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FOREWORD

This effort was performed under AFFDL Project 1476, Task 147601,
Work Unit, 14760112 entitled "Drag Due to Separated Fiow." The work,
which is a necessary step in the study of the structure of viscous flow
near airfoll trailing edges, was conducted during the period July 1970
through December 1973. This document was submitted on 9 January 1974.

This report is a revision of the author's Ph.D. dissertation which
was presented in the Graduate School of The Ohio State University in
December 1973. The author wishes to gratefully acknowledge the patience,
guidance, and encouragement of his adviser, Professor Odus R. Burggraf.
The author is also indebted to Professor K. Stewartson for several
enlightening discussions and considerable encouragement.
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SECTION I
INTRODUCTION

The quest for the second and higher gpproximations to the laminar
boundary layer over a finite flat plate immersed in an incompressible
viscous fluid has been accompanied by considerable controversy. It has
been and is the cause of extensive analytical and numerical efforts.
The controversy arose anew about 1969 when Stewartson (1969), and,

'_sepdrate]y, Messiter (1970), derived a rational, consistent expansion
procedure to describe the neighborhood of the trailing edge. Their
analyses predict that the second order term in the Reynolds number
expansion for the drag of the plate is 0(R'7/8). The Reynolds number is
based on the plate length, L, freestream velocity, U_, and kinematic
viscosity, v. A numerical solution to the fundamental problem of the
trailing edge is required to determine the multiplicative constant
appearing in this term.

It is the purpose of this report to present the results of numerical
computations which clearly demonstrate that a physically acceptable
numerical solution to the fundamental problem of the trailing edge exists
and determines the constants which are required to complete Stweartson's
{1969) analysis.

The controversy concerns the streamwise extent of the region
influenced by the change in boundary conditions at the trailing edge.
As pointed out by all the current authors concerned with this problem,
the assumptions on which the boundary-layer equations are based fail
in a neighborhood of the trailing edge of 0(LR'3/4). The Navier-Stokes

Stewartson, K. 1969. On the flow near the trailing edge of a flat
plate II. Mathematika, 16:106 -121.

Messiter, A. F. 1970. Boundary-layer flow near the trailing edge of
a flat plate. SIAM J. Appl. Math., 18:241-257.
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equations must be applied in this region but its relevance is not the
cause for the controversy. If this O(LR'3/4
streamwise extent of the influence of the trajling edge, as contended

by some authors, the second-order term in the drag equation is 0(R'1),

as shown by Imai (1957). The O(LR'3/4) region contributes a still
higher-order term, 0(R”5/4),to the drag equation. However, the basic
hypothesis of the triple-deck analyses of Stewartson (1969} and Messiter
(1970) that leads to a consistent description of the flow field is that
the streamwise region influenced by the trailing edge is O(LR'3/8). This
'7/8) in the finite flat plate drag
equation; thus it intervenes to become second-order in the expansion of
Imai (1857). This larger region also produces a term O(R_]), as well as
higher fractional-order terms, that will modify the constant derived by
Imaj (1957) in his consideration of the displacement effect of the
boundary layer over the semi-infinite flat plate using a momentum balance

) region were the entire

larger region produces a term of O(R

applied on a large circle centered on the leading edge. A review of
Imai's analysis and several additional analyses based on inverse half-
power Reynolds number expansions, as well as the additional controversy
concerning the multiplicative constant which appears in the R'1 term,
are contained in Van Dyke's (1964) book. The various values of the
constant are: 4.12 (Kuo (1953)), 2.326 (Imai (1957)), and 5.3 (Van Dyke
{1964)). Van Dyke proposes that the trailing-edge region can contribute
only a third-order term, proportional to R-3/2
it is sheltered by a relatively thick boundary layer, whereas the leading
edge is exposed to the freestream.

, to the drag equation since

Imai, I., 1957. Second approximation to the laminar boundary-layer
flow over a flat plate. J. Aeronaut. Sci., 24:155-156.

Kuo, Y. H.,, 1953. On the flow of an incompressible viscous fluid
past a flat plate at moderate Reynolds numbers. J. Math.
and Phys., 32:83-101.

Van Dyke, M., 1964. Perturbation methods in fluid mechanics.
pp. 121-146. New York: Academic Press.
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The controversy is resolved in this report by a numerical solution
to the fundamental problem of the trailing edge in the form of a boundary-
layer equation coupled to a Cauchy integral through the boundary condition
at the outer edge. The numerical integration of the skin friction
completely determines, to second-order, the drag on the plate. Thus

¢
D . L3es %

vepudL  RZ R

¢4 + ... (M

in which the leading term comes from Blasius' (1908} solution to the
boundary-layer equations, and the numerical factor is that determined by
Goldstein (1930), who elucidated the double structure of the near wake
and, in the same paper, used the notion of matched asymptotic expansions.
In the above equation, 0 is the drag caused by one side of the plate and
o is the constant density of the flow. In our study the constant d2 was
found to be 2.694., The drag predicted by Equation 1 with this value of
d2 has been compared with the drag from the numerical solutions to the
Navier-Stokes equations of Dennis (1973}, Dennis and Chang (1969), and
Dennis and Dunwoody (1966}. This comparison has confirmed the validity
of Equation 1 for a wider range of Reynolds numbers than could be
expected. The present results are only eight and one-half percent high
at R= 1! A comparison with the oil flow data of Janour (1951) has a
mean error of 1.5 percent, a maximum error of 7.5 percent, and a root
mean square error of 3.5 percent for Reynolds numbers from 12 to 2335.
This equation is the most accurate correlation of Janour's data known.

Blasius, H., 1908. Grenzschichten in Flussigkeiten mit kieiner
Reibung. Z. Math.Phys., 56:1-37. English translation:
NACA TM 1256,

Goldstein, S., 1930. Concerning some solutions of the boundary layer
equations in hydrodynamics. Proc. Cambridge Phil. Soc.,
26:1-30.

Dennis, S. C. R., 1973. private communication.
Dennis, S. C. R., and Chang, Gau-Zu, 1969. Numerical integration of

the Navier-Stokes equations for steady two-dimensional flow.
Phys. Fluids Suppl. 11:88-93,
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Detailed comparisons of the wake centerline velocity and overalil
pressure distribution are in reasonable agreement with the data of
Schneider and Denny (1971) for their single Reynolds number of 105.
Their method of solution used a separate numerical method in each of
three regions. The pressure-displacement thickness in an outer, potential
region was obtained by employing a source distribution of appropriate
strength on the displacement thickness such that the flow normal to the
displacement surface is zero. An implicit Crank-Nicholson type difference
analogue was used to solve the boundary-layer equations in a transformed
coordinate system which magnified the trailing-edge region. The second-
order boundary-layer solution was obtained by manually constructing
succeeding iterations using the transformed boundary-layer equations to
pbtain the displacement thickness which was input to the potential flow
program to obtain improved values of the pressure. The boundary-layer
solution provided the boundary conditions for the third, innermost region
in which the full Navier-Stokes equations were solved by an integral
averaging method. Schneider and Denny (1971) conclude that their
Navier-Stokes solution appears to match their second-order boundary-layer
soTution on a circle of radius about LR™/? for R = 10°.

Dennis (1973) has obtained numerical solutions to the Navier-Stokes
equations in elliptic coordinates for the finite flat plate. By fitting
his skin friction results at R = 40, 100, and 200 he finds a larger
trailing-edge region of influence that scales with LR~3/8
with Stewartson (1969) and Messiter (1970).

, in agreement

Plotkin and Flugge-Lotz (1968), using a numerical technique to solve
the Navier-Stokes equations in boundary-layer variables, als¢o have found

Janour, Z., 1951. Resistance of a plate in parallel flow at Tow
Reynolds numbers. NACA TM 1316.

Dennis, S. C. R., and Dunwoody, Jd., 1966, The steady flow of a viscous
fluid past a flat plate. J. Fluid Mech., 24:577-595.

Plotkin, A., and Flugge-Lotz, I.., 1968. A numerical solution for the
laminar wake behind a finite flat plate. J. Appl. Mech.,
90:625-630.
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the influence of the trailing edge to extend much farther than LR"3/4
in the streamwise direction. They attempt to find an improved first
approximation to the solution in a region approximately centered on the
trailing edge, thus the displacement thickness effect of the boundary
layer is neglected. As pointed out by several authors, their grid size
is larger than LR_3/4; it is not, however, larger than LR'3/8. Since
their problem is not the problem considered here, due to their neglect
of the displacement thickness effect, detailed comparisons would not be
valid. Qualitatively their results for the pressure, wake centerline
velocity, and skin friction are in agreement with the present results.

The relevance of the O(LR'B/B) scaling is implicit in the coordinate
straining of Goldberg and Cheng {1961) and is a consistent 1imit for the
Navier-Stokes equations as shown by Messiter (1970). Goldberg and Cheng
(1961), however, find the region of upstream influence of the trailing
edge is of U(LR'1/2) by the coordinate straining method and of O{(LR-1)
by their parabolic coordinaté solution. They conclude that neither

approach is likely to be correct since the estimates differ by O(LRZI/Z).

The results of Talke and Berger (1970) are, indeed, difficult to
reconcile with the present results., Talke and Berger (1970) have
employed the method of series truncation (Van Dyke (1964)) to ascertain
that the trailing edge influences an elliptic region of O(LR'3/4). The
boundary conditions 1in the near wake suggest an expansion for the stream
function which is substituted intoc the Navier-Stokes equations expressed
in parabolic coordinates and truncated at one or two terms. The Reynolds
number for each integral curve of the resulting fourth-order ordinary
differential equation must be determined by numerically matching, i.e.,

Schneider, L. I., and Denny, V. E., 1971. Evolution of the laminar wake
behind a flat plate and its upstream influence. AIAA J.,
9:655-660.

Goldberg, A., and Cheng, Sin-I., 1961. The anomaly in the application of
Poincare-Lighthill-Kuo and parabolic coordinates to the trailing
edge boundary layer. J. Math. and Mech., 10:529-535,

Talke, F. E., and Berger, S. A., 1970. The flat plate trailing edge
problem. J. Fluid Mech., 40:161-189.

5
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patching, to the Goldstein (1930) near wake centerline velocity, either
approximately, or exactly. The upstream influence of the trailing edge

is then determined, for the first truncation, by equating the resulting
skin friction to the Blasius skin friction to determine the point at

which the curves coincide. This procedure is not possible for the second
truncation since the minimum skin friction is always larger than the
Blasius value {or the value at the triple-deck trailing edge). Therefore,
it is assumed that the point of minimum skin friction determines the
upstream extent of the trailing edge region for the second truncation.

From their results it can be shown that the downstream extent of the
region of influence varies from R4 for R = 276, to R*62 £op R = 65,600,
as determined by the streamwise location at which the numerical solutions
are numerically matched to the Goldstein wake; while the upstream influence
'75. The first truncation predicts a
skin friction which, apparently, becomes smaller than the Blasius value
and the second truncation predicts a skin friction considerably higher
than the Blasius value. As the authors suggest, a numerical solution of
the third truncation might be useful in numerically matching the skin
friction if their sequence of truncations is convergent. It may also be
of value in reconciling the anomalous behavior since the larger value of

is, to a remarkable precision, R~

the skin friction predicted by the triple-deck analysis is now available.

The present method of solution utilizes the triple-deck coordinate
system of Stewartson (1969) to remove the influence of Reynolds number
from the trailing-edge problem. The boundary-layer equations of the
lower deck are solved by an implicit Crank-Nicholson type difference
analogue and an iteration procedure for the pressure gradient which is
related to the displacement function of the potential upper deck by a
Cauchy integral. Thus the boundary-Tayer equations are used to determine
the pressure from the displacement function and the Cauchy integral of
linear airfeil theory determines a new displacement function from the
pressure, a reverse of the boundary layer potential flow iteration
procedure of Schneider and Denny (1971). The present iterative method
is entirely automated and convergence is attained when the displacement
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function differs from its previous iteration by less than 10'4 at each
streamwise location. This iterative method eliminates any need for
numerical differentiation. Interpolation is not necessary due to the
use of a single coordinate system for both the boundary layer and
potential flow calculations.

