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SECTION I
INTRODUCTION

1. BACKGROUND

The United States Air Force currently places strict fracture
mechanics requirements on airframe construction and maintenance (Refer-
ences 1,2). These requirements involve detection of flaws by periodic
nondestructive inspection and then predicting the remaining useful life
of the part through specified fracture mechanics techniques. Conse-
guently, if an airframe part is examined and found to have no flaws
that can grow to critical size prior to the next periodic examination,
it can be returned to service.

In contrast to the airframe, Tow-cycle-fatigue limited jet engine
parts may be retired from service when no flaws have yet been found in
them. This situation occurs because the retirement of engine disks is
based on a "crack initiation" criterion. Under this criterion all
components of a given population are considered to have failed as soon
as a crack of some finite size {e.g., .031 inches) has statistically
formed in the member of the population which has minimum strength
properties {Reference 3). No attempt is made to utilize the additional
1ife associated with the remaining population members which have
statistically higher properties and are expected to be uncracked.

From a safety standpoint, this approach has been generally very
successful. But for real materials and real design situations, 1ife-
times based on time crack initiation of the minimum member tends to be
extremely conservative for a component population.

It has been estimated that replacement costs for low-cycle-fatique
limited jet engine disk components could reach the $1CG,000,000 level
by the 1980 tc 1985 time period {Reference 4)}. A significant reduction

of this cost could be realized if a procedure was developed to provide
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accurate assessment of useful residual 1ife in retired engine disks.
This procedure would require both improved inspection and fracture
mechanics 1ife prediction techniques.

The present research is aimed at developing more accurate fracture
mechanics 1ife prediction capabilities. Various controlling aspects of
fatigue crack growth are strain, stress, stress intensity, temperature,
load application frequency, and environment. Speidel {Reference 5)
provides an excellent discussion of the relative effects of each of the
above aspects on fatigue crack growth rates at high temperatures. It
was shown that at each elevated temperature there is a critical frequency
below which the crack growth rate is creep dependent {i.e. dependent on
exposure time to load) and this creep dependency increases with decreas-
ing frequency. Also the effects of an aggressive environment is another
time-dependent phenomenon that results in a frequency dependence of the
crack growth rate which is very similar to that brought about by creep.

Various engine missions may include long dwell times at high stress
levels. Crack growth controlling aspects may then be reduced to stress
and strain levels, stress intensity, temperature and environment since
Toad cycling is not occurring during these dwell periods.

Due to the high stress concentration in the vicinity of the crack
tip, (i.e., infinite stress concentration using linear elastic fracture
mechanics} and the high temperature environment for an engine disk, the
stress-strain relations for the material are nonlinear and time-dependent.
The high stress concentration causes the material to yield and envelop
the crack tip with a plastic zone. Simultaneously, the high temperature
allows the material under load to flow with time, the phenomena known
as creep, {(i.e., increase strain with no increase in stress). Also the
environment, both temperature and atmosphere, may be changing the
ductility of the material thereby lowering its ability to strain before
fracture. ‘

rs
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Creep crack growth studies of metals in a vacuum indicate that
removal of air from the crack can reduce the crack growth rates by two
orders of magnitude (Reference 5). This result demonstrates the
importance of recognizing environmental effects in addition to what
may be called mechanical effects on crack growth. Environmental effects
may be thought to dictate the critical level of strain at fracture
whereas mechanical effects determine the rate at which the material
moves to the critical strain levels.

The present work mainly deals with the mechanical aspects of crack
growth under fixed load in materials that deform with time {creep crack
growth). But since the experimental data used here, came from elevated
temperature tests in laboratory air, some environmental effects were
also considered.

A theoretical model for creep crack growth under varying and fixed
loads must be able to account for the changing boundary conditions
associated with crack growth. In the event of total unloading and
reloading between two different fixed loads the possibility of crack
closure and separation needs to be taken into account. These changing
boundary conditions coupled with nonlinear time dependent material
behavior are well suited for the finite element method.

2. APPROACH

The modeling effort considered here involved developing a two-
dimensional {plane stress/plane strain) nonlinear, time dependent, finite
element program to investigate creep crack growth under constant load.
The finite element analysis incorporated the constant-strain triangular
element. The nonlinear time-dependent material constitutive model took
the form of the Bodner-Partom viscoplastic flow law {References 6,7,8,9).
This flow law was integrated through time by an Euler extrapolation
scheme (Reference 10) and incorporated into the overall finite element
program by means of the residual force method (Reference 11). Material

(8]
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constants for the Bodner material model were determined by Stouffer
(Reference 12) to best match the behavior of IN-100 (Reference 13),
a current jet engine turbine disk alloy.

Time step sizes of the Euler scheme were maximized subject to
specified amounts of change in stress and strain over a given time step.
This time step maximization scheme provided the ability to transition
from small fraction of a second time step for the load up phase to large
time steps of the order of minutes or even hours for the constant load
creep phase. This variable time step capability was a necessity to make
a numerical study of creep crack growth computationally feasible.

Crack growth and possible crack closure during unloading was
accounted for by simple modifications to the structural stiffness matrix.
These simple modifications were made possible by choosing an iterative
Gauss-Seidel linear eguation solver (Reference 14) which requires no
explicit factorization of the stiffness matrix. Hence between time
steps, pertinent terms of the stiffness matrix could be easily changed
to account for crack growth and the general procedure continued without
costly matrix factorization time required.

The finite element program which includes the capability of account-
ing for material creep behavior and crack growth was used to study the
creep crack growth in a center cracked plate test specimen. Several
finite element models were incorporated to study different initial crack
lengths in the plate geometry. These models were subjected to various
loads that were chosen to coincide with a parallel experimental program
conducted by W. Sharpe {Reference 15).

The primary objectives in the present research were to determine
the actual rate of creep crack growth in test specimens from experimental
displacement and compliance measurements and to determine the most
reliable criterion for predicting creep crack growth in a typical jet
engine turbine disk alloy. Specifically the interest was in IN-100 at

A
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1350°F. These objectives were to be accomplished by the so-called hybrid
experimental-numerical procedure (Reference 16). 1In this procedure,
crack growth rates would be estimated, imposed on the finite element
simulation, and then the finite element model displacement results

would be compared with experimental data for the same geometry and
loading conditions. A similar method is to allow the crack to grow
sufficiently so that predicted crack opening displacement rates from

the finite element model match experimental data for the same geometry
and loading conditions. After good correlation of displacements between
model and experiment was achieved, fracture criteria were sought out
from the calculated parameters in the finite element model such as
stress, strain, and displacement. Criteria were sought which could
match the now determined experimental crack growth rates, displacement,
or displacement rates over a range of crack length and load levels.

Once a reliable creep crack growth criterion is determined and
found to be independent of specimen geometry it can then be applied to
an actual turbine disk specimen. With the determination of flaw sizes
in the disk through nondestructive examination techniques, the crack
growth criterion could then be used to predict the remaining time for
these flaws to grow to critical dimensions under constant load
applications.
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SECTION II
LITERATURE REVIEW

Creep crack growth in general may be thought of as subcritical
crack growth in a material that deforms with time under constant external
load. This time dependent deformation or creep may be reversible
(i.e., anelastic creep) or it may be permanent (i.e., plastic creep).
At elevated temperature, metals generally exhibit nonlinear time
dependent deformation. Under uniaxial tensile loading, the strain in a
smooth bar increases with time until failure ultimately occurs. Based
on similar response of many materials, researchers have subdivided the
creep curve into three regions as shown in Figure 1. After the initial
instantaneous strain €y materials often undergo a period of transient
response where the strain rate, é, decreases with time to a minimum
steady-state value that persists for a substantial portion of the
materials life. These two regions are referred to as transient or
primary stage and steady~state or secondary stage respectively. Final
failure with rupture life tR occurs soon after the creep rate begins
to increase during the third or tertiary stage of creep. A common
empirical relationship between creep strain rate and stress in the
secondary stage of creep is given as:

B
e =y, (o) (1)

c
where o is the uniaxial stress, € is the creep strain rate, and Y.
and 8 are empirical constants chosen to match creep test results.

Creep crack growth has been studied using viscoelastic (References
17-20), viscoelastic-plastic (Reference 21), and plastic creep material
models for metals as indicated in a literature review by Fu (Reference
22). The viscoelastic modeling, a form of anelastic behavior, pertains
mainly to nonmetals such as elastomers, polymers, and solid rocket
propellants. The material of interest in this investigation is a
current jet engine turbine disk alloy known as IN-100 (Reference 13).
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In the present study all time dependent deformation of IN-100 is treated
as permanent and consequently any anelastic behavior is considered negli-
gible. However, a brief review of some anelastic (i.e. viscoelastic)
creep crack growth studies will be addressed later,

The next two review sections will consider recent creep crack growth
studies of an analytical or closed form nature as well as applications
of the finite element method to creep crack growth.

1. ANALYTICAL CREEP CRACK GROWTH STUDIES

Knauss (Reference 17) analytically modeled steady crack growth in a
viscoelastic sheet. In his study the plastic zone, which was assumed
small, was accounted for by prescrihed fixed and finite stress distri-
butions in the crack tip region. No interaction between crack tip and
the far field stresses were allowed. This means the stress profile
ahead of the moving crack tip remained constant and independent of the
far field stresses. Magnitudes and gradients of the stress in this
crack tip region were studied along with two crack growth criteria.

The two criteria were maximum strain and a maximum strain energy
criterion.

Schapery (References 18,19,20) performed a viscoelastic crack growth
analysis similar to Knauss but placed no significant restrictions on
the nature of the failing material at the crack tip. It zould be highly
nonlinear and rate sensitive. An energy criterion for failure was also
used here,

Wnuk (Reference 21) included plasticity with viscoelasticity for
his quasistatic extension of a tensile crack analysis. A "final stretch"
crack growth criterion was proposed. This criterion postulates that the
amount of deformation which occurs within the crack tip region or pro-
cess zone during the time interval just prior to decohesion of this zone
is a material constant. In contrast to the maximum strain criterion,
the "final stretch" criterion is path-dependent.

oo
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Fu's review (Reference 22) of quasi-static crack growth in metals

at elevated temperature presents four different creep crack growth rate

equations:

= A (K)
=8 (o)
i=c ()
3= (o)

(2)
(3)

(4)
(5)

where a is the crack growth rate, K is the linear elastic stress inten-

sity factor, o is the net section stress, (e.g., load divided by remain-

ing uncracked ligament in a center cracked plate geometry), y in general

is the load-point displacement rate, and C* is a line integral related
to the rate of change of potential energy release per unit of crack
growth (References 22-25). The C* integral also discussed in Appendix
C, is obtained directly from Rice's J integral by introducing strain

rate and displacement rate instead of strain and displacement such that:

ou.
_ _ _ 1
3 ﬁ [W(e; )y - Ty - ds]
T

bhecomes
i 3u,
Vo= * - R,
e = P Iur(eg ddy - Ty 5 ds)
T

where

Ti = traction vector
u,, di = displacement and displacement rate respectively

€ij° éij = strain and strain rate respectively

r, x, ds - see Figure 2 3

(6)
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There are available experimental data supporting any of the rate, see
Equations 2 through 5 as listed by Fu.

The following conclusions have been extracted from the literature:

1. The stress exponent B in Equation 1 plays an important role in
determining the characterization of the crack tip behavior. For

8 < 5 the stress intensity factor approach, Equation 2 may be used,
and for g > 7 the net section stress approach may be used (Refer-
ences 26,27).

