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ABSTRACT

Described in this report is an approach to adaptive
flight control which uses outputs from a relatively
simple parameter tracking computer to adjust flight
control system parameters. A unique characteristic
of the parameter tracking mechanism is the ability to
function with almost any type of disturbance as an input,
including normal pilot activity, wind turbulence, and
osciltlations due to control loop instability. This may
be accomplished without special test inputs or limit
cycles,

The ability to function with almost any type of input
is a direct consequence of the fact that the airframe is
represented in its true form as a multivariable system,
thereby accounting for all inputs and outputs. One of the
most common reasons for failure of adaptive flight con-
trol systems to function properly is that wind turbulence
is ignored in performing identification of airframe
dynamics. Even if this problem could be ignored, many
approaches would still be limited in application because
of the difficulty involved in extending basic concepts to
coupled axes, such as the lateral axes of an airframe,

Stability of the parameter adjustments is verified

analytically, and simulation results show that conver-
gence is smooth and fast (about five seconds} in all axes,
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SYMBOLS

e, B W Eulerian roll, yaw, pitch angles

:p, é, 11; Eulerian roll, yaw, pitch rates

Py T body roll, yaw, pitch rates

S, Ser Op aileron, elevator, rudder deflections
n{t), Wy wind gust or turbulence

D(s}, Gis), H(s),

T(s), F(s), P(s) transfer functions (see text)

az, ay vertical, lateral accelerations

o angle of attack with respect to smooth air

ag angle of attack due to wind turbulence

o= a+a total angle of attack

p g

B total sideslip

Pg sideslip due to wind turbulence

AA A A AA A ] )

P, q, T, afp, B 2., aLy outputs o ‘sensors measuring p, q, T, ap, B a,,
ay respectively

? 2 EX, Eb distance forward of C.G. for mounting a,, ays
f sensors

P5: Oo: @p steady state roll angle, pitch angle, angle of
attack

Xi i'th input to SIDAC model

b;:‘ gain of i'th channel in SIDAC model

b, correct setting of b?
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ocutput {error) of SIDAC model

mean-squared value of e

Lyapunov function

adaptive gain in pitch, roll, yaw control loops

maximum stable, nominal (% Kq ) value of K

m q

gain of i'th parameter adjustment loop

pitch short period gain, zero, damping ratio,
frequency, closed loop damping

output of pitch rate command prefilter

noise in 6e sensor

AGC gain
integrator clamping voltage

modified stability derivatives defined by
equation (57).
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SECTION 1

INTRODUCTION

An approach to adaptive flight control has been developed {Reference 1)
which promises to be of fundamental importance in overcoming basic
deficiencies common to earlier techniques. Outputs from a relatively simple
parameter tracking computer are used to adjust parameters in a flight con-
trol system, thereby compensating for variations in airframe dynamics.

This is accomplished without special test inputs (Reference 2) or limit cycles
(Reference 3). Results obtained from past simulations indicate that the
parameter tracking computer is capable of rapidly and accurately identifying
airframe dynamics from conventional sensor data using normal airframe
disturbances, These disturbances may include any or all of the following:

1. Pilot activity

2. Wind turbulence

3. Guidance loop commands

4, Oscillations due to control loop instability
5. Special test inputs

The unique characteristics of the S&ID adaptive control (SIDAC) system
is its ability to function with almost any type of disturbance, This is a direct
consequence of the fact that the airframe is represented in its true form as
a multivariable system, thereby accounting for all inputs and outputs. The
multivariable approach is easily accomplished by the simple expedient of
directly utilizing the basic differential equations of motion, rather than
working in terms of transfer functions which are valid only for single input/
single output systems. Although transfer functions are useful models of
system dynamics for control loop design, the complete differential equations
of motion are required for effective parameter identification.

In-contrast to the S&ID approach, each of various apprcaches to the
adaptive flight control problem developed to date has utilized only one type
of disturbance to identify or otherwise infer some aspect of vehicle dynamics
as a basis for initiating control action., In such cases, when two or more
types of disturbance exist simultaneously, all but one are treated as noise
to be removed by filtering, or by statistical averaging or correlation.
Unfortunately, an airframe is normally subjected to more than one type of

Manuscript released hy authors 10 June 1965 for publication as an RTD Technical Documentary Report,
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disturbance for a substantial portion of the flight regime. Under these con-
ditions, ignoring all but one type of disturbance may result in serious
degradation of performance.

In general, one of the most common reasons for failure of adaptive
flight control systems to function properly is that wind turbulence is ignored
in performing identification of airframe dynamics. It has been demonstrated
in flight tests (Reference 2) that removing the effects of turbulence by corre-
lation of the input and output requires harsh commands and excessive
averaging time. These conclusions were later verified analytically by
Lindenlaub and Cooper (Reference 4), showing that even an ideal identifier
could do no better {Appendix I}.

By using the S&ID approach to adaptive control, parameter tracking
may be performed effectively, using data obtained from wind turbulence alone
or in the presence of normal command inputs, without the necessity of
special test inputs. When correlation is used, turbulence presents a formid-
able problem, even with large test inputs.

Even if the turbulence problem could be ignored, most approaches to
parameter identification would still be limited in application because of the
difficulty involved in extending basic concepts to coupled axes. However,
the treatment of coupled axes is considerably simplified by using the basic
differential equations of motion. This allows the lateral airframe dynamics
to be described by multivariable relations, involving wind turbulence, rudder
deflection and aileron deflection as system inputs, and roll, yaw, lateral
acceleration, and sideslip as system outputs. Under these conditions, data
sensing and processing problems are minimized, while retaining a correct
and adequate mathematical representation of airframe dynamics.

Although additional sensors are required for mechanization of a param-
eter identification flight control system by the multivariable approach, in
many cases the additional sensors may already be on board the aerospace
vehicle fulfilling other data requirements, such as outer loop feedback con-
trol or energy management.



SECTION 2
THE PROBLEM OF IDENTIFYING VEHICLE DYNAMICS

Most approaches to the problem of adaptive control of aerospace
vehicles are based upon single variable concepts, Usually, the problem
requires an estimate of system dynamics from measurements of a single
input and a single output. This is illustrated in Figure 1 for the pitch axis.

k)
ELEVATOR AIRFRAME * PITCH
e

DEFLECTION e DY NAMICS RATE

-

Figure 1. Pitch Axis with Single Input

The vehicle dynamics are usually represented in linear fashion, either as
a transfer function, or as an impulsive response.

If the airframe is disturbed by wind turbulence, there exists a com-
ponent of the output which is not due to the measured input, This component
is treated as contaminating noise which must be averaged out by correlation.
Successful identification requires existence of some input which is rot
correlated with the turbulence, and which disturbs the airframe severely
enough to permit rapid averaging of the contaminated data. Such an input
must be derived from one of the following two sources:

1. Normal maneuvering commands required to successfully
accomplish a mission

2. Special test inputs.

It is not possible to rely upon maneuvering commands because they
are frequently of insufficient amplitude to provide rapid and accurate identifi-
cation in the presence of moderate or heavy turbulence. Worse yet, when
a smooth trajectory is flown, maneuvering commands may almost disappear
or become highly correlated with turbulence. For example, if a pilot injects
commands to maintain steady flight in turbulent air, his actions are a
direct consequence of motion due to turbulence. The same thing is true of
information fed back through a control loop, such as the pitch rate damper
illustrated in Figure 2.



n{t) = WIND TURBULENCE

CONTROL
SYSTEM AIRFRAME
(1) + Je
D{s} Gis) — &

SEMSOR

H{s}

Figure 2. Pitch Rate Damper Configuration

If r{t) is nonzero and nft) is zero, Figure 2 yvields the airirame trans-
fer function G{s} without difficulty as equation (1).

élae - G(s) (1)

However, if r(t) is zero and nit} is nonzero, the only input to the system
is wind turbulence. Eqguation (2} describes the relationship between control
surface deflection and pitch rate.

5, = -D{s)H(s)0 (2)

The apparent airframe transfer function is given by equation {3).
0/6 = -1/D(s)H(s) (3)

This transfer function is independent of the vehicle dynamics represented

by Gi(s). Hence, in this case, il is impossible to deduce anything about
changes in vehicle dynamics from the relationship between control deflection
and pitch rate,

1f both inputs are present simultaneously, the results will be some
compromise between equations (1) and {3) unless the effect of noise n(t) is
eliminated by some means, such as correlation. In any case, it is clear
that signals obtained from a feedback loop do not necessarily help solve the
identification problem.

Referring to the second alternative (special test inputs), attempts were
made {Reference 2) to perform identification based upon special test inputs.
The general result has been that test inputs of sufficient amplitude to provide
rapid and accurate identification produced objectionable airframe motion.

As a result of additional studies {Reference 4} {see Appendix I} a
definite lower bound on identification time was discovered, and the results



were just as discouraging as those obtained during flight tests, Moreover, it
was learned that the correlation technique used in the flight test program pro-
vided the optimum processing of available sensor data (i.e., the identification
time, while being too long to be practical, was as short as possible using
correlation techniques).
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SECTION 3

THE S&ID APPROACH TO PARAMETER IDENTIFICATION

In view of the severe shorfcomings of any approach to identification of
airframe dynamics based upon correlation, an alternate solution was
required. Reflection on the foregoing observations led to the conclusion
that the information content obtained from measurements made upon a single
input and a single output was totally inadequate. The logical solution was to
obtain data from additional sensors, and dispense with correlation entirely,
This led to a multivariable approach (Reference 1) to parameter identification,

Using the multivariable approach, selection of additional variables is
not critical, but they should be easily sensed, Data already required for
other control functions, or for other applications such as energy management,
are desirable, Implementation of the multivariable approach proceeds as
follows:

1. The differential equations describing airframe motion are
written in conventional form,

2, All inputs and outputs which are not easily measured are eliminated
algebraically., The result is one or more equations involving only
measurable quantities. All terms are transferred to one side of
the equal sign, obtaining an expression equal to zero for each
equation,

3. An error expression of the same form as the foregoing expression
is defined. If the unknown coefficients of the error expression are
adjusted to their true values, the error becomes zero,

4, The coefficient of each of the measured variables is adjusted
automatically by a standard gradient approach to drive the error
toward zero, As the error approaches zero, the parameters
approach the correct values,

5. The parameter values are then used to adjust gain and compensation
of the control loop. One technique for gain adjustment utilizes the
fact that the product of the high frequency gain of the control loop
and the control surface effectiveness is approximately constant at



the stability boundary, DBecause one of the parameters obtained
in the identification is directly proportional to control surface
effectiveness, gain times surface effectiveness can be maintained
at some percentage of critical value, In pitch axis simulations
(Section 4), maximum damping was obtained at all flight conditions
if loop gain was about 50 percent of critical,

APPLICATION TO THE PITCH AXIS

The five steps in implementation will now be described in detail [or
the pitch axis.

Write Equations of Motion

Assuming constant airspeed, the pitch stability axis equations of
motion are given by equations (II-63) of Reference 5 essentially as follows:

a, = U, (a-8)+ gg Sin@, = UOZwap + Zaeée (4a)
q - Mgq - Uy (Mg, @ + My, p) = Méeée (4b)

where
o= o+a (4c)

P g

@ = angle of attack with respect to smooth air
ag = angle of attack due to wind turbulence
a, = total measurable angle of attack

The output from an angle of attack sensor mounted a distance £, ahead
of the center of gravity is given by equation (5).

The output from an accelerorneter mounted a distance Z ahead of the
center of gravity is given by equation (6).

a’zzaz—lzq (6)



Substituting equations (5) and (6) into equations (4a) and (4b) yields equations
(7a) and (7b), respectively.

4, +£,q = Uy (e -8) + g0 sinBO

H

Z (U, ap +2,9) + Zg be (72)

e
e

q - (Mg +2, M) q - Uy (M, @ + Mwép) =M, b (7b)

Eliminate All Except Measurable Quantities

The only variable in equations (7a) and (7b) which cannot be sensed
directly is . Elimination between these two equations yields equation (8)
in terms of measurahble quantities only,

q - (Mg +2, (Mg + Z,My)) g - UgMg,6 + My,g@singg

- Uy (M, + Z M) ap - (Mée + ZéeM\'V) 6e =0 (8)

Equation {8) is in a suitable form for parameter identification. However,
it is usually possible to make simplifications. Assuming small steady state
roll angle, equation (II-38) of Reference 5 yields equation (9).

é:qcos¢0-rsin¢0=q {9)

The stability derivative M, arises due to downwash from the wing to the tail,
and is normally quite small, so that @ need not be measured. Equation (8)
now simplifies to equation (10).

q - (Mg + UpMg, +2, (M, + Z,Mg)) g - Up (M, + Zy M) &p
=0, {10)

- (Mg +Z5 M)b,
€ e

For convenience, the various quantities in equation (10} are redefined
as follows:

-— —A — —_—
o = Xp = ap X5 3 Q4 Xq -6e (1la, b, c)

by = - Uy (Mg, + Z M) (11d)



by = - (Mg + UgMg, +2, (M, + Z, M) = - (Mq + UgMg,) +2,b;/Uq (1le)
b3=-(M6 +Z6 M\;v} (11£)
e e
Equation {10) may now be written as equation (12),

xg + Thyx; = 0 | (12)

Write Error Expression

During parameter adjustment, the current estimate of the i'th param-
eter b; will be designated by bi"-‘. An error is defined by equation (13).

_ o
e_x0+?bixi (13)
Subtracting equation (12) from (13) yields (14},

e=2 (b} - b;) x, (14)

An analog model capable of computing the error from equation (13) appears
in Figure 3,

*0
b
x) 1
* e
x5 by
*
b
X3 3

Figure 3. Signal Flow Equivalent of Equation (13)

Parameter Adjustment

‘'The parameter in this circuit could be adjusted manually, simply by
feeding the error into an rms voltmeter and adjusting each parameter in turn
to obtain a minimum. After several repetitions, a null should he obtained.

From equation (12}, it is seen that the four inputs to the model in
Figure 3 form a linearly dependent set. However, any three of these four

10



variables are linearly independent except in special cases, Hence, con-
vergence of the error to zero normally requires that the coefficient of every
input variable in equation (14) approach zero, Equating each coefficient to
zero requires that the i'th estimated coefficient b;" converge to the true
value b,.

Automatic coefficient adjustment is achieved with a gradient technique

due to Clymer (Reference 6) to reduce squared error, Differentiating
squared error by the chain rule yields equation (15).

d 2, e :x 3e\_ e Oe
at © -~Zt-ua—i?.e(z‘?ab:_:= bi+at)-Ze (? x:b; + 5 (15)
1

Adjusting the parameters will not directly affect the final term in equation
(15). However, it is possible to make the other terms negative, thereby

tending to reduce squared error, One way to accomplish this is to imple-
ment steepest descent using equation (16}, where K is a positive constant.

b;

- K 2e%/0b7 = - 2Kede/dbf = - 2Kex; (16)

Substituting equation (16) into equation {15) yields equation {17).