The use of the linearized boundary condition and Cauchy integral
to compute the pressure-displacement function relationship in the outer
layer is justified to first order since the normal velocity is O(R"]/4)
and the streamline slopes remain small compared to unity. This point has
been reiterated by Messiter and Stewartson (1972) and Denny (1972).

Messiter, A. F., and Stewartson, K., 1972. Comment on "Evolution of
the laminar wake behind a flat plate and its upstream
influence." AIAA J., 10:/19-720.

Denny, V. E., 1972. Reply by author to A. F. Messiter and K. Stewartson.
AIAA J., 10:719-720.
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SECTION II
THE TRIPLE-DECK ANALYSIS

The triple-deck analysis, necessitated by the change in boundary
condition at the trailing edge, was applied to the finite flat plate
aligned with an incompressible freestream by Stewartson {1969) and
Messiter (1970). To the reader who is familiar with Stewartson's paper,
this section is a summary of his analysis with minor corrections included
here for completeness. The triple-deck and other multi-structured
boundary-layer analysis methods have subsequently been applied to many
separating flows. A complete review of this subject is forthcoming,
Stewartson {1974).

As shown on Figure 1, the triple-deck region intervenes between the
region of validity of the Blasius {1908) solution and the region of
validity of the Goldstein (1930) wake solution. Its purpose is to
remove the discontinuity in the vertical velocity of the wake solution
as the trailing edge is approached from the downstream side. The lower
deck corresponds to Goldstein's inner viscous wake which arises from the
change in boundary conditions at the trailing edge. The boundary-layer
equations apply in the lower deck and the upstream influence of the
wake is not permitted due to the parabolic nature of the boundary-layer
equations. The main deck corresponds to Goldstein's essentially inviscid
outer wake which is the inviscid continuation of the Blasius solution.
The upper deck is additional to the Goldstein solution and is reguired
to account for the displacement effect of the wake. The flow in the
upper deck is potential and permits the upstream influence of the wake
through the elliptic nature of the governing equations. Thus the upstream
influence of the wake is felt in the parabolic lower deck through the
elliptic nature of the upper deck.

Stewartson, K., 1974. Multi-structured boundary layers on flat
plates and related bodies. In preparation.
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The ensuing notation is that of Stewartson {1969) with the two
exceptions that R is used for Re and L replaces its lower case script
version. Following Stewartson's analysis, we define a physical,
rectangular Cartesian coordinate system, Ox*y*, centered at the trailing
edge with velocity components u* and v*; u* and x* to be aligned with the
freestream, U_, and y* and v* which are normal to the freestream and the
plate extending a distance L upstream in the negative x*-direction.
Additionally, p* is the pressure and ¢ is the inverse one eighth power of
the Reynolds number.

The streamwise extent of the triple-deck, or intermediate region
between the region of the Blasius (1908) solution and the Goldstein
" (1930) wake region is x* = 0(Le3). Various length scales for this
intermediate region may be envisioned and tried; however, the Le3 scale
has been demonstrated to Tead to a consistent description of the flow
field in the trailing-edge region. The upper deck, of length O(LES) in
the y*-direction, protrudes above the conventional boundary layer and
wake to account for the displacement thickness perturbation induced by
the lower deck, where y* = O(Les). The lower deck is required to reduce
the slip velocity at the Tower edge of the main deck to its value on the
plate, zero. The main deck, which is essentially inviscid and relatively
passive, is O(Le4) in y* and must match the upper and lower decks as well
as the streamwise component of the Blasius solution upstream and the
Goldstein outer wake downstream of the trailing edge.

We now define dependent and independent variables which emphasize
the physics of the flow field in the various layers or decks and proceed
to set up the boundary conditions to which the expansions must match.
Define x, u, v, and p by:

A% = Lx, u* = Ugu, v* = U_v, p* = p,, +puip (2)
in all three decks and Y, y, and z by
y* = €LY, y* = €'Ly, y* = €Lz (3)

in the upper, main, and lower decks, respectively.

10
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Upstream of the trailing edge, x - - « and the expansions in the
various decks must match the streamwise component of the Blasius solution,

U,(y), where Uo(y) = wé(y) and y, satisfies the conventional Blasius

equation

Ve WY, = 0,¥%t0) =Y, (0) = 0, ¥, (=) = | (4)
with y as the independent variable. The upstream boundary conditions
for the main deck, y fixed, are

u—> Uyly} +0(e®), v —> 0le*) and p —» Oleh), (5)

the 53 term in u arising because the full Blasius solution depends on
the square root of L + x* as well as y*. Above the entire triple-deck,
Y + e, x s fixed, and the perturbations due to the overall displacement
thickness of the boundary layer are 0(54) and

u—> | +0(e?), v— 0le®), p > OleY) (6)

This boundary condition will necessitate the introducticn of the upper
deck.

Proceeding along the centerline ¥y = 0 the boundary conditions
are

u=v=0,Ifx<0,andv=20udy=0,if x>0 (N
which will necessitate the introduction of the Jower deck when x < 0.

The three-layered structure is also evident in the boundary
conditions downstream, i.e., the near wake. The double-structure of the
near wake was first elucidated by Goldstein (1930), who assumed the
pressure to be constant throughout the trailing edge region and that a
Taylor series expansion of Uo(y) remains valid to the trailing edge,
j.e.,

Uply) = oy + o4y‘ + o-,yT + - (8)

where

e, = 0.3321 = X, (9)

1
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Assuming an expansion of the form
_ * a * a3 . 0
v b (5 e Yy e o 00)

for the inner wake, he found f0 must satisfy

LI

(0 21" 1.2 20, 1,000 = 1) = 0, t) 7*” —>180, 0z P ¥ —> e (11)

where
n* = y*/3€4 (21_2,_*)'/5 = y/3¢ (2:)”'3 = 213(211'/3 (12)

Examining the structure of Equation 10 for large n*, Goldstein found
that in the outer wake u may be expanded in the series

- at 1/3 x* 2/3 L 13
uEUgly) + 15V Uty 0GR Upty) 4 (13)
where each of the Un values is related to a derivative of Uo'
2
du d“u
2 Q
Uply) =8 =% 1 Uply) = ¥ 8 7 (14)

etc., where 6] = 2.0448.

The downstream boundary conditions (x » =) for the triple-
deck are: v > 0(54) and p ~ 0(94) in all three decks while

W= £ ()3 1 (M +0teh (15)
when n* is finite,
u—>Uply) + &35, %‘;’Ewtez) (16)
when y is finite, and
u—>t + Ole?) (17)

when Y is finite,

On the plate, the main deck will require the introduction of the
upper deck to satisfy the boundary condition, Equation 6, and similarly,
the lower deck is required to satisfy Equation 7. To see this, we
substitute the expansions

12
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ulx,y) = Ujly) + ey (x y) + o tx,y) + - - - (18)
_ .2 3

vin,y) = € (x,y) + €vylx,y) +- - - {19}

plx,y} = €p {x,y) +epytx,y) + - - - (20)

into the Navier-Stokes equations in x and y.

From the power 5'3: aplfay =0,

2, %y %

x Tay °

€

(22)
v, dUp du, du, dp,
T e TN TN T T

In order to enforce & consistent matching between the upper and main
decks, it is necessary to set

By = O. (23)

The validity of this assumption will be demonstrated by the self-
consistency of the expansion. Otherwise, a physically unacceptable

cause external to the triple-deck would drive the first-order perturba-
tions, Equation 21. Alternatively, Messiter (1970) obtains the same
result by expanding the pressure and stream function in terms of
arbitrary gauge functions and determines the largest terms in the Navier-
Stokes equations when the streamwise coordinate is stretched by an amount

greater than R]fz.

13
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The solution to Equations (21) is

u = A (x) dUp/dy, v, = -A) (x) Uply] (24)

where
A {x)—> 008 x> - w (25)
and
Ay x) = Sll—ﬁ-)l/a —>0as x —»w

from the boundary conditions, Equations 5 and 16. As y + «, Uo(y) + 1
and vy = —Ai(x), thus Teading to the downward displacement effect on the
upper deck.

Stewartson also obtains a solution for Equations 22; however, here
it is only necessary to note that, since Ué and US‘ + 0 as y » =, Uy > Py.
Therefore, for y + «, the main deck expansions have the form

u—>| - ezpztu! +0te®)
v> - € A (1) + 0l (26)

p — e paix) +0ted)

and cannot satisfy the boundary conditions given by Equation 6,
necessitating the introduction of the upper deck.

The flow in the upper deck is inviscid and irrotational and x and Y
are 0{1). The appropriate expansions are:

= |4 € Uplx,Y) +€ Uglx,Y) +- -

€2 Vpix,Y} + 3 Valr, ¥} + - - - (27)

<
1]

1]

p € Pplx,Y) + € Pylx,Y) + - - -

where the Un and Vn are complex conjugates since the flow is potential
and satisfies Laplace's equation. Matching with the main deck as
y > = and Y + 0 produces

14



AFFDL-TR-74-46

Upix,0) = = paix), V,(x,0) == A {x), Py {x,0) = pylx). (28)

The pressure-displacement function relationship in the upper
deck may be obtained using the properties of harmonic functions
{Stewartson) or, equivalently, from linear airfoil theory {Messiter)
as the skew-reciprocal Hilbert transformation

= A {x,) dx
S B e N L B I (29)
Paix) =4 !.. X - X,
This equation and the assumption Py = 0 must be satisfied to accomplish
the match between the potential upper deck and the essentially inviscid
main deck.

The necessity for the lower deck becomes evident when the main deck
expansions are examined for y + 0. By substituting the Taylor
series for Uo(y) in Equation 8 and Equations 24 into Equations 18
and 19, and obtaining Vo from Equation 22 as y - 0

[Ay + 0ty +€Dha, tx) + 0ly®] +0ted) + - - - (30)

v -cz[XyA'.hl +olyY)] + 13[-A|A'|h-)\" Po (x)) 4 -+ (31)

and u# 0 as y - 0 as required by the no siip boundary condition on
the plate. To remedy this problem, the lower deck, where

vz €T ix,2) + € Wyln,2) +- - - (32)
vee ¥ izl 4+ Vi, (33)
p = €2 P ix,2) + P Polx,z) + - - - (34)

must be inserted. The conventional boundary-layer equations result
when these expansions are substituted into the Navier-Stokes equations
in x and z.

15
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T, /dx + 8% /32 = 0

W, OU /O + ¥, O, /dz = -0p;/On+ %% /3P

(35)
0 =a'|3"./az
Since ﬁ1 is independent of z,
B x,2) = Palx,0) = ppix). (36)
The boundary conditions along z = 0 follow from Equation 7,
U =V, =01t x<0,V =00,/0z=01t x >0, (37)
Upstream, G1 + AZ to match with the Blasius solution for small y as
x » - o, while downstream x + « and
3 ., *
LR A AN T M (38)

to match with Equation 15, the Goldstein inner wake solution. As z + =,
the lower deck must match with the main deck as y + 0 so

U - Az—=>AA (x) (39)

since fé (n*) +~ 18 A n* as n* +» from Goldstein's (1930) solution.

The problem can now be reduced to a more universal form by scaling
the variables to remove the constant A. The fundamental problem of the
trailing edge results when the affine transformation

x = X372, 2 = X3z, %, = N Puix,2)
- 33/4 R _ 3y 1/3
% = A,z pr = N By g = A2 g ) (40)

oy = A2Rix), A 1) = X3 a0

is applied to the previous equations.

16
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The problem is5 the existence of a physically acceptable solution of
the boundary-layer equations

QU LV .o yQY 4 yQu. _ ep % (41)
ax 092 ox 9z dx 022

with boundary conditions

U=0,vV=0o0nZ2=0,X<0

=0,0U0Z=00nZ=0,X>0

<
1

Z—0,P—>0as X —>-» (42)

c
1

c
]

Z-AlX) =008 2 >

P—>0,u-L(X)H

33 g;(‘ql—->0usx-—->r=rﬂ

where P{X) and A(X) are related by the Hilbert integral

L[ 43)
P(xl=‘f_fw XX, (
Furthermore from Equation 18 and the boundary conditions, Equations
5 and 16,
A(X) —> O as X —> -~w , AlX) ~> 0.8920X"* os X —> = (44)
and from Equations 15 and 40, 9% satisfies the first-order
Goldstein wake equation
9" +299, - 9,2 = 0, g 101 = g;' (0} = O
9, (0) = 7.6715, g in}—> 9 L7 +0.2360) 0s 7 —> . (45)

To solve this problem originally posed by Stewartson (1969) is the
purpose of this report. The numerical computations reported in the
succeeding chapters will demonstrate that the answer to this question is
affirmative.

