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ABSTRACT

As part of a general program to determine the applicability of linear ortho-
tropic theory to the design of cylindrical shells under various loading conditions,
a theoretical and experimental investigation was performed on the general
instability of orthotropic cylinders under bending and combined axial compression

and bending loading.

Based on a simple approximation for the asymmetric buckling pattern,
theoretical results suitable for design use were obtained for the buckling of
orthotropic cylinders for both bending and combined loading conditions. It was
shown that the buckling stress for orthotropic cylinders under bending or axial
compression loading are equal which agrees with previous results for isotropic
cylinders, Theoretical results were evaluated by means of a series of careful
experiments performed on orthotropically stiffened cylinders designed to fail in
the elastic general instability mode. For both bending loading and the combined
axial and bending loading condition, experimental results were in good agreement

with the theory.
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LIST OF SYMBOLS

1* 722 73 axial rigidities for the orthotropic cylinder
C test machine calibration factor
E Dl’ DZ’ D3 bending rigidities for the orthotropic cylinder
E Young's modulus
¥ stress function
E Fx Equation (59}
N If area moment of inertia of skin and stiffener per unit width
E in a plane perpendicular to circumferential direction
4 Is area mement of inertia of skin and stiffener per unit width
% in a plane perpendicular to the longitudinal direction
J torsional moment of inertia per unit width
g\ L cylinder length
ﬁ M external applied moment
M experimental bending moment
exp
E Mb theoretical bending moment
M, M, M bending stress resultants
& X x6
ﬁb’ Nc constant axial forces for the bending and compressive problems
N.. N, N membrane stress resﬁlta.nts
E 8" “x’ " x6
.‘ Pexp experimental axial compressive load
1 R radius of the cylinder LZ . 1/2
zZ curvature parameter given by Z = R {1 -v7}) for the isotropic
§ case and by 7% - BZL’:L/IZRZD1 for the orthotropic case
E Zx orthotropic cylinder curvature parameter (Eq, 62)
b stiffener height
- 2 2 2.2
c curvature parameter defined by ¢” =12 (1 - v7}/R"t
d stiffener spacing ‘
df stiffener spacing in longitudinal direction
d stiffener spacing in circumferential direction



List of Symbols (Continued)

experimental buckling coefficient in bending

cylinder buckling coefficient

N?i"

D test machine pressure loading at specimen failure

t cylinder wall thickness

T effective shear thickness of cylinder cross section

t area of sheet and stiffener per unit width in a plane perpendicular
to the circumferential direction

t area of sheet and stiffener per unit width in a plane perpendicular
to the longitudinal direction.

u, v, W displacement in axial, circumferential and normal directions
stiffener width

stiffener width in longitudinal direction
W stiffener width in circumierential direction

x, 0O axial and circumferential coordinates

orthotropicity parameter = B1 Dz/B2 Dl

€

B, B wavelength parameters for the bending and compressive cases
g%, B weighted wavelength parameters for the bending and compressive
cases
¥ orthotropicity parameter defined in Eq. (40)
l & orthotropicity parameter defined in Eq. (40)
€ €y €q axial strain variations
AF,N axial wavelengths for the bending and compressive cases
v Poisson's ratio
oy bending stress
E LER experimental bending stress
exp
% T, theoretical cylinder buckling stress under either axial compression
or bending loading

T ratio of bending to compressive forces at buckling

curvature changes of middle surface

linear operators given in Eqs. (27) and (29)

vi
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GENERAL INSTABILITY OF ORTHOTROPICALLY
STIFFENED CYLINDERS

PART II. BENDING AND COMBINED COMPRESSION AND BENDING

SECTION 1
INTRODUCTION

The major objective of the program described herein is to conduct a series
of careful experiments on elastic general instability of orthotropically stiffened
cylinders under a variety of loadings and correlate the experimental data with
theory. Partl of this program involved a rather extensive series of tests on
longitudinal, ring, and grid stiffened cylinders under axial compression, torsion,
and hydrostatic pressure. The correlation of these data with available theory,

as well as the experimental details, are reported in Ref. L

For orthotropically stiffened cylinders under bending or under combined
compression and bending, no satisfactory theory was available at the start of
this program., As a consequence, a major portion of this phase of the program
was devoted to the development of a linear orthotropic theory for cylindrical
shells under bending and combined compression and bending. In addition, a
representative series of tests were conducted on longitudinal, ring and grid
stiffened cylinders under bending, Finally, several tests were conducted for

combined compression and bending on longitudinal and ring stiffened cylinders.

This report is thus devoted to the bending phase of the program., Section
2 essentially summarizes the significant results by presenting a correlation of
the experimental results with the theory. In general, excellent correlation with

linear orthotropic theory is obtained for the range of variables tested.

The theoretical development is contained in Secs. 3 and 4, A satisfactory
solution for the elastic bending stability of an isotropic cylinder has been obtained
only recently by Seide and Weingarten in Ref. 2. Their solution requires tedious
calculations which if applied to orthotropically stiffened cylinders would introduce
great complexities, As a consequence, Sec. 3 is devoted to a relatively simple
although highly accurate approximation of the isotropic cylinder solution, which
is substantiated by the results of Ref. 2. This approximation is then utilized in
considering corﬁbined compression and bending of an isotropic cylinder in Sec. 3
and elastic general instability of orthotropic cylinders under bending in Sec. 4.

The experimental details of the tests conducted on longitudinal, ring and grid
stiffened cylinders under bending, and combined compression and bending are

presented in Secs., 5 and 6, respectively.



SECTION 2
CORRELATION OF THEORY AND EXFPERIMENTAL RESULTS

All cylinders tested in this program were designed to fail in the elastic general
instability mode. They were very carefully machined of 6061-T6 aluminum alloy
with closely spaced integral longitudinal, ring or grid stiffening systems to form
nominally 8 inch diameter orthotropic cylinders, They were carefully tested in
specially designed testing machines which utilized pneumatic loading systems in

all cases.

Bending

The specimens tested in bending were generally counterparts of those tested
under axial compression (Ref. 1) in that corresponding values of @ and y were
utilized, The correlation of general instability theory and test data for the stiffened
cylinders under bending is illustrated in Fig, 1. The theoretical buckling mode for
the ring and grid stiffened cylinders is axisymmetric, whereas for the longitudinal

stiffened cylinders it is the m = 1 asymmetric mode,

It can be observed from Fig, 1 that the experimental data are in good agree-~
ment with the predictions of linear orthotropic stability theory over the rather
broad range of o covered by the test data. Similar agreement was obtained in Ref.l
for the stiffened cylinders under compressive loads. A comparison of the set of
data for bending with that for compression indicates that there is no difference in
the critical compressive loading for the two cases either theoretically or experiment-

ally.