9 2. . 4Ke2 = x2 + 2ede/ot (17)
dt i 1

If it were not for the final term in equation {17), convergence of squared
error toward zero could be assured. This would show that the parameter
adjustment scheme was stable.

Miller (Reference 7) has shown that stability of the adjustments may
be verified using Lyapunov's Second Method, A Lyapunov function V is
defined in terms of deviations of the estimated parameters from the true
parameters by equation (18).

% 2

V=2 (b - by (18)

If the rate of change of V with respect to time can be made negative or zero
at all times, the adjustments are said to be stable in the sense of Lyapunov,

Differentiating equation (18) with respect to time yields equation (19).

V=23 (b - b) (b - By) (19)
1

11



Substituting the control law from equation (16) into {19) yields equation {20},

V:-&Ke?(bi-bi_)xi-Z?(bi - b;) by {(20)
Substituting equation (14) into {(20) yields equation (21).
V= -4Ke? - 2 (b - b;) by (21)
1 i i

‘ -
If the true parameters are stationary, V is always negative whenever

any error exists in the model, and the adjustments are stable.

A peometrical interpretation of the foregoing results, shown in
Figure 4, adds clarity to the analysis. Equation (18) defines a circle,
sphere, or hypersphere in parameter space for two, three, or more param-
eter adjustments respectively, For simplicity, the two parameter case will
be considered. Egquation {18} becomes equation (22), where r is the radius
of the circle,

* 2 * 2 _
V=rl= (b] - b))% + (b, - by) (22)

This circle is centered at the true parameter settings by and b,, and V is
the square of the radius, as shown in Figure 4,

Figure 4. Geometrical Interpretation of Equation (18)

If V is always negative, as indicated by the first term of equation (21},
the radius of the circle in Figure 4 is continually shrinking, Because the
parameters lie on the circumference of the circle, they will be drawn steadily
in the direction of the correct solution. However, if the true parameters
change, the center of the circle will move, resulting in a change in radius.

12



This is responsible for the right hand expression in equation (21). Inasmuch
as this term is associated only with tracking error due to changes in the
solution being sought, the system may be considered stable on the basis of
the expression on the left of equation (21). Moreover, if tracking error were
to become excessive, the error would increase, and the expression on the
left would eventually dominate, forcing V negative,

The basic parameter adjustment mechanism is simple, All that is
required is the model shown in Figure 3 and the implementation of equation
{16), shown in Figure 5.

In obtaining the foregoing results, it was assumed that both pitch
acceleration q and angle of attack &, could be measured or calculated from
measured data, In general, this assumption may not always be valid, IHence,
the possibility of using model equations other than (10) will be considered,
Another reason for investigating other configurations is that the parameters
obtained are generally different, Simultaneous use of two or more models
provides more information about airframe dynamics than does a single model,
but at the price of additional data sensing and processing,

%] ——— X xg ———p] X Ay —— ] X
x e e xqe
* * *
b
1 b2 b3

Figure 5, Implementation of Equation (16)



One new model equation is obtained by substituting equation (10) into
equation (7a) to eliminate g, then substituting equations (11d), (1le), and
(11f).

4, - (UpZw + by) ap -(8,Z +2,b5) q - (Zﬁe +2,b3) 6, =0 (23)

Equation {23) is of the same form as equation (12), The following parameters
may be identified:

by = - (UyZ +£.b) (24a)
by = -2, (Zy +4,b,) (24b)
b = - (Z5_+2,b3) (24c)

A third model may be obtained by eliminating ?rp between equations (10)
and (7a), resulting in

(1 -2, (My/Zy, + Mg)) a - (M + UMy ) q - (M /2 + M) &,

My =M Z, [Z) 5, = 0 (25)

Equation (25) is of the same 1orm as equation (12), The following parameters
may be identified:

by = - (Mg + UgM)/d) (26a)
bg = - (My/Z + Mg)/d; (26Db)
by = - (Mée - 1\;1\,;‘,26.3/2‘,‘,)/c11 (26¢)
where
dy =1 -2, (M /Z + Mg) (264d)

Control Loop Adjustments

Once a method has been derived for obtaining information about airframe
dynamics from sensor data, the next problem is to improve stability and
control. It is helpful to consider aircraft transfer functions associated with

14



whatever control loops are used to enhance response, For a pitch rate
damper, the pitch rate transfer function is considered, For normal
acceleration, the acceleration transfer function is used,

The pitch rate transfer function is derived from equations {(4a) and
(4b). Eugqation {9) is substituted into equation (4a) and 6y assumed zero,
Omitting turbulence, equations (42) and (4b) reduce to equations (27a) and
(27b), respectively,

U0 {s - ZW) o - qu = 26663 (27a)

- U0 (sM, + M) e+ (s - Mq) q-= Maeée (27b)

Solving equations {27a) and{27b} by Cramer's rule yields the pitch rate
transfer function, as expressed by

UO (S - Zw) Z&e
- Uy (sMg, + M) Mg _
a.
ﬁe
U0 (s - Z) - Uy
- Uy (sMy, + M) (s - M)

(M&e + Z(SeM\;I) s + (ZéeMW - szﬁe)

M, (28)

s2 - (Zw + Mq + Uon;v} s + Zqu - U0
One technique (Reference 3) for gain adjustment in the control loop
utilizes the fact that the total loop gain which just produces instability is
approximately constant at high frequencies, This is true provided enough
lead compensation is included to overcome lags introduced by the servo,
actuator, and sensor up to frequencies well beyond the short period natural
frequency. The high frequency gain of the airframe pitch rate transfer

function is obtained as a limiting case of equation (28), producing
lim

a/6, =Mg +Z, M- (29)
S—»C0 e [<]

15



Referring to equation (11f), it is seen that this gain is obtained directly from
the parameter identification. A constant gain criterion may now be mecha-
nized to maintain total loop gain at some percentage of the constant critical
value. If the variable gain in the control loop is designated by Kq, the
adjustment proceeds according to equation {(30), where K is a constant,

K, =K/b3 = - K/(Mﬁe + ZBEM‘;V) (30)

Analog and digital studies of an X-15 pitch axis controller indicated that
maximum damping was obtained at all flight conditions with a loop gain of
about one-half of the critical value {Section 4).

If angle of attack is not measured, an approximation is required. If
Zs andt, are relatively small, equation {26c) may be used in place of
eqt?ation (11f), leading to

Kq :K/b9 (31)

The zero of the pitch rate transfer function of equation (28) is also of
special interest in designing an adaptive flight control system, Usually, a
closed loop pole appears near this zero. Inasmuch as the magnitude of the
zero is generally quite small, the nearby pole has a long time constant,
resulting in a very long tail on the step response. In order to get the step
response to approach final value within a reasonable period of time, it is
sometimes desirable to track this zero so that it may be cancelled, If Zée
is again assumed to be relatively small, the zero is obtained from equations
(28) and (24a} as

/T, = - szb4/UO (32)

In the event independent gain adjustment of a normal acceleration loop
is required, the high frequency gain of the acceleration transfer function
may be used. If equations {4a) and (4b) are simulated on an analog computer,
q and e are obtained as integrator outputs, and do not play a role in deter-
mining high-frequency gains, At high frequencies, equation (4a) reduces to

az = 26 68 (33)
e
Substituting equations {(33) and (29) into (6) yields
A . .
a, = zﬁeae -2q = zéeae -2, (Mf’e + ZéeMW) b (34)
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Substituting equations (11f), {24a), and (24d) into eguation (34) yields the
required high-frequency gain as expressed by

Hm »

az/ 66 = -b6 (35)

S—~oo

If pitch rate and normal acceleration are fed back through the control
loop, the elevator deflection is of the form given by

A .
b, =ajataza, + 6ec =a,q+ay(a, - fzq) + 6ec (36)

At high frequencies, if a; contains appreciable lag (as is true in the present
system), equation (36) degenerates to

6. =6 (37)

Substituting equation (37) into equations (29) and (34) yields

lim 9
=M + + 7 38a
s+ B 6 My 25, {38a)
lim az
=Z - (M + M™Z 38b
g+ éec 6e z ( 6e w 6e) { )

Hence, the high-frequency loop gains are independent of each other if
sufficient lag is designed into the acceleration loop., This independence is
advantageous in the sense that the pitch rate damper gain may be adjusted
independently of the acceleration loop gain,

It may be concluded from the foregoing results that if angle of attack
is sensed and used by the SIDAC computer for parameter adjustment, the
high frequency gains for the control loops will be obtained correctly without
modification, provided the same sensors are used for both identification and
control. However, if the SIDAC computer utilizes only inertial data (acceler-
ation and angular rates), corrections may be required to compensate for
accelerometer locations other than the center of gravity, as well as for the
fact that the stability derivative Z‘Se may not be negligible,

Similar conclusions are drawn in Section 5 of this report for the lateral
axes, and are verified by simulation results,
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Although the remaining parameters in the pitch rate transfer function
are of secondary importance, it is possible to obtain approximations for them
as simple functions of the identified parameters, The complete transfer
function would be useful in establishing more complex control laws, such as
complete specification of closed loop poles (Reference 8) or complete optimal
control (Reference 9), ‘Implementation of such control laws is not contem-
plated at present, but equations (39) and (40) give approximations for the
remaining coefficients to illustrate future potential of the approach,

- (Zy, + Mg + UgMg) = by/ Uy + by = b,/ U (39)

The b coefficient is also useful in determining minimum gain required
to stabilize an unstable airframe, such as a missile.

PARAMETER IDENTIFICATION REFINEMENTS

Although parameter adjustments based upon equation (16) and imple-
mented as in Figure 5 are fast and stable, certain refinements are
advantageous,

In the first place, equation (16} can be generalized considerably, as
may also the Lyapunov function specified by equation (18), For cxample,
equation (18) may be replaced by the more general form

o
V = ) (b, - b)/K, (41)

It is easy to show by the method used previously that the system is stable if
the parameter adjustment equation specified by equation (16} is replaced by

b1 == Kplfle, x), x5 oot Xy b::l:, b:,’;’ b:;l) ex; (42)

This reduces to various special cases:
b1 = - Kiexi {43a)
b1 = - Kjex;/le| = - K, sgne X5 (43Db)

Equation (43a) permits unequal integrator gains, which speed convergence in
some cases. KEquation (43b) permits replacing multipliers by relays in analog

18



circuitry. Both of these modifications have been quite effective in sirnulations,
It is clear from equation (42) that limiting or deadband in the error channel
may also be used if desired,

Conditions have also been derived under which integrator inputs may
be cross coupled to compensate for interaction between adjustment rates of
individual parameters (Appendix II}), However, parameter interaction has
never been severe enough in past simulations to justify the extra complexity
of cross coupling.

Parameter adjustment schemes discussed so far are highly input
sensitive. For example, equation (21) indicates that adjustment rates are
proportional to the square of the error, The error intensity is in turn propor-
tional to input intensity, For an airplane flying in turbulent air, adjustment
rates would be strongly influenced by prevailing weather conditions. This
effect may be greatly ameliorated by means of an AGC circuit, as illustrated
in Figure 6 for the control law of equation (43a).

{-) SET K
POINT ‘ ‘ i‘ M 1

-1
L

(57 )

Figure 6. Pitch Axis AGC

It may be shown (Section 6) that the configuration of Figure 6 has the
added advantage that instability due to sampling lags in a digital implementa-
tion may be avoided.

Another refinement to the basic parameter adjustment mechanism is
the use of input filters. Because the equations of airframe motion
(equations 4a and 4b) are linearized about steady state values, such steady
state values should not be fed into the model inputs. An easy way to accom-
plish this, as well as to remove sensor bias, is to pass each input through a
washout (high-pass) filter. Frequency sensitive filters may be used to remove
noise from data, provided the frequency content of the noise differs from that
of the normal signal,
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If the parameters being tracked are slowly varying, it can be shown
that passing all inputs through identical filters does not alter the form of the
model, nor does it change the values to which the parameters converge.
This may be demonstrated by multiplying equation (12) by the transfer
function F{s) of an arbitrary filter, provided initial conditions in the filters
are zero so that transfer functions are valid., {(Nonzero initial conditions
eventually decay out for stable filters.)

F(s) (xg + Z bixi) =0 {44)
i

For example, consider a low pass filter applied to equation (10), as in

P {sq + blap + byq + b3 56) =0 (45)

Equation (45) may be implemented without measuring q as shown in Figure 7.

Cs

ste

q
<
stc
e
<
A s+e
ap o
c
ste
Je %

Figure 7. Pitch Axis Input Filters
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SECTION 4

PITCH AXIS

SYSTEM DESIGN

In designing the pitch axis control systern, emphasis was placed upon
choosing a configuration capable of good damping over a wide range of flight
conditions, even without adaptive control, This serves two main purposes:

1. In the event of failure of the SIDAC computer, the linear portion
of the control system may be used as an ordinary fixed gain
system until completion of the mission. The result is an effective
increase in reliability.

2. Accuracy requirements on parameter estimation are less critical
if the linear portion of the system is well designed. Hence, the
system should be less affected by sensor noise, flexible modes,
nonlinearities, and other effects not explicitly described by the
SIDAC equations.

The basic philosophy of the design procedure is similar to that intro-
duced by Horowitz (Reference 10). However, the design differs substantially
from that of Horowitz in two respects:

l. An upper limit of about 10 rad/sec is imposed upon the bandwidth
of the closed-loop system to prevent excitation of control surface
flutter, the 25 rad/sec first bending mode, the tail-wags-dog
effect, and to prevent excess limit cycling due to component
nonlinearities.

2. Design is restricted to simple compensation networks, three
dipoles in this case. The more elaborate networks suggested by
Horowitz provide exact cancellation of vehicle dynamics at a
single flight condition, but do not appear to be justified over the
remainder of the flight regime,

The basic design philosophy for the pitch axis may be illustrated by

referring to Figure 8, where the asymptotic frequency response of the
vehicle dynamics, together with a second order lag to represent higher
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frequency dynamics of control system components, is sketched for both
maximum q and minimum q flight conditions. The design procedure is
basically as follows: -

1.

e

A constraint is placed upon the maximum allowable closed-loop
bandwidth to prevent excitation of structural resonances, tail-
wags-dog effect, and to minimize limit cycling due to nonlinearities,
In the case of the X-15 pitch axis, 10 rad/sec was chosen.

The control loop gain is adjusted at the maximum g condition such
that the zero db (unity gain) level crosses the open-loop frequency
response at the maximum allowable closed-loop bandwidth
frequency. Below this frequency, the closed-loop transfer function
T(s) for Figure 2 is approximately (assuming unity feedback)

_  D{s)G(s) _
) = e =t (46)

and for higher frequencies,

T{s) = D(s)G(s) (47)

. The closed-loop transfer function has unity gain at frequencies
below where the open-loop transfer function crosses the zero db

line, and is essentially the same as the open-loop at higher fre-
quecies. Hence, the closed-loop bandwidth is approximately equal
to the frequency at which the open-loop gain drops below unity.

