e™ (11)

‘Then substituting above expressions @nd their derivatives into equations of motion
(2) and (3), the frequency response functions can be written as follows:
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wi+28,w, (iw)+ (iw)?
Ao+ A (Iw) + Az (Iw)?+ A3 (iw)®+ (iw)*

Hi(w)= (12)

where
Ay =2(8,w, +E,w,{1+u))
Ag=wi+wi(1+p)* 48, 5,w, W,
A= 2(51“’1“’2"' §gw2wf)
Ao 'w?wé
and
wi+ 2w, ({w)

(tw)2+2§2w2(tw)+wgy‘(“’) (13)

H,(w)=

The mean square response of the mass Mi under the white noise excitation is
then given as:

E(X?)-j”|H1(w)nzsodw o (14)

which represent the total energy of the main system after attachment of a dynamic
vibration absorber. For the main system without dynamic vibration absorber, the
frequency response function is: ‘

1
(iw)?+25 W, (iw) + w}

(15)

Hiyp(w)=

The mean square response can also be given by equation (14) in which Hio(w) is
used. A non-dimensional normalized mean square response of the main subsystem,
i.e. the ratio of mean square response of Mi with absorber to mean square ‘response
of M; without absorber, which reflects effect of the absorber on the main mass,
is then defined as:

E(X})
E(x%),

A . .
-2 s 16
ElwIB | (16)

where
A==AgA, = AxAs(4E3wi-2w3)+wi(4, - 4. 43)

B"Ao(AoAg"'A?'AlAaAs)

The calculation results of the normalized mean square response of the main mass
are given in Fig.7 for a maln system damping ratio &, =0.02. Since the mean
square response represents the total energy of the system over the entire
frequency range, the normalized mean square response gives the total energy
ratio of the response of the main mass Mi but not the response itself. The larger
the value of the normalized mean square response, the larger is response of the
main mass and the lesser effect of the absorber on the main system behavior.
Influence of mass ratio on the local optimal frequency ratio is similar to the case
of self-excited vibration, but the different values of the optimal frequency ratios.
Computed optimal global frequency ratio and optimal absorber damping ratio are
plotted in Fig.56 and Fig.6. '
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A mass Wwith dynamic vibration absorber under sinusoidal excitation has been
analyzed by J. P. DenHartog [2] where he considered the case with zero main
system damping which is a good approximation for the system: cantilever bar
with damped vibration absorber.

Comparing optimal tuning and damping conditions under. various excitations in
Fig.5 and Fig.6, it can be seen that at the same mass ratios, the required optimal
absorber damping values are the lowest for the case of white noise excitation,
and the highest for the case of sinusoidal excitation. The required optimal
frequency ratios are the lowest for the case of sinusoidal excitation and the
highest for the case of self-excited vibrations. For the case of cantilever boring
bar, since both self-excitationand random excitation exist during cutting process
[6], the optimal tuning values for the frequency ratio and damping could be
chosen in between of the optimal values shown in Figs.5,6 for cases of self-excitation
and random white noise excitation.

4, Optimization of combination cantilever bar

A combination bar of length L with sintered carbide in the root segment (length
L1) and aluminum in the free end segment (solid part of length Lz and hollow
part of length Ls), shown in Fig.8, was analyzed. The absorber made of heavy
machinable tungsten alloy is located in the hollow part of the free end as shown
in Fig.9. An optimization procedure was applied to choose parameters Li, Lz, and
La in order to have the highest dynamic stiffness KE& of the cantilever bar, where
K is static stiffness and Eis effective damping ratio of the main mass subsystem
since both damping and stiffness are important for the system stability.

The Rayleigh expression for fundamental natural frequency of the system without
‘absorber was used (1],

flE(z 102){ ) az
ISTSES

W (17)

r = L
f m(2)xidz+ M,x?
(4]

where E(z) is Young's modulus, I(z) is moment of inertia of the cross section,
m(z) is mass per unit length, and all these parameters are considered as function
of z (coordinate along the axis of the cantilever bar). M: is mass at the free end,
X is vibration amplitude of cantilever bar (a function of z), and xi is vibration
amplitude at the free end of cantilever bar.