2. Critical test conditions for evaluating a creep crack growth
criterion should consist of at least two geometries which have
different stress-intensity-factor divided-by-stress ratios {Refer-
ence 23}. Some crack growth criteria have been found to be depen-
dent on geometry and therefore have no general application. Use
of two or more test geometries helps determine how dependent a
crack growth criterion is on geometry.

3. Creep crack growth results from two competing processes. These
processes are: (1) growth and coalescence of defects which contri-
bute to crack advancement and (2) the creep deformation process
that causes retardation and even arrest of crack growth (Reference
25).

4, Creep crack growth rates are very sensitive to environmental
effects. Removal of air from the crack can reduce the crack growth
rates by two orders of magnitude (Reference 5).

5. Crack opening displacement crack growth theories indicate

that failure times due to creep crack growth are controlled by

the stress intensity factor at large stresses and by net section
stresses at very low stresses (Reference 28). However, a counter
viewpoint is stated in Reference 29 where it is concluded that

creep crack growth does not correlate well with the stress intensity
factor at relatively hign stress levels.
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6. Creep crack growth rates correlate with the energy rate integral
C*. This method holds great promise for design calculations because
C* can be calculated using finite element analysis as well as
measured empirically in constant displacement rate tests (Reference
24).

7. An approximation to C* in the form of the product of net
section stress and load Tine displacement rate, referred to as j,
gives good correlation of creep crack growth rates in specimens
of different geometries (Reference 29).

8. Crack growth theories generally fall into one of two categories.
Either they are of an energy nature (e.g., J or C* integrals), or
they deal with some Tocalized crack tip parameter such as strain

or crack opening displacement.

2. FINITE ELEMENT ANALYSIS RELATED TO QUASI-STATIC TIME DEPENDENT

CRACK GROWTH

The general technique of approximating a continuum with simple
discrete elements such as uniaxial bar elements dates back to the 1940Q's
(Reference 30). The history of the finite element method in structural
analysis, as it is known today, is well described by Zienkiewicz (Refer-
ence 31). The application of the method to the problem of nonlinear
material behavior has also been developed (Reference 31). The purpose
of this section is to briefly review the use of the finite element
method for the stress analysis of cracked plates where ncniinear time
independent and time dependent materials models were employed.

a. Elastic-Plastic (Time Independent) Analysis

The finite element method has been widely used to determine the
stress and strain fields around cracks irn nonlinear materials where
time independent elastic-plastic materials models were incorporated
(References 32-45). Several of these use the "initial stress" or
"initial strain" approach to elastic-plastic modeling as described in

11
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Appendix A. During the Tast few years many reports have been published
on this subject. This review will not cover all these publications,
but, it will concentrate on two areas: (1) crack tip element selection
and (2) crack growth modeling by the finite element method.

There are several choices to consider when selecting finite elements
to model the vicinity of a crack tip. These choices might best be
classified into two categories. The first category is to use the same
element type incorporated in the model remote from the crack tip (e.gq.,
constant strain triangles). The second category is to use & special
crack tip element that has functions to include the specific stress or
strain singularity desired at the crack tip.

There are of course benefits and disadvantages to each choice.
Using the same element such as a constant strain triangle both at the
crack tip and remote definitely has the benefit of simplicity. However,
the cost of this simplicity is the requirement to use large numbers of
such elements around the crack tip to obtain acceptable results. Also
in a fully plastic material, some elements do not accurately model
incompressible strain behavior (Reference 46). The bilinear displace-
ment quadralateral is most susceptible to this inaccuracy, furthermore
the constant strain triangle is one of the least susceptible.

The selection of a special crack tip element requires knowledge
of the stress or strain singularity around the crack tip. Several
authors have developed the inverse square root "r" singularity for
linear elastic crack tip behavior. Accordingly many special elements
have been addressed to this singularity. In a paper entitied "Crack
Tip Finite Elements Are Unnecessary" (Reference 47), the authors
describe the modification of the eight noded isoparametric element such
that it incorporated the 1// r stress singularity. Therefore, any
existing finite element program that had the eight noded isoparametric
element in it also effectively has one form of a special crack tip
element capability for elastic analysis.

(%]
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Further considerations of the local crack tip stress and strain
distributions in an elastic-plastic material have led to the expressions
(Reference 48)

J

€33 e ij

where KU, K8 are plastic-intensity factors and n is a strain hardening
exponent. This type of singularity was embedded in a crack tip element
and used to evaluate the plastic intensity factors as a function of
applied loading {Reference 49). The advantage of this method was that
the large strain gradients in the crack tip region are accounted for by
Equation 10. For elastic-plastic and creep type materials the singu-
larity changes between initiation and growth of the crack and in general
is not known. The development of a special crack tip element in the
case where the singularity is not known to begin with would be an
extensive undertaking by itself (Reference 37) without bringing in the
additional complexity of a moving crack tip.

Finite element researchers have considered the crack growth problem.
Kobayashi, Chiu, and Beeukes (Reference 43) analyzed an extending crack
under monotonically increasing load. Crack extension was achieved by
applying a relief force equal in magnitude but opposite in direction
to the restraining force at the crack tip node. This relief force was
applied in 100 equal increments or in one single increment. The crack
opening displacements at the node adjacent to the crack tip computed
by the single increment method were less than 5 percent smaller than
the corresponding displacements computed with the 100 increment method.
Lee and Liebowitz (Reference 35) using a similar technique demonstrated
that plastic strain energy increased linearly with crack length as the
crack grew in their analysis. Anderson (Reference 36) also made use of
relaxing the crack tip node force incrementally to simuiate crack growth
in the finite element model.
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Shih, DeLorenzi, and Andrews (Reference 42) analyzed crack initia-
tion and stable crack growth in elastic-plastic material by special use
of eight-node isoparametric elements. Initial crack tip blunting was
modeled followed by crack extension, Crack extension was modeled by a
combination of crack tip node shifting and then releasing it to move
on to the next element's nodes. Moving these nodes within elements at
the crack tip required approximations to be made about Gauss point
location and relocation. These approximations are not necessary when
only a node release method and elements such as constant strain triangles
are employed to model crack growth. The 1/r strain singularity provided
by the special use of these eight noded isoparametric elements may better
model the crack tip singularity for a fixed crack length and a theoreti-
cal continuum. However, when the crack initiates and grows in a creep
type material the strain singularity is unknown, especially when consider-
ing a grain structure around the crack tip rather than a continuum and
the fact that a creep crack follows an intergranular path.

b. Visco-Plastic and Creep {Time Dependent) Analysis

Several references have been found on viscous or time dependent
material models being incorporated into finite element programs {Refer-
ences 50-60). 1In general these material models may be similar to
Equation 1 for pure creep with the addition of time independent elastic-
plastic relationships, or they may have short-term response viscoplastic
relationships that only model the load up phase. Zienkiewicz (Reference
10) proposed placing a short-term response viscoplastic equation in
series with a long-term response creep law, similar to Equation 1.

This would be a unified time dependent material model where no direct
coupling is assumed between short-term plastic strains and long-term
creep strains.

Only a few papers have been found to date that use a time dependent
material model and the finite element technique io model crack growth.
Ohtani and NaKamara {Reference 61) analyzed creep crack propagation with
an elastic-secondary creep material model. The secondary creep law was

14
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identical to Equation 1 in its uniaxial form. A critical strain criterion
(i.e. average effective plastic strain at the crack tip) was used for
determining the time to grow the crack in the finite element model of a
center cracked plate. Crack tip nodes were released to simulate crack
growth. Goodall and Chubb did a similar analysis on the compact tension
specimen (Reference 62). A critical strain crack growth criterion was
again used. Finally Zaphir and Bodner (Reference 63} incorporated the
time dependent Bodner-Partom viscoplastic flow law into the NONSAP finite
element code to analyze a double-centilever-beam cracked geometry. In
this case, high loading rates were studied over short time periods rela-
tive to creep analyses. Consequently the "recovery term", as described
in a later section and used to best model creep, was not included. No

crack growth was allowed here.

In each of the finite element solutions referred to previously,
a unified time-dependent material model that not only accurately models
the short-term load up stage of material response, but also transition
smoothly into the pure creep stage was never considered. In addition,
the hybrid experimental-numerical technique was not used with high
resolution experimental crack opening displacement data. It was
anticipated, in the present research, that the combination of a more
realistic time dependent material model and high resolution test data
would result in a much better understanding of what controls creep
crack growth than provided by these prior analyses.
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SECTION III
FINITE ELEMENT COMPUTER PROGRAM DEVELOPMENT

This section describes the development and validation of a finite
element computer program called "VISCQ". VISCO is a two-dimensional
plane stress/plane strain program that incorporates three different
nonlinear time dependent viscoplastic material models. It uses constant
strain triangular elements with the option to release fixed nodes and
thus has the capability to simulate crack growth. Results from VISCO
are compared with other published solutions to check its validity.

The approach selected for elastic-viscoplastic analysis with the
finite element technique employs the "residual force method" (Reference
11} (see Appendix A for a complete discussion on this particular
approach). In the residual force method the elastic stiffness is used
during the entire analysis and any nonlinear elastic-viscoplastic deforma-
tion that occurs must be accounted for by developing so-called plastic-
load vectors that add to the force side of the governing equilibrium
equation. In general, the matrix equation which governs the response
of a discretized structure can be written as

. i .
K] (i = py o+ (! (1)

where [K] is the elastic stiffness matrix {U}i is the generalized nodal
displacement vector for the ith time step, {P}i is the load vector after
the ith time step due to external forces, and {Q}i'1 is the plastic-Toad
vector computed from plastic strains accumulated prior to the ith time
step. tor each element, these plastic-load vectors are self-equilibrat-
ing. The viscoplastic strain rate expressions which develop plastic
strains with time under load are described.

1. VISCOPLASTIC MATERIALS MODELS

In solid mechanics it is customary to separate the two impertant
groups of phenomena described respectively by "creep" and "plasticity”.

15
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The first includes all time dependent effects and results in creep
strains accumulating at a finite rate. The second group develops
permanent (plastic) strains {nstantaneously since time does not enter
directly into consideration as in the elastic-plastic approaches given
in Appendix A. From a physical point of view, creep and plasticity
cannot be treated separately as only the combined effect is measurable.
Also the concept of time independent or instantaneous plasticity is
only a convenient mathematical approximation and not experimentally
based.

Yiscoplasticity, in a complete sense, is the combination of these
two strain groups into a unified plastic strain rate model. A model
with this capability is the Bodner-Partom viscoplastic flow law (Refer-
ences 6-9) from hereon referred to as the Bodner model. The superposi-
tion of Malvern's overstress law (References 66,67) with Norton's law
for secondary creep has also been proposed as a unified viscoplastic
flow Taw {Reference 10).

Each of these flow laws has been incorporated into VISCO by assum-
ing small strains and decomposing the total strain rate into elastic
{reversible) and plastic (nonreversible) components.