Combined Compression and Bending

The theory developed herein for cylinders under combined compression and
bending indicates a linear interaction relationship as shown in Fig. 2. Combined
load test data for a longitudinally stiffened cylinder of @ = 0.1l and a ring stiffened
cylinder of @ = 1. 6 are shown in Fig. 2 in conjunction with corresponding test data
for the individual loading cases. It is to be noted that in all cases, the stress ratio
(R} represents the experimental to theoretical stress ratio for the specific specimen

configuration.

A comparison of the test data with the linear interaction theory indicates
substantially good correlation. These results, in conjunction with those obtained
under bending only, substantiate the theoretical conclusion that general instability
occurs when the critical compressive loading is exceeded in any region of the

cylinder cross section.
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SECTION 3
BENDING ELASTIC STABILITY OF ISOTRCOPIC CYLINDERS

The bhending stability problem of isotropic cylinders has interested only a
few workers in the past and only recently Seide and Weingarten {Ref. 2} have
shown conclusively that in isotropic cylinders, the critical stress for bending
stability is essentially the same as that in the corresponding compressive stability

problem though the buckle pattern is quite different.

While Ref. 2 deals mainly with the establishment of the critical stress
results, the deflection pattern obtained for the buckles as a result of elaborate
computations presents certain interesting features. The dominant feature is that
the buckle pattern is an asymmetric one, since any axisymmetric mode is incom-
patible with the bending problem., While this has no great significance in the
isotropic case, it is of considerable importance in the orthotropic case, especially

in the light of the compressive stability of such cylinders studied by Gerard (Ref. 3).

A simple approximate representation of the Seide and Weingarten buckle
pattern developed in this section for isotropic cylinders yields results for the
critical stresses quite readily and furthermore throws some light on the role of
the buckle pattern upon the ratic of critical stresses, The isotropic case is
presented as a prelude to the orthotropic case which is considered in Sec. 4.
Further, an insight is obtained into the incipient buckling geometry when compressive

loads are combined with bending loads for an isotropic cylinder.



Governing Eguations

The governing equation for the stability of an isotropic cylinder under an

externally applied bending moment M, is given as follows (Ref. 2};

5*w 4
ax? R

4
EJ—E- VAR (1)

axt

L{iw)= DV4w+ ﬁx

where Nx is the equivalent axial force If the problem were one of pure com-
pression Nx NC: P/2nR, where P would signify the compressive load. However,
for pure bending, I—\I-X: N‘b cos@® where Wb-r M/mR2, the maximum fiber stress
resultant occurring at the top of the cylinder In Eg. (1),V *is the inverseoperator

given by
Vo (Thw) - w (2)

Since Egq. (1) cannot be solved exactly for the pure bending case  that is

N = Nb cos @, the Galerkin method is used with the following series assumed for w:

w ®
w o= Sln(x/}\x} ré a_ cosn 8 (3)

0

where the star denotes conditions for pure bending.

The Galerkin equations for the coefficients a are obtained by substituting
Eg. (3) into Eq. {1}, and setting,

L 2r o0
f  TL{w)sin{x/¥*) £ cosnB8]Rdedx=0 {4)
n 0 * n=0

Eq. (4) yvields an infinite system of linear homogeneous equations and the
stability criterion is given by the vanishing of the determinant. The size of the
determinant is varied until the lowest eigenvalue is obtained to the desired accuracy.
By taking as many as 50 terms for certain R/t ratios, Seide and Weingartien obtained
the result that the bending/compression critical stress ratio appreaches the mini-
mum value of unity. The shape of the deflection function obtained by them for

various R/t values is reproduced in Figure 3a.
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The deflection function is seen to behave like a highly damped wave symmetri-
cal about the vertical diameter consisting essentially of a single lobe whose maximum

half width is not greater than about 22.5° for the highest R/t ratio.

Hence the Seide and Weingarten buckle pattern may be approximated by the

following analytical expression:

o
w = A sin (x/)xx) cos NO for le'gﬂ 2N {5)

"

0 elsewhere on the circumference

N being a fixed number > 1,

The above analytical expression corresponds to a single lobe, which is shown

in Figure 3h,

Bending Solution

Eq. {5) corresponds to a one term approximation to the series, Eqg. (3). The
least half width of the lobe in Figure 3a would correspond to N = 4, and the greatest,

to N = 6. Using Eq. {5} in Eq. (1) we obtain from the Galerkin equation,

L mw/2N N
I L{w) sin{x/\" ) cos NA 49 dx= 0 {6)
n -m/2N *

the following expression for the bending force T\I—b:

N PG 2V 2 2y2
b w/2ZN 1 Ay “Jrka/R) -
= — 1- v ‘ {7)
D sin{r /2N) 4N2 (Le N2 3 2/R2)2 N2
x X

where c2 = 12{1 - w3)/R*t%,

The minimum value of the expression in the square brackets which is of the
form (Au+ 1/u), is seen to be equal to 2c from which we may write for a moderate

length cylinder:

2N 1
-2 n/ 1-
Wb/D)min © sinw/2N ( 4N2)
or
. /2N 1
kb = 0.702 Z ST ZN (1- 5 ) {8)

4N



Where L2

__b . _ L2 2y ¢
kb"—-—z——nD ,Z—m(l-v)

Now, the classical compressive buckling coefficient for a moderate length

cylinder, kc, bears the well known relation to Z given by:

k =0.702 Z
c

Then from Eq. (8) we find

_ m/2N 1
kp/ke = smtmreny (- el 9)

The ratio kb/kc is seen to approach unity as N becomes large; thus with
N = 6, kb/kc = 1.005. This value of N corresponds to a lobe width of 15° and the
kb/kc value is seen to agree with the result for 500<R/t<1000 in Ref. 2.
Similarly N = 4{kb/kc = 1.0l}) agrees with the result for R/t = 200 therein.

For moderate length cylinders, N>4 would seem to be a reasonable assumption
to make, and herce one can assume that the expression [{m/2N}/sin{w/2N)](l - 1/4N?)
is approximately equal to unity in further considerations. Hence we can write Eq. (7)
as:

= 2y 2 24 %2 /n2y2
Ny . C Kx . {1+ N )‘x/R ) (10}
(i+ N"'KZ:/RZJZ w2

x

From Eq. (10) we establish the Seide and Weingarten result for the stress ratios
quite easily.