The effective mass at the length Lo=L-La/2 which is the midpoint of the absorber
cavity Ls Is [1]:

(55) e
%

M

LIE(z)l(z)
-

i (18)
XoW

The effective stiffness at Lo then is:
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K,=wiM, (19)

To determine the effective stiffness at the tool end, the effective mass at the
length L should be determined. The approximate fundamental mode shape of the

cantilever bar to be used in the Rayleigh formula (17) is assumed to be:
(2= 1-cos| 22 |
x(z)~1 cosl\ZL/ (20)
which satisfies the boundary conditions for this mode.

A combination cantilever bar and a steel bar were analyzed and compared. The
parameters used for combination bar are: outside diameter D=1.25in (31.75 mm),
. for carbide segment: E=80,000,000lb/in (55 N/cm ), specific gravity p =0.516 1b/in
(0.01428 Kg/em ), for aluminum segment: inside diameter ds=1.0 in (26.4 mm),
‘E=10,000,0001b/in (7 N/cm ), specific gravity p.=0.093841b/in (0.0028 Kg/cm );
for steel bar: E=28,600,0001b/in (19 N/cm ), specific gravity p=0.281b/in (0.008
Kg/cm ). Mass at the free end is Mt=0.0004857!b - sec?/in (0.085 N-sec®/m), material
for absorber mass is machinable tungsten with specific gravity p_=0.6497 lb/in
(0.01798 Kg/em )and lengths Ls=4,5,6 in (0.1,0.13,0.156 m) were chosen for the
cantilever bar with the overall length L=18 in (0.457 m).

By calculating stiffness values at tool end Kt and critical value of §, of the
combination boring bar with damped vibration absorber under optimal tuning and
damping conditions, the performance index KE, vs Li/L ratios can be obtained as
shown in Fig.10. Since both higher stiffness Kt and more negative critical value
of £, give better cutting process stability, higher magnitudes of absolute value
of the performance index (dynamic stiffness) are corresponding to a better
stability of the system. It can be seen that Li/L in the range 0.456-0.6corresponds
to the best ‘stability of the boring bar. It has been shown [6] that for Li/L=0.45,
it corresponds to the highest natural frequency of the combination bar, and for
Li/L=0.6, the combination bar with damped vibration absorber has the minimum
vibration amplitude under harmonic excitation.

The results of natural frequency f, stiffness at free end Ki, and mass ratio of
absorber p for the combination cantilever bar at Li/L=0.45 and for the steel bar
with the same dimension are given in Table-1. It can be seen that values of all
this three parameters for the combination bar are about double of the values
for the steel bar. Such increase in natural frequency and stiffness should improve
dynamic performance of the cantilever structure, and the increase in absorber
mass ratio makes the absorber more effective for a given limited absorber mass.

§. Cutting test using combination boring bar
A combination boring bar of 1.25 in (31.75 mm) diameter and 18.75 lri (476 mm)

long (L/D=156) was designed with parameters Ls=6 in (152 mm) and Li/L=0.6. Rubber

resilient elements were used which provide both necessary compliance and damping
for the absorber. Absorber frequency tuning can be done by adjusting the screw

KpC- 7

Confirmed public via DTIC Online 02/25/2015



From ADA309667 Downloaded from Digitized 02/25/2015

which results in preloading of the rubber elements. The absorber mass ratio is
u=1.07. The damping ratio of the boring bar is £,=0.02 and damping ratios of
absorber §, are 0,07, 0.18, and 0.45 for three rubberlike materials used. Natural
frequency of the boring bar is fi=173 Hz. The recommended tuning frequencies
for absorber are about 84 Hz in case of sinusoidal excitation, 105 Hz in case of
random excitation, and 117 Hz in case of self-excited vibrations.