To ensure that phase margin will be adequate at all flight conditions,
the open-loop gain curves must be shaped in such a manner that
phase shift is less than 180 degrees by an amount equal to the
minimum allowable phase margin at all frequencies at which the
zero db line may cross the open-loop frequency response,
Generally speaking, this means frequencies below the maximum
bandwidth frequency previously chosen, It is well known that a
definite relationship exists between gain and phase curves for
minimum phase systems, so that in general, the steeper the gain
curve, the greater is the negative phase shift, and the less is the
phase margin. For example, if the logarithm of gain is plotted
against the logarithm of frequency, a slope of zero corresponds
to zero phase shift or 180-degree phase margin, a slope of -1
corresponds to a -90-degree phase shift or 90-degree phase
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margin, and a slope of -2 corresponds to a -180-degree phase
shift or zero phase margin. Hence, phase margin at a given
frequency is approximately (where m denotes the slope of the gain
curve)

PM = (2 + m) 90 deg {48)

For an average phase margin of 45 degrees, the average slope of
the gain curve, throughout the region where the unity gain line

may cross the gain curve is -1-1/2, as illustrated in Figure 8. If
one were to choose to maximize phase margin, it would appear to
be desirable to reduce the negative slope of the gain curve as much
as possible, However, it is apparent frorm Figure 8 that if com-
pensation were introduced to flatten the gain curves, the low q
gain would be far below unity at all frequencies, thereby preventing
effective damping of the rigid body. This is apparent from
equation (47), where it is observed that if the gain at the peaking
frequency of the rigid body is far below unity, the shape of the
peak will not be modified appreciably, and the control system will
be ineffective as far as stability augmentation is concerned, On
the other hand, damping may be increased by increasing the slope
of the gain curve with compensation, thereby raising the rigid body
peak to near the unity gain level,

it now becomes apparent that a compromise in design is required.
Maximum stability requires that negative slope in the gain curve

be kept small fo increase phase margin; whereas if large variations
in control surface effcctiveness are to be handled (corresponding

to large displacement between the frequency response plots at high
frequencies for various flight conditions}, the gain curve should be
as steep as possible. For an average phase margin of 45 degrees,
the average slope of -1-1/2 is somewhat steeper than the -1 slope
associated with a simple damper configuration, as illustrated in
Figure 8, Three specific advantages may be cited for this type of
design: {1) Decreased sensitivity to gain variations; (2) maximi-
zation of bandwidth at all flight conditions, This is made apparent
by observing in Figure 8 that with the negative slope of the gain
curve maximized, the loss in closed-loop bandwidth as a function of
decreasing open-loop gain (in turn a function of control surface
effectiveness for various flight conditions) is minimized; and

{3) maximum disturbance attenuation, It is observed in Figure 8
that maximizing negative slope also maximizes low-frequency gain.
Hence, disturbance attenuation is enhanced,
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Pitch Axis Design Details

X-15 pitch axis data for several flight conditions appears in Table 1.
The details of a preliminary pitch axis design are presented in Figure 9.
Two modifications in the basic design procedure are immediately apparent:

1. An integrated servo is included to reduce steady state error to zero
in response to a step input, This is important if an outer attitude
loop is used in the control system, Otherwise, pitch angle would
change as a function of flight condition whenever attitude hold was
engaged,

2. Inasmuch as it is not possible to achieve a slope of -1-1/2 in the
gain curve with simple physical networks, three dipoles are used
to provide shaping on an approximate basis,

Figures 10 through 24 show open-loop frequency response data for the
final design obtained from an IBM 7094 digital computer run, A 30-degree
phase margin was used instead of 45 degrees,

The corresponding root loci appear in Figures 25 through 29. The
critical gain qu is identified for each flight condition, and also the nominal
operation gain K , = K, ,/2. It is readily seen that this gain setting gives
very nearly maximum damping for each flight condition. The damping
coefficient g,/ is defined as the negative of the real components of the
complex short period poles, and is seen to be nearly constant for all flight
conditions, as revealed by Table 2. This means that the time required to
damp disturbances is nearly invariant throughout the flight regime. If
heavier damping is required, increasing the phase margin requirements from
30 degrees to 45 degrees should suffice.

Invariant damping may also be predicted analytically, Consider the
characteristic equation for simple rate feedback:

qn 2
s + Zgawas + Wy

<
1l

1+ K

2 2
STt R M 2hs e, T K M /T ) (49)

2 2
s” + Zgawas + Wy

The closed-loop damping is given by one half of the coefficient of the
s in the numerator,
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FLIGHT CONDITION 5 X-15 PITCH
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FLIGHT CONDITION 13 X-15 PITCH
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FLIGHT CONDITION 17 X-15 PITCH
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FLIGHT CONDITION 32 X-15 PITCH

70

N

10

-10

-70

-50

Figure 29.

SAS Autopilot Root Locus, FC 32

47

10



Eoﬂwﬁ -
31)
1<) 4 16°81 0922 €612 °0 qze
6L "1 14 0°eTl 0922 €612 70 eZg
9¢ §229°'1 s¥Z ¢ €62 "91 Ie
g2 °¢ Le GLIS 'O Ge0 "1 90%6 2§ 82
144 918 'L 2e9°gl 6160 "¢ 52
¥2 ST °1 €'e 698 "02 12
£€9°1 ¥2 19 °¢61 2Z°'1¢ 9066 °1 L1
29°1 ¥e 8°0T 912 v6€2 '2 €l
261 T4 8§96 °'2 £1's 686L ‘6 g
Eon,: pasoid) nw 0 o9s /8ap ﬁwM 098 /Bap EwM Bop @Hz uonpIpuUCcH
Aulmu.v D/Vo _ MW ~ Bep ~ Bep 2098 /%ep Wi
(“P3t = Py 3e)
VIVQ INFWNISNLAY NIVD LOTIAOLNV JAILIVAV

‘T ITEVL

48



0w =g, K M/2 (50)

qn

Inasmuch as open-loop damping {  _ is usually small relative to
damping provided by the control system, constant high-frequency gain
provides nearly invariant damping, verifying the results obtained from the
root loci,

ANALOG COMPUTER SIMULATION RESULTS

Simulation results have demonstrated the effectiveness of the parameter
identification and control loop gain adjustment schemes for both pitch and
lateral axes, Figures 30 and 31 illustrate a typical run for the pitch axis,
The control loop was initially unstable, with the gain 10 percent above
critical, The initial divergence, capture, and transient tailoff was accom-
plished in still air, with no pilot inputs, A two parameter model was used,
with the parameters initially set to zero. The b3 parameter converged
quickly and accurately, as is generally the case, This is fortunate, because

b3 is used to compute the control loop gain Kq from equation (30)}.

Data Coverage

The X-15 raw data points available for simulation purposes were
obtained from Reference 11. Figure 32 is a cross plot of mach number and
altitude for the flight conditions presented therein, Seven flight conditions
have been selected for study, and these seven are identified by the hexagonal
markers in the figure. The seven conditions represent an even coverage of
the entire flight spectrum. The derived aircraft parameters b (static pitch
stability) and b3 (elevator effectiveness}) are cross plotted in Figure 33,
Again the seven chosen {light conditions are identified by hexagenal markers,
and again an even distribution including the extremes {within the aerodynamic
flight regime) is observed,

Simulation of FC 32 indicated problems associated with identifying
parameters of vastly different magnitudes, Based on the original pitch axis
transfer function data, the SIDAC paraineters were found to have an order of
magnitude difference in relative size {bj = 2. 274, by = 0. 2193). Simulation
and intuitive reasoning (Appendix II) based on the form of Lyapunov circle:

.2
(bl = bl)
K,V =

R iy 2
3 KI/K3 + (b3 - b3) (51}

49



TN 1 R 0
, 91
e
I0Ix (PO - mmlmJ - — -
pue s1ajawieIed DVAIS ‘21 24 — R R -
‘ssuodssy DVAIS YdIid (edtdAL g 2andrg _ - {,-239) “A ‘NOLLDNNE AONNAYAT HOLId
: LA — - 9
: — : 0
B - H N H A B H H H H H H : H : : Umm_. Wo_c
(.D3S) 39 “¥2LIWVEVA SSINIAILDIIAI-¥OLYAIII DvaIS — 60
. ||.”.-|I|..l| Umm _. - i f H : : : - : d“ i - .I\ Nlowﬂ OO— = MM N.F
— o \rrﬁ T "
Z-i : i - L. Nlme 165 L = mnll\' .
= i s
= - i 0= (0.9 N PR
= 2351 T = ol | -
= R : _93Q =ty 14
= i - I ¥
= [ A N P T (N oo .
. . g5 evr L = g Tl
: (5-239) /L9 *5313Wvvd INIWOW-HDLI-O¥IV Svals L e N
N T S T P . i — 9L
IV LNIINGINL——afe——AIY T1IL5—
M RE. ™ e
m iy i1 ¥ E— i e
m — _ ——— A o
W Y, " : T ; V X
o w - -
1 (z235/930) “'° YOI 1I00W HOLId Dvals D35 L 1z0
SN TON) MOT3DI8 _LOMDD_u -
— = i 0
“ 0z
IWIL SIHL LY I g
N Q39NAOULNI - 13AT ZS44) ', M “ALIDOTIA ONIM GRVNOS-NVIW | o
: — — IoNTINGINL —-1 3oN3INGYNL" _ o _ A
ABANVLS (543} ¥9 = ,°M IYNIWON
] g5 PP = g MAVNIVON Y
—!'\(\l.l)l\..’.lnlff\l ——

50



_ T T T 235/930 ¥3d 930 19°§1 =
uten aandepy zodweq yoid pue o = A —————

E3TQBIIRA 3FEIDIIY ‘L1 DJ ‘'essuodssy e Gmm\umn ﬁz ome v_ z_.qe __00._ mm%,_(n_-xu:m

y211g eotd4 *1¢ 2and L
DVAIS YoHd Teatell "lE P ——————— D35 | ||u&\8n\omn 44 _n- ® ¥3AOSSOUD ooE
L _ (aaLwn) v 've = 3?_11\

v — e : o
_,.f, ._ - o, v >,. Y R - w : — zo-
A o
TR - — P e W :

Ak ¥ AR ' I &0

eIy EB:&:TI.H, vo

..<.m3..uz_>.,o.,uo_m NOsanr | — , — . —

e i R | . oF L3l S T .
T T Y W L - zo

: I - - Y " T

’ - M -l_ —_— N - . . - - - 3 +

." .._,_, TN 3 i W =+ 0

B — AR B L ) T L'0

] T N : T T m . B 20
: : : LY —

tr e : _ e i — : S s S SN AP mnw__tuﬁ I5NIO¥IAIQ

T N _ PR O S T S N S ZA S SR 0NV 1ON4OLNY |, .

Lo heliTy A ! T _ I o INTISNWEL 5~ 160707
L ST Wi T | T -— T
L R ey
R ot A iy W IWIL SIHL Ly ——
[l 1 A i y q, _¢ \amuaooﬁz_ll
! T T , “3INIINGINL
C ¥ _ H H H H i
. 1 - T D3 | ) - g’

N A : I 2 f A / LI [l g Ay -.} A - II ¥'0-
f Y EIRVE.A N ETAEYA'E LA LYAS _ LA TV : : v . ; °
T Y T — T L c ! m« c ﬁ ¥
. ; i ﬂwumm\mme H zozsm._muu« IuE Es_ux? 80

— - e l,l - ) -

SO = I SRS S —— — po-
i,‘.\if\r - — — : 2 “W T — N.Ol

e mem S [, - — 0
- == Gme Bo NOVLLY 40 TIONV aNImM——] 0

51



10

HEEE
5 21
= i
% 2 i | 25 -
z i 28
Z ] z 5 :
X £2E
U 7 i _'_'! 1
2 0.5 31
= i)
’ R 105
32 ALTITUDE, H (FEET)
0,0.2) . H (FEET)

1 Figure 32, Typical X-15 Flight Conditions s

suggested non-steep-descent parameter adjustment gains with a ratio of

E A
K1 . (bl) 52
K, ~ (h%)2
3 (b3)

An automatic gain ratio circuit was developed and tested. Results were
excellent and gain adjustment worked well when tested at other flight
conditions,

The plot of Figure 33 cast suspicion on the data of FC 32a, however,
in that the parameters b; and b3 were nearly equal at all other flight

conditions.

The data was corrected as follows:

Original Data Revised Data

FC32a FC32b

-~ Zg 27,171 - Zg 2.7171
e e

wy 1.5111 wy 0.5111
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With the revised data (designated FC 32b) in Figure 33, the bj/bj3 ratio is
unity, and the gain ratioc adjustment is no longer required.

Except for the inconvenience of searching for the error, nothing was
lost; in fact, insight into the selection of the optimum gain ratio for

non-steep~descent was gained,.

AGC Simulation

The need for AGC in decoupling signal level variations in identification
response times was discussed in Section 3. Simulation study- (as pictured in
Figure 34) has been completed for each of the seven chosen flight conditions.
A simplification was introduced in that AGC gain K)4 was based only on
elevator deflection,

Figure 35 presents the results of these studies in terms of 95 percent
Lyapunov response times vs the parameter adjustment (steep descent) loop
gain K, The effectiveness of AGC is evident: two of the original three flight
conditions coincide, and the total spread in response time at any fixed K is
only 8,5 to 1 if the FFC 32a (bad data) is neglected. Ideal sensors were used,

Whereas without AGC it was impossible to pick a single value of K
which would be acceptable at all flight conditions, the data of Figure 35
indicates that a value of K = 200 or even 500 would give excellent identification
results throughout the X-15 flight spectrum.

Adaptive Loop Gain Adjustment

Loop gain adaptive adjustment based on equation (30}

(MBean) set _ 25

b3 b3()

Kq(t) = (53)

has been tested and proven effective at each of the seven selected flight
conditions. A decision was made to limit the adaptive gain range to a 40 to
1 ratio, which established the upper limit of loop gain:

Kg =40 (5 = 18. 91 (54)
max b3/ Frczs

As shown in Figure 33, the 40 to | range makes it possible to adjust
K_ to the optimum value an at all but the landing condition FC 32 and
several extremely high altitude conditions, Nevertheless, performance is
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still acceptable at landing, as can be seen in Figure 36, Reaction jet control
will be required to augment the elevator aerodynamic control at the high
altitude conditions,

Effects of Input Filtering
Input filtering is desirable from at least four aspects:

1. It obviates the need for an angular accelerometer since the rate
gyro signal can be used to obtain the q signal,

2, Low-pass filters will be effective in reducing the signal contamina-
tion due to sensor noise, sensor dynamics and nonlinearities, and
higher order airframe dynamics such as bending and compliance,

3. High-pass filters can be used to wash out trim conditions if this
proves desirable,

4, Bandpass filters can be used in special cases of severe bending or
noise of concentrated bandwidth.