17
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From the coordinate transformations, Equations 3 and 40, and the
lower deck expansion, Equation 32, the skin friction is

du* v\ pudA _du - 4
raE| el - eowem U0
y*=0 2=0

where the first and last terms on the right-hand side are the Blasius
value to 0(57). An integration along the plate produces the drag
coefficient for one side of the plate

47 2 fo[JﬂL

- ~]
Dt L azl 1] ax + 0(R™). (47)

2zQ

Cd =

The following numerical procedure has determined the value of the above
integral, subsequently labeled By by Stewartson (1874), to be 1.021.

Prior to proceeding to the numerical analysis it is necessary to
determine the asymptotic structure of the velocity, pressure, and
displacement thickness for |X| + « for use in the Hilbert integral
subprogram.

To determine the asymptotic structure of the pressure it is only
necessary to note that P{X) and A'(X)} are complex conjugates from the
harmonic property of U2 and V2 in the upper deck. Thus

1.784

W if X< O (48)

P(X) ~ ~

and
0.892

since

' 0.892
A(X)~;Té7§lfx>0 (50)

18
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and

A'(X)~0 if X< O {51)

from Equation 44. The leading term in A(X) when X is large and
negative can be determined by substituting

1

us=z+ 1784 |x|™ R o+ (52)

=-2.248 [x|"3 (2r, + nEY 4. . - (53)
into the boundary-layer equation with the result:

F'' - 1892 F" -36(nF - F) =-1.833
F{0) = F(O) = 0,F ' (n}—>0a M—> e, X large. (54)

The solution to Equation 54 may be represented in terms of the confluent
hypergeometric functign or its integral representation as shown by
Messiter (1970) and Stewartson (1969). Here the solution was obtained
numerically in order to obtain the initial velocity profile required to
integrate the boundary-layer equation. The results are the same:

F,’' (O) = 0.6580, F; {=) = 0.1830 (55)
so that when X is large and negative

| _,, 03106

0.3265
=14 4. -5 Alx) = 23265 56
9Z |z=0 Ix]4* ; (56)

IX|

Similarly, when X is large and positive, the form of A(X) must
be determined from the boundary-layer equations. On substituting the
expansions

' M - 1
u=1 (57 g m + (BT e (57)
poLox Ve . x ~n/3 . (58)
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Also, to avoid a contradiction in the pressure expansion,
Go~ 18N\ —>0as > =,

The solution was found by Hakkinen and Rott (1965) and rechecked
numerically here. Thus,

6, 0) = 312X)%/* (0.8991) (1)
and
c, = A,*/3 [0.4089]. (72)

Stewartson then reaches the following tentative conclusions which
the ensuing numerical analysis will demonstrate to be guite accurate.

1. The skin friction is finite as X + 0- and l] > 1.

2. U(x,0) = 0.8991 A, %3 x1/3 4 0(x®/3). (73}

3. P(X) = P+ Py X+ 00X log (-X)] (74)
when X < 0 and

a. p(x) P+ 0.6133 1,3 x¥/3 4 0(x)
when X > 0,

where P0 is a negative constant and P1 is also a constant.

Far the convenience of the reader, the constants have heen determined
by h2-extrapo1ation {Beckenbach (1961)) of the present numerical data to
be A1 = 1.343, P0 = -(.388, and P1 = -0.278.

Hakkinen, R. J., and Rett, N., 1965. Similar solutions for merging
shear flows II. AIAA J., 3:1553-1554.
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The match with the central region where x* and y* are O(EBL) will not
be undertaken here since yet another region where x* and y* are 0(e4L)
intervenes and the elucidation of its properties will have to await
further study. Its properties are not required for the determination
of the largest perturbations which occur in the present 0(53L) region.
Throughout this analysis it has been tacitly assumed that € << 1T or R >
1; however, the data comparisons will show that the present theory is a
accurate for R + 1, This unexpected result also somewhat negates the
requirement for higher-order terms.
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SECTION IIT
THE NUMERICAL PROCEDURE

The computer program used in this study evolved from a boundary-layer
program developed by Burggraf (1969). The essential elements of the
final program will be described here. The details and the evolution of
the program occupy towering catumns of printer paper and over three years
of analysis. All computatiohs have been carried out on a CDC 6600 digital
computer.

The main program consists of three main {teration loops as shown on
Figure 2. Within this program, two subroutines are required. One
subroutine, indicated by the upper Targe rectangle of Figure 2,
iteratively computes the boundary-layer velocity profiles of the Tower
deck using an implicit Crank-Nicholson type of difference analogue. The
other shbroutine, indicated by the lower large rectangle of Figure 2,
computes the Hilbert transformation of the pressure which is the slope
of the displacement function, A{X}. As shown, the innermost of the three
loops adests the pressure gradient at a given streamwise station until
the boundaryéiayer subroutine produces a velocity profile with the
desired A(X). The middle loop provides the correct boundary conditions
and advances the computation through its streamwise course and the outer
loop compares displacement functions, A(X), resulting from successive
streamwise traverses through the entire lower deck until the solution is
obtained. Discussion of the subroutines will be deferred until their
reTationship to the main program $s delineated.

A1l computations have been performed in the X, Z coordinate system
of Equation 40. The streamwise interval must be symmetric about the
trailing edge X = 0 and divided into an even number of equal increments
of Tength AX. Intervals extendfhg from -3 to +3, -6 to +6, -9 to +9,

Burggraf, 0. R., 1969. Computation of separated flow over backward-facing
steps at high Reynolds number. In Proc. of the 1969 Symposium
Viscous Interaction phenomena in supersonic and hypersonic flow.
pp. 463-491, Dayton: Univ. of Dayton Press.
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Input A'(X)
Compute P(X)

(nput initial

veiocity profile

Compute boundary-layer

valocity profile from

PX). AlX)=U-2Z,

P'= F‘OIH +5AA

Advance the
boundory
conditions

A(X) &P(X) sotisfy

__________ the boundory -tayer

Compute A’(X)
from P(X)

A(X}= .BAold +, 2An”

via the
Hilbert transformation

Figure 2.

A(X) & P(X) satisfy the

boundary -layer equations
and the Hilbert transfor-
mation for all X

equations at X

A(X) & P(X) satisty
the boundary-layer
equathions for all X

A Flow Chart of the Main Program
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and -12 to +12 with AX = 0.1, 0.05, 0.025, and 0.0125 have been employed
to ensure the accuracy of the computations. The Z or normal coordinate
direction is also divided into an even number of equal increments of
length H. The thickness of the layer is l1imited by the computational

time required and Z, = 6, 8, and 9 have been used with increments H =

0.1 and 0.05. A finer grid or a thicker layer would reguired prohibitively
long central processor time. The shortest run {20 minutes, 21,000 central
memory locations) which produces reliable, accurate results was found to
be the case where -6 < X < 6, 0 <Z < 6 with AX =0.05 and H = 0.1. Al]l
subsequent numerical investigations were performed to determine if various
changes would improve the accuracy of the above case. -

1. INPUT DATA

The boundary-layer equations are parabolic and reguire that the
initial velocity profile and the boundary conditions along the streamwise
edges are prescribed. The downstream velocity profiie cannot. be pre-
scribed and serves as a check on the computations. '

The initial velocity profile is required to initiate the boundary-
layer computations during each cycle of the outer loop and ultimately
affects the final solution. The initial velocity profile for X large
and negative has been obtained for the various H step sizes by numerically
integrating Equation 54 using Hammings modified predictor-corrector
method (Ralston and Wilf (1960)) and substituting the results into
Equation 52. The velocity profile, magnified by the subtraction of the
linear portion, is presented in Figure 3. It should be noted that as
Z + 9 the profile becomes vertical indicating that the boundary condition
given by Equation 42 is not being enforced prematurely. The initial
velocity profile has been checked by comparison with the velocity profile
resulting from the computations 1nitiated further upstream {see Appendix

I).
The final set of input data required is an estimate for the dis-

placement function, A{X), or the pressure, P(X). Either can be
calculated from the other by the skew-reciprocal Hilbert transformation,
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Figure 3. Initial Velocity Profile at X = -6
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Equation 43. Both are required to start the three main loops as shown on
Figure 2. Presumably, any reascnable guess would suffice; however, the
closer the guess is to the final solution, the shorter is the running
time required. Realizing this, a function of the form

A {X) = —2-—|-—2- + c,x"" exp (CyqX) X<0
: C3 + X
and . | (76)
/3
L CQ C7x2 cﬁ
A (X} = 575 x>0

ct+x? ¢t x*® cff +x

was déve]oped by modifying Messiter's first guess for the form of the
slope :of the displacement thickness to agree with the asymptotic
behavior predicted by Equations 56 and 62. Messiter's values for the

C1 weﬁe: 51 = .327, C2 = 1.142, C_3 ==-.594, Cq ™ 3.00, C5 = .624,

C6 = 1.580, C7 = ,297, and CB = 1.00. Messiter (1970) did not include
the térm containing C9 and C10, thus effectively his Cg = 0. Here: C, =
.3265;~C2 = 1.011, C3 = -.4511, C4 = 1.500, C; = .6054, Ce = 1.7921,

C7 = 13924m‘cs =.1.100, C, = .1308, and C]0 = 1.000 were used.

9

Aﬁ_estimate for the pressure gradient is also required as initial
data as shown on Figure 2. It is readily obtained from the numerical
differentiation of the pressure resulting from the Hilbert transformation
of Equgtion 76. Figure 2 also shows that one cycle through the middle
Toop generates the pressure required to satisfy the‘boundary?1ayer
equations for the A(X) given by the numerical integration of Equation 76.
Thus, at the end of one cycle of the program, one pressure curve satisfies
the Hilbert transformation and the other satisfies the boundary-layer
equations. The Ci given above for Equation 76 were determined by a
comparison of the two pressure curves. Many divergent attempts were
required to develop the final convergent numerical procedure. They
were not entirely useless since each afforded the opportunity to compare
the pressure curves and adjust the C1 using data from prior unsuccessful
runs to determine the trends in the pressure curves with respect to the

Ci' Figure 4 compares the two pressure curves, the one that satisfies the
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4

10

== Hilbert Transformation

== Boundary Layer

Figure 4. Initial Estimate for the Displacement Thickness
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Hilbert transformation and the other that satisfies the boundary-layer
equations. The comparison shows that the pressure curves are in fair
agreement which indicates that Equation 76 provides a good starting
approximation for the final iteration procedure.

Theffina1 iteration procedure has been shown to converge to the same
solutiobhqsing either Messiter's form or the revised form of A'(X) as
input data. A 22 percent increase in.computational time is required
using Messiter's form of A'(X) due to the additional iterations required
for convergence, however,

2. THE MAIN PROGRAM

The main program, shown in Figure 2, is comprised of three nested
loops which utilize the preceding input data to produce the solution.
The middle Toop performs the necessary bookkeeping tasks of selecting
correspdnding values for the streamwise station X, the pressure gradient
P(X), the displacement thickness A{X), and the previous velocity profile
for the inner loop from the input data arrays.

The'brob1em,addressed by the inner loop of the main program is to
solve the boundary-layer equations of the lower deck for that pressure
gradient. P'(X) which will produce the requested edge velocity, Ue,-ahd
thereby A(X) = Ug - Zg with Z, fixed. The method of solution is to
compute the velocity profile using the iterative boundary-layer subroutine
with the input P'{X), determine the difference between the computed A(X)
and the requested A(X), then use this difference to correct P'(X) until
the desired A(X) is achieved to within 10_5, the inner Toop error tolerance.
Symbelically, P'(X)new = P'(X)01d + AA(X)/(dA/dP') where dA/dP' = dUe/dP'
for fixed Ze‘ The problem therefore is reduced to the determination of
dUe/dP'. The solution was obtained originally by differentiating the
boundary-layer equation with respect to P'(X) to obtain a partial
differential equation for 3U/3P'. This equation was then numerically
integrated across the boundary Tayer in order to obtain dUe/dP'. This
subroutine and the similar boundary-layer subroutine each had to be
employed during each cycle through the inner loop. After several runs
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and considerable data analysis, it was determined that the optimum
dUe/dP' is nearly 0.2 for all X. The inner Toop will converge more
slowly if other values of dUe/dP' are used. This discovery permitted the
removal from the inner loop of the entire time-consuming subroutine and
its attendant bookkeeping and reduced the run time to a manageable figure.
After several iterations, depending upon the streamwise station, the
program exits from the inner loop with the P'{X) required to produce the
requested A(X) to within .000071, and proceeds stepwise downstream via

the middle loop. At the completion of the middle loop, the P'(X)
required to produce the requested A{X) has been determined for all X.