It is interesting to examine the result of including more lobes in the deflection
model and ultimately letting them occur all along the top'half of the cylinder cir-
cumference. Suppose Eq. (5) is valid for |9| <3w/2N, N>3 and w = 0 elsewhere,
Then, corresponding to Eq. (9), we would obtain

3w/2N 1 } (1)

k, [k (-

v/¥e © 5n In/2N

It is clear that for the same N (>3) Eq. (}1) yields a higher value for kb/kc
than Eg. (9) which has one lobe, though ultimately as N becomes very large Eg. (11}



also yields kb/kc = 1. Thus it becomes evident that the single dimple state carries
the least energy and hence offers the lowest value for kb/kc which is unity. This is

the essential result for the cylinder in bending.

If the dimples occur all along the top half of the cylinder circumference and
N is taken as large, in the limit we obtain that the value of kb/kc = /2 which is an
upper limit on the kb/kc ratio. Thus the formulation of Eq. {(5) not only provides us
with a ready verification of isotropic case, but also indicates that higher values
of kb/kc occur with larger number of lobes. Since we are interested in the lowest
value of the kb/kc ratio, it is evident that the single dimple corresponds to this

case,

Buckle Wavelengths

At this stage it is interesting to examine the wavelength picture. Seide and

Weingarten obtain an approximate expression for the wavelength in the axial direction

for the pure bending case as follows:

1
3

X s (RE)7/ [L201 - v2)] (12)

where the starred quantity denotes pure bending. [n the corresponding pure com-
pression case, if we were to examine the wavelength characteristic we find that the
governing buckling mode can be axisymmetric or asymmetric. Thus if for w we

take

w o= A sin(x/\x) cos no

we obtain from Eq. (1), taking —I\Tx: T\Tc' the following expression:

~N 2 25 2 232
N, e (Lr n*\2 /R?)
o - i (13)
{L+ n?\2 /R2)2 1
x .

While Eqgs. {13) and (10) bear resemblance, and a direct minimization yields in both
cases the same result, namely 2¢, the wavelength picture is not necessarily the
same. First, we notice that in Eq. (13} n> 0 whereas, in Eq. (10) N> 4. Thus while
Eqg. (13) gives rise to an axisymmetric mode, Eq. (10) definitely precludes this
possibility. In Eqg. (13) if the axisymmetric solution n = 0 is chosen, then the value
of Ay for minimum NC/D is evidently:

1
4

A, = (Rt)?/M2(1 - v?)] (14)

10



which agrees with Eq. {12) identically. Hence \X?K:;. However, if in Eq. (13} n >0,
it is difficuit to establish the result for )\x. On the other hand, if \X< )\x it can
be shown for NC/D = 2c that B = n}\fo is irmaginary. Hence for all 3 real and >0,
e N

Hence we find that generally the axial wavelength of pure bending less than the

corresponding compressive case, 1. e.,

Ve (15)

the equality holding for the value of )\x corresponding to the axisymmetric mode.

Thus we find that as we change from the compression problem to the bending
problem, though the critical stress has the same value, the wavelength as well as

the buckle pattern is affected.

The Effect of Bending on Compression

This problem is of importance as it has definite bearing on experiments as
usually some bending force is unavoidable in a compression test Hence —I\_!b. the
bending force is considered as a small constant force present along with NC the
external compressive force. Using the same one lobe model considered in the pure
bending case, thatis, w = A sin (x/kx) cos N A, lel i'rr/?.N and w - 0 elsewhere;

with N as a large number, we obtain the following expression from the Galerkin

equation.
2\2 Cng2y 2 232
Ne LN b sin _"_( 4N? ): ™ <% , LENTRT (16)

Letting Nb/ﬂc: + be a small fixed quantitiy, we obtain from Eq. (l6}):

1 %4 (LENZN_2/R?)?
NC/D = + {17}
i 2 2y 2/R2)2 2
14+ sinw/2N 4N ) {1+N\x/R) S
T 4NZ - 1
and since N is assumed large, Eq. (17) yields
- 2c (18)

(NC/D)min 1+ T

11



As in pure bending, we might increase the number of lobes, say to three. If

= s (1) .
(NC/D)m.m denotes the value with one lobe, then

(N /D)(III): 2c
c
1t + sin 3w/2N/ 4N?
3n/2N ANZ - 1

Again as in the pure bending case we find

(NC/D)I < (NC/D}IH... < (N'C/D)(N)

If we carry the lobes all along the top half we find in the limit

= (N) 2c
(Nc’rD}min T TF T 2/T (19)

Thus the following interesting fact emerges from the above considerations:
if there is any small bending present in a compression buckling, the buckle pattern,
at least at the incipient stage of instability which is within the classical theory used
herein, that has the least energy and hence the most likely one to occur is that with

a single lobe in the cross sectional plane.

Concluding Remarks

The dominant feature that distinguishes the bending problem from the com-
pression problem lies in the buckle pattern. In a compressive problem we have both
axi-and asymmetric modes prevailing while in the bending problem a single lobe
pattern in the cross sectional plane is the only one mode that is possible. Further
the critical stress in both the bending and compressive problems is nearly the
same. The present representation helps not only to establish the stress rasalt in
an elementary way, but also provides some insight into the instability in comibined

bending and compression of-an isotropic cylinder of moderate length

12



SECTION 4
BENDING ELASTIC STABILITY OF ORTHOTROPIC CYLINDERS

Governing Equations

Though the governing Donnell type equation for the elastic stability of ortho-
tropic cylinders has been used by Taylor (Ref. 4), it will be advantageous to rederive

it from a viewpoint of a consistent notation.

The middle surface strain and curvature variations are related to the dis-

placements u, v and w, under the assumptions consistent with Donnell theory, as

follows:
= a - 2

€ Au/Ax X 5 w [ Bx

& = (1/R)sv/5%8 + w/R Xg = {(1/R2%) Pw/RA2 {20)

€ = 1/2[Apv/Bx+ (1/R) Au/AA] Xyg = (1/R) A2w /Axhn

The direct strain components € €g and ¢ g 2Te seen to satisfy the follow-
ing compatibility relationship:

azee/a x2- {2/R) Bzexq/9x98+ {1/R2) nzsx/n_gz = {1/R) R2w/hx2 (21}

A set of equilibrium equations, consistent with the above strain field, may
be written for the stress resultants during buckling under the action of a constant
external equivalent axial force ﬁx' defined in the same manner as for the isotropic

cylinder:

AN_/8x ¢ (L/R) AN_,/98 = 0

AN_,/3x+ (L/R) AN /99 = 0 (22)

2 2 z Z g2 i nw? =
RIM /Px? + (2/R) A3M /AxP8 + 1/R? b Mo/ + Ny /R+ N d2w/ax2 = 0

The stress resultant - strain relationship for an orthotropic elastic material

can be written as follows:

x—_Bl(ex+vge) Mx:Dl(xx+vxe)
g = Balegtve) My = Dz (Xgt v x,) (23)
Nyg= By {l-vie g Ma= Dyll= vix g

13



where Bn and Dn, the axial and flexural rigidities are given by:

Et EI
Bni _n_ D - n {n-1, 2, 3) {24}
(L= v2) - v?)