8., = eb 4¢P (12)

which in general are both nonzero for all loading/unloading conditions.
Anelastic stresses and strains corresponding to time dependent reversible
deformations with energy losses are not considered in this formulation
and are assumed to be relatively unimportant. This assumption seems
quite justified based on the good correlation between predicted and test
results to be shown later.
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The elastic strain rate éijE is related to the stress rate by the

jP, assuming

incompressibility and isotropy, is taken to follow the Prandtl-Reuss

time derivative of Hooke's law. The plastic strain éi

flow law of classical plasticity

€. = A S.. (13)

where Sij are the components of the deviatoric stress tensor and x is a
scalar that reflects the viscosity of the material. The specific form
of » is presented below for each of the viscoplastic flow laws.

a. Malvern (Qverstress) Flow Law

A portion of a total viscoplastic model that accounts for the so-
called instantaneous plasticity during loading might take the form as

given by Malvern (References 66,67), otherwise known as the "overstress"
model:

o S:. _, P

3 7 ifo >3 (e)

. P Yp[_e - ]]—— S e
®i © O(Ee') 2 9 b (14)

. if g £ 7T (ee)

where Yp is a fluidity constant whose magnitude will determine the strain
rate sensitivity of the model, see Figure 3, 9q is the effective stress
defined as 3 Jz where Jz is the second invariant of the deviatoric stress

defined as Jz = 1/251j51j, and 6‘(52) is the strain hardening yield stress

shown to be a function of the effective plastic strain, eg, defined

incrementally as dsz i)g dei? de?j' The strain hardening stress function,
3

within VISCO, takes one of two forms, either a linear relationship such as
Py =3 +H * P (15)

or a Ramberg-0sgood type

18
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1 1
R(eg) m if R(ep)ﬁ igo

5 (ef) = ° (16)

if R(sep)ﬁ <

Q|

0

where 56 is the initial yield stress, the constant H' represents the
slope of the stress versus plastic strain curve, and R and m are con-
stants of a Ramberg-0sgood type stress-strain curve, In Equation 16,
note that if the effective plastic strain 52 is at or near zero such

-m —_—
that the function R(sz) is less than the initial yield stress, Gy

then 6(52) is set equal to Eb.

Implementation of the Malvern model then requires selection of
Equation 15 or Equation 16. This selection would depend on the best fit
of the material's uniaxial stress-strain curve developed under strain
rates at or near the lowest strain rate expected to be modeled with the
Malvern Law. If Equation 15 were chosen, the initial yield stress, 66,
and slope, H' would be determined from this experimental curve. A
similar determination would be done if Equation 16 were selected. The
fluidity constant, y_, would be chosen to best reflect the strain rate
sensitivity of the material (see Figure 3) displayed by experimental
stress-strain data developed at high strain rates.

The Malvern model may also be used to perform time independent
elastic-plastic solutions. In this case time becomes a fictitious
parameter and thus the fluidity constant, Yp? may take on any nonzero
positive value. The elastic-plastic solution is the steady state value
of the stresses, strains, and displacements after the load has been
applied. This has been found to occur in approximately 30 time-steps
after maximum load application unless total section yielding develops.

(RS
o
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An Euler Tlinear extrapolation scheme is employed within VISCO for
the time integraticn of the viscoplastic strain rate expressions. The
Malvern model is integrated in VISCO as follows

: i-1
0 if o 171 < 5Py’
Y -1 (5. 117! ; :
T [ |, i1 an
e S | ) R T
Yp 0(5L51 1 2 0e1-1 if 0e1 1, c(ez)
P T ap oyt gy
(dej b = {ef ) dt (18)
i-1 . :
Py . Py ‘/g P i P i
(Ee) (Ee) + 3 {dE.ij} {deij} (19)
5ot ()]
b j UO Ee
G (eg) = or (20)

Py
RL (D) M

where the superscript i refers to the time-step and a subscript i refers
to specific components of stress or strain.

b. Norton's Law for Secondary Creep

Another portion of a total viscoplastic flow Taw that complements
the Malvern model and accounts for long-term creep is given by Norton's
creep law {Reference 68) written in multiaxial form as

P B3 S,.
i T Yo (oeh 3 i (21)
e

where Yo and g are constants determined from uniaxial creep test results.

Creep test data at twc different stress levels are required. A straight
line is fitted to each test's secondary stage of creep strain plotted
versus time {Figure 1}. The slope of this line or strain rate and stress
level from each test is substituted ints Egquation 21 which provides two

-
Z1
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equations to solve for the two unknown constants. After taking the
natural logarithm of Equation 21, the simultaneous solution of the two
equations is strajghtforward.

The Euler extrapolation scheme for integrating Equation 21 in VISCO
is similar to the one given for the Malvern model and will not be
repeated here.

It appears that the combination of the Malvern and Norton laws
would provide a complete viscoplastic flow law. But, metals at elevated
temperature have been observed to display a phenomenon called "recovery"
(Reference 69). Recovery is the softening of cold-worked metal or it
may be characterized as a fading memory of prior strain hardening.

In creep crack growth at elevated temperature and under constant
load, consider material well ahead of, but in the path of the crack.
During Toad up this material will plastically deform and strain harden
depending on its proximity to the initial crack tip. Later, during
the sustained Toad phase, the phenomena of recovery will allow this
material to soften prior to the arrival of the crack tip at which time
additional Toading will occur. The amount of recovery prior to the
arrival of the crack tip should then have some effect on the values
of stress and strain developed around the crack tip when it reaches
the material being considered. Therefore, this investigation will
focus on the following viscoplastic flow Taw which does include the
phenomenon of recovery.

c. Bodner Viscoplastic Flow Law

In this formulation by Bodner and Partom (References 6-9) the A
parameter from Equation 13 is expressed in terms of second invariants
by making use of the square of Equation 3

1-P-p_P_1.,2 _ 1 E
where Dg is the second invariant of the plastic strain rate and J2 is

the second invariant of the deviatoric siress.

22
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Rather than specifying a specific yield criterion as in classical
plasticity, this formulation by Bodner and Partom is based on the assump-
tion that a continuous functional relationship exists between the plastic
deformation rate and the stress invariants, i.e.

P _ P

where Zk are one or more internal (viscoplastic) state variables and T
is the temperature. Introducing Equation 23 into Equation 22 and solving
for ) gives

1
- o’ z
N = [05(3,02,,T) 3,1 2 (28)

The general form for the evolution equation, i.e. history depen-
dence, of the viscoplastic state variables Zk is

Z, = Fk(Jz,Zk,T) (25)

For conditions ¢f uniaxial stress of constant sign, the hardened
state with respect to plastic flow is assumed to be represented by a
single state variable Z which depends on plastic work. This single state
variable Z also corresponds to isotropic hardening. Additional state
variables are necessary for such characteristics as kinematic hardening
which will not be employed here. ‘

The particular form chosen for Dg (JZ,Z,T) was motivated by the

equations of dislocation dynamics and given by Bodner and Partom as
2
P _ .2 AN n+l
D, = D, EXPE(.3_52) r (26)

The factor (n + 1)/r was introduced at an early stage in the development
of the eauations for numerical purposes and only affects the numerical
values of some of the material constants. The constant D, is described
as the limiting value of the plastic strain rate in shear. Its value can
be arbitrarily chosen and is usually tazken to be the same large number

™a
[F5]
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for all materials. A value D0 = 104 sec'1 is generally adequate except

for conditions of very high rates of straining.

The parameter n controls strain rate sensitivity and also influences
the overall inelastic level of the stress-strain curves. A decrease
of n leads to increasing strain rate sensitivity and Towering of the
level of the stress-strain curves.

As stated previously, Z is assumed to be a function of plastic work,

Hp, and the following relationship is introduced

1=1 (wp) =1 - (21-20) expl-m pr (27)

The quantity 21 is the maximum value of Z which is necessary if the
deformations do not revert to elastic behavior at large values of wp.
20 is the value of Z for which Np = 0 and can therefore be the initial

state point from which plastic work is measured. It is noted that the
general function {Equation 27) would be a basic material property and
that Hp is the relative amount of plastic work done from some initial

state, (i.e., wp is not an absolute parameter).

] P

The quantity m in Equation 27 is a material constant that relates to
the rate of work hardening.

At high temperatures, it is generally necessary to consider the

thermal recovery of hardening generated by plastic deformation, In
this case the plastic work, wp, is redefined as follows:

z
< =P rec
Wp "f b'IJE'IJ dt + ﬁ—(i]_' 7) dt (29)



AFWAL-TR-80-4140

where

: _ 2-72i\ T
Loec =~ A( Z, ) 4 (30)

where Zi is the stable, (i.e., non-work hardened) value of Z at a given

temperature, and A and r are additional material constants chosen to
match the models behavior to creep test data as was done for the Norton
model. Note that the second term on the right of Equation 29 (i.e., the
recovery term) makes a negative contribution to Hp due to the negative

sign on A, since Z is always greater than or equal to 21.

The recovery term in Equation 29 is essential if the material model
is to be able to represent secondary creep. Secondary creep is the
balanced condition when the rate of work hardening equals the rate of
thermal recovery or, setting the time derivative of Equation 29 to zero,

Wo=S, .60+ e g (31)
p ij-i3 m(Z1-Z)
At relatively high strain rates, the thermal recovery in Equation
29 is relatively unimportant and the steady state condition is realized
when Z reaches its saturation value Z].

Again, VISCO employs the Euler extrapolation scheme for the numerical
time integration of the Bodner equations. During each time step Equation
13 and Equations 24 through 30 are integrated as follows for each element

. i-1
7' = Z; - (2;-1,) expl-m " ] (32)
(DP)-I = 02 ex [__ __(i)_z_T n n+1 - (33)
2 o EXP 3 3,1 n_ -
L T T T L I P Li=1
{eijl [(D,) /J2 1 {sij, (34)

Pui _ o Pyi
{deij} = {Eij} dt (35)

o

(S ]
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. 1 r
. ~ 21 _ Z_i)
Lrec = A ( 44_7;__ Z] (36)

o T s T Pyt i 1
=W i3 fde; b+ 2o dt /Im(Z)-7)] (37)

where the superscript i refers to the time-step and a subscript i refers
to a specific material constant, Zi’ or to specific components of stress
and strain.

The specific material constants required for the Bodner model in this
investigation were determined to best fit the behavior of IN-100 at the
temperature of 1350°F. This material was characterized by performing
uniaxial tensile stress-strain tests and creep tests at different stress
levels at 1350°F. The following constants for the Bodner model were
developed by Stouffer (Reference 12) and the details of this procedure
are summarized in Appendix D. The A and r constants defined by Stouffer
are different than the constants used in the present formulation:

D, = 104 sec'1

n = 3.50

ZO = 224.4 ksi

Z] = 251.5 ksi

m = 3.750 ksi”!

This first group of constants is based on stress-strain curve data.

A=1.142 x 1072 sec”!
r = 3.5¢
Z, = 100 ksf

This second group of constants is based on creep test data. The elastic
modulus at 1350°F was determined to be

E=26.3 x 106 psi

and Poisson's ratio was arbitrarily chosen as

vV EOLS

26
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Figure 4 shows a comparison of the stress-strain behavior of the
Bodner model (using the given IN-100 material constants) and experimental
stress--strain data. Each of the curves displays the response of the
Bodner model under the loading condition of a given constant strain rate.

The experimental data were generated at a strain rate of .83 x 10'3 sec_]

and compare quite well with the Bodner curve for the same strain rate.
Some variation occurs in the region of initial inelastic behavior but
this difference is small.

Figures 5 and 6 compare creep behavior of the Bodner model with
experimental data at the stress levels of 127.3 ksi and 72 ksi, respec-
tively. MNote the initial experimental curve's slope or strain rate
is duplicated by the Bodner model in both figures. However, the strain
magnitudes differ somewhat due to the initial time required for the
Bodner model to reach steady state creep at these stress levels. Also
as the experimental strain rate increases with time the Bodner model
cannot closely follow since its formulation restricts it to only
secondary type creep in this situation (i.e., constant strain rate for
constant stress).