To determine P(X) the pressure at the initial station must be found.

The first-order term is known; from Equation 64, however, the second and
fourth terms contain the unknown constants b] and d]. The stope of the
displacement function A(X) may be changed by shifting the entire pressure
curve by a constant value since the Hilbert integral of a constant is
another constant for the finite limits necessitated by computer storage.
Upstream A(X) is known to O(Xz) from Equation 56 and therefore A'(X} 1is
known through O(XZ). Thus, the pressure curve can be computed using an
initial pressure shifted such that A'(X) is correct through O(Xz) at the
initial point. Alternatively, a value of b] could be obtained from the
values of A(X) or U(X,0) from the previous iteration using Equation 62 or
Equation 63 and then used to determine the initial pressure. Both methods
were tried; the former was selected since the overall convergence was
considerably improved without significantly affecting the final results.
Enforcing the correct asymptotic behavior of A'(X) effectively damps the
oscillations which occur during the iteration cycles. A study of the
effects of the pressure shift has been relegated to Appendix II. Thus,
the pressure that satisfies the boundary-layer equations is generated

in the middle loop.

The outer Toop now computes the A'(X) corresponding to the new P(X)
from the Hilbert transformation subroutine and, since the initial vailue
of A(X) is known to O(Xz) from Equation 56, a new A(X) can be obtained
by the trapezoidal rule. Comparing the new A(X) with the A{X) from the
previous iteration determines if the program has converged. If not, A(X)
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is replaced according to the formula

AIX) = KA {X)otg + (1 =K} A(X)paw (77)

and the outer loop re-initiates the streamwise traverse of the lower deck
until the differences between‘succeeding A{X) iterations is less than 10'4.

It has been found by trial and error that K = 0.8 will produce a
convergent iteration scheme. The outer Toop will also converge with
K=0.90r K=0.7 but K= 0.8 is the best of these three values. The
outer loop will not converge if K = 0.5 or K = 0.

3. THE HILBERT TRANSFORMATION

‘The range of the Hilbert integral extends from negative infinity
to positive infinity. The integrand is singular at the point under
consideration. The functions A'(X)} and P(X) are slowly approaching zero
at both ends of the range and P(X) must contain a zero within the range.
Additionally, it is highly desirable that the method use data at the same
streamwise locations as the input data and the boundary-layer subroutine
and return the pressure or displacement thickness results at the same
streamwise locations. This feature eliminates the requirement for time-
consuming data fitting and interpolation to adjust the output from the
subroutines to be compatible with the main program. A1l these require-
ments present a formidable numerical problem.

Fortunately, the asymptotic expansions for large |X| are known for
A{X), given by Equations 56 and 62, and P(X)., given by Equations 64 and
65. The first two terms of these expansions have been integrated in
closed form using the substitution 3= X1/X and the method of partial
fractions {Equation 80, see below). Integrals of this form may also be
found in Petit Bois (1961). The limits extend from minus infinity to the
point where the numerical integration begins or from the point where the
numerical integration terminates to positive infinity, whichever is

Petit Bois, G., 1961. Tables of Indefinite Integrals. pp. 8-9
New York: Dover.
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applicable. This effectively splits the range into three parts and
reduces the doubly-infinite range Hilbert transformation to a finite
range Cauchy integral plus closed form expressions which account for the
infinite portions of the range where the respective expansions are
applicable. The origin X = 0 must alsc be treated separately to ensure
that the expressions do not contain functions or function arguments

that tend to an undefined 1imit. The remaining finite-range Cauchy
integral has been treated analytically by subtracting the singularity
from the integrand {Davis and Rabinowitz (1967)). |

We now consider the computation of

, . PIX)dX,
A(X) =~ 'l; -—;:;T——
the skew-reciprocal inverse of Equation 43 (Titchmarsh {1937)) to
illustrate the method. Considering only the first terms of Equations
64 and 65 (the second terms may be reduced to the same form plus an
elementary form by partial fractions), Equation 78 becomes

: ()

R fo ax WL fe P(X,) dX,
Yot (x)¥3(x-x) T8 XX
(79)
K f“ dX|
Yo )% (x-x,)
1/2

where K =-0.892/m3 and the 1imits a and e are arbitrary, but large.
The center portion of the integral is evaluated for each outer iteration
using the following numerical integration procedure. It is evident that
by considering various endpoints for the center integral, the accuracy of
the approximations for the outer portions of the range may be assessed.

Davis, P. J., and Rabinowitz, P., 1967. Numerical integration.
pp. 72-80. Waltham, Mass.: Blaisdell.

Titchmarsh, E. C., 1937. [Introduction to the theory of Fourier
integrals. pp. 119-151. London: Oxford.
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For X = 0 the integrand is X{5/3 dX; which is readily integrated. More
generally, the substitutions t3 = X1/X and t3 = X}/(-X) when X < 0 and
t3 = -X1/X and t3 = X]/X when X > 0 will reduce the integrands of the
first and last integrals of Equation 79 to the form dt/(1 = t3). The
antiderivative has the form

2 2
£ 100 —é't—l)— + ¥ arctg 23+tt (80)

t° 2t +1

which remains finite at the infinite limits.

The integrals of the asymptotic expansions of A'(X) are evaluated in
a similar manner and the range is segmented in an identical manner to
ensure compatibility with the main program.

The center portion of the integral is performed by subtracting the
singularity, whether or not A'(X) or P{X) is in the integrand. The two
subroutines differ in the analytic expressions which account for the
infinite portions of the range. '

The singularity in the integral is removed by subtraction,

thus,
® P(X,)dX, & P(X)-P{X)dX, & dx,
Al I AT AANEA hulal B 8
j; X,-X j; X,-X + P(X) ‘{ﬂ X|‘x ( ])

Splitting the range about the point X, symbolically

- X+
€ p(x,}dX, X 8 PIX)-PIX) e-X
PXX, 7L L PXO-PO 22X (e2)
J; X,-X -]; J. -’;4- X,-x Xt PiX)eg o

The first and third integrals are nonsingular and the trapezoidal rule
has been employed for their evaluation. Assuming the integrand may be
expanded in a Taylor series about X the center integral,
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X+AX P(X,)-P(X)

dx, = 2AX P'(X)+ 0(AX®) (83)
X-AX X-X

which may be evaluated using any standard differencing method for P'{X).

In order to assess the accuracy of this numerical method a second

method for treating Cauchy integrals {Collatz (1961)) was used along

with three of Van Dyke's (1959) airfoil integrals. The results of the

evaluation contained in Appendix I, demonstrate that subtracting the

singularity is the more accurate of these methods for treating Cauchy

integrals.

When X is at either of the endpoints of the finite numerical range,
a or e, the above numerical procedures do not apply. The method of
computing the integral at the endpoints consists of allowing the limits
of the integrals of the asymptotic expansions to overrun the singularity
at the endpoint by AX and performing the remaining nonsingular numerical
portion using the trapezoidal rule. Thus, the endpoint singularity is
contained within the range of the integral of the asymptotic contribution.
The precedure of merely ignoring the singularity within the range of a
Cauchy integral has been justified by Mangler (1951).

The skew-recipracal property of the Hilbert transformation permits
the simultaneous error analysis of both the P(X) and A'(X) subroutines.
One subroutine computes A'({X) from P(X) by assembling the appropriate
expressions for the integrals of the asymptotic expansions of P{X) and
the above numerical methods. Particular attention is reguired to ensure
that each method is employed only within its range of validity, i.e.,
X=a, X<0, X=0, X>0, or X=-e. The other subroutine computes the

Collatz, L., 1966. The numerical treatment of differential equations.
pp. 508-509. New York: Springer-Verlag.

Mangler, K. W., 1951. [Improper integrals in theoretical aerodynamics.
RAE Rept. Aero. 2424.

Van Dyke, M., 1959. Second-order subsonic airfoil theory including
edge effects. NACA Rept. 1274.
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pressure, P(X), from A'(X) by the same procedure utilizing the
appropriate expressions resulting from the integrals of the asymptotic
expansions of A'(X). Subsequent error analysis and programming checks
were facilitated by the skew-reciprocal nature of the subprograms which
were combined in a short flip-flop program. This error analysis, using
Messiter's (1970) form of A'(X), is contained in Appendix I. The error
analysis of the present converged numerical results is reported in the
following discussion of the results.

4. The Boundary-Layer Subroutine

This is the most standard of the subroutines in the entire program,
yet the most crucial since it is required several times during each cycle
of the innermost loop. This subroutine solves the boundary-layer
equations of the lower deck, given by Equation 41 as

sV g__ u . _dp 3%
tazT oYYzt Tt e

Qaiq,

by an iterative procedure and thus constitutes another loop within the
inner loop {See Figure 2) of the main program. The boundary conditions
are given by Equation 42 as

U=0,v=00on2Z=0,X<0,
V=0,0U/0Z=0o0nZ=0X>0,
and QU/BZ—~las Z —~ =, (84)

The pressure gradient and the velocity profile at the previous streamwise
station, X - AX, are required as input data to compute the velocity
profile U{Z) at X.

The introduction of the stream function and the application of the
Crank-Nicholson differencing scheme to the boundary-layer momentum
equation results in a matrix equation of the form

Ej! Cijuyy =R;. (85)
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The Cij matrix is tridiagonal with elements that contain the initially
unknown Uj as shown in Appendix III. This matrix equation was solved by
employing modified Gaussian elimination with back substitution (Richtmyer
and Morton (1967)) and the continuity equation to update the stream
function during each cycle. Convergence was achieved in 10-20 cycles
when the successive velocity profiles were within the specified error
tolerance, 10'6. A more efficient boundary-layer subroutine using Newton
iteration could have considerably reduced the computing time required,

since this iteration is within the inner loop of the main program.

The boundary conditions are enforced by prescribing values for
specific elements of the matrix or vectors. For example, with the
representation of Eij by its elements

Bj Uj4 TV + A5 Uj- = R; , (86)
the boundary condition 3U/3Z = 1 requires that Aj = -1 and Rj = -H at

the outer edge. The boundary condition on the wake centerline, 3U/3Z =
0, was enforced by requiring that B] = -1 and either R] =0 or

2 Au
- _H —_t ¢ 87
The formulas for the Aj, Bj, and Rj are contained in Appendix II1.

The effects of the higher-order form of the boundary condition given
by Equation 87 and the accuracy of the subroutine in general were
assessed by the momentum-integral method. Integrating Equation 41 across
the layer,

otu§e 0)/0% - A (XIF(Zq) - ZeP' (X) + 1 - dusdz| =0 (88)

Richtmyer, R. D., and Morton, K. W., 1967. Difference methods for
initial-value problems. p. 191. New York: Interscience.
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2
Ze

and F satisfies the continuity equation. Equation 88 is satisfied by
the velocity profiles resulting from the boundary-layer subroutine to
better than one percent over the majority of the streamwise extent of
the layer. The maximum momentum imbalance may reach nine percent of the
value of the first term of Equation 88 at the point immediately aft of
the trailing edge; however, it diminishes to less than one percent four
points downstream. The nine percent error in Equation 88 amounts to an

where U5 6 = - Ige U(U-UZ Mz, Ze is the value of Z at the outer edge,
e

error in the fourth significant figure of the velocity, which is
consistent with the numerical procedure. These errors are slightly
increased for the boundary conditicn R1 = 0, consequently Equation 87
was used for the wake boundary condition during the final data runs.

Additionally, many known solutions of the boundary-layer equations
were employed to ascertain the accuracy of the boundary-layer subroutine.
Rosenhead (1961) has tabulated the Blasius velocity profile to six
significant figures and the velocity profile for the boundary-layer flow
along a cylinder near the forward stagnation point to seven figures.