The thicknesses t;, t;, ty are not necessarily physical thicknesses but generalized
thicknesses, and I;, I,, I, are similarly generalized moments of inertia, In particular
cases, as for instance in a monocoque construction with stringers, Taylor {Ref. 4},
indicates the significance of these generalized thicknesses. A further discussion

of these parameters is given by Becker and Gerard (Ref. 5).

The first two of the equilibrium equations, Eq. {22) are seen to he satisfied

by the introduction of a stress function F, such that:

NX = (1/R2) 82F /502 NB = #F/Ax%? and Nxe = = (L/R) RF/8x 80 (25)

By making use of the stress strain relationships Eq. {23) and introducting F, we

can transform the compatibility relation Eq. (21) to yield the following:
v*BF = {B,/R)(1-v?)h 2w/ax? (26)
where V4 is a linear operator given by

4 4
Bl2 vy - By + By | L 22
BS

ax*pp%:  B;R* 54

(27)

The third of the equilibrium equations, Eqgs. (22) is similarly transformed
with the help of Eqgs. {23) and {25} to yield:

D‘w{-(l/R)BaF/BxZ{- -Nx Biw/Bx2 = 0 {28)

where [J* is a linear operator given by

94 2 1 ' v a4 D, &%
O =743 tar = |[Dy(l-v)4 (D, + Dzﬂ +
xt  RT Dy z 5x256% D,R* 5a*

{29}

Eliminating F between Eqgs. (26} and (28) we arrive at the governing equation
for w as follows

4
P: n-vyy 2% _p (30)
iR Axt

N
Vi (O'w #D—f‘ Alw /Bx?) +

14



We define an inverse operator Vg in the manner of Ref. 2 by the following

equation:
V3 (Ve w) = w (31

With the use of Eq. (31) we can modify Eq. (30) to yield the following governing

equation for the pure bending case (i.e. ﬁx = Nb cos B):
N 2 4
Liw) = [*w + “Poeoss EX B (1-v2) V=4 RAL A (32)
D, 5x? RZD, B gt

Buckling Mode

Since Egq. {32) cannot be solved exactly for the pure bending case, a suitable
form must be assumed for w the normal deflection. From elementary considerations
of energy we see that an axisymmetric mode is incompatible with the bending problem.
Hence, in the choice of a suitable form for w we may profitably be guided by the
buckle pattern in the isotropic case. Though our discussion is perfectly general, it
is evident that orthotropic cylinder behavior falls into the classes of longitudinally
and circumferentially stiffened cylinders. In both cases, at least in the compressive
stability problem, it is usually the wavelength along the longitudinal axis that is
modified in comparison with the isotropic cylinder case. Hence so far as the cir-
cumferential direction is concerned the buckle pattern should be substantially the

same as that of an isotropic cylinder,

Utilizing now the same approximate deflection function employed in Section 3 and

shown in Figure 3, we write:

g
T

A sin(x/\] ) cos No for [o] <w/2N (33)
= 0 for 9 elsewhere on circumference

where N is a fixed number greater than zero.

Be ndin& Solution

By making use of Eq. (33} for w in Eq. {32), we obtain an expression for Nb

using the well known Galerkin method. We let

15



L #/2N
g g\ L{w}sin {x/}f';)cos Np Rdadx=20
0 -1/2N
and obtain as a result
— E oy
- , o4 D, /DB
N, e [, 1 fi+2{u- voupy + v2a+p/y} e /D)
D, sin w/2N 4N L )\:2
5 (34)
B, N
* (1= v?) = 73 |
RZD, 1+2{(1+ v} (B, /By) - v/2 (1+ B/BY} B ° + (B2/B)i |
B E
where: p = N, /R

In Eq. (34) the factor S(N) = [(n/ZN)/sin(—n/ZN}] (1-1/4N?) is a function of N
only., Furthermore, it is seen to approach unity quite rapidly as N increases in
value. In fact even for N = 2, S is seen to equal 1. 04, Hence for the present proh-

lem we assume that N is large enough for 8 ~ 1 and we can write Eq., (34) ax

—_ %2 %
N, _ 1+z [(1 - V) Dy/Dy + vi2 (D1+D2)/Dl)] B +(D,/Dy)p *
D, x;zz
{35)
B, 22
+ (1-1v?) X e
RZD, T+ 2 [(1 +v) Bp/By - v/2 (B, + Bz)/Bl] Bt T, i3, e
16
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Eq. {35) may be recast into the following form which is advantageous in the

ensuing discussion:
=1
k, =m2[1+2y (BFY8) + o (BF4/8)] + 12(1 - v?) Z3/n*[1+2PF2/5 +8%4/6] (1/m?) (36)

where v = [(1-v)Dy/Dy + v/2 (D, + D; }/D; 1 [(1+v) B /By - (v/2)(B; + B,)/B,1™

@ = (B1Dz)/(BzD1)
& = {B,/B;ys?) with s =[ (1+v) B,/B* - (v/2) (B, + B,}/B,]
B%2 = (B,/B,;s) B*?

k, = N, L?/n?D; and 1222 = B,L*/R?D,

It is clear from Eq. (36) that k'b the buckling coefficient is a function of two
variables m? and 3%, Of these two, P* being essentially a function of (L/R) is a
continuous variable, However, m? or m, which is a2 measure of the number of
buckles along the axis of the cylinder, may take a discrete fixed value or become
so large that it can be treated as a continucus variable., In particular m =1 is the
lowest discrete value for m, and hence acts as a bound. Thus we may divide the
basic asymmetric mode of the bending problem into a m = | solution and a m - con-

tinuous solution.

m - continuous Solution:

Here we consider that k.b in Eq. {36) is a function of m? and P*2. The
simultaneous vanishing of the first derivatives of kb with respect to each of m?
and B*? being a necessary condition for the minimization of k., we set akb/amz: 0

and Bkbl'aﬁ_*:z = 0 from Eq. {36) and obtain as a result the following pair of equations;

12(1 - v3) 2%/ 7t (1/oef) =[1+2yB*2/ &6 + aP*4/8| [L + Z5%2/6 + B4/ 8] (37)
12(1-v3) 23/ (1) =[ 1+ 2B%%/6 + PF*/51% (y + af*3) /{1 + P53 (38)

Solving Egs. (37} and (38) we obtain the following expression for B*?