2. SOLUTION PROCEDURE FOR ELASTIC-VISCOPLASTIC STRUCTURES

In elastic-plastic analysis, it is necessary to apply loads
incrementally to satisfy the appropriate yield condition (e.g., von
Mises) and flow rule (e.g., Prandtl-Reuss) associated with {ncremental
plasticity (Reference 64). Similarly, with elastic-viscoplastic behavior
an incremental procedure is required, but here time is incremented
directly while Toad, strain, stress, etc. are incremented indirectly
through the time integration procedure. The algorithm used for a
typical time-step in the elastic-viscoplastic residual force method
(Reference 10) is summarized as follows:

1. Add time increment dt' to the preceding time t1-] to obtain

the current time t1.

27
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i

2. Compute increments of plastic strain, {da?j}

PR - B
= {E1j} dt’ and

P

P i
..} Eij

ij = {

add to preceding plastic strain, {e }1*1 + {deﬁj}1. In

general the plastic strain rate, {é?j}. is a function of the

material's viscosity and the given stress level (see the V¥iscoplastic
Material Models section).

3. Compute the plastic load vector {(]}1"1 = fv01[B] [p] {sgj}1 dvol.

4. Compute the current external load vector {P}' = ipyiat! + (T,

5. Compute the nodal displacements {U}1 from Equation 11,

Wit = w3t ey s @ith

6. Compute the current total strain {:-:1.3.}1 from the strain dis-

R AT

placement relationship, {siJ

7. Compute the current stress (o} as follows, {c:].j}1 =

51§}1}°

[0I¢ fe}' - 1
8. Check the time-step size in terms of prescribed stress and
strain change tolerances per time-step (see the following section
on Variable Time Step Integration of Viscoplastic Flow Laws). If
these tolerances are not exceeded the time-step size may be
increased for the next time-step or left the same value. But

if the tolerances are exceeded, the time-step size is reduced

and steps 1 through 8 are repeated for this same time-step in

an effort to satisfy the stress and strain change tolerances.

9. Repeat steps 1 through 8 until the desired simulation time
is reached.
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3. VARIABLE TIME-STEP INTEGRATION OF VISCOPLASTIC FLOW LAWS

One of the final objectives in the development of VISCO was to be
able to accurately model nonlinear material behavior both in the high
strain rate load up stage and during the low strain rate constant load
creep stage. For stable accurate results, the time-step size must be
orders of magnitude less during the load up stage compared to the creep
stage. Therefore to be computationally feasible in a large problem
(many degrees of freedom) some method is necessary to determine the
maximum time-step during each stage of the analysis while maintaining
reasonable accuracy. Cormeau (Reference 65) investigated the numerical
stability of simple time marching schemes used in elastic-viscoplastic
analysis. The Malvern and Norton models were studied among others.

For the Malvern model the following maximum time-step size was
determined

dt.. < 4 (1+v) ©

M= 3y, E (38)

where v is Poisson's ratio and all other parameters are as defined
earlier. For the Norton model the maximum time-step was

4 (1+v)

dtN = 3YcEB°eB'1 {39)

In general dtN is several orders of magnitude larger than dtM. If the

Malvern model or the Norton model are used separately Cormeau has shown
Equations 38 and 39 to work well. However, if the Norton and Malvern
models are coupled together for a more complete flow law a method is
necessary to provide the maximum time-step during transition from load
up {Malvern dominated phase) to crzep (Norton dominated phase). In
addition, this time-step maximizing scheme is all the more required
when numerically integrating the Bodner equations since Cormeau's
analysis does not directly apply to the Bodner viscoplastic flow law.
Consequently, the following logic which is also similar to the MARC
program (Reference 57), was incorporated intc VISCO.
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This time-step maximizing logic continually tries to increase the
time-step size subject to a stress and strain constraint. These con-
straints are the allowable amounts of change in stress, Ttol and

strain, e during a given time-step and their values will be

tol?’
discussed later in this section. The computer algorithm is based
around parameters Pa and PE defined as follows

o . oel - ol
o g T (40)
e tol
(dehy’
P = _.,_e—
£ 1 (41)
“total “tol

- 2 2 2 . .
where €rotal '“’/;x + e, *+ .50 v Xy and the superscript i refers to

the time-step. Note that if the change in effective stress between
time-steps i and i-1 just satisfias the stress constraint or stress
tolerance, 9401’ then Equation 40 will give a value of unity for Pg.

Similarly, if the effective plastic strain increment for time-step i,
(deZ)l, just satisfies the strain constraint or strain tolerance, To1?

then PE will equal unity from Equation 41.

The parameters PU and PE are calculated for every element and P

is set equal to the largest one. One method of changing the time-step
size based on P is
i i-1

dt' = dt'"/p (42)
Note that if P is unity no change in the time-step size, dt, occurs.
However, if P is Tess than one, dt! is greater than dt'™1 and if P is
greater than one dti is less than ati=1. In the case of P being greater
than one, the amount of change in stress or strain has exceeded 1ts
respective tolerance and recalculations for that time-step are necessary
using the reduced time-step size from tquaticn 42.

(8 }
it
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To avoid several successive recalculation steps that develop when
P is greater than one and Equation 42 is used, the follaowing substitute
for Equation 42 was employed.

dti = .8dt P IEP > T
dti = ati-1 If .8<P<]
i i-1 (43)
dt’ = 1.25 dt If .65 < P < .8
dt! = 1.5 dati-1 1f P < .65

Note that Equation 43 reduces the time-step size more than Equation 42
if P is greater than one but if P is less than one Equation 43 increases
the time-step size slower than does Equation 42. Both of these differ-
ences between Equations 43 and 42 tend to reduce the number of calcula-
tion steps required.

Determination of the values for the stress and strain tolerances,
Cto] and €40] respectively, was accomplished by employing VISCO to

analyze a plate with a V-notch. This particular geometry was chosen
since it has a high stress concentration around the notch and is there-
fore somewhat similar to a plate with a crack which is the geometry of
ultimate interest in this research effort. But the ¥Y-Notch geometry
can be modeled with far less elements than a cracked plate requires and
still compare with other V-notch solutions in the literature (Reference
40). Figure 7 shows the finite element mesh employed for the V-notch
plate. Only one quarter of the plate is modeled due to symmetry.
Element sizes were made smallest near the V-notch in order to capture
the stress concentration there. A total of 182 constant strain triangu-
lar elements were employed which is somewhat less than Yamada et. al.
{Reference 40) used. However, good agreement with Yamada was achieved
and this will be demonstrated Tater in the Validation Examples section.
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a. Malvern Model
An elastic-perfectly VISCO plastic (i.e. Ekez) = constant) plane

stress analysis was carried out using the Malvern model. The ratio of
elastic modulus E to the yield stress was 288 and the ratio of applied
remote stress to yield stress was 0.593. Poisson's ratio was 0.2. The
load was applied in nondimensional time of ypt = 10'4 where Yy is the

fluidity constant in the Malvern model (Equation 14). Results were taken

after all stress and strain rates were zero. This may be defined as the

steady state condition which was observed to occur after ypt = 0.4.
Several analyses of the V-notch were performed using different

values for the stress and strain tolerances. Examination of the results

found that between displacements near the notch, plastic strain near

the notch, and total plastic strain energy in the model, the last one

was most sensitive to stress/strain tolerance variations. Table 1

displays the percent variation in plastic strain energy as stress/strain

tolerances are varied. The percent variation is relative to the plastic

= ,01 and €401 = ,01. It was noted

that the stress/strain tolerances that kept the percent variation in

strain energy calculated when Itol

plastic strain energy around one percent also kept the time-step size,
during most of the computing, under Cormeau's critical value, dtm,

in Equation 38. The amount of computer time increases rapidly as the
tolerances are reduced to a value of .01. A good compromise between
computer time required and apparent accuracy from Table 1 is a stress
tolerance of .03. Note that for this stress tolerance, the strain
tolerance can be relaxed all the way to .20 with Tittle change in
plastic strain energy. These results are in agreement with the
recommendations for stress/strain tolerances in the MARC program
(Reference 57).

b. Bodner Model

A similar stress/strain tolerance investigation was performed with
the Bodner material model in ¢lane stress. The V-notch model in Figure
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11 was again employed. The material constants used for the Bodner
equations were those matched to IN-100 and given previously. The ratio
of applied remote stress to yield stress was again .593 which is based

on 140 ksi for the initial yield stress. Maximum Toad was reached in

10 seconds and plastic strain energy results were then taken similar

to the Malvern model investigation. Again several analyses of the
Y-notch were performed using different combinations of stress and

strain tolerance values. The results for the Bodner model are given

in Table 2. Comparing Tables 1 and 2 shows that the Bodner model
develops less plastic strain energy variation for the given stress/
strain tolerances than does the Malvern model. This comparison indicates
that higher stress/strain tolerances could then be used for the Bodner
model. However, if the analyses are continued into the creep phase,

it was observed that the stress values tend to oscillate somewhat when
they should be monotonically relaxing near the notch tip. This oscilla-
tion was fairly well damped out when a stress tolerance of 0.03 was used.
Once this small value for the stress tolerance is chosen the strain
tolerance has Tittle effect as long as it is greater than or equal to

the stress tolerance.

The average computation time for the Bodner model was about twice
that required for the Malvern model. The average central processor
time required on the CDC-6600 was 150 seconds for this 200 degree of
freedom problem with the Bodner model.

4. VALIDATION EXAMPLES

The following five examples were performed to demonstrate the
validity of the YISCO computer program. The first four examples employ
the Malvern model to compare with published time independent elastic-
plastic solutions. The Bodner model is then tested in the fifth example
by comparing its behavior with the results from coupling the Malvern
and Norton flow laws together.
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a. Infinite Sheet with Pressurized Hole

The first example employs the Malvern model to analyze the infinite
sheet with a pressurized hole. Comparisons are made with the exact
elastic-plastic strain history independent deformation solution by Hsu
and Forman (Reference 70). The material properties for this plane stress
solution were E = 10.5 x 108 psi, v = 0.5, and a Ramberg-0Osgood stress-
strain equation

-1
e = L for 161 > & (44)
E 0g - 0

where ¢ is the total strain (i.e., elastic plus plastic), Eb is the
initial yield stress (66 = 55000 psi) and n determines the shape of the

curve (n = 9). Equation 44 must be inverted so that yield stress g is a
function of plastic strain eP in order to be used in the Malvern model.
The first step in this inversion process was to split the total strain

E

e into its elastic, -, and plastic, ep, parts and then set the elastic

strain, eE, equal to o/E. Equation 44 may then be rewritten as

€ = eE + eg = % + &P = % (_;o)n-1 = E%Eﬁ:1 (45)
Solving for o results in
" =5 " (o + EeP) (46)
and taking the nn+h root of Equation 46
s=3 lnJ' (o + Eep)‘:T (47)

0
The stress, o, on the left-hand side of Equation 47 will now be
redefined as the strain hardening yield stress ¢ so that, approximately

G5 N (o+EP) T for fol > (48)

Note when o equals o

Also when o is greater than oy, the plastic strain will be greater than

and ¢P is :zero, Equation 48 is identically satisfied.

zero and the product E ¢ P will have the major effect on o, which is
desired.