Vibration displacements of the boring bar in horizontal (x) directions were
measured by LVDT at the distance 13.6 in (342 mm) frem the clamp (since the
measurement of the tool end vibration is impossible during the cutting). Defor-
mations both at LVDT and at the tool end under static load were measured and
it was shown that displacement at the tool end is about 1.91 times of displacement
at the LVDT position. This factor was used as an approximation to get vibration
displacements at the tool end from measured values from LVDT.

Table-2 gives maximum vibration peak-to-valley (p~v) values at the tool end for
the boring bar without absorber and for the boring bar with damped vibration
absorber having various absorber damping and tuning adjustments. The results
show substantial improvements of cutting conditions while using boring bar with
- dynamic vibration absorber as compared with the original boring bar. The results
show that if tuning at the local optimal frequency ratio at a given damping of
rubber was realized according to the self-excitation and random white noise
excitation case, smaller vibrations were observed (10-30%lower p-v values), as
compared with cases of tuning as recommended for sinusoidal excitation [2]. It
was also observed that when damping of the absorber is closer to the optimal
damping values, the vibration amplitudes are smaller.

6. Conclusions

1. A combination cantilever bar with high rigidity material in the root segment
and light weight material in the free end segment has much higher natural
frequency, stiffness, and mass ratio of DVA compared with steel bar, which results
in a higher dynamic stiffness (better dynamic performance) and higher effec-
tiveness of dynamic vibration absorber.

2. The optimal tuning conditions and damping values of DVA are different for
cases when the main mass is under seif-excitation and under random excitation
, than the classical case of sinusoidal excitation.Optimal tuning/damping parameters
for actual cutting thus should be chosen accordingly. When absorber damping
deviates from the obtained optimal values, the local optimal frequency ratios
should be used for maximum effectiveness of absorber.

3. The cutting test results confirmed that the best results are obtained when
absorber is tuned in accordance with the self-excitation/random excitation cases
(smaller vibration amplitudes were recorded). The reasonably good results were
obtained for a combination boring bar with length~to-diameter ratio L/D=15.
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Fig.1 Model of boring bar with dynamic vibration
absorber under an external excitation
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Fig.5 Optimal damping ratio of absorber vs mass ratio
(optimal tuning condition)
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Fig.8 Combination boring bar design
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Rubber Machinable tungsten  Tool head

Fig.9 Dynamic vibration absorber design
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Fig.10 Performance index vs length ratio Li/L
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R
L3 (in) Bars Frequency (Hz) |Stiffness (lb/in) Mass ratio
4 Combination 276 3939 1.41
Steel 138 1776 0.73
6 Combination 283 3935 1.77
Steel 138 1764 0.94
6 Combination - 289 3929 2.07
Steel 143 1746 1.14

Table—1 Calculated natural frequency, stiffness, and mass
ratio for combination bar {L1/L=0.45) and steel bar

M

Absorber Spindle |Max. Peak -to-Vally Value (X~ Direction)
Damping Speed Tuned Tuned Tuned No
Ratio (rpm) under Se | under Ra | under Si Absorber
0.07 80 0.00177 0.00156 0.00192 0.00324
0.07 130 0.00184 0.00137 0.00241 0.00561
0.07 210 0.00266 0.00228 0.00371 0.00721
0.18 42 0.00079 0.000856 0.00114
0.18 80 0.00104 0.0012 0.00121
0.18 130 0.00118 0.00144 0.00167

Se: Self-excited Vibration; Ra: Random Excitation;
Si: Sinusoidal Excitation

Table-2 Maximum p-v values (inches) of boring bar under various
cutting speed, absorber damping, and tuning conditions

4U.S. GOVERNMENT PRINTING OFFICE: 1990-750-209

KDC-15

Confirmed public via DTIC Online 02/25/2015