1/2]

= 5/2(a-v)[{1-a) +{(1-a)2 + (4/8) L=y} (a-y) (39)

By making use of Eqs., {37) and {38) we obtain finally the following expression for
the buckling coefficient k.b:

k= .702 (1-v2)/2 7 o (40)
where U= (y + o) /(1 + B2 (41)

17



In Eqs. (36) through (39) it is possible to obtain further simplification if &
is taken as equal to 1. Since § is always positive no loss of generality results due

to this assumption. Hence in what follows 6§ is taken as equal to L.

From Eq. (39) it is clear that f* depends upon y and e {with 6 = 1} and for
certain y, @ combinations, the quadratic equation yields imaginary values for B¥,
It is clear that for these combinations where B¥ is imaginary we have to look for

a different solution.

We notice that in Eg. (39) that the lines y =1 and y = @ are critical bounds;
thus when y—~1 B¥ -0, However, from a fundamental consideration of the bending
problem B% = 0 is to be excluded. Furthermore, we have seen that the reduction
of Eq. (34) to Eg. (35} is possible when N is a finite number, but not necessarily
very large. Since B* is directly dependent on N, we imply by f*=0 that N is
decreasing in value., However, it is ¢lear that when N reaches a certain criticatl
value N* which is still large enough to admit Eq.(35), the value of B* is so small
that it has no effect on the problem. Hence when N = N* as y 4 we can neglect terms

invelving the B*2 and Pt factors,
Thus we may write a limiting solution for kb from Eg. (36) as:

kb =m?2 + 12 (1 =~ v*) Z22/{w*m?) (42)

Limiting Seclution

From Eq. (42) kb is now seen to be a function of m only, for a given cylinder
and hence a given Z., Hence if m is large s0 as to be continuous we obtain from

Eq. {42) a minimum value of kb given by

k, = 2 (122

However, since m takes integer wvalues, the lowest value of m is unity. Hence

2)1/2 2)1/2

fm2 Z{l-v = ,702Z {l-v {(43)

we find:

kb mep =1 H12{1- ve) Z2/ 4 (44)

Now it can be shown quite generally from Eq. {42), that by giving successively
higher integer values for m (m = 2, 3, etc.) the curves that are generated have

all an envelope which is given by Eq. (43). Furthermore, from the positive nature
of the k - Z diagram, this envelope Eq., {43) is a lower bound. Hence a complete
minimal curve, which gives the limiting sclution, consists of Eq. (44) for low Z

values up to the Z value where Eqs. (43) and (44) coincide, and beyond which the

18




minimal line follows Eq. (43), The value of Z for the contact is easily obtained by

equating Eqs. (43) and (44) from which we have:
Z# = m?f [12 {1 - v¥)] 1/2

Hence the limiting solution is correctly written as

kb lim

)
1+12 (1-v®) 22/n 0< Z< Z

(45)

1/2 *

L7022 (1 - v2) Z < Z

The value of N corresponding to this limiting solution is N = N*, The solution given
by Eq. (45) is seen to be the same as the axisymmetric solution for the corresponding
compressive stability problem. Since Eq. (45) is independent of B* this limiting

solution may be pertinent in the zones where the m-large solution is not valid.

m = 1 Scolution:

Now, we turn to the m =1 solution. In Eq. {36) if we set m =1, then kb is
a function of p*2 only. By setting Bkb /8P%2 = 0 with m = 1, we obtain the sarme
expression as Eq. (38) with m replaced by 1. 1If further we let § =1, then we can

write from Eq., (38) the following stationary condition for k.b
12 (1-v?) 22/t = (1 +B%) (y + aBF?) (46)
Substituting Eq. (44) into Eq. (36), withm =l and § =1, we obtain:

Ki =t = 2aP%F + 3y +a) PR + (1 + v) {(47)

From Eq. (46) it becomes clear that Z increases rnonotonically with B¥ since
¥:; @ are posgitive numbers. Furthermore, since Z is always greater than Zo corres-
ponding to B% =0) in order thatan asymmetric mode exist, it is evident that there is

always a real positive root for P*? (and hence real B) for all y, @ values. Hence

the B¥ for m=1 solution is everywhere real in the y, « plane,

Comparison of Solutions:

With the three solutions of Eqs, (40), (45) and (47) corresponding to the
m-continuous, limiting, and m=1 modes respectively, it is pertinent to consider which
of these apply in a y-a plane as in Fig. 4 where the zones are marked from I to VI.
We know clearly from Eq. (39) that in zones II and V m-continuous solution does not
hold. In other zones all the three are possible. We examine each of the zones more

closely.
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As regards the m = 1 solution we have seen that it applies in every zone of
y-o ptane and so too does the limiting solution, The behavior of m =1 solution in
all the zones is easily predicted gince we need only consider the lirniting values
of p*2. In comparing the m = 1 solution with the limiting solution, we first observe
that in view of Eqs. (45) and (46}, the buckling coefficient for the limiting solution
may be written as:

Ky1im - 2Ly + @B 0 + 2

_ T4 s
then ikﬂ_“:L : 2aP*t 1 {3y +o) A% + S'er_y_) (48)
b lim 2[ (y+aP*?) (1 + F*2)]
we find that for low P* values, (i.e. low Z values):
k
- - 1/2
Or = 2L g yyyay Y (49)
kb Hm
and for large B*¢ values, (i.e. large Z values):
‘[__]'* = __...-—-.kb ms=1 = allz (50)
K 1im

Eqgs. {49) and {50) together with Eq. (41} then summarizes the comparison

of different solutions in the different zones.

In zones Il and V only the limiting solution and the m=1 solution are possible
while every where else all the three solutions are possible, However, to find
which one is the lowest and hence the correct buckling solution we shall examine

each zone in detail.

In zones V and VI, bothy and @ are > 1. Hence Eqs. (49) and ( 50) show
that k.b m:llkb lim > lfor all Z ranges. Hence kb lim I8 the lowest bound solution

in the interior in comparison with m=1 solution. As regards m-continuous solution,
it comes in only in zone VI. But in this zone, withy > a, (y, a) > l it can be shown
that U* of Eq. (41) is always an upper bound over the U* value. Hence in zone VI

kb m=1 > kb lim® As for the lines y = l and &« = 1 in this zone, the asymptotic

behavior is warranted by Egs. {49) and (50). Thus along the y = 1 line Eq. {49)

2l



shows that for low Z values m=1 solution and k im solutions coincide but with o = 1,

1

as Z increases k

becomes greater than k
m=1

.« The actual shape and the point
lim
of separation is dependent on the value of . Similarly on the line o =1, kmzl

solution approaches the k solution from above for high values of Z and actual

lim
shape depends upon Z the y value chosen.