Only the first and second of these aspects have been investigated, as
indicated by the configuration shown in Figure 34,

Figure 37 is included to show a typical run with low pass filtering,
combined with derived q information. No quantitative results are available,
but no observable degradation of identification has been experienced,

Effects of Real Sensors

Sensor noise, sensor dynamics and sensor nonlinearities (e, g.,
thresholds and rate or position saturations) add spurious components and
modify the frequency content of sensed information,

The effect of adding a large noise component to an otherwise ideal
sensor is shown in Figure 38. If the adaptive loop gain were adjusting, the
flight system would become unstable for b <35¢ = 0,11, This level is
indicated on the b3 trace in Figure 38. The dlvergence associated with such
instability would, of course, increase the signal level relative to the noise,
identification would improve and loop gain would be reduced,

Figure 39 demonstrates what happens with more reasonable sensors,

That is, sensor dynamics and nonlinearities as given in Figure 34 are
involved but there is no sensor noise,
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The aircraft dynamics at FC 21 {Figure 39) have a bandwidth of 12 rps
for the optimum loop gain Kgn = qu/ 2. The filter time constants are set
at 0, 1 seconds (10 rps), well below the sensor dynamics at 60 to 80 rps.
The identification is smooth, At the lower-frequency FC 32b the identification
is even better, The conclusion is that 'typical' sensor dynamics do not
seriously affect identification and that selection of the filter time constants
is not critical,

Effects of Pilot Inputs

Figure 40 demonstrates that pilot inputs have no serious effects on
identification., Some parameter wandering is observed, but the error dead-
band (i, e., the integrator clamping levels) which will help to prevent this
wandering, needs further study., Figure 36 demonstrates that pilot inputs
alone can be used for identification. This is true even with two-parameter
identification and real sensors., Error limiting and AGC operation in the
presence of pilot inputs deserve further study, particularly peak-reading for
rapid reduction of AGC gain to prevent multiplier saturation,

Effects of Signal Level Variations

Figure 41 clearly indicates the ability of three basic SIDAC configura-
tions to reduce the effect of signal level variation upon identification time,
Without AGC, coupling is via the expected inverse square relation, SGN
Error SIDAC (a relay operating on the sign of the SIDAC error signal replaces
the parameter adjustment rate loop multipliers) is also victimized, but only
to inverse first-order dependence. AGC SIDAC, however, operates inde-
pendently of signal level, as indicated by the horizontal line, When the AGC
gain saturates, response times revert to the inverse square law dependency,

SGN Error SIDAC Identification

For comparison purposes Figure 42 is included to show a typical SGN
Error SIDAC identification response, The error signal (limited to protect
the relay amplifier) and the integrator clamping signal (error deadband is
required with sgn e multiplication) are shown also.
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SECTION'5

LATERAL AXES

THEQCRETICAL JUSTIFICATION FOR TREATING LOOPS SEPARATELY

Inasmuch as a control system for the lateral axes may involve several
feedback loops, interaction between loops is an important aspect of the
design problem. In this study, four separate loops are used for the roll
damper, the yaw damper, lateral acceleration {turn coordination), and yaw
into roll (YAR) coupling, respectively. Analytical justification is presented
for treating each of these loops independently when making adaptive loop
gain adjustments, provided high-gain instabilities occur at relatively high
frequencies. This analysis includes the effects of steady-state angles of
attack, steady-state pitch angles, cross products of inertia and location of
angle of attack sensors or lateral accelerometers,

The equations of motion of the lateral axes are given by equations {I[-64)
of Reference 5 for stability axes, essentially as follows:

Uy (ﬁ+ r)‘—'qu sin 65+ g ¢cos Bg + Yor + UpY,P
{(55a)
.
p_E r=er+Ll35+Lpp+L6a6a+L-6r6r (55b)
¥ I"“"1';>~1~1r+1\1 B+ Np+N + N (55c)
o r ¥ TpP T Mg 0 T N g br

I p is substituted from equation {55b) into equation (55c) and ris
substituted from equation (55c¢) into equation {55b), the result is equations
(56a and {56b) (Reference 12},
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p=Lir+L' Pt Lop + L'6a 8a + L'6r 5¢ (56a)
r=N'rr+N'ﬁ§3+ Npp + N's_ 65 +N'6r 5y {56b)
where
I
L +—=N N, 4221,
s 5 s I s
I:DC ZZ
L; = 2 NIS = (57)
1 - IXZIXZ i- IXZIXZ
I)D{IZZ IXXIZZ
and

8=T,B, P» 6yr bps Tespectively,

Now, the Eulerian angles ¢ and { are related to the instantaneous
angular velocities p and r by equations {58a) and (58b), which in turn are
linearized forms of equations (II-38) of Reference 5, with a steady-state
pitch angle 6, included, but with zero steady-state roll angle.

‘i"-' r sec B, {(58a)
,j,: p+rtanb, (58b)
Substituting these equations into equation (55a)
U, (['3-!- r) = g (tan By + sin 63) r/s + g cos 8p p/s
FYpT +UQYy B+ Ypp + Y 50+ Yo by (59)

A lateral accelerometer responds to the sum of all external lateral
forces acting upon the airframe as given by equation (59), resulting in

ay + Y.r + Ug¥,p + Ypp +Y 6, 65+ Y 5y by (60)
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Usually, Y., Yp and Y6 may be assumed small, Also, if the accelerometer
is mounted at the center of percussion, the term Y 6. 6y is cancelled, leaving
measured acceleration approximately proportional td sideslip.

aY = U()YVF3 (61)

Hence, lateral acceleration and sideslip may be used more or less inter-
changeably for control purposes.

If equations {56a), (56b}, and (59) are simulated on an analog computer,
B, p» and r are obtained as integrator outputs. Inasmuch as integrators
attenuate high frequencies, the high-frequency airframe dynamics are only
slightly affected by integrator outputs. Equations (56a), (56b) and (60)
reduce the following high-frequency approximations:

p=Lit bt L &y (62a)
a r

r=N‘ g +N/ 62b
5, %a 5, Or (62b)

aY=Y5aﬁa+Y5r br (62c)

If steady state angle of attack ¢, is nonzero, the measured body axis
rates p and r are related to the corresponding stability axis rates pand r
by the following transformations:

>
|

= r cos ag. t p sin o {63a)

P cos ag - r sin g (63b)

o
[l

The normal acceleration a_ measured by an accelerometer mounted a
distance £, ahead of the center of gravity is related to the stability axis
riables by

A
Q.Y=ay+lx1:=a.y+gx(fcosao+§sinao) (63c)
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Similarly, the sideslip measured by a sensor mounted a distance ﬂb ahead
of the center of gravity is given by

Equations (63a), (63b), and (63c) are combined in

-S'Y-I 1 sy sin ap s, cos a(.ﬂ *aY_
i\) = |0 cos a, - sin g P (64)
i 2 LO sin @ cos @g r
0

Four separate control loops were incorporated into the simulation of
the lateral axes: a roll damper loop, yaw damper, lateral acceleration, and
yaw into roll {YAR) coupling, These control loops are represented in
Figure 43 and equation (65), where byzs b3, b1, and by, are the transfer
functions {or gains) of the respective control loops,

ba 0 b1z b13 ay ba_
A

sr| =| P21 0 ba3| | P | * [br (65)
A
LT
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Figure 43, Basic Control System for Lateral Axes

Writing equations (62a)}, (62b), and (62c) in matrix form and substituting
equations (65) and {64) yields

— — [ ’— . , —‘ — ]

Ei.y ’_YﬁaYﬁr 0 Dbyz byz| |1 sl sin ag sy cos'ey raY b,
5= | L/ LY b,y 0 b 0 cos @ --sin @ + 66a
P 5o by 21 23 cos @ sin g P br (66a)
| N/ NV 0 si

| T " 6, 5. i 0 sin ag cos ag | |T |

Linear terms in p and r do not enter into high-frequency approximations,
as explained previously in deriving equations {62a), (62b), and (62c). In the
simulation, some lag was included in the lateral acceleration feedback loop
represented by the transfer function by;. Under these conditions, equation
(66a) reduces to (66b) at high frequencies,

2, [Y 6aY 6| ba

pl= L%t LY - (66Db)
ba br c
1: Nt N/
T ba Or
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Equation (66b) may be solved directly for the various high frequency gains

of interest:

Iim r o N/
8§ B 61‘
r

c
lim I; -1 4
s—w Oa_ L ba
: c
lim 2y _ v
&r 6:l‘-'
c
lim r _ N
S—-0 63. 63
lim P _ Lt
c

(67a)

{(67b)

(67¢c)

(67d)

(67e)

To get the high-frequency gains in terms of measured angular rates,
equations (67a) through (67¢) are combined with equations (63a), (63b), and

(63c). Of interest in analyzing stability of the yaw damper is

A

hm__f_ _ lim r cos ag + p sin 0 - NI cos ap+L! sin g
5—wm §,. S—am by 6r 6
c
For the roll damper,
A . .
lim p lim p cos ag - T sin 4
0 .
—_ = = L! cosao—Né sin o
§—m by 5—m 6 6a a
c c
For YAR feedback,
A . .
lim r lim r cos ay + p sin ag
— = =N! cos agt+ L/ sin ag
§—=@ 6& 88— 53. 6.':1 63.
c c
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For acceleration feedback, using equations (63c) and {68a},

A A
Iim a.Y lim ay + fxr
= =Y + g (N! cos @ +L.1 sin ao) {(684d)
s—o §_ s~  §. & *x &5 by

C c

Each high-frequency gain given by equations (68a)through (68d)is inde-
pendent of the loop gains {(or transfer functions by, by3, by, and b23). Hence,
closing one loop should not seriously alter the gain at which another loop goes
unstable, provided the instability occurs at a sufficiently high frequency to
ensure such independence. This has been verified empirically, as illus-

trated in Figure 44 of this report,

It will now be shown that if the SIDAC model is fed data from the same
body-mounted sensors as are used for the rest of the control system, the
correct high-frequency gains will be obtained directly from the parameter
identification, For the roll axis, the SIDAC model equation is defined as

follows:

A
po-L% sa-L% & (69)

Substituting equations (63a), (63b), and (63d) into equation (69) gives
equation (70).

0.8
K, =K, =0.6m2
m
D
& P UNSTABLE
& 0.4 ] H
o
= STABLE
o
z
« Ly
glg 0.4 T
o
¢ (
% NOMIMNAL DAMPER GAINS
3 Kp, = 0-3506 J
£
K - 0.M7
3z 02 T 0T £
a
z
I
b
X =K = 0.7812
P )
m
o 0.2 0.4 0.6 0.8
KOLL DAMPER ADAFTIVE-GAIN, K, (ECONDS)
NOTE:
K =K =00

MQOTCH FILTER; 052 s + 1
0185 s + 1

Figure 44, Roll/Yaw Damper Gain Interaction at Grossover {FC 28)
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ep = (1; cos ay - r sin ao) - Lg (p cos ag - r sin ao)

- L* {r cos + p sin a,) - ¥ {8+ cos /U + sin /U
* 1 agtp o) plB+ 2, agt/Uyt b sineay p/Up,)

- L% - L%
Lea 02 " L or (70)

Substituting equations {56a) and (56b) into equation (70} gives

- ' T
ep—fi (Lﬁ cos ag - Ng sin a4 - Lg)

+p (th) cos a -NI'D sin e - L; cos agp - L¥sinag - Lgtbsin aq/Ug)

+r(LLcos g -N/sin g+ L; sin g - L¥cos ag - L?;'lbcos ag/Ug)

ts, (L cos ao-Né sinao-Lﬂa‘)
a a a

T (L{ cos @g - Né si.na,0 - L’gr) (71)
r r

If the coefficients converge to their true values, then each coefficient in
equation (71) must be zero in the steady state, In particular, equating the
coefficient of g, to zero gives

L¥ =L! cosag- Né sin a g {72)
a

I
'5a a

Comparison with equation (68b) reveals that the high frequency gain for the
roll axis is obtained directly,

For the yaw axis, the SIDAC model equation is defined by

-N% 5, {73)



Substituting equations {63a), (63b), and (63d) into equation (73) gives

€p=r cos a5 t p sin ag - N;(p cos ay - sin ag)

- N¥ (r cos aj +p sin ag) -N’E([3+!bcos ag r/Ug+ by sin agp/ Up)

-N"ga 6a - N¥ (74)

Substituting equation {56a) and (56b) into equation (74) gives

e, = ﬁ(Né cos ag + Lé sin a - Ng)

+p(NI';cos o +LI; sin a -N;cos ag -N¥sin gg - N% £ sinay/Up)

0 p

+r (Nll'_cos a0+L]l:_ sin a0+Ng sin @q —N?cos ag -Nglbcos aO/UO)

+5.,{N! cos ag+ L! sin a4 - N¥ }
a'l 0" Zs, 0" T8,

+5r(N16rcos + Li sin g. -N% ) (75)

%0 " To o 0 -

Equating the coefficients of § and §_ to zero gives equations {76} and (77),
which in turn are the high-frequency yaw and YAR gains as given by
equations (68a) and (68c}), respectively,

¥ = NI + L i

N5r N6 . cos a 5. sin ag (76)
¥ = ' 1

Nﬁa Néa cos ay + Léa. sin a {77)

Another form tor the SIDAC model is expressed in equation (78) which is
of the same form as equation (60),

A A A A
e =aY-U0Y§; [i-ng-Y;!Sr-Y* {,a-Y* &y

=] 6&
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_ . . . A A A
_ay+gx(rcos ao+p31nao)-U0Y$p-Y p-Y?r-Y%aéa-Y% 6. (718)

Substituting equations (60), {56a), (56b), {63a), (63b), and {634d) into
equation {78) yields

1:-:a=UOYVB+YPp+Y1.r+Y6 6o T Y

)
a 6 *

r

+ 2, cos aq (Néﬁ +NI')p+N]'__r+Né 5a+Nll5

)
a r6r

. '
+4_ sin e (Lﬁﬂ + ngp + Lz"r + Léa §a t L:t)r dr)

- U0Y$ (p+ £b sin QOPIUO + £, cos aor/UO)

- Y% - 3i - Y* i
YP {cos agP - 3ina, r) Yr (cos ag ¥ + sin aop)

6, 51 (79)

Equating the coefficient of §_, to zero yields equation (80) which gives the
high-frequency lateral acceleration gain expressed by

Y§r=Y6r+£x (Nércos a0+Lér sin ag) (80)

It has been shown that all four high-frequency loop gains of concern in the

present simulation are obtainable explicitly from SIDAC parameter
adjustments,

SIDAC parameter tracking models for the lateral axes which do not
require measurement of sideslip may be obtained by solving for § from
equation {60) and substituting into equations {56a) and (56b).
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P=lay, - Y, r-Yop-Y; 65-Y, 601/ UgYy, (81)
a r

p=L'rr+L"3 (aY-Yrr—Ypp—Y6 5a'Y6r 6:)/Up Y,

a
+LIf)p+Léa 5a+La6r &y (823
r=NLr+ N g =Yy - Yo=Y, 6, Y5 8.)/UgY,
+NI')p+Néa 6a+N:5r by (83)

Using equations (82) and (83) as the basis of the SIDAC models for the
roll and yaw axes, respectively, leads to error equations which are inde-
pendent of sideslip. For the roll axis, the form of the error is given by

f - L

A A
- - % s - £ - £
L* p Lr ya,)‘r L5a ba L51- &

o -

epY =

o

= (1; cos aq - r sin ag) - Lé; (p cos ap - r sin «g)
- L¥ (r cos ap t p sin ag) - L? [ay+ 2, (1: cos ar0+1;sin aq)
- L¥ 5, - LE g5y (84)

Substituting equations (82) and {83) into equation (84) and equating
coefficients of 5§, and a, to zero to obtain final parameter values yields
equations (85a) and (85b), respectively.