These solutions afforded an excellent opportunity to check the numerical
method. In particular, it was found that agreement to five significant
figures could be obtained with a velocity profile error tolerance of 10"6.
Diminishing the error tolerance to 'IO'g did not significantly improve the
results for the same mesh. It did, however, increase the number of
iterations required for convergence from 13 to 21. All succeeding
results were obtained with a 107°

for this reason.

error tolerance on the velocity profile

Further, agreement to the number of significant figures reported
with the data of Rosenhead (1961) for several Falkner-Skan flows and
convergent channel flow was obtained. For the adverse gradient Howarth

Rosenhead, L., 196]1. Laminar boundary layers. pp. 222-281
London: Oxford.
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flow, U= U_ (1-X*/L), the point of vanishing skin friction was computed
to occur at X*/L = 0.12, in agreement with the data reported by Rosenhead
{1961) of Howarth (X*/L = 0.12) and Leigh (X*/L = 0.1198). The mesh

size was AZ = .025, AX = 0.005 and the outer edge of the boundary layer
was at Ze = 4,

A test flow of special relevance was the computation of Goldstein's
wake function, fo’ from Equation 11. The present results differ from
Goldstein's (1930} by less than the 0.5 percent at n = 0 and less than
0.05 percent at n = 1.4. Goldstein's resulits are probably the more
accurate since he employed a smaller step-size and higher-order of
accuracy integration method.

Concluding this section of treating the numerical procedure, we
reiterate the way in which the 1imits on the entire program arise. The
overall computations are Timited by the central processor time required.
Central memory storage requirements are not a limiting factor. The bulk
of the computing time is required by the inner loop because it contains
the iterative boundary-layer subroutine. The error tolerance of the
boundary-layer subroutine is 10'6 to achieve the most accuracy with the
minimum number of fterations. Typically, about 10 iterations per velocity
profile are required by this subroutine. The error tolerance of the
inner loop that incorporates the boundary-layer subroutine is 10'5 and
it requires about five iterations to converge using dUe/dP' = 0.2. The
inner loop is required to converge at each streamwise station and
either 240 or 480 stations have been employed in the main loop. The error
tolerance of the outer loop is 10'4 and it requires about 20 streamwise
traverses to converge when started with the initial A'(X) given by
Equation 76 and K=0.8 in Equation 77.

The relationship between the error tolerances: 10"6 on the boundary-
layer subroutine, 10°% on the inner loop, and 1074 on the outer Toop,
must be approximately satisfied for convergence of the outer loop to the
specified tolerance. If the inner loop-error tolerance is relaxed, the
error in the computations will approach a small value which is greater
than the outer loop error tolerance.
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SECTION IV
THE RESULTS

The final computations have been performed with the numerical
endpoints at X = ¢+ 6 or + 12 and the outer edge of the Tower deck located
at Ze = g, The step sizes H = 0.05 or 0.1 with AX = 0.05 or 0.025 were
emplayed in the various combinations permitted by the computational time
required. Certainly several additional combinations are desirable;
however, the central processor time required and cost make these runs
impractical at present. For example, diminishing H to 0.025 and AX to
0.0125 simultanecusly would require over one-half hour of CDC 6600
central processor time for each cycle through the main loops. The
ensuing tabular results have been obtained by performing hz—extrapolation
(Beckenbach {1961)) on the relevant data.

The skin friction which increases smoothly from the Blasius value
upstream to the value Al at the trailing edge of the triple-deck region
is shown in Fiqure 5. The plotted values of aU/aZIZ=0 are the ratio of
the actual skin friction to the Blasius skin friction from Equation 46
and the coordinate transformations of Equations 40 and 2. Thus BU/BZ|Z=0=
1 denotes the Blasius value of the skin friction.

The numerical skin friction joins smoothly to the asymptotic behavior
predicted by Equation 56 when the velocity profile resulting from the
numerical integration of Equation 54 is employed to initiate the boundary-
layer computations in the lower deck at X = -6. A confirmation that the
computations have been initiated an adequate distance upstream from the
trailing edge is provided by the skin friction results from the com-
putations initiated at X = -12. The results from the longer interval are
in agreement with the plotted results to four decimal places.

Beckenbach, E. F., {editor). 1961. Modern mathematics for the engineer.
pp. 383-403. New York: McGraw-Hill.
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The ratio of the actual skin friction at the triple-deck trailing
edge X = 0 to the Blasius value is M from Equation 66. Performing hz-
extrapolation on the data yields the result A1 = 1.343. It may be noted
that the skin friction approaches its trailing-edge value smoothly from
the left

0u/9Z = 1.343 + 0.550 X, X<0.

2=0

For comparison, Figure 10 of Schneider and Denny {1971) shows two constant
values for the skin friction in the immediate trailing-edge region, one
labeled second-order boundary layer, the other isobaric plate. The ratio
of their second-order boundary-layer skin friction to the isobaric plate
skin friction is approximately 2.75/2.10 = 1.31 for their single Reynolds
number of ]05. At the Tower Reynolds numbers of 40, 100, and 200, Dennis
(1973) has found that A] = 1.33 by fitting the skin-friction data from

his numerical solutions to the Navier-Stokes equations with the R_3/8

scaling of the triple deck.

The multiplicative constant in the second term of the drag equation
is the result of the integration of the increased skin friction in the
trailing edge region shown in Figure 5. The drag on one side of the
finite flat plate is given by Equation 47 as

Cq= 1.328R™2+2.694R7%+ .. (89)

with the constant in the second term evaluated from the numerical
integration of the skin friction along the plate and the contribution
from the integral of the asymptotic expansion, Equation 56, valid from
the numerical endpoint to minus infinity. Messiter (1970) obtained the
approximate values of 1.58 from his assumed A(X) and 1.21 from his
computed A(X) for this constant. His values are lower than the present
result because of the smaller favorable pressure gradient acting aver
most of the plate in his computations.
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The drag coefficients predicted using Equation 89 are compared with
the data of Dennis (1973), Dennis and Chang (1969), and Dennis and
Dunwoody {1966} in Table 1. The present results are about eight percent
high at R=1 (e = 1), two percent high at R = 156 {¢ = 0.713), 3.6 percent
Tow at R = 1,000 (e = 0.422), and nearly exact at R = 10,000 (¢ = 0.316)}
as compared with the numerical solutions of the Navier-Stokes equations.
The accuracy of the two-term formula for the drag was unexpected at the
lower Reynolds numbers, since the neglected third term is O(R'1) and
the term retained is 0(R'7/8). It was not entirely without precedent,
however. Lagerstrom and Cole (1955) found that at R = 2 the skin friction
predicted by boundary-layer theory plus the first correction agreed to
within one percent with the exact sclution for the example of a cylinder
expanding at a parabolic rate. However, the neglected third term in
their expansion differs from the second term by the inverse square
root of the Reynolds number. This example prompted their comment. also
reported by Van Dyke (1964), that ". . . the first correction to
boundary-layer theory would predict the skin-friction (in separation-
Tess flow) down to much lower Reynolds numbers than generally imagined,
say Re = 70 or even 5." The data in Table I and the following data are
even more surprising, since the exponents in their expansion are much
further separated than the exponents of the present expansion.

Janour (1951), under the guidance of L. Prandtl, conducted experiments
in the 0l tunnel for viscous flow at the Wilhelm Institute at Gottingen
in 1935 to determine the lower limit of validity of the Blasius drag

formula. The lower 1imit was found to be approximately R = 2 x 104

by
extrapolation of the experimental data taken at 47 Reynolds numbers from
12 to 2335. Table 2 presents the experimental data tabulated by Jancur
(1951) and the drag coefficient predicted using Equation 89. The mean
value of the error is 1.51 percent, the root mean square error is 3.48

percent and the maximum error is 7.52 percent. For comparison, the mean

Lagerstrom, P. A., and Cole, J. D., 1955. Examples illustrating
expansion procedures for the Navier-Stokes equations.
J. Rat. Mech. Anal., 4:817-882.
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TABLE 1

DRAG COMPARISON WITH NUMERICAL DATA
FLAT PLATE DRAG

R ¢, (Equation (89)) c,’ ¢, >
1 4.022 3.79 3.64 3.708
2 2.408 2.20
4 1.465 1.36
10 0.779 0.773 0.748 0.7535
15 0.595 0.581
20 0.493 0.504 0.483 0.4862
40 0.317 0.323 0.316 0.3144
100 0.181 0.187 0.188 0.1826
200 0.120 0.123 0.1220
500 0.0711 0.0731
1000 0.0484 0.0502
2000 0.0332 0.0341
5000 0.0203 0.0206
10000 0.0141 0.0141

1
2

Dennis and Chang (1969)
Dennis and Dunwoody (1966)
3pennis (1973)
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TABLE II

DRAG COMPARISON WITH EXPERIMENTAL DATA

Cy Cq

R {Experimental) {Equation {89)) % Error
11.93 0,668 0,6923 3.64
15.83 0,334 0,5741 7.52
15.83 0,564 0.5741 1.80
20,00 0,500 0,4928 -1.43
23,88 0,440 0,4394 - ,12
28,02 0,369 0,3967 7.51
31,67 0,348 0, 3669 5,46
29,7 0,373 0,3822 1.%4
34.9 0,364 0, 3451 -5,18
36.62 0.321 0.3348 4,31
40,08 0,300 0.3163 5,46
43.33 0.323 0.3013 6,71
47.6 0,291 0.2842 -2,33
50,7 0,268 00,2713 1.98
33.4 0,268 00,2646 =1,24
60.3 0,243 0.2455 1,07
75.6 0,218 0.2139% -1,87
92.9 0,191 0,1888 -1,11
102.5 0.177 00,1780 L60
115.5 0.168 0,1658 -1,31
138.4 0.153 00,1489 -2,66
165,.6 0,134 0,1340 ,01
227.3 0,111 0,1114 40
2417.2 0.108 0,1061 -1,70
219.1 0,1073 0.1138 6,09
234.5 0,1068 0.1094 2,48
318.1 0,0912 0,0918 .73
340, 0,0872 0. 0884 1.42
403, 0,0806 0, 0803 - .37
432, 0,0764 0.0772 1.05
483, 0.0702 0, 0725 3.28
516. 0.0678 0,0698 3.04
640, 0,0620 0,0619 - ,11
993, 0. 0460 0. 0485 5.59
1050, 0,0458 0.0471 2,85
1134, 0.0438 0, 0451 3,10
724, 0, 0547 0,0578 5,72
785. 0,0528 0,0552 4,72
808, 0,0520 0, 0544 4,65
1143, 0.0450 0, 0449 - 08
1336, 0.0417 0.0412 - 98
1542, 0,0391 0, 0382 -2,32
1680, 0,0345 0, 0364 5,67
1921, 0,0326 0, 0339 4,01
2133, 0.0313 0,0320 2.39
2262, 0,0303 0,0310 1,80
2335, (. 0304 0, 0305 La1
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value of the experimental error is given by Janour as + 3 percent. At
R=2x 104, the second term of Equation 89 contributes an additional
4.9 percent to the Blasius drag, well within the limits of Janour's
extrapolation. For R = 5 x 105, a commonly accepted upper Timit for
laminar flows, the second term contributes an additional 1.5 percent to
the Blasius drag.

The tabulated results are also shown on Figure 6 where the experimental
scatter is evident. The Blasius drag equation, the first term of Equation
89, considerably underpredicts the drag for the lower range of Reynolds
numbers, whereas including the second term corrects the drag prediction
to within 0.5 percent of the experimental error.

The very close agreement between the present results and the previous
data may be somewhat disconcerting when the next higher-order term of
Equation 89 is considered. Imai (1957) has shown that this term, due to
the overall displacement effect of the boundary layer on the semi-
infinite plate is of O(R'I) and a term of this order also arises from
the trailing-edge region from Equation 47. Unfortunately, the numerical
and experimental data reported in Tables 1 and 2 scatter about the
present results and trends with R'1 cannot be discerned. A plausible
explanation appears to be that the term of O(R']) and other higher
fractional-order terms resulting from the trailing-edge region tend
to cancel the O(R™') term of Imai (1957).