4G



AFWAL-TR-80-4140

The finite element mesh for modeling the infinite plate was similar
to Figure 9b, however, 132 triangular elements were used. The outer
radius to inner radius ratio of the element mesh was 15 which was
assumed to approximate an infinite radius plate.

Figure 8 shows the radial and tangential stress profiles for three
internal pressure ratios, P/Eb. Hsu and Forman indicated that, in
consideration of Budiansky's criterion for the acceptability of
deformation theory, their infinite plate solution should not disagree
greatly with an incremental elastic-plastic solution. One may observe
from Figure 8 a close approximation between the techniques thus lend-
ing validity to the incremental plane stress approach incorporated
within VISCO.

b. Thick Cylinder with Internal Pressure

The second example employs the Malvern model to analyze a thick
cylinder with internal pressure. In this case comparison is made with
a non-finite element solution by Hodge and White (Reference 71) who
again used deformation theory. This was an elastic-perfectly plastic
plane strain analysis. The ratio of the elastic modulus to yield
stress was Efc = 190.9 with v = 0.33. The ratio of outer radius to
inner radius for the cylinder is two. Figure 9 shows the finite ele-
ment mesh used to model a symmetric section of the thick cylinder.
The mesh incorporates 40 trianqular elements. Figure 9 shows the
tangential stress profile for a pressure ratio, P/o, of 0.76. Both
the elastic and the elastic-plastic profiles are given. There is
good agreement with Hodge and White and thus validity is again given
to the incremental plane strain portion of the VISCO program.

¢. V-Notched Plate in Tension

The third example employs the Malvern model to analyze a V-notched
plate in tension. Comparison is made with another finite element solu-
tion by Yamada, et. al. (Reference 40). A time independent tangent

4]
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modulus approach was used by Yamada et. al. for their elastic-plastic
analysis. This was an elastic-perfectly plastic plane stress solution
where the ratio of the elastic modulus to yield stress E/o = 666.7 and
v = 0.3. The finite element mesh used herein was the same as given
previously in Figure 7 where only one quarter of the plate is modeled
due to symmetry. Element sizes were made smallest near the V-notch

in order to capture the stress concentration there. A total of 182
constant strain triangular elements were employed which is somewhat
less than used by Yamada et. al.

Figure 10 shows two y-component of stress profiles for the minimum
section of the V-notched plate. Note for the applied stress of ¢/c =
0.185, which was Yamada's initial yield load, the present results from
VISCO agree very well except for the elements immediately at the notch.
The high elastic stress concentration near the notch was not modeled
as well by the present VISCO analysis due to Targer element sizes being
used in the notch vicinity. However, with yielding at the applied
stress of ofc = 0.584, comparison with Yamada's results at the notch
are much better. Note that plastic action diminishes stress gradients
and thus fewer elements are needed for an elastic solution can be used
to produce good stress profiles after yielding occurs. However, it
should be kept in mind that plastic action does not diminish the strain
gradient Tike the stress gradient and therefore strain profiles, even
after yielding, will be quite sensitive to element sizing.

Figure 11 displays the finite element mesh for the V-notched plate
with those elements left out that have exceeded the yield stress for the
applied stress of o/c = 0.584. The absence of these elements thus
describes the plastic zone size and compares well with that of Yamada.
Numbers within the elements of Figure 11 reflect each elements effective
stress as a percentage of yield stress.
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d. Cracked Three Point Bend Specimen

The fourth example employs the Malvern model to analyze a cracked
three-point bend specimen as shown in Figure 12. This will be the same
problem as was solved with ten different computer codes for an ASTM
analytical round robin and documented by Wilson and Osias (Reference
72). This was a plane strain crack problem where E=31.59 x 106 psi,
v= 0.30, and the following Ramberg-0sgood equation was used for the

n
=9 o_
£ = . + (BO) (49)

stress-strain curve

where ¢ is the total strain (i.e., elastic and plastic}, n is 10, and
B0 is 120 x 103 psi. To make Equation 49 compatible with the Malvern

model, stress must be written as a function of plastic strain. There-
fore, after subtracting the elastic strain (also equal to o/E) from both
sides of Equation 49, solving for the stress o, and redefining o as o

1

7 = B, (P M (50)

Due to symmetry only one half of the three-point bend specimen was
modeled with the finite element mesh in Figure 13. This particular
pattern for the element mesh was used by Ohtani and Nakamura (Reference
61) for a center cracked plate. Note how the element sizes are reduced
as indicated in Figure 13 by arrows to the first and second reduction.
This pattern provides for an unlimited number of element size reductions
while also maintaining good element aspect ratios (e.g., from 1 to 0.5)
and ensuring no two neighboring elements differ in size by more than a
factor of 2. Accordingly, each reduction cuts the preceding element
size in half. Eight element size reductions, incorporated in the Figure
13 mesh, stepwise reduced the 0.20 inch elements at the upper boundary
to a 7.8125 x 107%
size was slightly smaller than the smallest used in Reference 72. The
total number of elements in Fiqgure 13 was 584 with 388 nodes. Figures

inch element at the crack tip. This crack tip element

14, 15, and 16 show the results of VISCO compared to ten times indepen-
dent elastic-plastic solutions documented by Wilson and Osias. Eight of
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Figure 13. Three-Point Bend Finite Element Model
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these solutions fall within Tines II and III in Figures 15 and 16. The
other two solutions fall near line I in these two figures. In all cases
the present results from VYISCO fall within the ASTM round robin range
as shown in these figures. Therefore the element sizing and arrangement
in Figure 13 as used herein with VISCO, appears to give good results for
a complex problem that includes a crack and load that induces bending.

e. Center Cracked Plate with Bodner Model

The fifth example employs the Bodner model to analyze a center
cracked plate. Comparison will be made with results from a similar
analysis using the Malvern model coupled with Norton's Law as follows

e B 3Si5 . _, P

P [Yp (g(gpj‘ - 1) Y, (Ge) ] 2 ifo, > G(ee)

E,ij— e . . e (5-')
[v, (ce) ] g-gll- if o, < E(ez)

This Malvern-Norton combination is a superposition approach suggested
by Zienkiewicz {Reference 10) to model in a unified sense both initial
load up viscoplasticity and creep under sustained load. Also, to assess
the contribution of pure secondary creep in the Bodner model, comparison
will be made to an analysis using only Norton's Law for the viscoplastic

material model.

The material properties will be those matched to IN-100 at 1350°F.
The constants for the Bodner model will be those previously given for
IN-100. The yield stress as a function of plastic strain, EleZ),
needed for the Malvern model will be a multilinear fit to the experi-
mental stress-strain curve in Figure 4 and given as follows

130, (1. + 76.2 ez) ksi for e:<.00222
E(ep) = p p
e 152. + 1591, (ch-.00222) ksi for .00222<c]<.01 (52)
. p
164.4 ksi for €o > .0
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The fluidity constant Tp for the Malvern model will be given a value
of .58 sec™'. This value for Yp is sufficiently high such that the

given o function is followed very closely (e.g., recall Figure 3 for
p = ). The constants for Norton's Law will be Yo = 3.7394 x 10780

)']0'64/sec and 8 = 10.64. These values were determined by matching

(psi
the initial IN-100 creep behavior in Figures 5 and 6 as discussed in the

Norton's Law for secondary creep section.

Due to symmetry only one fourth of the center cracked plate is
modeled by the finite element mesh given in Figure 17. The plate's
height is 2.8 inch, width is 1 inch, and thickness is 0.2 inch. The
crack length, 2a, is .2734 inch or a/W equal to .1367. The numbers
inside the elements indicate a total of 355 elements were employed.
The total number of nodes is 211. The triangular elements around the
crack tip have a height and base dimension of 7.8125 x 10'4 inch.
Further discussion of this element mesh will be presented in the
Applications section since this particular mesh was also employed there
to simulate the experimental program. A maximum stress of 36320 psi
will be applied to the upper boundary of the center cracked plate in
five seconds and then held constant for an elapsed time of 1000 seconds.
This applied stress level corresponds to a load level also used in the

experimental program to be simulated later.

A comparison of the behavior of these three material models is
given in Figures 18, 19, and 20, The effective stress and plastic
strain in Figures 18 and 19 are from the element at the c¢rack tip
which had the highest elastic stress concentration factor.

The stress-strain behavior in Figure 18 occurred over a time period
of 1000 seconds. The values to the left of 6% strain occurred in approxi-
mately five seconds (the load up period) whereas to the right of 6%
strain, stress relaxation and redistribution is taking place over
approximately 1000 seconds of sustained load creep behavior. Note how
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the Norton model behaves during the load up period (i.e., strains less
than 6%). Due to its slow creep response, the effective stress from the
Norton model approaches the values that would occur during load up in an
elastic analysis. However, the Norton model relaxes the stress down to
values very similar to the other material model stress values. In
general the Bodner model bebhaves very similar to the Malvern-Norton
combination both during Toad up and the sustained load creep periods.

Figure 19 shows the time dependent behavior of the effective stress
and plastic strain from the same crack tip element. After approximately
200 seconds, all three material models develop nearly identical effective
stress values. Plastic strain behavior with time is also very similar
for the three models except for under 100 seconds of time. The differ-
ence in percent plastic strain between the three curves developed pri-
marily from different plastic strain rates during the load up phase and
remains fairly constant for time greater than 200 seconds.

Figure 20 shows how the crack mouth displacement increases with time
after the maximum load is achieved. The location of the crack mouth
displacement is indicated in Figure 20 to be 0.050 inches from the
vertical centerline. Again the three curves are very similar after 200
seconds and their separation is due primarily to dissimilar behavior for
time under 200 seconds. The Norton model displays more displacement
after maximum load than the other models since it is effectively making
up for jts slower plastic strain rates and associated displacements
during the load up phase. This apparently is also true when comparing
the Malvern-Norton to the Bodner model displacement curve, however,
here the difference is much less.

Therefore, based on these comparisons with somewhat similar material
models used to analyze the center cracked plate, the Bodner model within
VISCO is considered to be working well. For further discussion and
comparison of these material models see Reference 77.
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5. SUMMARY OF FINDINGS

The following findings were determined from the preceding validation
examples and the general development of the VISCO program.

1. The stress tolerance, To]? which controls the variable time

step size in VISCO's numerical time integration algorithm,
provides good results for reasonable computer time requirements
when set to the value of 0.03., The strain tolerance, Eto]* has

little effect as long as its greater than or equal to the
stress tolerance. This finding pertains to the Bodner, Malvern,
and Norton material models.

2. The VISCO program, while employing the Malvern material model
agrees well with so-called exact elastic-plastic deformation
solutions both in plane stress and plane strain conditions.
Agreement is also good with time independent elastic-plastic
finite element solutions in a V-notched plate and a cracked
three-point bend specimen whose results came from an ASTM
analytical round robin.

3. The finite element mesh pattern in Figure 13 works well for
modeling cracked plates. This pattern conveniently provides
for an unlimited number of element size reductions to capture
the crack tip singularity while also maintaining good element
aspect ratios and minimizing the total number of elements
required.

4, A crack tip element size to specimen width ratio of 7.8125 x 10'4

in a cracked three-point bend specimen provided good agreement
with an ASTM analytical round robin.

5. The Bodner material model has been shown to behave similarly to
the Malvern-Norton model for both Toad up and sustained load
creep stages. Also, for time greater than 200 seconds after
load is applied, the pure secondary creep Norton law behaves
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similar to the Bodner model, In general, these similarities in
material model behavior should be true for most any metal, how-
ever, the indicated 200 second time delay between the Norton
and Bodner models pertains specifically to the IN-100 alloy at
1350°F.