L* ={L:! -L§ Y, /UY - Lx i
5 (6a B 6a/ Ov) (cos oy Y!xs1n ag)

- (Néa - Né Yaa/UOYv) (sin o + L 1, cos @g) (85a)
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where
L# =L (cos ag - L £, sin ag)/Ug¥,, - Np (sinag+ L £, cos ag)/Ug¥,,
= (Lé cos ag »Né sin ag) /{UpY, + L, (Lfg sin a0+Né cos ag)) (85b)

For the yaw axis, the form of the error is given by

L

A A A
= - N - N - N#* - N= - Nk
erY r Npp Nrr NY .':LY Nﬁa N 5 6,
=r -N¥pP - NPT - N¥(a_ +2 Q) N N
=Tr - pp_ rr- Yay xr__ 6a68,- 61. 61‘
= r cos a0+1;sina0—N;‘(pcosao-rsinao)

- N? {r cos agt P sin ao) - N;‘ [ay + £y (r cos ag + p sin QO)
-N¥ g, -NE g (86)

Substituting equations (82) and {83) into equation {86) and equating
coefficients of §,, §,, and ELY to zero yields equations (87a}, {87b) and
{87¢c), respectively,

_ 1 i .
N-,ga_ I(N: -NL Y, /UGY )cos ao-l—(Llsa 'Lﬁ Yéa/UOYv) sin a.rol

ba P 8a

1 - N*
( y e) {87a)
N¥ = [(Né NS Y, /UpY Jcos agt{Lf - LgY, /UgY,)sinag

br r B br r B76,

(1 - N#* Ix) (87D)
y

80



; = (Né cos agy + Lé sin ag) (1 - N; LU
(87c)
= 1/[ L, + UOYV/(N['; cos og + Lfi sin ao)]

If Yg ,» Yér and £, are all small enough to be negligible, equations {85a},
(873.), and (87b) reduce to equations {72), (77) and (76), respectively.
However, finite values for Yg 2’ Y6 , and £, may lead to significant errors
in parameter adjustments and hence, in control loop gain settings, This
wasg not true when sideslip was sensed as shown in equations {69) and (73).
Hence, it is clear that some price must be paid for elimination of sideslip
data. If loop gain errors aie excessive for a particular airframe, it may
be necessary to cancel the r component of the accelerometer output {i.e., if
1, is not negligible) or to correct model parameter settings prior to com-
puting control loop gains (i.e,, if Y6a. or Yg - is not negligible).

It may be concluded from the foregoing results that if sideslip is
sensed and used by the SIDAC computer for parameter adjustment, the high
frequency gains for the control loops will be obtained correctly without
modification, provided the same sensors are used for both identification and
control, However, if the SIDAC computer utilizes only inertial data (accele-
ration and angular rates), corrections may be required to compensate for.
accelerometer locations other than the center of gravity as well as the fact
that the stability derivatives Yaa and Y, N may not be negligible,

ANALOG COMPUTER SIMULATION RESULTS

The X-15 lateral axes were simulated, together with a modified
Honeywell stability augmentation system (SAS) (Reference 3). Block dia-
grams for the roll and yaw systems appear in Figures 45 and 46, respectively,
Figure 47 shows typical responses for the roll axis with the adaptive gain
adjustment mecghanism operating, and Figure 48 shows the corresponding
results for the yaw axes., The high-frequency gains N’g and L#¥ converge
rapidly and smoothly, A large number of additional runs were made with
the adaptive gain adjustment mechanism inoperative to test parameter
identification capability at several flight conditions, and the results are
summarized in Figures 49 and 50, The results for flight condition 32 were
rather poor, and were not included in the figures. Although the difficulties
could definitely be traced to the simulation equipment, particularly noise
and bias in the time division multipliers, it is not certain whether or not a
weakness in the basic mechanization is indicated. Simulation with improved
multipliers (quarter square) or digital simulation should provide further
answers,
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Figure 47. Typical Roll SIDAC Response FC 21 (Sheet 1 of 3)
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SECTION 6

DIGITAL IMPLEMENTATION REQUIREMENTS

COMPUTER REQUIREMENTS

Simplified programs were written for a two parameter pitch axis
identification. These programs contain all basic functions of the complete
program, and expansion to a three-axis program entails only repetition of
the coding for the basic functions. It is estimated that the length and com-
putation time of the complete program would be approximately four times
the length and computation time of the simplified version,

The basic SIDAC pitch axis equations required for a two parameter
identification using simple rectangular integration are as follows:

Xy = Ky.8 (88a)
Py x+1Pr - K T e ¥y (902)
b3k+1 =b'3“k-K3T e X3k {90hL)
K, = *
A _ 2 2
AGC = SP (Kpg Adjustment) (93)

These equations, together with variocus limiting operations and other minor
functions are outlined in detail in the flow chart of Figure 51,

93



jaeyD Mol SIXY ydiid

£, L
OV XN+ X

p.|

€,q=—Fxefy-£,q

Ld

tyqu—dIxeyly-liq

...llmxman_+ _x—;a.f ox

‘1 @andrg

°.|

b

iN0 avay

p|

Wy e

n

M

Wy

ON

@ ~e—

9 ubs

b1-117)

avay

€, qe—»(0)E\9
_.' qm— _..D.v _._: Q
Wyt a—(0) ¥

3Z1VvilINI

94



A preliminary estimate of computing requirements was made by writing
a program for a hypothetical single address machine. A total of 150 instruc-
tions was required to mechanize SIDAC for the pitch axis. These instructions
were subdivided as follows:

15 multiplications
3 divisions
5 additions and subtractions
30 load
26 store
13 jumps
10 tests
10 shift left and shift right
38 miscellaneous

Assuming the number of programming instructions for the lateral axes
to be approximately three times the number for the pitch axis, the total
number of instructions for a complete program would be about 600 for single
address machines or 390 for two address machines, Approximately 12 inputs
and three outputs, in addition to discrete lines, are required,

The preliminary estimate of computing requirements was verified by
programming two commercially available airborne computers using mnemonic
coding.

A total of 152 instructions was required to program a two-address.
machine for the pitch axis. These instructions were subdivided as follows:

37 test

22 subtractions

18 jump

15 multiplications
13 additions

12 load

11 store

11 shift left and shift right
7 input and output
3 copy

2 division
1 halt

152 Total instructions

Estimated computation time is 1. 323 milliseconds per iteration,
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A small (35 pounds) single-address machine was programmed for
comparison, requiring 898 microseconds to execute 217 instructions,

Use of a digital differential analyzer (DDA) was not considered
feasible because of slewing (rate limiting) problems. These slewing pro-
blems arise because the integrator outputs of the DDA can change by, at
most, one increment during each iteration,

In order to scale a real-time sine wave

x(t) = asin 25 £t, (94)

the rate limits require satisfaction of the following equation:

dx
—_—— = 2 5
nz o max a2qg#f (95)

where
n: number of iterations per second
a: number of increments to represent peak amplitude
#: Irequency of sine wave

For example, if the maximum frequency to be considered is assumed to be
3 cps, an iteration rate of 250 per second gives

n_ 250
“2nf 27 x3

a =13,2 (96)

Hence, quantization error would be approximately 8 percent of maximum
amplitude, even with optimum scaling,

STABILITY ANALYSIS

At the present time, it is planned to implement the final form of
SIDAC digitally, even though all simulation work to date has been performed
on an analog basis. A digital implementation will provide greater resolution
and freedom from component noise, bias, and multiplier errors than is
obtainable from analog equipment. However, a digital implementation
requires sampling of measured data which is generally destabilizing.
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For comparison, consider a continuous system and the corresponding
Lyapunov function

v e z(b;‘ - bj)2 (97)

where b; is the j'th parameter {assumed constant) and bJ is the present
estimate of the j'th parameter, Differentiating equation (97) with respect to
time gives

v = 2 * - b b,
v E{bJ bJ) b'_| (98)
Equation (98) is subject to the control law (all integrator gains equal)

K
bj = --—Z—e(t) xj. (99)

Also,

e(t) = z(b}“ - b)) X; {100}

Substituting equation (99) into equation {98}, and (100} into the result gives

Vz-Kelt)Z (b}“ - b)) x, = - K e2(t). (101)

Hence, V is always negative, and the adjustment is stable,

For the discrete case, eguation (97') becomes

A st 2
V) = z(bjk - b)) (102)

where Vi is the value of V at the k'th instant, and b¥ is the value of the j'th
parameter at the k'th instant, Taking the first difféfence of (102) with
respect to k gives

Vk+1 - Vk

1l

P 2 e 2
z [0F s 1y - bp? - 0F - b))

Z(bS (k41) - bj.“k) (B4 1) * Bhy - 255 {(103)

If this first difference is always negative, the adjustment will always be
stable, Several cases will not be considered,
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Case I: Rectangular Integration, Input Delayed by One Sample (Figure 52)

If equation (99) is evaluated by rectangular integration based on past
input,

KT
* = pF - )
Biace 1) = Py T ok Ny (104)

Substituting equation (104) into equation (103) gives

- _KT o _KT
Viegp - Ve = T - &K% ) (ij 2b > ekxjk)
. KT
. KT ey [2 (¥ -b)x -— e %% ] (105)
Z VS L N i

Substituting the digital equivalent of equation (100} into equation (105) gives

v - Vi = - KT e? '1-——-2:{.]

k+1 1 i (106)

If the second term in brackets in equation (106) is zero, the sampled-
data system will always be stable, just as the continuous systemn is always
stable as revealed by equation (101)., However, because the second term in
brackets in equation (106) is always negative, the sampled-data system is
always less stable than a continuous system could be. The sampled-data
system is of course always stable for small gains or inputs such that

KT
= x?

<1, (107)
4 Jx
The next two cases to be considered are not physically realizable because
they require present {(rather than past) values of the integrator input. In a
feedback arrangement, this means that while present values of the output
are required to compute present values of the inputs, the converse is true,
and present values of the input are required to compute present values of
the output, While no direct solution to this quandary is readily available, it
may be partially circumvented by using input prediction. However, before
the effects of input prediction are considered, the non-realizable cases will
be considered as an aid to further understanding the problem,
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Case II: Rectangular Integration With No Input Delay (Figure 53)

If equation (99) were evaluated by rectangular integration based upon
present input,
% 3 KT
= br - . 1
Bik+1) = i "7 k41 (k1) (108)

Substituting equation (108) into equation (103),

KT KT

Vier1 " Ve ™ T2 Suer 1) PPy T %5t 3 %k a1 Btk 1)

£l (b¥ b.)
- e - .
z %k+1 [z 2O 1) 75 Nke

KT 2 ]
VT %%l e (109)
Substituting equation (100) into equation (109},
v Vv, = - KT 1+ 20 2 (110
k+1 k7 e1<+1 [ T PN ke )

If this approach could be implemented, the parameter adjustment loops
would always be stable, and would also be more heavily damped than the
equivalent continuous system.

Case III: Trapezoidal Integration (Figure 54)

If equation (99) were evaluated by trapezoidal integration,

e b KT
b = b -
jr D)~ % T T PR Faery o) (1)

Substituting equation (111} into equation (103},

K T K %

Virn " Vit m T Bl N o)) By < B

- b))
J J
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Figure 52. Rectangular Integration Based On Past Input

Figure 53, Rectangular Integration Based On Present Input
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Figure 54, Trapezoidal Integration
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‘-E{ez vely b¥ - b
T ke T e 2000y B - By

tep 2% By - by
k
kT [ 2,02, [+
= - e
2 |"k+1 kK T o%i1 ZXme ) P
KT ]
..bj+ (ek+1j(k+1)+ex)
+ p¥ oy, L KT
Kk F¥j [ N Rl LTI P ekXJ'k)]
KT 2 > KT 2 2
T = — [2 ek+1 +2-Ek +—4— ek+1 ij(k+1)
KT (2, 2
Tl ]
---I—{E e 2'+e 2nLEI(e 2 2
=-"3 k+ 1 k 8 ‘"k+l T¥k+1)
2 2
- e w5 0| (112)

While Case Il is more stable, as indicated by equation (112}, than
Case I (106}, it is apparently more lightly damped than Case II (110), This
is entirely in agreement with results obtainable from linear sampled-data
theory for these approximations.