The increase in skin friction is caused by the favorable pressure
gradient induced on the plate by the wake. The pressure distribution on
the plate and downstream in the wake is shown on Fiqures 7 and 8. The
pressure P{X) of Figure 7 is related to the physical pressure p* by

POX} = A2 €? (p*- p,)/pUL (90)

and the streamwise coordinate X is related to the physical coordinate
x* by

X = A543 x¥%/L (91)
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Figure 8. A Comparison of the Induced Pressure Distribution
with the Results of Schneider & Denny at R = 102
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as in Section II. Messiter (1970) also employed the above scaling and
his approximate results are shown on Figure 7 for comparison. Upstream
near X = -3 Messiter's results are in agreement with the present results.
In the range -3 < X < .75 Messiter's pressure gradient is apparently less
favorable than the present results, thus accounting for the smaller
multiplicative constant he obtained for the second term of the drag
equation. The minimum value of the pressure is reached at X = 0 in both
analyses and Messiter {1970) found Py ® -0.36 while here P, = -0.388.
Downstream in the wake Messiter's pressure apparently reaches a maximum
of P{X) ® 0.06 at X ~ 2.75. The pressure computed here reaches a maximum
of P(X) = 0.049 at X = 3.05 and diminishes to the asymptotic behavior
predicted by Equation 64 with b1 = -0.275. The constant b1 also occurs
in the expansions of the pressure upstream and the centerline velocity
and displacement function downstream as indicated in Equations 65, 63,
and 62, respectively. The constant b1 was determined by fitting the
numerical data from these three independent sources to serve as a check
on the accuracy of the results. The discussion of b1 will be deferred
until the relevant results are presented.

Schneider and Denny {(1971), who did not employ the Reynolds number
scaling of Stewartson (1969) and Messiter {1970}, obtained results for
the specific Reynolds number R = 105. Their pressure results are shown
in Figure 8. Along the plate and in the immediate wake their pressure
gradient and the present results appear in agreement although their
pressure level is lower. The similar pressure gradients on the plate
produce similar increases in the skin friction as evidenced by the close
agreement of A1 and their second-order boundary-layer results. In the
wake the pressure results of Schneider and Denny (1971) reach a
relatively high peak before rapidly diminishing to the freestream value
while the present results smoothly approach the asymptotic freestream
value.

The pressure distribution is generated by the displacement function
of the Tower deck, shown with Messiter's approximate solutions on
Figure 9. Messiter (1970) assumed the form for A'(X) given by Equation
76 with Cg = 0, performed the Hilhert integral analytically, then
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employed an integral sublayer method to arrive at a computed A(X) which
was compared with the assumed A(X) to ascertain the adjustments required
in the Ci‘ The method is similar to the procedure employed here to
improve the input data. Messiter was able to obtain a computed A(X) that
is in qualitative agreement with the assumed A(X). Both functions are
displayed on Figure 9 along with the present results which 1ie between
Messiter's results on the plate and approximately follow his assumed A(X)
in the wake. Asymptotically the present results satisfy the expansion

of Equation 62 for X » = if b] = -0.275.

From Equations 18 and 24, A{X) multiplies the first-order perturbation
to the streamwise velocity in the main deck

¢ = Ugly) + € X% AN x) dugrdy + . . .. (92)

Considering Equation 92 as a Taylor series in UO, it is evident that A(X)
represents a shift in y or displacement of the streamlines throughout
the main deck.

In the upper deck, the pressure is related tc the slope of the
displacement function A'(X), shown on Figure 10 by linear airfoil
theory, i.e., the Hilbert integral, Equation 43. Physically, A'(X) is
the negative of the velocity normal to the plate at the lower edge of
the upper deck and is of 0(92) from Equatijons 27 and 28. As shown on
Figure 10, the vertical velocity is not discontinuous at the trailing
edge as in the joining of the Blasius (1908) and Goldstein (1930)
selutions. The triple-deck analysis has smoothed out the discontinuity
in the normal velocity, which was its purpose. The maximum normal
velocity occurs immediately aft of the trailing edge and strong gradients
exist in this region.

The assumed A'(X) of Messiter (1970) and the revised A'(X) for the
present input data do not approximate the solution well near the maximum.
The revised A'(X) is closer to the solution upstream of the trailing
edge, thus accounting for the increased computational time required to
achieve convergence when Messiter's form of A'(X) was employed as initial
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data. The improvement in A'(X) is primarily due to the change in the
constant C4 of Equation 76 which was diminished from Messiter's value
of 3.0 to 1.5.

At this point it is relevant to reconsider the skew-reciprocal
Hilbert integral subroutines and perform an error check. The subroutine
that computes A'(X) from P{X)} is required by the numerical procedure to
produce the results just discussed. The subroutine that computes P{X)
from A'(X) is not required in the main Toops and therefore may be
employed as a check on the skew-reciprocal nature of the preceding
pressure and displacement thickness results. The A'(X) of Figure 10 was
input to this subroutine and the resulting P(X) was compared with the
P{X) of Figure 7. The error, based on the pressure at the trailing edge,
is about one percent over most of the numerical range as shown on
Figure 11. For the short range calculations -6 < X < 6, the error
reaches a maximum of 4.5 percent at the downstream extreme of the range,
X = 6. Thus, the preceding P(X) and A'(X) are properly skew-reciprocal
within the error shown on Figure 11. The extended curves of Figure 1]
pertajn to the computations originating at X = -12. The error is
diminished to about 0.5 percent using the extended interval and again
reaches a maximum of five percent at the downstream extreme, X = +12.

The decreasing error with increasing interval length is in agreement with
the Hilbert transformation error analysis, Appendix I. The skin friction
data resulting from the two computations agree to about 10'4 indicating
that errors of the magnitude shown on Figure 11 in the pressure and
displacement thickness have 1ittle effect on the solution.

Another quantity of interest, which is also required for the com-
putation of the constant b] is the wake center11ne velocity shown on
Figure 12. Physical coordinates at R = 10 have been employed to
permit comparison with the data of Schneider and Denny (1971). The
present results agree with the results of Schneider and Denny over the
downstream range 0.001 < x*/L < 0.05. Far downstream the present results
correctly approach the one-term Goldstein (1930) results. The results
of Schneider and Denny (1971) apparently lie between the one-term
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Goldstein and the full Goldstein results at x*/L = 1 corresponding to
their second-order boundary-layer calculations which employ the true
edge velocity as the boundary condition, rather than matching to the
main deck as in Stewartson's theory.

The desirability of using a smaller streamwise step size is evident
when the small x*/L range is viewed. Computational time limitations on
the present numerical procedure prohibit the use of a AX small enough to
determine precisely how the present results approach the Navier-Stokes
region computed by Schneider and Denny. Both sets of data approach the
small x*/L. behavior of the centerline velocity predicted by Equation 73
but the results of Schneider and Denny deviate for x*/L < 3 x 10'4.

Expanding the previous streamwise scales and returning to the triple-
deck coordinates to permit visualization of the region near X = {
(Figures 13 and 14) we see that the present results approach the behavior
predicted by Equation 73 as the step size is halved. The sensitivity of
the results to the step size on this scale is not surprising since
Plotkin and Flugge-Lotz (1968) encountered the same phenomena in their
computations to obtain an improved first approximation to the solution
in the trailing edge region at high Reynolds numbers. It should also
be ncted that the second-order terms of the expansions Equations 73 and
75 are very nearly equal to the first-order terms and could easily
account for the small disagreement evident in Figures 13 and 14.

The pressure results, Figure 14, exhibit the same trends as the
centerline velocity as X » 0. Upstream the pressure results are less
sensitive to step size than downstream because the boundary layer has
not been directly notified that the skin friction has vanished.
Mternatively, the pressure is more singular as X - 0 from the wake side
than as X - 0 from the plate side of the trailing edge. The pressure
at the trailing edge Po has been evaluated from the 1imit as X - 0 from
the left for this reason.
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We have now discussed the numerical data for the three functions A(X),
P(X), and U{X,0), together with the predicted asymptotic behavior near
X = 0. The asymptotic expansions for large X of these three functions
each contain the arbitrary constant b] which must be determined from the
numerical procedure. The satisfaction of the asymptotic houndary
conditions is of major importance in assessing the accuracy of the
numerical procedure. The present resylts all approach the predicted
asymptotic behavior for |X| » = ; however, the second-order terms serve
as a more stringent test of the accuracy of the numerical procedure.
Here the asymptotic expansions were numerically fitted to the previous
numerical data to simultaneously determine the second-order constant b]
and provide a measure of the numerical matching of the data and the
expansions.

With the obvious change in notation, each of the expansions, Equations
62, 63, 64, and 65, were rearranged to determine the constant b1
appearing in the second-order term, i.e.,

by = [3V2 1XI¥® (P+ - P-1/(0.8921- 1] IXI /2 (93)
ba = [ A0 + 0.070x- 0.892X /2 ] x27 s0892 (94)
by = [u(x,O) - 0.052x"' - |.snx""']xm/ 1.611 (95)

The difference of Equations 64 and 65 was formed to eliminate the
higher-order constant d] from the pressure expansions. By substitution
of the values of P(X}, A(X), and U(X,0) obtained from the numerical
procedure the values of b1 required to fit each function to second-

order to the predicted asymptotic behavior are found. 1Ideally, the

three b-I curves should approach and remain at one constant value as X + e,
The fact that the b] curves of Figures 15, 16, and 17 do not is,
admittedly, a shortcoming of the numerical procedure. The curves shown
pertain to the preceding data. The numerical study which led to the
selection of the preceding values for the parameters of the interval
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Figure 15. The Asymptotic Behavior: b, for X + 6, AX = 0.05
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is contained in Appendix II. Figure 15 pertains to the data obtained
with 0 <Z< 9, H=10.1 and -6 <X < 6, AX = 0.05. Figure 16 pertains
to the same interval with H = 0.05 and AX = 0.025 while Figure 17
pertains to the extended interval -12 < X < 12 with AX = 0.05 and H =
0.1, as employed for Figure 15.

{A

A nominal asymptotic value of -0.275 has been selected for b1 from
the three sets of data. To set the frame of reference, the *+10 percent
error bounds on b.l amount to a one percent error in P(X) and a 0.5
percent error in A(X} and U(X,0) at X = 6 from Equations 62, 63, 64,
and 65. In fact, an error of 100 percent in b] only amounts to a nine
percent error in P(X) at X = 6.

It should be noted that the respective bA, bu, and bp curves are in
agreement between three different sets of data within the range X < 2,
This is a definite indication that the small changes in the large X
behavior of A(X), P(X), and U{X,0) encountered here do not appreciably
affect the solution nearer the trailing edge.

The bA and bU curves are within the 10 percent error band of the
nominal b] as X becomes large in all three cases indicating that A(X)
and U(X,0) agree with the predicted asymptotic behavior to within 0.5
percent.

The pressure results are indeed the least accurate. The b_ curve
may even appear divergent as X - 6 on this scale. The curve is not
divergent since the bp of Figure 17 is smooth in the range +6 < X < 10,
'the steep increase in bp pccurring at X = 12. This steep increase in bp,
which approaches a nine percent error in P(X), is attributed to several
numerical problems. The computation of bp becomes less accurate as
|X| + = because P(X} is approaching zero at both ends of the range and
the difference must be employed to compute bp from Equation 93. The b
and bU computations do not encounter the small differences incurred in
the computation of bp. For example, at X = 6, A{X) ~ 1.6, U(X,0} ® 3
while P(X} ® 0.05. The second numerical problem is the Hilbert integral

A
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which is dependent on the functions A'(X) and P(X%) over the entire
interval. As |X] » < both A' (X) and P(X) -~ 0 and the integral is the
sum of hundreds of larger values which must cancel. This is the c¢lassical
nemesis of numerical analysts. The slope and magnitude of the error is

in agreement with the results of inverting the solution using the Hilbert
transformation, Figure 11. The error does not significantly affect the
results because the error is a small percentage of a very small function
value removed a sufficient distance from the trailing edge region.

The constant b1 corresponds to an origin shift in X which is evident
from the binomial expansion

X3~ (x+AX)" = x"V (14 AX/IX+. . )

x 3+ xBaAxs34 .

$0 AX = 3b1. The grigin shift is evident when the present velocity

profiles are compared with the first-order Goldstein wake velocity

profiles given by Equation 45 for large X as shown on Figure 18.