Therefore, these findings support the validation of the VISCO
computer program and provides some of the required details for applying
the YISCO program with the Bodner model to creep crack growth
simulation.
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SECTION IV

HYBRID EXPERIMENTAL-NUMERICAL PROCEDURE TO
ANALYZE CREEP CRACK GROWTH

The simultaneous use of experimental data from crack growth tests
and a theoretical model of the experimental cracked specimen has been
termed the Hybrid Experimental-Numerical procedure by Kobayashi (Refer-
ence 16). One example of this procedure would be to grow a crack at
experimentally determined rates through the theoretical model of the
experimental specimen. Then, from the results, one could seek out
potential crack growth criteria which hopefully, during crack growth,
display themselves as fairly constant parameters independent of both
crack length and load intensity (e.g., stress or strain at the crack
tip, crack-opening displacement, etc.).

In the present investigation, the Hybrid Experimental-Numerical
procedure required the theoretical model to track experimental displace-
ment rates rather than crack growth rates. The theoretical model
consisted of the VISCO program employing the Bodner constitutive
equations and a finite element mesh of the experimental specimen. The
experimental displacements were either measured near the crack tip or
near the vertical centerline (crack mouth) of the center cracked plate
test specimens as shown in Figure 21. The displacements were measured
continuously with time by an optical interferometric displacement
measurement technique developed by Sharpe (Reference 74). Figure 22
shows a typical experimental displacement versus time curve. The
present numerical procedure required the crack to grow through the
theoretical model such that the displacements due to elastic-plastic
behavior and crack growth added up to the experimental displacements
as time progressed. Therefore, crack length versus time became a
product of the present analysis rather than an input.

1. CRACK LENGTH VERSUS TIME

Ideally for this investigation, the experimental data should be in
the form of crack Tength versus time rather than displacement rates.
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Unfortunately, it was nearly impossible, experimentally, to measure crack
length as a function of time with any degree of precision or reliability

on the surface since the total amount of crack growth in these tests was

extremely small (e.g., 100 microns) and since the creep crack would grow

internally or tunnel without associated surface crack growth.

Another attempt to measure crack growth rate indirectly employed
the elastic compliance method first demonstrated by Clarke (Reference
75). This method utilizes the change in elastic compliance of the
specimen with time and then with the aid of a compliance versus crack
length relationship based on linear elastic fracture mechanics, crack
growth with time may be determined. Figure 23 shows schematically an
experimental creep crack growth load versus time history designed to
provide discrete values of compliance at selected time intevals. The
load is reduced approximately 20% and then restored as shown at times
t1 through t3 to provide load displacement data at various times during

the test. Figure 24 shows a typical set of load displacement data for
increasing times t, to t4 in a creep crack growth test. Compliance is

defined as displacement divided by load and therefore the slope of each
line in Figure 24 represents the compliance at each particular time.

Note that compliance is shown to decrease in going from time t1 to t2

and then increase from time t2 to t4. Comparing this behavior to a

typical elastic compliance versus crack length curve given in Figure 25,
the mathematical implication is that the crack shortens with time.
Although this compliance decrease/increase behavior has also been
observed by Donat (Reference 76), no known experimental data supports
any physical shortening or healing of the crack. However, the important
implication of this compliance behavior is that a one to one relation
between crack length and compliance does not exist during creep crack
growth. Therefore, the elastic compliance method cannot be used
directly to measure crack length with time in creep crack growth tests.
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2. MATCHING EXPERIMENTAL DISPLACEMENT DATA

In each Hybrid Experimental-Numerical application of the VISCO
finite element model to simulate creep crack growth tests, the y-dis-
placement of the node which was closest to the point where the experi-
mental measurement was made was monitored with time. If the node's
displacement became less than experimental displacement at a given
time a crack tip node would begin to be released to simulate crack growth
through the model.

3. CRACK TIP NODE RELEASE METHODS

Crack tip nodes were released in one of two different methods. The
first method releases the node and totally unloads it in five seconds.
The second method unloads the current crack tip node linearly with time
over the total time span between the time when the current crack tip
node is begun to be released and the time when the next crack tip node
will be released. The five-second node release method for crack growth
must be used when matching experimental displacements or when a crack
growth criterion is used. In both of these cases when certain conditions
are satisfied, the crack must grow so a node is released. However,
when the current node is being unloaded it is not known when the next
crack tip node will be released and therefore the continuous unload
method cannot be used, The five-second unload time for the first method
was based on the size of the crack tip elements and the maximum crack
growth rates occurring in the creep crack growth test data (i.e.,
maximum crack growth rate equals element size divided by five seconds).
If a crack growth rate criterion were used then it could be determined
by extrapolation when the next crack tip will be released and thus the
current crack tip node could be unloaded in a continuous fashion by the
second method. The second node release method can also be employed
when all node release times are specified at the beginning of the
computer run (e.g., release times based on results from a prior computer
run using release method one and matching experimental data).
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In both node release methods, the node force required to hold the

crack tip node at zero displacement would be calculated from the stresses
in the adjacent elements as follows

(o= f [8] {0y} d vol (53)

Adjacent vel
Elements '

which is consistent with the formulation ofithe stiffness matrix in

Appendix A. The crack tip node restraint force, fy. is then the

component of {f} perpendicular to the crackline. The boundary condition
on thé node is converted from zero displacement to a force equal to fy.

This force fy is then removed depending upon which node release method

is chosen (Figure 26).

The change of fhe'crack tip node's boundary condition from dis-
placement to a force boundary condition is handled very conveniently
with the Gauss-Seidel iterative linear equation solver as discussed in
Appendix B. Whenever a node is fixed in a certain direction, its
equ11ibr{dm equation in that direction is skipped over during the
iterative solution procedure and when the node is released its
equilibrium equation is included within the iterative procedure.

No lengthy refactorization of the stiffness matrix is required for
these boundary condition changes.
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Figure 26c. Crack Tip Node Unload Methods, Continuous Node Unload Method
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SECTION V

APPLICATION OF THE HYBRID EXPERIMENTAL
NUMERICAL PROCEDURE TO CREEP CRACK GROWTH

The first objective in the present research was to develop a method
for getting crack growth behavior solely from displacement measurements
made on a cracked specimen under constant load and at elevated tempera-
ture. This objective is extremely important since small but significant
amounts of crack growth can not otherwise be resolved by conventional
experimental crack measuring technmiques. The second objective was to
seek out crack growth criteria based on the crack growth behavior identi-
fied from the present work on the first objective and by examining various
parameters around the crack tip in the theoretical model (e.g., stress,
strain, crack opening displacement, etc.).

This section presents the results of applying the hybrid experi-
mental numerical (HEN) procedure to creep crack growth in IN-100 at
1350°F. The experimental portion of the procedure consisted of
displacement versus load {(i.e., compliance) and displacement versus time
test data reported by Sharpe (Reference 15). The numerical portion of
the HEN procedure consisted of the VISCO finite element program
employing the Bodner material model. The material constants for the
Bodner model were those given in Section III.

The machining specifications for the specimens used in the experi-
mental program are shown in Figure 27. Only the center uniform cross
section part of the specimen was considered in the VISCO simulation and
due to symmetry only one quadrant of this section was represented by
the finite element meshes given in Fiqures 28, 29, and 30. Each of
these meshes represent the center cracked plate test specimen with
different crack lengths. The convergence of these meshes has been
verified through the work in Section III and further discussion of
their accuracy will be provided in subsequent paragraphs. Figures
28, 29, and 30 have half crack lengths, a, or 0.137 inches, 0.237 inches,
0.312 inches, respectively. Due to the variations of the initial crack
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length through the thickness, the surface measurement cannot be used
directly and thus effective initial crack lengths must be determined.

" These effective initial crack lengths were determined by matching
experimental load-displacement data along the crack such that the
finite element model displayed elastically the same compliance as

the experimental specimens did. For efficiency sake it has been found
realistic to use the same element mesh for slightly different initial
crack lengths.

The VISCO finite element program has both plane stress and plane
strain analysis capability. The current investigation chose plane
stress as reported in Reference 78 where theoretical plane stress J
integral values agreed best with test data for an even thicker ( 1 inch
thick) compact tension specimen. A theoretical model must display
realistic compliance behavior in order to calculate J values that
agree with test data. Likewise, in the present research realistic
compliance behavior is a necessity.

Figures 28, 29, and 30 display the same general pattern of elements
which worked well for the three-point bend specimen in Section III. The
elements at the crack tip have a height and width of 7.8125 x 104 inch.
This size crack tip element in combination with the given general ele-
ment pattern, provided for 355, 278, and 362 elements respectively in
the three figures. Figures 28 and 30 provided 20 uniform elements ahead
of the crack tip for subsequent crack growth whereas Figure 29 had
eight uniform elements. Figure 31 shows the expanded element layout
around the crack tip from Figure 29. This region of uniform elements
ahead of the initial crack tip avoids unrealistic changes in compliance,
as the crack grows through the model, that can develop when nonuniform
element sizes are used. The number of uniform elements incorporated
ahead of the crack tip is a compromise between anticipated crack
growth and computer time required.
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The elastic compliance of the specimens modeled by these three
meshes in VISCO was compared to an empirical solution by Eftis and
Liebowitz (Reference 739) in the form of

gEl = .4. '1
oW nv-ﬁ-q- csc(h’—él cosh [sec(-;—a-)] (54)

This comparison is shown in Figure 32, with the symbols a,v, and W as
defined in the figure. Also shown is nondimensionalized compliance
versus crack length for locations off the vertical centerline and
relatively near the crack tip. These locations correspond to the
displacement measurement locations used in the experimental program.
It can be seen that the centerline compliance agrees very well with
published results. Also note that if the off centerline results are
linearly extrapolated {i.e., dashed 1ine) back to the Effis and Liebowitz
curve they intersect at a/W values which correspond to their distance
behind the crack tip. These results all support the validity of the
finite element meshes used in the present investigation.

Figure 33 shows elastic crack opening displacement profiles using
VISCO and the mesh in Figure 28 compared to the Westergaard equation
for elastic displacements around the crack tip. The following form of
the Westergaard equation is restricted to plane stress displacements
behind the crack tip and on the crack surface (i.e., crack opening
displacement)

ax
R (55)

T E

2

where r is the distance behind the crack tip and KI is the mode 1

Y

elastic stress intensity factor which for the center crack plate can
be written as (Reference 73)

Ki = o#iuaiseclﬁij (56)

where again a and W are the half crack 1ength and specimen width
respectively. Note that agreement with the Westergaard equation is
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Figure 32. Comparison of Compliance from VISCO with Eftis & Liebowitz
for the Center Cracked Plate
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quite good here for the results from YISCO using the mesh with the
shortest crack length (Figure 28). The same crack tip element size
was used in all three crack length models., Therefore, agreement with
Equation 55 would even be better for the longer crack length models
since the ratio of element size to crack length will be smaller. It
has been shown through elastic finite element convergence studies that
as this ratio of crack tip element size to crack length decreases,
accuracy increases (Reference 81).