Of the three cases discussed so far, only Case I may be realized
physically, and it was the least stable of all, To realize the other two cases
on an approximate basis, linear input prediction may be used, For example,
suppose one denotes the input to an integrator by u, and the output by v, as
illustrated in Figure 55, For a linear first order predictor, it is assumed
that the past, present and predicted future values of the input may be con-
nected by a straight line, as indicated in Figure 56, The slope along the
straight line is constant, yielding

T B e T P (113)

or
uk+1:2uk-uk_1 {114)
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This basic input prediction algorithm may now be combined with
Cases II and III to yield realizable computational schemes as follows:

Case IV: Rectangular Integration with Input Prediction

Referring to Figures 53 and 55, the integrator output for rectangular
integration is

Vk+1=Vk-KT11k+]_- (115)

Substituting equation {(114) into equation {115)

Vk + 1 = vk - KT(2u - ux - 1) (116)

which is realizable because only past inputs are required. If equation (99) is
evaluated using equation {116) then

% KT
E3 ok o4 . _ )
Pik + 1) T bjk > (zekx_]k ek - 1%{k - 1)) (117}

Substituting equation (117) into equation (103) gives

KT "
V - v T o —— 2 . - " y - .
k+1- Vi 5 ZlZeXy - ek - 1Xj(k - 1) (2] - 2b;

KT
"2 [P T %k - ¥k - 1))

_ KT 2 %
= —-2-— l4ek - Zek -1 E(bjk - b_])x](k - 1)
KT 2

2 2 2
-—2—-(4ek ijk +ek"lzxj(k—l)

~deger 1 X xjk ik - 1))] (118)
Indexing equation (117} gives

KT

b TP - 1) "5 2ok 1%k - 1) 7 %k - 2Xj(k - 2) (119)

Jk J
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from which,

% _ s [b b,
S”Djk Sy = F [ fe-1 3

_I:-(E
-2 (e L 1%k - 1)
“es - 250 - 20} Fjpc - 1y

2 KT

= "RT e 1 E2Xk-n T %k-2

|

LXj(k - 1)¥j(k - 2) (120)

Substituting equation (120} into equation (118)

KT 2 2 KT 2 .2
Vk+1‘Vk=-T[4ek - S e sl L M T LT[ §

t2ep L1 ek -2 Xk - 1)k - 2)

2 2 2 2
+4ek ZXjk tex o1 Z_‘,XJ(k_l)

4e

k %k - 1 2% F( - 1))]

2 2
= - KT [Zek - Ek -1 ]
+ (EZ)Z 4e 2 xz 4e2 Z:xz
A B T T M B T

2
k - 1 Z¥j(k - 1)

+

+

28 -1k - 2 ZXj(k - 1) Fj{k - 2)

- dex ex . ) ZXj Fjlk - 1)]- {121)
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If the sampling rate is high and the gain K low, ey will approximate

ey . 1 and xjk will approximate Xi(k - 1) Under these conditions, equation

(121) may be written

2 KT 2

Y i ] {122)

which is essentially the same as equation (110), as might have been
expected. Thus, under these conditions, the digital system is slightly
better damped than the continuous system. However, as gain increases,
the adjustment rate will increase, and ey will no longer approximate e) . j.
For example, suppose the sign of the error alternates with each
successive sample, Then,

ek =-ek_ 1 (123)
and equation {121) becomes approximately

KT 2]

2
Vi, 1- Vi =-KT e [1-3—-7_;;; (124)

This is somewhat worse than Case I, as indicated by equation (106),
Thus, Case III is the best method discussed so far at low gain and high
sampling rate, but may tend to go unstable in such a manner that the error
alternates in sign for high gain, This phenomenon is also common in linear
systems, wherein it is recognized that the prediction scheme introduces
an extraneous pole at the origin which may result in an extraneous mode
at half the sampling frequency, This is illustrated by the root locus for a
single-loop system in Figure 57, where the root leaving the unit circle along
the negative real axis gives rise to the oscillation at half the sampling
frequency. Here, the numerical integration algorithm is of the form of
equation (116).

Taking the z-transform of equation {116},

2 [V(z)] = V(z) - KT [2U(z) - 2" lu(z)]. (125)

104



Figure 55. Integrator

k +1

U
k-1~

k-1 K Kel

Figure 56, Linear Input Prediction

Figure 57. Root Locus for Rectangular Integration with Input Prediction
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Rearranging gives

Viz) | g lz-1/2) (126)
Ulz) z{z - 1)

The pole at + 1| performs the integration, whereas the extraneous pole at the
origin creates the instability. This does not mean that input prediction is
destabilizing, because without it, the zero in equation (126) would also
disappear, and instability could still occur,

By way of summary, it may be said that rectangular integration with
input prediction (Case IV} is superior to rectangular integration without input
prediction (Case I} at high sampling rates and moderate gain, but is not
necessarily so when gains are so high as to cause the system to approach
instability.

Case V: Trapezoidal Integration with Input Prediction

Let

YR +i T %k o+ %k + i)

then, equation (114) becomes fori= -1, 0, +1

°k + 1 Xj(k + 1) = Zek ¥j, - €k - 1 ¥j(k - 1) (127)
Substituting equation (127) into equation (111)

« KT

Bk + 1) = By, T e ek -1 X - 1)) (128)

which, unlike equation (111), is physically realizable because only past
values of data are used. Substituting equation (128) into equation (103} gives
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KT %

Vk L1 Vk aiiere Z(3ek xjk " ex - 1 Fjk - 1))(2bjk
KT

-ij -T [3ekxjk T | xj(k _ 1)] )

_ KT{ 2 *
IR RS S I N L S

KT(‘Elez xz be, e X, X
2 %k 2% k °k - 1 % Fj(k - 1)

2 2
ter -1 ZFk - 1))] . (129)

However, replacing k by k - 1 in equation (128)

& & KT
b. = b.)x. = b. -h., - =2 (3 .
20 =Pk ® 2Pk -1 "% 7 k-1 k-1

" %k - 2N - '] Nk - 1

KT
ex -1 - T 1%k - 1)

- e “ . .
k - 2%j(k - 2)) Nk - 1) (130)
Substituting equation (130) into equation (129)
KT[62_22 L KT (3.2 2

°k T “®°k -1 k-1 =%k - 1)

= €k - 1%k - 2 Z¥j(k - 1)¥j{k - 2))

KT 2 2
_-—T (961{ ijk - ek ek -1 ZXJka(k - 1)
2 2 _ KT (.2 2
ter-1 ¥k - 1))] =T [3ey - ek - 1]
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2
KT 2 2 2 2
+ ('—4—) [9ek X - S5epr _ = Xj(k - 1)

- 6ekek -1 EXJkXJ(k - 1)
+ 28 . 1€k - 2 Z¥j(k - 1)¥j(k - z)] (131)

At high sampling rate and low gain, this reduces approximately to

v -Vz-KTekZ

k+1 Yk (132)

such that the system is about as well damped as a linear system, and

more lightly damped than Case IV, If instability occurs at half the sampling
frequency, equation (123} applies again, and the high-gain approximation

is

KT 2(1 KT 5 2 ) (133)
= - = - —— X
k 2 Ik

v -V

k+1 k

which is slightly better than equation (124) for Case IV, and worse than
equation (106) for Case I. Thus, while Case V is inferior to Case IV at low
gains, this is not necessarily so at high gains,

Summary Of Cases I Through V

Cases Il and III are not physically realizable, and were included for
comparison only, Hence, as far as implementation is concerned, only
Cases I, IV, and V need be considered, Case V uses the most complex
algorithm, and from the point of view of stability, is inferior to Case I
at high gain and to Case IV at low gain, Case I seems to be at least as
good as Case IV at high gain, so it would seem to be the logical choice;
provided the damping of parameter adjustments is adequate at lower gains,

Case I, which is simple rectangular integration without prediction,

uses the simplest algorithm, appears to be about as good as the other cases
in overall quality and introduces no extraneous response modes,
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APPENDIX 1

OPTIMUM CORRELATION TIME

In Reference 4, the problem of identifying by correlation using con-
taminated data is considered in terms of the following configuration.

n{t)

x(t) - oft) wit) o)

Using relatively mild assumptions, it is shown that the optimum

(shortest possible) identification time without prior knowledge of vehicle
dynamics is

ZW~K
GG
TI = -———2 (I-1})
YO’
where
T1 = optimum identification time
Kg = system low-frequency power gain
W = system bandwidth
- si . o2, 2
= signal/noise ratio = w“/n
crz = variance of impulse response estimate
EXAMPLE:

We = 5 rad/sec

Kg = 1.0
y=1.0
s2=0.01

2xb5x1

=2xox1_ 4900
I Txo0. 01 sec
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APPENDIX I

A COMPARATIVE TREATMENT OF CERTAIN TECHNIQUES FOR
PARAMETER IDENTIFICATION BASED ON THE
STATE SPACE APPROACH

Rather close relationships exist among various approaches to param-
eter identification. These relationships, in turn, are analogous to similar
relationships which exist among techniques for solving linear algebraic
equations. The objective of this communication is to clarify some of these
relationships through a unified treatment based upon the s.ate space approach
(Reference 13). A knowledge of this subject is of importance in understanding
the S&ID approach to adaptive control, particularly if interaction among
parameter adjustments is serious.

BASIC STATE VARIABLE CONCEPTS

In an analog computer circuit, the total input to each integrator is a
function of the various integrator outputs, of inputs fraom external sources,
and of time. Thus, if there are M integrator outputs x; (i =1, 2, ..., M),
and N inputs from external sources u; {i =1, 2, ..., N}, the total input
to the i'th integrator is

Xi = fl(xl, Xz, PP XM; ul, 112, PP uN, t) (II-—la)

The entire system may be represented by a set of equations in the form of
equation (II-la), one for each integrator. These equations may be combined
into a single matrix equation as in equation {II-1b).

e T
X rfl (%, %2, .., XU, U, L. uNy t)“-1
x, fz (xl, Xos cees XppiUps gy oo Upn t)
= (I1-1b)
_XMJ __fM (xl, Koy oees FKpgi Uy, Uss wen Upp t)_J
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This is commonly written in a more compact form as (see Figure 58).

E =£(_}E_! E-_! t) (H-Za.)

x 0 » (t)

v (1) ——— Folx, 0, 1) '

Figure 58. Analog Counterpart of Equation {II-2a)

Where a bar under a letter denotes a column matrix:

_ — - _
xlj u, fl—]
xz uz f2
x 2 ,uf £ £ (1I-2b)
M uN ' M
e —— S ——

The elements x; of x are commonly referred to as state variables,
and together are sufficient to describe the state of the system. The state
of the system at any time, t, may be determined from the state at some
previous time, t,, provided all N elements of the input matrix u are known
for all time between t and t,, simply by allowing the analog computer to
operate normally.

The elements x; of the matrix x in equation (IT-2b) are commonly
associated with components of a vector in M-dimensional space. Hence, x
is commonly referred to as the state vector, the components xj as state -
variables, and u as the control vector.

If £ (%, u, t)is linear in % and u and time invariant, (II-22) may be
written in the form

x + Ax = Bu (I1-3)

where A is a square M by M matrix, and B is an M by N matrix, both A
and B having constant elements,
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To illustrate how ordinary differential equations may be converted into
the form of equation (II-3), consider a single linear second order differential
equation with constant coefficients.

y+ay+by=r(t) (II-4a)

This may be programmed for an analog computer as shown in Figure 59.

r(t)

Figure 59. Analog Counterpart of Equation (II-4a)

Defining x; to be y and x; to be y, equation (II-4a) reduces to

X] = X, (11-4b)
X, = -a X, - b Xy tr (II-4c)
or in matrix form,

%, 0 1 %, 0

= + (I1I-4d)
1::2 -b -a Xo r
0 1

This is of the form of equation (II-3) where corresponds to

-A, -b -a

Taking the Laplace Transform of equation (II-3) yields (note that taking
the Laplace Transform equation of (II-3) corresponds to transforming each
first-order scalar equation represented by equation (II-3), then recombining
in matrix form),

sX-x(0)+AX=BU (II-5a)

or

(sI+A)X=x(0)+BU (II-5b)

4

where I is the unit matrix.
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Applying Cramer's rule to solve for the transfer function between any
two points of the system, it is seen that the roots of the denominator are the
roots of

|s1+a] =0 (11-6)

where l s+ A | denotes the determinant of the matrix (s I + A). It is well
known from elementary differential equation theory that the system described
by equation (II-3) is stable only if none of these roots has positive real parts.

Now, the eigenvalues of a matrix A are defined to be the roots of the
characteristic equation

|x1-A|=o. (11-7)
Comparison of equation (II-6) with equation (II-7) reveals that the eigenvalues
of A are the negatives of the roots of equation (II-6), and the system described

by equation (II-3)is stable only if none of the eigenvalues of the matrix A has
negative real parts.

Now, consider a scalar function

V =

I

A X (II-8)

where X denotes the transpose of x. The function V and the matrix A are
both defined to be positive definite, negative definite, nonpositive, or
nonnegative if V is respectively positive, negative, nonpositive, or non-
negative whenever at least one component of X is nonzero. It may be shown
that if A is a real symmetric matrix, all eigenvalues of A are real, and
also respectively positive, negative, nonpositive, or nonnegative. That is,
if all eigenvalues of A have the same sign, this sign agrees with the sign of
V, such that for stable systems, V (and hence A) must be nonnegative. If,
in addition, none of the eigenvalues of A is zero, A is positive definite.

A real matrix A is symmetric and nonnegative if (and only if} there
exists a real matrix B such that

A=BB (11-9)

The matrix A is positive definite if B, and thus A, is nonsingular (having a
nonzero determinant). To verify that B B is nonnegative, equation (II-9)
may be substituted into equation (II-8) to obtain (using the rule AB=BA
for transposing matrix products),

V=xBBx=Bx Bx (11-10)

ER
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Now, define

np>

B x (I1-11)

I~

Then,

V=§y=sy, 20 (II-12)

which shows that B B is nonnegative. Similarly, - B Bis nonpositive.
Premultiplying equation (II-11) by B-1,

x=B"ly (II-13)
provided B is not singular (in which case it could not be inverted). It follows
that if B is nonsingular, x will have nonzero components only if y has also.
Hence, if x is nonzero, so is V in equation (II- 12), and B B is positive
definite as stated earlier. The rule AB = B A for transposing matrix products
used in equation (II-10) may be derived quite easily from the definition of
matrix multiplication. Thus, if

C = AB (TI-14)

then the definition of matrix multiplication is

Cij T ik bkj (I1-15)
Interchanging i and j,

C1_] = bkl aJk (11-16)
which corresponds to the matrix equation
C=BX (I1-17)
Combining equations (14) and {17),

AB=B A (I1-18)
Now, consider the homogeneous (no input) version of equation {II-3}

x+tAx=0 (I1-19)

and the Lyapunov function

V= %x=5x%20 (I1-203)
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which is a special case of equation {II-8) with A equal to the unit matrix.
Inasmuch as the system represented by equation (II-3) is linear, stability

may be analyzed without considering inputs. Hence, equation (II-3) represents
a stable system if and only if equation (II-19) does also. An autonomous
(homogeneous and time invariant} system is said to be stable in the sense

of Lyapunov if there exists a positive definite function V of the state vector x
such that V is nonpositive. That is, V=0 (V never increases at any time).
Differentiating equation (II-20a) and substituting equation (II-19).

V=28x%=2x%x=-2%Ax (II-20b)

That is, Lyapunov stability requires that A be nonnegative, which is
the same requirement as was derived earlier for stability in the conventional
sense (no negative eigenvalues). Some of these results could be extended to
cases where A is not symmetric. However, such cases are not of interest
in the following discussion.

SOLUTION OF LINEAR ALGEBRAIC EQUATIONS

Certain aspects of the problem of solving sets of linear algebraic
equations will now be discussed as a preliminary to consideration of the
parameter identification problem. Consider a set of linear algebraic
equations expressed in matrix form as

Ax=b (I1-21)

As a first step in setting up the solution for the vector x, an error
quantity e is defined in terms of an estimate X for the actual solution
vector x.