The present velocity profiles are uniformly translated upstream since b1

is negative. As X increases the magnitude of the shift properly diminishes.
The origin shift is also evident when the pressure and displacement
function are compared with the one-term asymptotic expansions as shown

on Figures 7 and 9.

The condition that the velocity profile of the lower deck must
ultimately merge with the Goldstein wake velocity profile is attained
by the numerical procedure. This condition cannot be enforced because
of the parabelic nature of the boundary-layer equations and serves as
another check on the results. From Equation 62 bl is the shift in A(X}
or the velocity at the cuter edge of the profile and, from Equation 63,
b1 is the shift in U(X,0), the velocity at the lower edge or wake
centerline.
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The perturbations to the 1inear velocity profile of the Tower deck
caused by the preceding pressure gradients are shown on Figures 19, 20,
and 21. The velocity perturbations show that the outer edge was taken
sufficiently large since A(X) attains its constant value well inside
the outer edge at all streamwise locations. Upstream on the plate the
perturbations are small and permit the expanded velocity scale of
Figure 19 where a slight departure of the velocity profile from the
vertical direction is evident at Z = 6. The velocity variation at 7 = 6
is greater than 10'4, the error tolerance on A(X), and necessitated
moving the numerical outer edge of the lower deck fromZ =6 to Z = 9
to determine the second-order constant, b1.

" The significance of the proper placement of the outer edge of the
layer is that the outer boundary condition is enforced on the profile
by the numerical method. The effects of enforcing the boundary condition
propagate for some distance down the profile and into the layer. The
propagation of the boundary condition into the layer requires that the
numerical outer edge of the Tayer be placed away from the region of
interest. It is shown in Appendix B that the skin friction and A] are
not significantly affected by changing the depth of the layer from 2e =
6 to Ze = 9, ensuring that the outer edge boundary condition has not been
enforced prematurely.

Figures 19 and 20 demonstrate that the velocity increases smoothly
to the trailing edge under the influence of the favorable pressure
gradient induced on the plate by the wake. Note that the velocity
perturbation, U - Z, is plotted on Figures 19, 20, and 21. At the
trailing edge, X = 0, the velocity profile is smooth and differentiable
as assumed in the triple-deck analysis. Downstream of the trailing edge
the effects of the vanished skin friction and rapidly increasing
centerline velocity propagate smoothly outward into the wake velocity
profiles as shown on Figure 21. The slope of the perturbation ve1otity
profiles at Z = 0 must be -1 to satisfy the boundary conditijon along
the wake centerline. Ultimately, the velocity profiles downstream,
Figure 22, merge with the Goldstein wake velocity profiles to satisfy
the conditions downstream, as shown on Figure 18.
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SECTION V
CONCLUSIONS

The present numerical analysis has provided additional validation
for the triple-deck flow structure at the trailing edge of a flat plate
and determined the constants required to complete the asymptotic '
expansions of Stewartson (1969). The results are self-consistent for
the various grid,éizes and numerical ranges employed for the computation.
The present results have been demonstrated consistent with the previous
numerical analyses of others and with the experimental data of Janour
{1951) for the entire laminar range of Reynolds numbers.

A summary of the present numerical results is presented in Figure 23.
As qualitatively predicted by Stewartson {1969) and Messiter (1970), the
pressure gradient is favorable to the trailing edge, steeply adverse
immediately aft of the trailing edge, and again favorable downstream of
the pressure overshoot. The skin friction continucusly increases from
the Blasius value to AA], its value at the trailing edge. The displace-
ment function A{X) also continuously increases from its upstream value
on the plate through the trailing edge region and downstream to the
Goldstein wake.

'The numerical results are also tabulated in Table III. The third
decimal place is believed to be accurate.

The theoretical extensions of the triple-deck analysis of Section II
which are necessary to include the effects of a compressible subsonic
freestream, a supersonic freestream, a body of non-zero thickness, and
angle of attack are reported in Stewartson (1974). The present numerical
results may be generalized to account for the subsonic freestream. The
numerical solution for the supersonic freestream case has been performed
by P. G. Daniels and is reported in Stewartson (1974).
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Figure 23. A Summary of the Numerical Results
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TABLE I1I

THE NUMERICAL RESULTS

X P(X) A(X) 3U/32|2=0 U(x,0)

-5.0 -.113 .064 1.035

-4.5 -.120 .069 1.039

-4.0 -.129 .076 1.044

-3.5 -. 140 .084 1.050

-3.0 -.152 .094 1.058

-2.5 -.167 107 1.069

-2.0 -.186 .125 1.084

-1.5 -.211 .148 1.106

-1.0 -.245 .181 1.139

-0.5 -.296 .233 1.198

0.0 -.388 .335 1.343 0.
0.5 -.082 .539 0. 1.024
1.0 -.004 710 1.367
1.5 .028 .850 1.620
2.0 .042 .967 1.825
2.5 . 047 1.068 1.999
3.0 .049 1.156 2.150
3.5 .048 1.234 2.285
4.0 .047 1.305 2.407
4.5 044 1.369 2.518
5.0 .041 1.429 2.622
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The numerical problem associated with a body of non-zerc thickness,
discussed by Riley and Stewartson (1969), entails the accurate deter-
mination of the separation point and has not been solved.

The effects of non-zerc angle of attack or the fundamental probiem
of the triple deck for a 1ifting flat plate has been posed by Brown and
Stewartson {1970). The numerical problem is similar to the present
problem but complicated by the asymmetry of the flow. The numerical
solution has not been obtained since the angle of attack generates
different pressures and displacement functions on the top and bottom
surfaces of the plate which present another formidable probiem. It
should be noted that the present numerical procedure is constrained by
the time required to perform the computations. This constraint is
primarily due to the boundary-layer subprogram. It is recommended that
subsequent numerical procedures employ considerably faster boundary-
layer computation methods to solve the above problem.

The unique numerical method developed here is the method of solving
the boundary-layer equations iteratively for the pressure gradient. This
numerical method is stable and does not require smoothing of the data to
achieve convergence between the inviscid flow and the boundary layer.

Brown, S. N., and Stewartson, K., 1970: Trailing-edge stall.
J. Fluid Mech., 42:561-584.

Riley, N., and Stewartson, K., 1969. Trailing edge flows. J. Fluid
Mech., 39:193-207.
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APPENDIX 1
ERROR ANALYSES OF THE NUMERICAL PROCEDURE

Two error anaiyses relevant to the numerical procedure are presented
in this Appendix. The first checks the initial velocity profile of
Figure 3. The second was used to develop the Hilbert transformation
subroutines. ‘

The Upstream Velocity Profile

The upstream velocity profile may be obtained by several methods.
Originally, the boundary-layer equations were integrated along the
plate from an arbitrary -X location where a linear velocity profile was
assumed to exist with the pressure gradient given by Equation 48 until
the asymptotic value of the displacement thickness given by Equation 56
was obtained. This method wés later found to have produced a velocity
profile, tabeled 1 on Figure 24, with a 2.5 percent larger skin friction
than predicted by Equation 56. The second method corrects this
difficulty by numerically integrating Equation 54 using Hammings modified
predictor-corrector method (Ralston and Wilf (1960)) and substituting the
results into Equation 52 to obtain the correct asymptotic velocity
profile for X large and negative. The numerical solution of Equation 54
is presented in Table IV. The initial velocity profiles for X = -6
cbtained from these two methods are shown on Figure 24. The third
profile serves as a final check. It is a result from the final program
started at X = -12 with an initial velocity profile from Equation 54
and converged to the solution.

The velocity profile resulting from the integration of the boundary-
layer equations originating from a linear velocity profile, curve 1 of.
Figure 24, is shallow, indicating that the layer was not given sufficient
distance to develop or the 7 + «» boundary condition was enforced
prematurely at Ze = 6. The asymptotic velocity profile resulting from

Ralston, A., and Wilf, H. S., 1960. Mathematical methods for digital
computers, pp. 95-109. New York: Wiley.
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Figure 24. A Comparison of Initial Velocity Profiles at X = -6
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TABLE IV
|, THE NUMERICAL SOLUTION OF
Fy - 18n° Fy - 36 (nFy - F;) = -1.8330
. L
”=ﬂi‘)1_/3 F = 158 F

0 0 , 0 6580
.05 .0008 .0306 .5673
.10 .0030 .0568 4813
.15 0064 .0789 4031
.20 .0108 .0973 .3341
.25 L0761 1125 .2749
.30 .0220 1249 .2249
.35 .0285 1257 .1834
.40 .0355 1434 .1492
.45 .0428 .1501 1213
.50 .0505 1556 .0988
.55 0584 1601 0805
.60 0665 1637 . 0659
.65 .0747 1667 0540
.70 .0831 1691 . 0445
.75 .0916 N2 .0368
.80 .1002 1728 .0305
.85 .1089 1742 .0255
.90 77 1754 .0214
.95 .1265 1764 0180
1.00 1353 1772 .0152
1.05 .1482 1779 .0129
1.10 L1531 .1785 L0110
1.15 .1620 1790 0095
1.20 1710 1795 .0082
1.25 .1800 1799 0071
1.30 .1890 .1802 0061
1.35 .1980 .1805 .0054
1.40 .2070 .1807 .0047
1.45 L2161 .1808 0041
1.50 2251 1817 .0036
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The second method for the numerical evaluation of Cauchy integrals
is reported in Collatz (1966) and attributed to Weber. The method
consists of splitting the range of integration about the singularity and
translating the singularity to the arigin in each of the resulting
integrals. Thus, employing this method, the center integral of
Equation 79 is

e-X

® PIX) dX; f"'“ P(X-s) ds - f Pix+s} o (96)
0 X‘X| 0 § ° $

where s = X-X] in the first integral and s = XT-X in the second integral
on the right hand side. When the integrands are combined, three cases
that depend upon the position of the singularity within the original
interval result and

& P(X,) dX, X8 p(x+s)-P(X-s5) %79 pix+js)
—r 1 - —— =l ds - j ——ds
‘!; X=X fo s fe-x 5 (97)

Here § = +1 if |X-a| < |e-X], j = 0 if |X-a] = |e-X| and j = -1 when
[X-al > |e-X|. In each of the three cases the singularity has been
translated to the origin. The remaining portions of the integrals are
nonsingular and may be integrated by the trapezoidal rule. The
singularity is treated by assuming a Taylor series as it was for the
subtraction of the singularity method.

An error analysis was performed utilizing three of Van Dyke's (1958)
airfoil integrals. The solutions are given in closed form and the two
methods were compared with each other and the solution. For the three
cases considered, smaller errors were incurred using the subtraction of
the singularity technique than with Weber's method. It was therefore
eliminated from further consideration. Figure 26 presents the error
incurred during the computation of the Cauchy integral of the function
X? since it was determined that cubics fit wide ranges of Messiter's
(1970) data very closely. The error approaches three percent as the

singularity approaches the endpoint for AX = 0.1. For the smaller step
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sizes, AX = 0.05 and 0.01, the error is less than 0.7 percent for all
points. The error for AX = 0.05 is small and this step size was selected
to perform many of the ensuing computations. The smaller step size was
reserved for final checks on the entire program.

The skew-reciprocal property of the Hilbert transformation permits
the simultaneous error analysis of both the P(X) and A'(X) subroutines.
One subroutine computes A'(X) from P(X) by assembling the appropriate
expressions for the integrals of the asymptotic expansions of P(X) and
the above numerical methods. Particular attention is required to ensure
that each method is employed only within its range of validity, i.e., X =
a, X <0, X=0, X>0, or X=e. The other subroutine computes the
pressure, P(X}), from A'(X) by the same procedure utilizing the appropriate
expressions resulting from the integrals of the asymptotic expansions of
A'(X). Subsequent error analysis and programming checks were facilitated
by the skew-reciprocal nature of the subprograms which were combined in a
short f1ip-flop program. The input is an assumed A'(X); the output is
the error accumulated in computing the pressure from A'(X} and then
computing A'{X) plus the two-way error from the pressure. Messiter's
(1970) form for A'(X), Equation 76, with Ly = 0, was used to check the
subroutines since the converged form was not yet available. The relevant
error is the error in computing A(X) since it is A(X) that drives the
inner loop to produce P'{X). This feature of the inner loop eliminates
the requirement for further numerical differentiations and simultaneously
requires a numerical integration.