Another consideration supporting this size crack tip element
(i.e., 7.8 x 10°% in.) is that IN-100 grains are approximately the
same dimension (Reference 13). It may be argued that the finite
element method is a continuum analysis tool and that accuracy should
only improve as elements are refined. However, realistically a
continuum does not exist at and below the grain size, especially
around the crack tip. Thus incorporation of elements smaller than
the grain size might be unrealistic. Furthermore, it is postulated
that the physical blunting of the crack tip that can be associated
with noncontinuous grain structured material might be more effectively
considered by the finite element model used herein since the crack
tip elements have a dimension on the order of a grain size.

1. CRACK GROWTH PREDICTIONS

A summary of the creep crack growth test data reported by Sharpe
(Reference 15) is given in Tables 3 and 4. In general the experimental
program objectives were to generate creep crack growth data in the
center cracked plate specimen at 1350°F for several different loads
and cracked lengths. The loads were specified in terms of a range of
stress intensity factor values from approximately 15.0 to 35.0 ksi /in
for each respective initial crack length, With these objectives in
mind and the limited number of test specimens, only one test was done
at each of the test conditions. In the process of developing the
experimental procedure, several tests did not result in good data and
consequently were not used in the present investigation as implied
by the discontinuous test numbers in Table 3.
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The initial surface crack lengths, ag, were measured on the surface
of the test specimens after fatique precracking and prior to the load
application for the creep crack growth tests. Displacements across the
crack were measured at the indent locations, qualitatively referred to
as mouth or tip locations described in Section IV. In each of these
creep crack growth tests, the load was applied in five seconds and held
constant for the given test duration time {excluding small unload/reload
cycles for compliance referred to in Section IV).

Figure 34 is a photograph of the fracture surface of specimen number
2. This photograph was taken after breaking open the center cracked plate
specimen following creep crack growth tests 5 and 6. The twe dark bands
indicated with arrows are the creep crack extensions from tests 5 and &
whereas the remaining fracture surface is either pre-test or post-test
fatigue crack growth.

Post-test crack length measurements were made on the fracture sur-
face as described in Figure 35. The average of the four crack length
measurements was defined as the experimental crack Tength ag. This
averaging was done to smooth out crack length differences due to
asymmetric crack growth and variations through the thickness. Table 4
gives a tabulation of the initial crack length, ag and a . In addition,
a crack length determined by compliance, a.s and the initial crack
length used in the finite element model, a,s is given. The a. crack
length was determined as discussed earlier by varying the crack length
in the finite element model until the model's compliance matched

experimental compliance data.

For convenience a modified form of the above compliance technique
for crack length determination was also employed which reduced the num-
ber of element meshes for different crack lengths required. This
modification to the compliance method made use of the experimental
compliance, CE, and the finite element model compliance, CFE’ for a

crack length near the test value. To determine the test specimen's
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Figure 35. Post-Test Crack Growth Measurements
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crack length, the difference between C. and CFE was divided by the rate

of change of compliance with crack length ac/aa (i.e., slope of curve
in Figure 32 as follows and added to the model's crack length

Cg - C
+ ok FE

c o Ac/fAa (57)

where c/a is determined from the model for nearby crack lengths. The
compliance CFE pertains to a model crack length of a,-

The effective stress intensity factor, Keff’ in Table 4 was calcu-
lated from Equation 56 using the crack length, aps and the load given
in Table 3. The stress intensity factor, KFE’ is also calculated for
convenience from Equation 56 but using the crack length a,- For another

check on the element mesh, the elastic stress intensity factor, KFE’
was also calculated based on J integral values determined from VISCO
for several paths. For Tinear elastic plane stress behavior (Reference
73) '

Ky = VES (58)

(Appendix C describes the VISCO routine for calculating the J integral).

Figure 36a shows a scaled drawing giving four different J integral
paths used in VISCO for the center cracked plate specimen. Figure 36b
shows normalized stress intensity factors calculated from Equation 57
and the J values along paths one through four in Figure 36a. These J
values were from a linear elastic VISCO analysis. For linear elastic
material, the J integral is theoretically path independent and this path
independence is demonstrated in Figure 36. It should be noted that the
good agreement between VISCO results and Equation 56 in Figure 36b also
indicates that the finite element mesh (i.e., Figure 28) accurately
represents the center cracked plate.
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Figure 36a. J Integral Paths Used by VISCO
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HEIGHT of PATH/W.
Figure 36b. Stress Intensity Factors from VISCO J Integrals & Equation 57
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Table 5 summarizes the basic details of the VISCO computer runs
which employed the HEN procedure. The computer run numbers designated
by S1 through S7 will frequently be referred to in the following discus-
sions. As described in Section IV, each of these runs incorporated the
Bodner material model and the crack was grown in the model at a sufficient
rate such that model displacements matched test data with time. Each
node released was unloaded in five seconds except runs S1 and S7 as
indicated in Table 5. Table 6 summarizes the basic details for VISCO
runs similar to Table 5 but with no crack growth allowed. It can be
seen from these tables that the computer time required for the high load
runs (e.g., S2 and A3) is much higher than for the Tower K levels. In
the case of run A3, computer time required is high due to a large load
causing a great amount of plastic flow to occur. Recall from Section III
that high plastic strain rates result in small time step size which then
requires more times steps to simulate a given amount of time relative to
the case of low plastic strain rates. Furthermore, in the case of run
S2, extensive crack growth occurred requiring 19 nodes to be released.
Each node release also requires relatively small time steps due to the
redistribution of stress and the associated plastic straining around the
crack tip.

Figures 37 through 42 show the match of VISCO displacements with
each particular test's displacement data. Also, the amount of displace-
ment in VISCO for no crack growth under l1oad is given. These displace-
ments are relative to the displacements existing at the time maximum 1oad
is achieved which means all displacements prior to reaching maximum load
were not included in this test data. Maximum load was normally achieved
in five seconds. The experimental optical technique for measuring
displacements is highly sensitive and can resolve displacements in the
neighborhood of 0.1 micron. However, this technique loses sensitivity
when displacement measurements are much larger than a micron. Since the
main interest was to record displacements after reaching maximum load
(i.e., the creep crack growth data), and due to the desire to maintain
high measurement resolution, the load application displacements were
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left out of the creep crack growth displacement data. Test 6 was an
exception where displacement measurements began after five minutes of
test time had expired.

The main details of the HEN procedure can be graphically seen in
Figures 37a and b. Observe in Figure 37a the two specific curves of
crack tip displacement. One from VISCO with no crack growth and the
other being test data. These curves start to deviate from each other
at a time of approximately four minutes and for a time of 20 minutes
the difference is fairly great as is shown by a bracket in Figure 37a.
This bracketed difference is attributed to physical crack growth and
requires release of crack tip nodes in this simulation.

Figures 37b through 42b depict the_resu1ting crack growth from the
HEN VISCO runs for each test. Note that due to this discrete finite
element analysis technique, the crack growth is a step function (i.e.,
release of individual crack tip nodes} whereas realistically the crack
might in general be growing in a smoother manner with time.

a. Comparison of Results from Using Different Node Unloading
Methods

In cases where the total creep crack growth is only a few node
distances (7.81 x 1074 in.=20 microns) the displacements developed by
VISCO deviate significantly from the test displacement versus time
curve (e.g., see Figure 4la) which implies that the model is too com-
pliant or the unloading of the crack tip nodes is too rapid. These
deviations become less significant for larger amounts of crack growth
as seen in Figure 37a. One approach to minimize these deviations for
small crack growth cases is to make a second VISCO run for the same test.
In this second run, node release times from the first VISCO run are
input. Therefore, the continuous node unload method can then be used
as described in Section IV,

Figure 37a shows VISCO displacements from employing the five second
node unload method (VISCO Run S3)} and the continuous node unload method
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(VISCO Run S7). Note that the displacements from Run S7 are only slightly
below and run parallel to the test data with no excursions. Also, Run

ST in Figure 39a matches test data with no excursions and this is a case
similar to Figure 4la where overall crack growth was small and deviations

were large.

Later on crack growth criteria will be postulated based on stress
and/or strain at the crack tip and therefore reliable data from the HEN
procedure is required for these two quantities. Figqures 43 and 44 show
the differences in stress and plastic strain at the crack tip which
develop between VISCO runs using the two different node unload methods.
For Targe amounts of crack growth in this case, the relative difference
in effective stress at the crack tip is seen to reach a steady state
value of approximately 7%. The relative differences of the y-component
of plastic strain at the crack tip, as seen in Figure 44 is much less.
These differences in stress and strain are relatively small and it is
concluded that essentially the same results (i.e., stress and strain
at the crack tip) can be achieved for either node unload method for
cases with large amounts of crack growth, For crack growth under small
loads or for small crack growth rates more time is allowed for stress
relaxation ahead of the crack tip. Thus on the average crack tip stress
and strain also differ little between the two unload methods for slow
crack growth. With this as background, it was decided that all subse-
quent solutions would be carried out using the five second node unload-
ing scheme.

b. Dependence on Deformation History

Tests 8b through 8d were not included in the HEN VISCO runs since
no fatigue precracking was done prior to these tests. Without fatigque
precracking these tests were considered to be a-typical due to their
different prior deformation history. To check out dependence on prior
deformation history the following VISCO analysis was performed.

Three VISCO runs with no crack growth were made to simulate Test 8b
and its dependence on prior deformation. Each run had one of three
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load-time profiles in Figure 45 input to it. The VISCO run A7 had no
prior 1oad hsitory, run A8 had Test 8a load history with a total unload
and re-load cycle, which is the most realistic load-time model of Tests
8a and b, and finally run A% had Test 8a load history with no unload,
but a load increase to the Test 8b load level. The top of Figure 45
shows the displacement versus time profile for each of these VISCO runs
compared to Test 8b data. Again these displacements are relative to the
displacements existing when the maximum Test 8b load is achieved.

In the case of run A8 where complete unloading occurs prior to Test
8b Toad, the VISCO results showed that plastic flow reoriented itself
during the unloading due to the reversing of the principal stress at the
crack tip to compression. This stress develops during unloading since
the material has prior tensile plastic strains from the Test 8a load and
cannot return to its original strain free state. This compressive
behavior, if associated with crack growth, leads to the crack closure
phenomenon described by Newman (Reference 83).

Comparing displacements of runs A8 and A9, where no unloading was
done, indicates quite similar behavior. When no prior deformation history
exists as for run A7 the displacements differ significantly, as shown in
Figure 45, from those with prior load-deformation history. Note that
run A7 fits the test data curve best. However, test compliance data
indicates that some crack growth occurred in Test 8b. If displacements
associated with this crack growth were included in these VYISCO runs,
experience with Test 8a would indicate that runs A8 and A9 would be
brought up to the test data and run A7 would be much in excess of test
resylts. It should also be noted that the form of the Bodner model
employed in VISCO does not include the Bauschinger effect prevalent in
metals when compressive yielding follows tensile yielding. Therefore,
for the current investigation Tests 8b through 8d will not be further
studied in order to minimize dependence on pretest deformation history
in this investigation.
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Figure 45, Load History Dependence of Displacements
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c¢. Crack Growth Results

Table 7 displays the total creep crack growth increments measured
and calculated for the indicated test. The column entitled ha presents
the measured crack growth based on the average of four measurements
across the thickness as shown in Figure 45. The column entitled Aa,
is the total crack growth calculated in the HEN VYISCO runs and shown
previously in Figures 37b through 42b. Two other convenient methods for
calculating crack growth without the need of HEN VISCO runs were also
used and their results are presented as Aa, and has. The method for
calculating ba, is an original technique developed in the present
investigation and will be discussed subsequently.