In zone Iy > 1bute < 1. Hence from Eq. (50) we see that for higher wvalues

of Z, k becomes less than k. solution. While in this entire zone k :
m=1 lim in-cont,
is always an upper bound and is always greater than klim solution, zone T bohavior
may be summarized as:
k > .3 > > .
b m-cont. kb lim kb m-cont. — l(b m=l = k'b lim
<

In zone II both y and & are < 1. In the interior of this region oniy k_ |
— X

and kb lim solutions are real; further, since both y and o < 1, Egs. (49) angd {50)

show that kb m=i < kb lim® On the line y = @, it turns out that both kb =i and

ible: E NED - . s s
k.b m-cont, *T€ possible: Egq. (39) shows that ** for m-~-cont case 7 on this

/2
[

line. Then Eq. {4l) shows that along the line T* = . But this is preciscly toue

for km-l solution also for large values of Z as seen in Eq. {50), Hence ‘!:"I .
= -

JEe

solution merges with k solution for higher values of Z.

m-cont,

In zones III and 1V, the m-cont. solution is real, and also forms the low. -

envelope of the m-discrete solutions and hence is the lower bound. k,

omecant.
may be considered as prevailing from the value of Z where the m=1 salution tosches
it. That is, the m=1 solution is the correct solution for low values of Z and bevond

the Z value where the two solutions coincide, the km-cont solution iy vha oo rrect

one, While m=1 solution becomes greater than m-cont. solution for higher 2

values, yetit will be lower than klim value so long as e < 1({i.e. in zcae (1T, ouy

in zone IV with ¢ > 1 the m=]1 solution will eventually exceed klim solution, Thus

for zone I1I:

kb lim 2 k'b m=1l z kb m-cont

for zone IV:

>
k'b lim > k1rn-c:0nt’ k'b lim < km:l’ kb m=1 kd l‘;b m-cont,
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Compressive Stability:

In order to compare the bending stability of an orthotropic cylinder with that
of the compressive stability, we abstract some of the chief results from Ref. 1

and Ref. 3 which deal with the latter case.

As a pure axisymmetric mode is possible in the compressive stability case,

mnx

so the w function is chosen as w = A sin T

cosn @;n > 0, {51}

Defining # = nL/mtR, where m is as before the number of axial buckles,
we obtain for the compressive case, following solutions for the compressive

buckling coefficient kc:

Axisymmetric Solution (§ =0)

k =1+ 12(1=-v2) Z2/q4 0< Z < Z%
c -7 } (52)
= .702 2 (1-v3yl/? Z* < Z
where
Z® = q2ff12 (1- vz)]l/2
Asymmetric Solution (§ > 0)
B 1/2
K. L _cont, =702 Z{1-v%) U (53)
where _ 1/2
U=[ly +eB)/(L+ B3 ]'" and B = [B,/B,s]p?
and B? satisfies an equation identical with Eq. (39), namely:
B2=5/2(ay}[{l-a) i{(l—a)’* +4/8 (1 -a) (cr"-v)} e, (54)
k =2aP* + 3y + @) P2+ {1 + ) {55)

c m=l
where § is taken as 1.
In Egs. {54) and (55} vy, and & are the same as defined in Eq. {36).

Ref. 1 discusses the various zones of y-o plane where the solution of Eqs.

{52) to (55} apply and their significance.
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Comparison of Bending and Compressive Stability:

An examination of Eqs, (52) to (55) show that they are identical with the similar
expressions for the buckling coefficient kb in Eqgs. (40}, (41}, (45} and {47). Further,
the quadratic equation for p* (Eq. 39) is identical to that for §# in Eq. 54. Hence,
it is clear that B* and B are equal whenever the solutions are applicable. While
in Eq. (54) B can actually attain limiting value of zero for y = 1 (n=0), B2 cannot do
so. However, when N—-N*, the limiting sclution of Eq. {45) which is equivalent to

the axisymmetric solution of kc Eq. {52) applies.

Hence it follows that while in the compressive case the buckling mode changes
from a general asymmetric pattern to an axisymmetric one as 8 —0, the behavior
in the bending case is different. To start with, we have a single lobe whose half
width is given by w/2N; and the displacement is zero everywhere else. As N
becomes large the influence of B * is great; while as N becomes small it reaches
a limiting value N = N* {and the mode, correspondingly, a limiting mode}, when

the influence of B * is negligible.

Regarding the stress picture from the identity of the sets of equations for
kc and k, » it follows that k and kc have identical behavior in all the zones of a
v=a plane as in Fig. 4, Hence, summarizing we find that kb/kc = 1 in the entire

y-o plane.

Concluding Remarks

The behavior in the bending stability problem is generally governed by the
fact that the external stress distribution changes from a compressive one at the
top to a tensile one at the bottom half of a cross section of the cylinder. This
precludes any buckling effect on the tension side, Hence a compatible buckle
pattern for the bending problem has to be deflection free on the tension side,
Hence, a general type of asymmetric mode with ripples running all the way around
the circumference, which is perfectly suitable in 2 compressive stability problem,
becomes impossible in the bending case. A suitable pattern seems to have a single
lobe symmetric about a vertical axis and whose maximum width is a small fraction
of v which is signified by n/N, where N is usually a large number, Thus the
buckling pattern presents a widely differing picture in the bending case as compared

to the compressive caseg.

However, when we turn to the stress picture we find that for both the iso-

tropic cylinders and for the orthotropic cylinders kb/kc is essentially equal to unity,
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SECTION 5
BENDING TESTS

Design and Fabrication of Test Specimens

Bending tests were performed on ring stiffened, longitudinally stiffened,
and grid stiffened cylinders, The cylinder geometries encompassed an ¢ range from
0.1to 12, 0. All specimens were designed to fail in the general instability mode at

a stress level below the proportional limit of the material.

The detailed design technique for bending test specimens characterized by
@>1.0 was the same as that used for ring stiffened axial compression test specimens
and is described in Ref. 1. In general, the design procedure includes the selection
of cross sectional proportions to achieve the desired o value together with a cylinder
radius ivall thickness ratio as dictated by the design buckling stress, Finally, a
suitable value for the cylinder length/radius ratio was chosen to achieve moderate-
length cylinder behavior., Typical design curves for axial compression specimens
which are also applicable for bending specimen design are presented in Sec. 4
of Ref. 1.