>

e?AX-b (I1-22)

or

= ? A.. X. - bu {I1-23)

V=ge=2 e;?0. (11-24)

Differentiating V with respect to time by the chain rule,

. v . OV -
V=X X:=—X (11-25)
i X. o =

1
1 —_



ov 8V —ﬂ ), and N is the

where R
Xy aXjp XN

denotes the row vector (

order of the matrix A.

It is apparent from equation (II-25) that V is negative definite in
ovV/9X if X is of the form

X=-BB— (I1-26)
80X
A special case of this is
X = kY (11-27)
- X

where K is some positive constant. The rule for adjusting X expressed by
equation (II-27) is commonly referred to as steepest descent, inasmuch as
the velocity E of the X vector points in a direction opposite the gradient
3V/8X in hyperspace. It is not necessarily better than other possible
versions of equation (II-26), but is commonly used because of its simplicity
and its simple geometric interpretation. From equations (II-24) and (II-23),

ov dej
— =22 e-a—'—‘ZZ. e; A = 2% Appe. (11-28)

Or in vector notation,
av/a§=2KE=ZA(A;§-E)=2[AA§-EE (11-29)
Substituting equation (II-29) into equation (I[-26),
3;:_=-21§B[AA§-AE] (11-30)
or for steepest descent,
X=-2K [Aax-Kp] (11-31)
This represents a linear set of first-order differential equations, and
is readily implemented with an analog computer. It was derived in such a

manner as to be stable in the sense of Lyapunov. Inasmuch as A A is
nonnegative definite, it is also apparent from equation (II-31) that stability
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exists, and because A Ais symmetric, all eigenvalues are real. This
means that the time history of each parameter will be a sum of real
exponentials, so there is never any tendency toward oscillation., When a
solution is reached, all components of E become zero, and from equation
(IT-31),

AAX=Ab (11-32)
multiplying equation (II-21) by A,
AAx=Ab (11-33)
substracting equation (II-32})
AA(x-X=0. (I[-34)

If A is nonsingular, equation (II-34) may be premultiplied by E;"l, then by
A=l to obtain

x=X {I1-35)

and the adjustment always converges to the true solution if such a solution
exists and is unique.

Comparison of equation (II-33) with equation (II-21) reveals that a set
of linear algebraic equations may be reduced to a form with a symmetric
positive definite matrix simply by multiplying by the transpose of the original
matrix. This is sometimes used to facilitate numerical computation, by
taking advantage of various simplified schemes available for solving sets of
equations involving symmetric positive definite matrices.

SIDAC PARAMETER IDENTIFICATION

The foregoing concepts may now be applied to the problem of computing
parameter values in dynamical systems from measured input/output data.
If the dynamics of a system may be expressed in terms of a set of linear
differential equations wherein some of the variables are physically accessible
for measurement; then, if those variables which are not measurable are
eliminated algebraically, a smaller set of equations is obtained in terms of
the measurable variables only. ¥Each of these equations is then of the form
(Reference 6)

bl Xi =0 (11-36)
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where the x;'s are the variables in the reduced set of equations, and the
b;'s are the associated coefficients.

The problem now is to measure the variables as a function of time,

and somehow deduce the values of the coefficients therefrom. To do this,
an error may be defined as

‘ci i (11‘37)

where the b’ﬂi= coefficients are estimates of the actual b; coefficients. This
error may be obtained from a physical or mathematical model as shown in
Figure 60,

Figure 60. Model Equivalent to Equation {II-37)

Subtracting equation (II-36)} from equation (II-37),

M L
e= I (b% -b)x = (b*-b)x (11-38)
i=1

where x is a vector containing all of the x;'s except xg.

Now, define a Lyapunov function {Reference 7) which is positive
definite in terms of the parameter adjustment errors,

A s~ ~ -1
V = (b* - b) (B B} ~ (b* - b)=0 (II-39)
where B is any nonsingular matrix. A special case of equation {II-39) is
when B B is the unit matrix, in which Case V is the sum of the squares of
the parameter adjustment errors.

M

r Y4 2
V= (k¥ - b) (p* - b) = F (b - by (I1-40).
1=

Differentiating equation (II-39) with respect to time,
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<
1]

(b* = b) (B B)"L (b* - b) + (b*™- b) (B B)™! (b* - b)

2 (b* = b) (B B)"! (b* - b) (11-41)

2 (3*- b)(BB) lb*-2@*x-b)(BB)!D

The term containing _l'g represents tracking error due to changes in the
actual system parameters, and is, therefore, not directly associated with
stability of the adjustment loop. This term disappears if the system param-
eters are held constant. Then,

V=2 (b*-b) (B B)! bx (I1-42)

Now, choose _é_as follows:

* ~ Je -
b¥*=-(BB)e— =-(BB 1I-43
bx=- (BB el - - (BB)ex (11-43)

Substituting equation (I[-43) into equation (II-42) and applying equation (II-38),

V=-2e(b*-blx=-2e® (I1-44)

Thus, V is always negative as long as an error exists. It follows that
parameters will continue to adjust until the error becomes zero. Hopefully,
this means that the parameters will all be adjusted to their correct values.
However, this is not true for certain input combinations. The general
conditions for which e i8 zero are easily obtained from equation (II-37).

If any input is a linear algebraic combination of the other inputs except
as expressed by equation ([I-36), it is not possible to solve for all coefficients
individually. Such an input might be obtained through a feedback loop. For
this reason, if one is identifying parameters in a closed loop system, it is
important to check for independence of inputs.

Just as equation {II-30) reduced to equation (II-31} as a special case
(steepest descent) in the solution of linear algebraic equations, equation
{II-43) is sometimes reduced to

L ]

b

———

- Ke 3e/ab* (II-45)

or

b¥; = - K e ge/ab* " (11-46)
1
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This formulation requires that all integrator gains be equal, whereas,
equation (II-43} permits a different gain for each integrator, and cross-
coupling among integrators, as long as the matrix (B B) describing the
manner in which the integrator inputs are generated is positive definite

and symmetric. The symmetry of the matrix implies that if the i'th and
j"th integrators are cross-coupled by feeding some fraction of the i'th input
into the j'th integrator, an equal fraction of the j'th input must be fed into
the i'th integrator.

One way to choose the matrix B B is to set up a simulation of the sys-
tem and proceed empirically. Initially, steepest descent may be used, then
individual integrator gains may be varied to improve convergence time.
Finally, if any two parameters appear to be interacting seriously, cross-
coupling between these parameters may be used,

It is informative to note that, although equation (I[-45} was derived as
a special case of equation {I[-43), equation (II-43) may be derived from
equation (II-45). Suppose a fictitious set of parameters a* is defined in
terms of the physical parameters b* by the transformation

a* = B b (I11-47)

Then,

B.. b¥* (I1-48)

ge M  Je da M e
' = da & 1 = aﬁ:f
i 3= 11Ty
or
age ~ ge
—_— =B - {II-50)
ob* da

Differentiating equation (II-47) with respect to time,

(II-51)

o
3

a* =B
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Substituting equations (II-50) and (II-51) into equation (II-45},

B-lax=-Ke Eﬁf-” (I1-52)
h%= - KB Be2Z =-KBB 22 (II-53)
2 par Bak

If K is equal to unity, equation (II-53) is identical in form to equation (II-43).
Thus, any adjustment scheme of the form equation (II-43) may be construed
to be steepest descent in a transformed set of coordinates, where the trans-
formation is expressed by equation (I[-47), provided B is not singular.
Similarly, cross-coupling and scaling of integrator gains corresponds to
transforming coordinates as indicated in equation (II-47). Inasmuch as this
transformation is general enough to permit both rotation and change of scale,
a rather flexible means is provided for changing the shape of a poorly con-
ditioned Lyapunov function. Suppose, for example, two parameters b% and
b’é‘ are being adjusted, and that mean-squared error E, as a function of
these parameters, appears as shown in Figure 61.

b*

CONSTANT E CONTOURS

bi’

Figure 61. Contours of Constant Mean-Squared Error
Using steepest descent, there will be a definite tendency for the two param-

eter adjustments to oppose each other. After rotation (accomplished by
cross-coupling integrators), Figure 62 is obtained
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CONSTANT E CONTOURS

== |

)

Figure 62. Rotated and Translated E Contours

Then, after scaling changes {accomplished by changing integrator gains),
Figure 63 is obtained

a

A

CONSTANT E CONTOURS

A .
y 1

Figure 63. E Contours After Scaling

a\

Thus, it is possible to transform elongated ellipses or ellipsoids into
circles or spheres, thereby enhancing convergence properties. This can
be very important in cases when steepest descent does not converge as
rapidly as required in a given situation.

It is interesting to compare the foregoing results with those obtained

by least-squares minimization. For this purpose, the mean-squared error E
may be defined in terms of equation (II-37) as
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—_ M
E = el = (xo + = b¥0)x, (t))z
i=1 1t 7

L, 0 M 2
=lim=  f [x®)+ I b¥0)x; ) at
-T - i

T—- (DT

.

i (II-54)

1
Of coursei alternate definitions could be used, such as that obtained by
passing e” through a low pass filter. The important aspect of the definition
given by equation (II-54) is that the present value of b’fi‘ is used in the com-
putation, even through b’ﬂi‘ changes with time. Thus, E is not the quantity
which would be obtained by computing e (t) as a function of time from

equation (II-37), and then integrating. Although this point may appear rather
trivial, it is of basic importance in the following discussion,

Now, if data is averaged over a sufficiently long period of time, E
becomes independent of short-term variations in the xi's and

. d = . a .
E=—e“= I B_E b¥* = SE b* (II-55)
dt {=10b% 1 abx—

Now, the reason for the rather obscure definition of E becomes apparent.

If E had been computed simply by averaging the output of the model illustrated
in Figure 60, E must have been identically zero, inasmuch as instantaneous
changes in the b=ﬁi< parameters could not have produced immediate changes in

the averaged output. Hence, no useful information could have been derived
from equation (II-55).

From equation {II-55), E is always negative, provided
b*=- B B gE/ab* = - BB gel/yb* = - 2 B B ege/yb* (11-56)
However, from equation {II-37)
ae/ab*{ = x; (II-57)

or

defdb* = x (II-58)
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Substituting equation {Il-58) into equation (II-56) and applying equation (II-37),

-~

e=—ZBBxx0+_)_:_§l_3_* (II-59)

|

bx=-2BBex=-2BB

X

or, remembering that b* is treated as a constant with respect to the
averaging process,

e B M e
bl X)|X] XXy e - X Xy, bl x| Xq
b2 x5%) szz ‘e 'XZXM b2 xzxo
= -2 B B{ +
' (IT-60)
i) " Ky oKy My Koo oo Ko o X b * X, X
| °M i Vi A ¥ o V O I (e ¥ O I i Y )

It is easily shown that the sum or average of several nonnegative
matrices is also nonnegative. Thus, for example, if

v

_}"E'Az:_ Q, B

| %1
i
v
i
EF

C x20, then
- {II1-61)
+C§]=glA+B+Cl x=0

C

{ w42

A_}SJr A

I %1

B'§+ + B

[EX
|
EY
]
1]

The matrix in equation (II-60) is of the form x X, and is therefore
symmetric and nonnegative, showing that the parameter adjustment scheme
represented by equation (II-56) is indeed stable.

Although the matrix x X is always singular, the averaged matrix x X
is not in general so, inasmuch as the sum or average of several singular
matrices is not in general singular. Thus, unless measured data is
degenerate in the sense that the x.'s are linearly related to each other,
the matrix in equation {II-60) is normally positive definite, and the param-
eter adjustments converge exponentially,

Comparing equation (II-59) with equation {II-43), it is seen that the
parameter adjustments are stable either with or without averaging. However,
the solution converges exponentially with averaging, whereas little may be
said about the nature of convergence without averaging. Thus, when
averaging is not used, the adjustments may be very lightly damped, and
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may oscillate for a substantial period of time unless careful design proce-
dures are used. On the other hand, doubling the adjustment rates of all
parameters in equation (II-60) would not change the nature of the solution,
but would simply cut the time scale in half. Thus, it would theoretically be
possible to canverge to the solution in an arbitrarily short period of time,
simply by raising the integrator gains high enough, provided the complexity
of implementing equation {II-60) could be tolerated. Of course, the benefits
of such a rapid solution may not normally be realized, due primarily to the
extensive averaging time required to make equation {II-55) valid.

So far, the analysis has been based either upon very great averaging
time, or upon no averaging at all. Inasmuch as averaging time must be
limited in any practical application, it is of interest to consider the case of
finite averaging time. If equation (II-43) had been based upon quantities
averaged over a finite period of time, a form identical to equation (II-60)
would have been obtained, except that each gquantity would be averaged for
a finite time only. Thus,

b¥=-(BB)ex (I1-62)

where the averaging is now performed over a finite interval of time.
Substituting equation (II-62) into equation ({II-42)

V=-2(*"bex {I1-63)

Inasmuch as the averaging was performed in such a way that b* and b could
be treated as constants with respect to the averaging process,

V=-2e(b*-b)x=-2els0. (I1-64)
Hence, the adjustment is stable for finite averaging time.

The adjustment specified by equation (II-63) is always stable, but
inasmuch as finite averages are not entirely constant, the solution will not
be exactly exponential. One way to obtain exponential convergence with
finite averaging would be to stop taking data during the parameter adjust-
ments, so that even finite averages would be constant.

As the parameters approach their final values, their derivatives
approach zero, and b* becomes a null vector. Equations (II-60) and (II-63)
then become conventional sets of correlation equations which may be solved
explicitly for the b vector, much the same as equation (II-31) degenerated
into equation (II-32) in the case of solving linear simultaneous equations.
Thus, one might say that the reason equations (I[-60) and (II-63) may be
made to converge in an arbitrarily short period of time is that the data
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contained in the correlation functions at each instant of time are sufficient
to obtain an immediate solution explicitly, whereas no such statement may
be made regarding the smaller amount of stored data required to implement

equation (II-43}.

129



Coutrails

Approved for Public Release



APPENDIX IlI
NOISE ANALYSIS

Sensor noise results in two types of errors in parameter estimates:
bias and variance. Bias is an error in the average value of an estimate,
and variance is a measure of the amount by which the estimate fluctuates
about the average. The analytical results derived in this Appendix verify
qualitatively the results obtained from simulations reported in Section 4.

In general, sensor noise tends to drive the parameters toward zero, but
at the same time increases the variance. As in Appendix II, the state space
approach is used.