Figure 27 presents the error incurred in performing the transformation
and inversion of A'(X) and the subsequent trapezoidal rule integratiohs
employed here and in the main program to obtain A{X). The error based
on the local value of the function reaches a maximum of about seven
percent when the limits of the numerical integration are located at
X =+ 3. Extending the limits to + 6 diminished the maximum error to
about five percent thus demonstrating the necessity for extending the
Jimits on the main program to X = £ 6 or larger. It is noted that the
error does not decrease with AX and remains relatively constant with AX
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decreasing. This must be attributed to the addition of the integrals of
the asymptotic forms since Figure 26 demonstrates that the numerical
scheme emplioyed in the central section produces errors that diminish
with AX.

The error curves of Figure 27 represent an extreme upper bound for
the main program because the outer loop only requires the single
transformation of P(X) into A'(X) and the results are smoother functions
of X than were those employed here. Error checks of this type were also
performed using the results and are reported in the discussion of the
results, Section IV.
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APPENDIX II

THE ASYMPTOTIC BEHAVIOR OF THE
NUMERICAL RESULTS

The purpose of this Appendix is to present the numerical study which
led to the selection of the boundary conditions and parameters of the
numerical interval employed during the computation of the final data.

The computations reported in this Appendix were performed on the interval
-6 < X < 6 with AX = 0.05 and H = 0.1. The location of the outer edge
was a variable. In order to decrease the computational time required and
the cost, all ensuing computations were initiated with the soclution, i.e.,
the A'(X) and P'(X) from a previous computation. The effects on the
solution wrought by the various changes in the numerical procedure were
measured by the relative agreement of the b] curves. The constant b]
measures how precisely the numerical solution approaches the asymptotic
predictions for the pressure, displacement thickness, and centeriine
velocity. The coefficient b] of the second-order term of asymptotic
expansions, Equations 62, 63, 64, and 65, is computed using Equations 93,
94, and 95. Seven different cases are reported, Figures 28 through 34,
for comparison with the final results on Figure 15.

The bA’ bp, and bU values for the first case are presented on
Figure 28. The shallow initial profile of Figure 24 initiated the
computations and the outer edge of the layer was located at Ze = 6.

The by values resulting from the asymptotic expansion of U(X,0) appear

to be approaching the nominal value. The b, values resulting from the
asymptotic expansion of P(X) approach the nominal value then rapidly
increase due to numerical error. The bA values resulting from the
asymptotic expansion of A(X) reach a maximum value about 10 percent above
the nominal value of bI'

The first change in the main program subsequent to achieving the
convergent numerical procedure was generated by the skin friction of
Figure 25, which is noticeably larger than the predicted asymptotic
value when the shallow initial velocity profile is employed to start
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the computations. Improved computations of Case 2 were initiated using
the velocity profile shown in Figure 24 with Ze = 6. The centerline
velocity and pressure results were slightly improved and the displacement
thickness results, bA’ were significantly improved, as shown on Figure 29.
The effect of the incorrect outer portion of the initial profile had
propagated throughout the entire streamwise course of the lower deck
while the lTower portions of the velocity profiles were affected a much
shorter distance.

To ensure that the outer edge-boundary condition was not being en-
forced prematurely, the outer edge of the layer was removed to Ze = 8.
The results of Case 3 indicate that Ze = 6 is too shallow, for both the
pressure and displacement thickness results came into closer agreement
with the centerline velocity results, which remained relatively unchanged,
as shown on Figure 30.

However, the rapid increase in the pressure results toward the
downstream end of the numerical interval remained. The pressure shift
at the upstream end of the interval to obtain the correct value of A'(X)
could have been the cause. The shift of the entire pressure curve by a
constant AP produces a logarithmic term in A'(X) through the Cauchy
integral, Equation 78. Thus, if

BA'(X) = - & j: ixﬁjz—'dx.

then

AR (X) = - -A;E- log l%ﬁ-\

over the finite numerical range of integration. The numerical procedure
shifts the entire P(X) curve resulting from the inner loop until A'({X)
agrees with the predicted asymptotic behavior Equation 56. This shift
could induce the rapid increase in the bp curves of the previous Figures
28, 29, and 30 through the above logarithmic term.
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The results of Case 4 demonstrate that the above hypothesis is
false. The pressure shift was deleted and a value of b] was computed by
averaging the values of bA and bU from the previous cycle of the iteration
procedure. The pressure expansion for X + - = Equation 65 with the
cyclically updated value of b.I was used to obtain the initial value of
the pressure, P(a). The numerical procedure converged more slowly to the
same results as Case 3 as a comparison of Figures 30 and 31 will show.
The effect of shifting the pressure curve to obtain the asymptotic value
of A'(X) is to damp the oscillations which occur during the cycles of
the iteration procedure and thus increase the rate of convergence.

The computations to this point have not included the second-order
terms of the asymptotic expansions of P{X) and A(X), which depend upon
b], in the integrals of the asymptotic contributions to the Hilbert
transformation, Equation 79. Case 4 demonstrated that the iteration
procedure will converge without the pressure shift and employed a method
to update the value of b] during each iteration cycle. Case 5 illustrates
the effects of including all the second-order terms in the asymptotic
contributions to the Hilbert transformation utilizing the b1 obtained by
the method of Case 4. The outer edge of the layer was removed to Ze =9
and A(X) was computed at Z = 8 to further ensure that the effects of the
outer edge boundary condition were minimal. The inclusion of the
second-order terms in the Hilbert transformation effectively reversed the
previous results about the nominal value as shown on Figure 32. The
pressure results of Case 5 rapidly decrease from the nominal value of b1.

Case 6, Figure 33, is the useful result of a programming error. The
sign of b1 was inadvertently reversed before being input to the Hilbert
transformation subroutine. Thus, the second-order terms of the asymptotic
contributions are subtracted from the resulting integral. The results
again indicate a rapid increase in bp and a greater variation from the
nominal value of b1 than the previous similar results.
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Taken together, Cases 5 and 6 demonstrate that the numerical error in
the Hilbert transformation is in the same sense as the second-order terms
and that the inclusion of these terms is not an adjuvant procedure,

The final case was computed to ascertain the effects of removing the
higher-order wake-centerltine boundary condition, Equation 87, and
employing in its stead R1 = 0. The previous study by the momentum-
integral method, Equation 88, had indicated that the centerline velocity
would be slightly reduced and perhaps agreement with the pressure results
of Case 5 could be attained. The results of the computation, shown on
Figure 34, are disastrous. The three sets of values of b.I diverge from
each other as X increases.

An inspection of the preceding seven cases reveals that the values of
b] obtained from the centerline velocity and displacement thickness data
remain near the nominal value of -0.275. The errors shown on the
preceding Figures 28 through 33 are second-order and amount to less than
one percent mismatch between the asymptotic expansicns and the numerical
data near the end of the interval. The pressure data have a much greater
range about the nominal value and mismatches of five to ten percent occur
in the small values of the pressure at X = 6.

The effects of the mismatches on the plate upstream may be measured
by the changes in A] and the constant appearing in the drag equation.
The varjation in A] was less than 0.1 percent for Cases 1 through 6 and
1.2 percent for Case 7. The drag equation constant is somewhat more
sensitive to the changes because it is the integral of the skin friction
over the entire plate. Variations approaching 1.5 percent were found
except for Case 1 which was initiated with the incorrect value of the
skin friction. The data clearly shows that small changes a sufficient
distance downstream induce even smaller changes in the flow upstream,
This is also evident fram the three b.| curves which respectively approach
the same value as X decreases.
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Figure 34. Asymptotic Behavior: Ze = 9, Centerline Boundary

Condition
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The study of the second-order terms in the expansions of P({X), A(X),
and U{X,0) as X » = undertaken in this Appendix indicates that:

1. The second-order terms should not be included in the Hilbert
integral,

2. The pressure shift should be retained,
3. The higher-order wake centerline boundary condition is necessary,

4. The outer edge of the layer should be extended as far as
computational time required permits,

5. The initial velocity profile must be accurate, and

6. The downstream boundary conditions should be approached as
precisely as possible. S

The numerical procedure used to compute the final data was designed to
meet the above criteria.
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APPENDIX III
THE BOUNDARY-LAYER DIFFERENCE EQUATIONS

The boundary-layer subprogram solves Equation 41

Q
c
Q

v

O—X-+EE=O
o, 0y, _gr
xTVazT T i T

for the velocity profile U(Z) by using a Crank-Nicholson type implicit
finite difference procedure. Introduce the stream function F such that

oF/0X = - V, 8F/3Z = U
and rewrite Equation 47 so that

U, pg.yu_d
azz+B“Uax ox 9Z (%8)

where B = -dP/dX.
Define ﬂj as the velocity at the previous streamwise station, X-AX,
and

Uj = Uj - 0.54y;

where AUj = Uj - Uj
and similarly define the Fj. The subscript j denotes the Z-direction
distance at Z = (j-1) H.

On substituting the preceding definitions into Equation 98 and using
centered difference formulas we find that
Uj+1 = 2Uj+ V) AUj  Ujt - Uj- AF

He *BU T T en AX

99



AFFDL-TR-74-46

or alternatively

Uj+1 — 2Uj + Uj-)  AUj4) - 28U; + AUj-

+B=

H2 2H?

>

W + ﬁj) (u; - ﬁj) Ujs = Yj-1 AU+ - AU Fy =

2AX 2H 4H AX

The matrix elements of the boundary layer subroutine are obtained by

collecting the coefficients of Uj+], Uj, and Uj_] in the above equation.
By defining

A -
o, = [2 + 12 (u) + Ojy/anx]™
A
g, =0 H (FI - Fj]/EAx
Aj el - + (=)
Bj 2 -0, -0,

and

. 24U - 0; + H2 O; (U; + U
Ry = oy [ BHE+ U5 - Uj + 2 Uj (U + Uj) /28%]

A A
+0.5[Aj(Ui_|-Uj-.|)+Bj(Ui+|-Ui+|]]

we obtain the difference equation

B, Uy *U; +4,U_ =R

i+l J j (

j -

This tridiagonal matrix equation is solved by using Gaussian
elimination to eliminate the Aj diagonal and back substitution to
determine the velocity profile (Richtmyer and Morton (1867)). If the
difference between successive velocity profiles is less than the error
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tolerance, the iteration procedure has converged. If not, the velocity
profile is integrated by the trapezoidal rule to obtain an updated stream
function and the iteration procedure is repeated until the error
tolerance is satisfied. Although not especially fast this procedure

has been found to be stable and accurate for relatively large step size
for a variety of boundary-Tlayer problems.

The boundary conditions are enforced by prescribing values for
specific elements of the matrix, the velocity and the Rj. The boundary
condition on the wake centerline has been cobtained by considering a
Taylor series of the velocity

Uy = U, +0.5 H? (d%uaz%), + . . -

and the momentum equation

(228)- pru, 2

for Z = 0. In difference form,

U, - U, = 0.5 K2 [B+{y, - 0,1/8x]
which requires that

T -
l-.

and

A
R, = -0.5 H? [,B+ u, (U, - u.)/Ax]

Upstream on the plate, the skin friction is calculated by the same
method from the formula

=—L:_|1+0.5HB

101



AFFOL-TR-74-46
since U] = 0.

The boundary-layer subprogram has been used to compute the Goldstein
inher wake with Ze =9 and H= .10, AX = .05 or H = .05, AX = .025 for
comparison with the results in Section IV. The pressure gradient for
the Goldstein wake computation i1s zero and the main program consisted of
a single loop which advanced the computation downstream. A linear
velocity profile was used to start the computation at the trailing edge.
The centerline velocity results for the two grid sizes are compared with
the first term of Goldstein's expansion for the centerline velocity on
Figure 35. The numerical results are shifted downstream from Goldstein's
results because of the finite step size of the numerical computations.

The shift in the centerline velocity decreases as the step size decreases.
The computed velocities are less than 0.1 percent smaller than Goldstein's
results for X > 5. Increasing the centerline velocity reported in the
results, Section IV, by this amount would decrease the value of bU and
bring the bA and bU curves of Figures 15, 16, and 17 into c¢loser
agreement,
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Figure 35. A Comparison of the Centerline Velocity for
Goldstein's Inner Wake
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