For longitudinally stiffened bending specimens (o < 1, 0), the cylinder cross-
sectional proportions followed from design & requirements as above, In this case,
selection of a design value of the radius/ wall thickness ratio was facilitated through
use of an approximate relationship for the critical buckling stress. As observed
in Sec. 2 of Ref. 1, the buckling stress for cylinders which fail in the asymmetric
m = 1 buckling mode is approximately equal to the classical theoretical buckling
stress for an isotropic cylinder with the same radius/thickness ratio. This relation-
ship was used for the ¢ < L. 0 specimen design. Reduction of test data, however,

was based on a rigorous asymmetric theory as described below,

Test specimens were machined on a lathe from an aluminum 6061-T6 tube.
Longerons and frame stiffening elements were integrally formed in the cylinder
wall, Reinforcing rings were fabricated at the cylinder ends to facilitate adaption
of the test specimen to the test fixture. A detailed discussion of the fabrication

technique is presented in Sec, 4 of Ref, 1.

Test Arrangement and Procedure

A schematic of the test fixture for performing bending tests on the test
specimens is shown in Fig. 5. One can deduce from the figure that the testing
machine axial load is transformed to a couple loading on the end plates by means
of the whiffletree linkage arrangement. The couple load is then diffused as a

distributed bending moment through the loading cylinder to the test specimen. By
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applying the testing machine load at various positions along the whiffletree beam

combinations of bending load and axial compressive loading are achieved.

Fig. 6 shows the test arrangement including pre-test and post failure photo-
graphs of a grid stiffened cylinder (Specimen No. 60). One observes that the specimen
was attached to the loading cylinder via closely spaced dowel pins. Post failure
rotations of the specimen were limited by a stop arrangement on the test machine,
Photographs of representative cylinder configurations failed via bending loading

are presented in Fig, 7.

Accuracy of Experimental Data

Experimental data necessary to evaluate the test results include maximum
cylinder bending moment and the specimen geometric parameters, length, radius,
wall thickness, total height, stiffener width, and stiffener spacing. Values for the

critical specimen bending moment followed from the test machine pressure loading

at cylinder failure together with test fixture linkage geometry, Failure of all but
one of the test specimens occurred at test machine pressures from 39 to 56 psi.

Since the gage of the test machine could be read to a precision of 0. 25 psi and the

test fixture geometry was accurately measured within 1%, the indicated accuracy
of the bending moment corresponding to specimen failure was within 1. 6 %. One
test specirnen (RSC No, 63} failed at a test machine pressure loading of 7.5 psi

for which the indicated accuracy of the bending moment at failure was within 3.4 %.

Experimental data associated with cylinder gecometry are tabulated below

E

(see Table 1} together with estimates of the measurement error and the correspond-
ing percent measurement error. As indicated by the table, the maximum measure-

ment error was 5. 4% and was associated with measurements of the cylinder wall

{l) Based on Minimum values (2} Based on Average values (3) Based on Maximum values

27

thickness,
Table 1
E Accuracy of Experimental Data for Bending Specimens
Parameter L R w d t h
;. _3 _3
E Minimum Value{in.) L 80 3,80 .049 .lil 3.7x10 13.9x 10
-3 ; -3
Average Value (in.) 3.15 3.80 ,055 .15 9.5 x10 17.1x 10 5
E Maximum Value (in.) 3.82 3.80 .06l .120 12.5x 1073 23.9x10 7
Measurement Error ) . B 2.0 2.0 .2 .2
(10 3ip, )
k 7 Error (1) .02 .ol 4,0 1.8 5,4 1. 4
J % Error (2) .02 .0l 3.6 L7 2.1 L2
E % Error (3) .01 . 01 3.3 L7 L6 .8
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Reduction of Test Data on Failure of Cylinders

Evaluation of test results required data for the experimental bending moment,
maximum stress, and buckling coefficient., The critical bending moment was
obtained by multiplying the test fixture couple arm (9. 0 in. ) by the couple load as
determined by the test machine pressure load at specimen failure, the machine
calibration factor, and the test fixture linkage geometry. For bending tests the
test apparatus was arranged such that one half the total axial load on the test

machine was distributed to each linkage (see Fig. 5). Hence,

Mp ™ Poyp X C/2)9.00 (56)

The maximum cylinder bending stress at failure was determined by

dividing the bending moment by the cylinder section modulus,

2
Ty exp - Mexp /A{m tsR ) (=)

Since the critical stress in bending and axial compression are thecretically
equal, values for the experimental buckling coefficient in bending were determined
by dividing the failure stress by the same cylinder material and geometry used

for the determination of the axial compression experimental buckling coefficient
(Ref. 1l}. Thus,

kb exp % exp / Fx (>8)
2 2
where F =aEI [t L (5%)
x 8 s
Substitution of Eq. (59) in (58) gives
_ 2 2 o
ky exp = b exp [ t L [in"E IB)] {60

It is noted that Egs. (59) and {60} are based on the assumption that Poisson's

ratio is zero,

The parameters (ts, IS) appearing in the above equations together with
other geometrical and rigidity parameters presented below were calculated using
methods presented in Sec. 3 of Ref. 1 and were based on average values for
cylinder measurements, All data were reduced based on E = 10.1x 106 psi which
corresponds to an aluminum 6061-T6 material. As noted previously Poisson's

ratio was assumed equal to zero.

30



Values for cylinder cross sectional measurements necessary for calculation

-of geometric parameters were determined as follows: For ring stiffened and

longitudinally stiffened cylinders, pre-test measurements of both the cylinder
wall thickness and tha total height at a stiffener were made at six circumferential
locations at each end of the specimens. Thus average values for wall thickness
and total height were based on a total of twelve measurements for each parameter.
For grid stiffened designs, this procedure resulted in average values based on
twelve measurements each for the wall thickness, total height at a frame, and
total height at a longeron., It is noted that all test data were reduced based on

pre-test measurements only,

A summary of material, geometrical and rigidity parameters for bending
test specimens is presented in Table 2 and the experimental structural parameters

are summarized in Table 3.

Calculation of Theoretical Structural Parameters

As shown in Sec, 4 the theoretical critical stress for orthotropic cylinders
under bending or axial compressive loading are equal. Hence, equations and
methods for the determinations of theoretical structural parameters for bending
applications are the same as those presented for axial compressive loading in
Ref, 1. These equations are recapitulated below for sake of completeness. A

more detailed exposition is presented in Sec. 4 and Appendix A of Ref, 1.

The buckling mode for orthotropic cylinders subject to general instability
can be characterized by the geometric parameters «, y, and & defined as follows
(Ref, 1).