The state of a system consists of a minimum set of state variables
which contains suifficient information to describe the present and future
outputs. Consider a linear time invariant system written in the form

x+ Kx = Au (I11-1)

where M by 1 matrix x describes the state of the system; K and A are
M by M and M by N matrices; and u is the N by 1 matrix, representing N
control inputs from external sources,

A matrix K and the associated quadratic form X K x are said to be
positive definite if the quadratic form is real and is>0 for all real (x,
X2y v, xM) #(0, 0,...,0). A symmetric matrix K is positive definite
if (and only if) there exists a real matrix B such that

K=BB (1II-2)
where B is the transpose of B.
BIASING ERRORS

If the dynamics of a system are expressed by a set of linear differential
equations in terms of measurable variables, the error output e(t) of the
SIDAC model of Figure 64 becomes

e(ty= = . bxx. + III- 3
(t) _ jXJ X, ( )



where b¥ coefficients are the estimated values of the actual b; coefficients.

J
If the estimated values are exact equation (III-3) becomes
3
0= 2 by %; + x, (II1-4)
j=1
%
’ d/ {s+d) 1
5 . > e{t)
x b*
(ertarg) o Grd) o . -
/ {s+d %3 b;*
s, d/ {s )—p - ’/
Figure 64. SIDAC Model (Pitch Axis)
By choosing b¥ as
b* = - K elt) x (I11-5)
b1 X
with b* = b;‘ and x = X, where K is a symmetric positive definite
b3 3

matrix, then there exists a real nonsingular matrix B such that K = B B.

'E*=-]§Be(t)§ (II1-6)

3
=-BB| £ b¥x. +x | x III-7
LA (LI-7)

The bias of SIDAC is primarily due to sensor noise. With the presence of
the sensor noise n, equation (III-7) yields, after adjustment, E[S_'F] = Q,
where E [b*:l is the expected value of b*,

E[b# =-BB EIE ¥y +ng) + (xg + no)] |5 + 3] (I1I-8)

= -EBE[§=:=(§+E)+XO+ no] [5+£ =0 (1I1-9)
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It follows that

E [ox(x + n) + x, + no| [x+n
: (I11-10)
=E[xo§+b*(_}£+£)(§+£)+x05+no_}5+nOE] =0.

Assume the noise from each sensor is uncorrelated with the signal and with
all other noise sources. If the b* parameters are slowly varying with
respect to x and n,

E RoX + E(xx)b* E(nn) b* = 0. (III-11)
After transposing,
x % + b*(xx) + b*nn = 0. (I11-12)

The notation Xo.’z is used instead of E [xogl and so on.

Let

xlxl Xle X1X3

=
(8]

X5X) X Xy KpXa |T X {II1-13)

— pu—
since xixj :—%Tl
Similarly denote N as
n2 0 0
1
N=on= 0 2 9 |=R
= 12 N (I1I-14)

0 0 ng

Using equations (III-13) and (Iil-14), equation (III-11) becomes

(X + N)b*+X_x =0 (I1I-15)

b = - (X + N1 %% (III-16)
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If no noise is present, equation {III-15) becomes

Xb+x x=0. (I1I-17)

o
Subtracting equation (III-17) from equation (IlI-15)})
X(b* - b) + Nb* = 0. (IIT-18)

Hence, it follows from equations (III-18} and (III-16) that

bk - b = -X-lNP_’:‘:X-l N(X+N)"1 X, X (III-19)

For low noise case, (X + N})=X. Therefore, equation (III-19) can be
approximated as

b% - b = x ! nx-! X X - (111-20)
Since
T ] A1
2 -1 2
nj 0 0 ny 0 0
- s
- 2 2
NT=l o ay o] =0 n; o
— L
2 2
IS R n3 |
— — = -
— 0 0 (FII-21)
nl xlxl xlxz X1X3
1
-1 ~ 2
N X = 0 ny §] X)X, X5Xo X3X3
<
0 0 2
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NV IV
|<

(III-22)
Combining equations (II[-20) and (III-22) yields

-1 -1
b¥-b=y ' X X X (I11-23)

On the other hand, (X + N)-i N-1 for high noise case and equation (IIl-16})
becomes

-1
b¥=-N = X,X

(III-24)

From equation (III-24), it is observed that high noise has the tendency to
drive all b* parameters toward zero.

If only the jth parameter is varied, and the remaining parameters are
kept constant, then equation {II[-4) can be rewritten as

+b*x + (b. - b)) x. = 0 -
xo + b+ (b bJ)xJ (III-25)

The above equation is post-multiplied by the matrix X and is averaged to
obtain equation (III-26)

*+Db%x %= -(b. - b)Y x. % _26
X, X b¥*x x (bJ b_-;)x_]_’f {III-26)

From equations (I[I-26) and (II[-12)
(bj - bj) xj.’E:E"‘..E (I1I-27)



or

%, 2 % 2
. - b%) x5 = b nt III-28
(bJ J) x b_] ny { )
From equation (III-19)
] — ']- P - '1 als
b¥ - b=-X"" Nb*=-y bk, (III-29)
Then,
(t+y pr=b (III-30)
where I is the identity matrix
or
b¥ =y (I +1)'1 b (I1I-31)
5
Denote signal to noise ratio by y =—= which is a special case of the matrixy,
n? Y
J
b:j - bj 1
—= .73 (1II-32)
b7
J
and
b;."
— =Y (III-33)
b_] 1 Ty

Consider the noise-free case. As Y approaches infinity
lim b* = lim (Y__ b, = b, (1II-34)
vy ] L+y) 4 )

It is worth noting specifically that if the noise level increases, y will
decrease and vanish at the limit.

lim b;.“ =0 (I11-35)

Y—0
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Referring to Figure 64, the large noise drives all b* parameters toward

zero in order to minimize the mean-squared value of the error e(t).

VARIANCE OF BIASING ERRORS

The variance of biasing errors is a measure of the intensity of the
varying a-c component. It is the mean-squared value of the errors about

the mean.

The variance of b* parameters of SIDAC is defined as

2 2 2 - = _
g, % =E (b¥* = bi¥) = (b¥b* - bi¥h%*) (I1I-36)
b iy oo T
Transposing equation (III-20) gives
b*=b + X % g x? (I11-37)
Therefore,
Brbr = b+ x X I NXT) o+ x7E Nx vz
Bb+bx ! NxlRx CT“‘—:T
=bb+bX NX +(bX NX _)
v xInxix ! nxlss (IT1-38)
oX o
P = Ao
bbb +b X ! NX Tz x Nx TR
ey R ) R | -1
tx,x X7° NX 7 X7° NX X, X (111 -39)
The second term of equation (III-36) yields
- - = /‘"\-——/1 _ 1 m)
bt = b+ X ' NX ) B X NXTER
_7 T x-1 10—, w-1 1=
=bb+bX "NX "x,;x+X " NX"" x3xb
INXT R XTI NXT R0 (111-40)
Subtracting equation (III-40) from equation (III-39}
o2, =B#b* - b*b% = (b b - b b)
b"‘. - — el v —_ hasaiina /-—-\-—/
e o1 T 31 -1 Qe -1 Sl o1 -l
+(xo__x__X NX " X N X XOE-X N X x,x X "NX XpX)
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rpx I Nx TR bx I Nnx e
~ -1 . - - 2 2
+(bX NXIXOE-XINXIXO‘}E_E)= o+ o‘p+2A
where P=X ' NX"' % (III-42)
and A is the covariance hetween bj and P.
From equations (II1-20), (III-29), and (ILI-30),
P=b¥-b-= -y hpr=- (L+1)'1 b (III-43)
2 _ =z ol | 1 v -1 -1
c,=BPP-PP=b@ty) (L+y) b-b(L+y) (Lty) b
- -1 i | -1
=b(I+ty) (It+ty) " b-b(I+y) (I+y) "D (111-44)

If only one parameter of b* is adjusted, equations (III-43) and (III1-44) can be
simplified as

P=-b o (III-45)
crf) = crs (- iy)z (ITI-46)
Then the variance is
e -g2 {1 ! +24 (I11-47)
b b (1+v)2
Now let us consider the convariance A.
p=xtrnxlz=nIxy!t xlgz=y 1 x ! 50n (111-48)
a6y Xm0 xR
=yl (E X 1% -T‘b_ (x-1 @)] {1I1-49)
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Awill approach zero, asy ., o.

gmA: 0 (I1I-50)
-

2% 2
Therefore, crbj approaches o_bj whenY -+ .

lim gL, = lim g

1+ + lm 2A= 2. III-51
TR (mt-51)
— 00

Yoo Y

139



Coutrails

Approved for Public Release



Rankine

FDCL - Capt.

Unclassified
Security Classification

DOCUMENT CONTROL DATA - R&D

(Security classification of title, body of abstract and indexing annofation must be enterad when the ovarail report is classified)

1. ORIGINATIN G ACTHVITY {Corporate author) 2a8. REPORT SECURITY C LASSIFICATION
North American Aviation, Inc. Unclassified

Space & Information Systems Division 2b sRoOUP

Downey, California 90241 N/A

3. REPORT TITLE
SELF-ADAPTIVE FLIGHT CONTROL BY MULTIVARIABLE PARAMETER
IDENTIFICATION

4 DESCRIPTIVE NQOTES (Type of report and inclusive dates)
Final

5. AUTHOR(S) (Last name, first name, initial)
Shipley, P.P.
Engel, A.G., Jr.

Hung, J. W,
6 REFORT DATE 78. TOTAL NOQ. OF PAGES 7b. NO. OF REFS
May 1965 146 13
8a CONTRACT OR GRANT NO, 9a ORIGINATOR'S REPORT NUMBER(S)
AF33(615)-1882
b. PROQJECT NO. AFFDL‘TR‘65“90
8225
¢ Task 96, OTHER REPORT NO(S) (Any other numbera that may be asaigned
22501 this report)
8 N/A
10. AVA ILABILITY/LIMITATION NCTICES
Qualified requesters may obtain copies from DDC or the sponsor, FDCL, Wright-
Patterson AFB, Ohio. CFSTI and foreign distribution is limited because of report
contents identifiable with DOID} strategic embargo list.
11. SUPPL EMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY
AF Flight Dynamics Laboratory
N/A FDCL

Wright-Patterson AFB, Ohio 45433

13. ABSTRACT

An approach to adaptive flight control is described which uses outputs from a
relatively simple parameter tracking computer to adjust flight control system
parameters. A unique characteristic of the parameter tracking mechanism is the
ability to function with almost any type of disturbance as an input, including
normal pilot activity, wind turbulence, and oscillations due to control loop
instability, This may be accomplished without special test inputs or limit cycles.

The ability to function with almost any type of input is a direct consequence
of the fact that the airframe is represented in its true form as a multivariable
system, thereby accounting for all inputs and outputs. One of the most common
reasons for failure of adaptive flight control systems to function properly is that
wind turbulence is ignored in performing identification of airframe dynamics.
Even if this problem could be ignored, many approaches would still bhe limited in
application because of the difficulty involved in extending basic concepts to
coupled axes, such as the lateral axes of an airframe.

Stability of the parameter adjustments is verified analytically, and simulation
results show that convergence is smooth and fast {about five seconds} in all axes.

DD .79, 1473 Unclassified

Security Classification




Unclassified

Security Classification

T4
KEY WORDS

LINK
ROLE

LINK A
ROLE

LINK B
ROLE

wT

Flight Control

Self-Adaptive

Multivariable Airframe Dynamics
Parameter Identification

Constant Gain-Times-Control-Surface-
Effectiveness

Parameter Tracking Computer

INSTRUCTIONS

1, ORIGINATING ACTIVITY: Enter the name and address
of the contractor, subcontractor, grantee, Department of De-
fense activity or other organization (corporate author) issuing
the report,

2a. REPORT SECURITY CLASSIFICATION: Enter the over-
all security classification of the report. Indicate whether
""Restricted Date’” is included. Marking is to be in accord
ance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Di-
rective 5200, 10 and Armed Forces Industrial Manual, Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as author-
ized.

3. RFEPORT TITLE: Enter the complete report title in all
capital letters. Titles in all cases should be unclassified.
If a meaningful title cannot be selected without classifica-
tion, show title classification in all capitals in parenthesis
immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progress, summary, annual, or final.
Give the inclusive dates when a specific reporting period is
covered,

S, AUTHOR(S5): Enter the name(s) of author(s) as shown on
or in the report. Enter last name, first name, middlie initial.
If military, show rank and branch of service. The name of
the principal aithor iy an sbsolute minimum requirement.

6. REPORT DATZE: Enter the date of the report as day,
month, year; or month, year. If more than one date appears
on the report, use *ate of publication.

7a. TOTAL NUMBER OF PAGES: The total page count
should lollow normal pagination procedures, i.e,, enter the
number of pages containing information

7b. NUMBER OF REFERENCES: Enter the total number of
teferences cited in the report.

Ba. CONTRACT OR GRANT NUMBER: If appropriate, enter
ihe applicable number of the contract or grant under which
the report was written.

8b, 8, & 8d. PROJECT NUMBER: Enter the appropriale
military department identification, such as project number,
subproject number, system numbers, task number, etc.

9a. ORIGINATOR’S REPORT NUMBER(S):: Enter the offi-
cial report number by which the document will be identified
and controllied by the originating activity. This number must
be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report hag been
assigned any other report numbers (either by the originator
or by the sponsor}, also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-

itations on further dissemination of the report, other than those

imposed by security classification, using standard statem:
such as:

(1) *'Qualified requesters may obtain copies of this
report from DDC.'"

(2) “Foreign announcement and dissemination of this
report by DDC is not authorized."

(3) *"U. 8. Government agencies may ohtain copies o)
this report directly from DDC, Other qualified DI
users shall request through

(4} "*U. 8. military agencies may obtain copies of thi
report directly from DDC. Other qualified users
shall request through

(5) ‘‘All distribution of this report is controlled Qu:

ified DDC users shall request through

If the report has been furnished io the Office of Tezhn
Services, Department of Commerce, for sale to the public,
cate this fact and enter the price, if known.

11, SUPPLEMENTARY NOTES: Use for additional explz
tory notes.

12, SPONSORING MILITARY ACTIVITY: Emnter the name
the departmental proiect office or laboratory sponsoring (p
ing for) the research and development, Include address.

13. ABSTRACT: Enter an abstract giving a brief and fac
summary of the document indicative of the report, even thc
it may also appear elsewhere in the body of the technical
port. If additionsl space is required, a continuation sheet
be attached. .

It is highly desirable that the abstract of classified re
be unclassified. Each paragraph of the abstract shall end
an indication of the military security classification of the
formation in the paragraph, represented as (T5), (5), (C), o

There is no limitation on the length of the abstract. }
ever, the suggested length is from 150 to 225 words,

14. KEY WORDS: Key words are technically meaningful 1
or short phrases that characterize a report and may be use
index entries for cataloging the report. Key words must be
selected so that no security classification is required. Id
fiers, such as equipment model designation, trade name, m
proiect code name, geographic location, may be used as ke
words but will be followed by an indication of technical ct
iext, The assignment of links, rules, and weights is optio

Unclassified
Secutity Classification