@ =t If / (tf lS)
y = (L) (Eft) (J/ L) (61)
- 2
=T °/ (t, t)
For bending specimens with o > 1. 0 (all the ring stiffened and grid stiffened
designs), values for the cylinder geometry parameters o and y {see Table 3) were

such that the axisymmetric buckling mode governed (U = 1. 0), In such cases

the curvature parameter, buckling coefficient, and corresponding stress are
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given by (Ref. 1)

z =022 1 1)Y2 L% R) (62)
X
) 12, 2
k, =.203 (t, / 1) 2 (L° / R) (63)
. 12
o= 2E (tf IS) / (Rts) (64)

Bending specimens with o < L 0 (all longitudinally stiffened cylinders) are
subject to buckling in the asymmetric m = 1 mode. From Ref. 1 the curvature
and buckling coefficient are determined from the following equations

1

z =N+ 2@ /8)+ G /60% v+ af) [ (L B9 12/n%] " (65)

k =1+ 2y(@E/8)va /ot v 2 (FC/6) s B/ 8 (y+ aB) L+ F5)  (66)

For a given specimen geometry and assumed values of §, a curve of k_vs. Z_
was constructed through use of Egs. (65) and (66). The theoretical value for
the buckling coefficient was then determined from the curve for the design value
of ZX.

Once the theoretical buckling coefficient was known the corresponding theo-
retical buckling stress was calculated using the following geneml relationship {(Ref. 1).

~ 2 2
o =k (+“EI_/t L) (67)

It is noted that all equations presented above are based on the assumption
that v = 0,

The theoretical bending moment in all cases was determined from the

product of the buckling stress and section modulus as shown

Mb =0 (wts RZ) (68)

A summary of the theoretical parameters for the bending specimens is

presented in Table 3.
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SECTION 6
COMEBINED LOADING TESTS

Design and Fabrication of Test Specimens

Combined loading (axial compression plus kbending loading) tests were per=
formed on a ring stiffened and longitudinally stiffened cylinder with designe values
of 1, 6 and 0.1, respectively, Both specimens were designed to fail in the general
instability mode at a maximum combined stress level below the proportional limit
of the material. The design technique was the same as outlined in Sec. 5 for the
bending specimens, As before, the specimens were machined from an aluminum
6061-T6 tube. The stiffening elements were integrally formed in the cylinder wall
and heavy rings were fabricated at the cylinder ends to facilitate mounting the
specimens on the test fixture, See Ref. 1 for a detailed discussion of the specimen

fabrication process,

Test Arrangement and Procedure

The test arrangement and procedure for the combined loading tests were
the same as that for the bending tests. As indicated in Sec. 5, the test fixture
was designed such that either pure bending or combined bending and compression
loads could be applied to the test specimen., For the combined loading condition,
the test machine axial load was applied at the whiffletree beam holes offset from

the centroid of the cylinder longitudinal axis (see Figs. 5 and 6).

Post failure photographs of the two specimens failed under combined loading

are presented in Fig. 8.

Accuracy of Experimental Data

Test machine pressure loading fcr the ring stiffened and longitudinally
stiffened cylinders were 2] and 23, 8 psi, respectively. This pressure could be
read to a precision of 0, 25 psi and the indicated accuracy of the total load applied
to the test specimens is within 1, 2%. Other experimental data in the form of
geometrical parameters are tabulated below together with the estimated measure-
ment error {see Sec, 4 » Ref. 1) and herror. One observes that the maximum
%error is associated with measurements of the stiffener width and has a value of

4%
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Ring Stiffened Cylinder
(Specimen No. 67)

Liongitudinally Stiffened Cylinder
(Specimen No. 68)

Figure 8. Failure Combined Loading Specimens.
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Table 4

Accuracy of Experimental Data for Combined Loading Tests

Parameter L R W d t h
Minimum Value (in.) 3.68 3. 80 50 111 7.2 15,1
Average Value {in.) 3.72 3.80 55 i15 9.8 19.9
Maximum Value (in,) 3,75 3.80 59 119 13.0 24. 6
Measurement Error (10-3 in, } .5 .5 2,0 2. 0 .2 .2
%Error (1) 1,4 1.3 4.0 1. 8 2. 8 1.3
TError {2) 13 L3 3.6 L7 2.0 1.0
% Error (3) 1 1.3 3.4 1.7 1.5 .8

{1) Based on Minimum value (2) Based on Average value (3) Based on Maximum value

Reduction of Test Data on Failure of Cylinders

The distribution of the total axial load applied by the testing machine to the
test fixture into components of axial compressive force and bending moment in the
test specimen was controlled by the geometry of the point of application of the
applied load and its reactions on the whiffletree beam (see Fig. 5), A test arrange-
ment was chosen wherein the distribution of load was such that the specimens were
loaded to approximately 50% of their uitirmmate strength in both axial compression
and pure bending at failure. Based on the test fixture and specimen geometry,

this corresponded to a net axial compressive force and bending moment as follows;

P ={p C)2 (69)

My = Poyp OV 45 (70)

The compressive stress due to the axial load was determined by dividing this load

by the specimen cross sectional area.

oc = Pexp/ (2mRt ) (71}
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As in Sec, 5, the maximum bending stress was found by dividing the bending moment

by the specimen section modulus (Eq. 57).

All geometrical and rigidity parameters in these equations were evaluated
using methods presented in Sec. 3 of Ref, 1 and were based on average values for
cylinder measurements. The technique for obtaining these measurements was the

same as for the bending specimens (see Sec. 5),

A summary of the geometrical and rigidity parameters for the specimens
is presented in Table 5, Experimental values for the structural parameters are

given in Table 6,

Calculation of Theoretical Structural Parameters

The ring stiffened cylinder geometric parameters a and y were such that
the axisymmetric buckling mode governed and the corresponding critical buckling

stress for both axial compression and pure bending was cbtained using Eq. (64).

For the longitudinally stiffened specimen, the m=1 asymmetric made

governs and the buckling stress was determined through use of Egs. (65), (b6} and (67).
The structural parameters are summarized in Table 6.

Calculation of Stress Ratios

Theoretical considerations presented in Sec, 4 indicate that a linear inter-
action law holds for predicting the strength of orthotropic cylinders under combined
axial compression and bending. DBased on stress considerations, this linear
interaction relationship has the following form

RC+Rb=1.O

or (72)

UC/UX+ Cl'b/ o= 1L.o

Evaluation of the above failure law based on experimental results was
accomplished as follows: the components of the compressive and bending stress
corresponding to specimen failure were calculated based on experimental results
using Eqgs. (69), {70}, (71) and (57). The theoretical critical stress (for both axial
compression and bending) was determined as indicated in the section on '""Calculation
of Theoretical Structural Parameters." Finally, the stress ratios based on axial

load and pure bending, Rc and Rb , were calculated by dividing the experimental

38



value of the stress component by the theoretical buckling stress {Eq, 72). Values

for the stress ratios based on the above procedure are given in Table 6.

"
!
L
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