The column entitled Aaqy is the crack growth calculated by Clarke's
elastic compliance method (Reference 75). This method predicts negative
crack growth in some instances where compliance was observed to decrease
as discussed in Section IV. Figure 46 compares crack growth calculated
by Clarke's method to the results from a HEN VISCO run for Test 9. Note
that experimental elastic compliance changes from Test 9 indicate some
unrealistic negative crack growth while incorporating Clarke's method
whereas the VISCO results show a realistic monotonically increasing
amount of crack growth with time. However, for times greater than
twenty minutes, both curves are approximately parallel which lends
support to Clarke's method for large amounts of creep crack growth
also demonstrated by Donat (Reference 76).

The column in Table 7 entitled Aa, is the crack growth calculated
by a varfation of Clarke's elastic compliance method as described below.
In this variation no unload/reload cycle data are necessary during a
creep crack growth test as discussed in Section IV. The VISCO simula-
tion of the test is also simplified since a VISCO run is made using test
conditions, but no crack growth is allowed in the VISCO model. Thus any
increase in displacements after reacning maximum load in the no-crack-
growth VISCO run can only occur due to time dependent plastic deformation
allowed by the Bodner material model. Examples of these no-crack-growth
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Figure 46. Comparison of Crack Growth from Experimental Compliance with
HEN YISCO Results
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VISCO displacements were given in Figures 37a through 42a. Through
simultaneous use of test displacement data and the no-crack-growth
VISCO results, the crack growth Aa, is calculated as follows

(STest - Sy)/p
Ac/aa

ha, = {(59)

where Test is the experimental displacement. The displacement av

is the value calculated in VISCO for the same test conditions but no
crack growth is allowed. The denominator term, Ac/Aa is the rate of
change of elastic compliance with crack length generated from elastic
VISCO runs of the test specimens. By releasing crack tip nodes and
dividing the resulting VISCO displacements by the load to get the
respective compliances, the curve of compliance versus crack length
was determined for each test's indent or displacement measurement
location {Figure 32). The slope of this compliance versus crack
length curve then provided Ac/Aa ratio. The applied load P is divided

into the difference of STest and 5v to generate a change in compliance.

This change in compliance is assumed to be primarily dependent on crack
growth which means that the plastic zone developing around this fixed
crack tip is approximately the same size for an extending crack and
simply translates along with the crack tip.

Figure 47 graphically defines GTest

ment time tm. Note that this Aa, method is effectively the same as the

and Gv at an arbitrary measure-

HEN VISCO procedure for small amounts of crack growth where, as mentioned
previously, the plastic zone size is assumed constant. Therefore a

curve of crack growth versus time could also be generated by this Aa,
method by applying Equation 59 continuously along the test data curve.

Consider the measured crack growth column LU and the HEN VISCO
results Ady. The differences between these two columns is only + 10%
for those tests totally modeled. Only part of Test 6 was modeled since
the number of uniform crack growth elements ahead of the initial crack
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Figure 47. Schematic of Displacements Used to Calculate Crack Growth by
Equation 59
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tip were already exhausted after half of the test duration. This also
occurred in modeling Test 9. Hence, in both Tests 6 and 9 the value of
tay was determined by extrapolating the final or relatively steady state
slope of the crack growth versus time curves in Figures 38b and 40b.
Another special characteristic of Test 6 is that displacement data versus
time was not measured during the first five minutes of the test. Thus,
based on other test behavior, a significant amount of the early relatively
rapid displacement rates were ignored. Some of this early displacement
would apparently have required more crack growth in VISCO than the exist-
ing data did while using the HEN procedure.

The crack growth values, ba,, in Table 7 also correlate quite well
with the measured values Aag. The good correlation of Aa, with test data
provides support to this convenient method developed herein for calculat-
ing creep crack growth. The significant convenience feature in calculat-
ing ra, is that once a no-crack-growth VISCO run is made for a given set
of test conditions, Equation 59 can simply be applied for analyzing all
further experiments with approximately the same test conditions (e.qg.,
load, crack Tength and geometry).

A somewhat similar HEN analysis was done by HSU et. al (Reference
32) to predict crack growth in zirconium at elevated temperatures. HSU's
crack growth predictions were 2.5 times greater than actual test data.
In the present HEN analysis, crack growth predictions were within
approximately 10% of test data for the tests that were totally simulated.
The extremely good correlation using the present method is attributed to
both higher resolution experimental displacement data than HSU's and a
more realistic material model that includes creep behavior. Additional
displacements due to creep in HSU's analysis would have reduced the
amount of crack growth predicted. Since HSU's predictions were high,
this reduction would be in the direction of better correlation with
test data.

Another comparison of current results can qualitatively be made with
Newman's finite element analysis of fatigue crack propagation (Reference
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83). Figure 48 shows crack opening displacement profiles during creep
crack growth from the VISCO model as represented by the solid lines.
Note that with the crack tip at point zero, the elastic crack opening
displacement profile (i.e., the dashed 1ine in Figure 48) is lower than
the solid 1ine which incorporates the Bodner material model. However,
as the crack grows a wake of residual plastic deformation is left behind
the crack tip. After 12 increments of crack growth, Figure 48 shows

how this plastic wake diminishes the elastic-plastic crack profile below
a purely elastic profile for the same crack length "a". The residual
plastic deformation indicated by the cross-hatched area in Figure 48

was also displayed in a similar figure by Newman.

2. CRACK GROWTH CRITERION

Based on the good correlation between actual and predicted crack
growth, the VISCO results from the HEN applications were examined for
potential crack growth parameters. The local crack tip parameters such
as strain and crack opening displacement (C.0.D.) were examined 1nitially
since these parameters have shown promise elsewhere (References 84,85)
for correlating finite element results with crack growth test data.

The main goals here were to check out the validity of existing crack
growth criteria (1.e., critical C.0.D. and strain), possibly modify one
of these existing criteria to better fit test data, and postulate a new
criterion that might better account for creep damage accumulation and
crack growth displayed by the HEN VISCO analysis.

a. Critical Strain Criterion

Examination of the strains in the elements adjacent to the crack
tip prior to each node release for crack growth in the HEN VISCO runs
revealed that no single value for the critical strain would satisfy all
test conditions. However, a few VISCO runs were made using a fixed
critical strain criterion to further evaluate its applicability.
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The critical strain criterion was implemented in VISCO by comparing
the average of the plastic strain components normal to the crack and
within elements adjacent to the crack tip with a critical strain value,
Ecpit? 35 time progressed. When the average crack tip plastic strain

exceeded the critical value, e the crack tip node was released and

crit?
unloaded in five seconds. Table 8 gives a summary of the basic details

for VISCO runs employing the critical strain criterion. A value

E .
crit
of 0.030 was found to work well from the HEN VISCO runs of Test Ba where

KFE was 16.3 ksiv/In. However for Test 9 where Kep was 36.8 ksiv/in the

Ecrit value needed to be 0.090 to work well as shown in Figure 49a. The

corresponding e dependent crack growth versus time is given in Figure

crit

49b, The ¢ value of 0,075 allowed too much displacement compared

crit

to test data as seen in Figure 49. The displacement results for a €erit

value of 0.090 appear to fit the data quite well over the first five
minutes of the test. Likewise the resulting crack growth in Figure 49b
agrees quite well with the HEN data in Figure 39b. However based on
examination of the prior HEN VISCO runs, if the simulation time were

continued, the ¢ t value of 0.090 would have been too large. Therefore,

cri
insufficient crack growth would have resulted and the displacements
would have fallen away from the test data as shown by the extrapolated
dashed curve.

Figure 50 displays the HEN VISCO crack tip strain values taken at
the time a crack tip node was to be released in the HEN VISCO runs.
This plot was motivated in an attempt to find a general trend of the
critical strain values or to determine a mathematical relationship with
time to envelope the HEN results. Note that in general the strains are
high for short times and then diminish with time to a common value of
approximately 0.03. In order to develop a critical strain functional
expression one can see a need for a decaying parameter which would fit
the upper bound strain values in Figure 50 related to rapid crack
growth. In addition the expression must have the capability of allowing
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the region around the crack tip node to deteriorate with exposure to the
crack tip environment (i.e., not only the environment external to the
specimen but also the singular strain state internal to the specimen).
Crack tip deterioration is considered to be displayed by the Tower bound
of strain values in Figure 50. Therefore, the general properties of the
critical strain function have been stated. The curve must be decaying
with test time, thus a negative exponential function is in order. And
since critical strain values appear to diminish with crack tip exposure
time, but not as rapidly as an exponential function would dictate, the
cosine function was examined.

An empirical expression for the critical strain that fits the HEN
VISCO results fairly well is given by

_ sO[A exp(-bt) cos(-g%)+ T ifT< T0
ertt ° (60)
crit
© iFT>T
° 0
where €5 0.03, A=3.0, b=1.34x10"3 sec'], T0=600.sec.

The value of €0 represents the critical strain for large time. The co-
efficient A is determined at t equal to zero. Once A and €, are chosen

b is determined by best fitting the upper bound where crack tip exposure
time is small and set to zero (i.e., T = 0). The parameter T0 determines

how rapidly the critical strain diminishes to €5 with crack tip exposure

time T.

Motivation for the development of Equation 60 comes from environ-
mental effects such as oxidation at these high temperatures from exposure
to laboratory air. This oxidation is then associated with changing
material properties at the crack tip such as the critical strain value.
Crack growth in alloys similar to IN-100 has been found fto be quite
sensitive to the environment and the resulting oxidation that can occur
when an elevated temperature crack growth test is done in air (Reference
86). Therefore, Equation 60 is an attempt to represent the rate at which
the critical strain for crack growth is diminished with time due to

environmental effects.
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The critical strain criterion just formulated would be employed in
VISCO in the following steps.

1. Register both total test simulation time, t, and crack tip
exposure time, T.

2. Evaluate the critical strain level during each time step from
Equation 60,

3. Compare with crack tip element's plastic strain accumulating in
the VISCO analysts.

4. Release crack tip node when VISCO plastic strain at the crack

tip exceeds ¢ from Equation 60.

crit

5. Crack tip exposure time T is set to zero and the above steps 1-4
are repeated for the next crack tip node.

b. Critical Crack Opening Displacement Criterion

The crack opening displacement is defined here as the C.0.D. at the
first node behind the crack tip in the finite element model. Examination
of C.0.D.'s taken from HEN VISCO runs in Table 5 just prior to releasing
a crack tip node revealed no single C.0.D. value that could be used for
all test conditions as a critical C.0.D. A value of 0.280 x 10-% inches

was found from HEN VISCO results for Test 8a with KFE =16.3 ksi/in to

work best, yet when a few VISCO runs, as summarized in Table 9, were done

with a critical C.0.D. criterion and an increase to K_.. = 36.8 ksivin

FE
for Test 9, the best critical C.0.D. became approximately 0.500 x 104
inches as shown in Figure 51. Further observance of Table 9 and Figure
51 shows that this criterion was very sensitive to small changes in
critical C.0.D. Therefore further evaluation of this criterion was
deemed unnecessary as compared with the less sensitive critical strain
criterion.

¢. Critical Damage Accumulation Criterion

In several theoretical works and as stated recently by Goodall and
Chubb {Reference 62}, creep rupture of uncracked components under a
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varying stress history is governed by the 1ife fraction rule. Conse-
quently, this reference indicated that for a uniax{al stress history,
o{t), rupture occurs at a time t, given by

tp

dt = - j (61)

0 tr(c)

where tr(o) is the rupture time corresponding to a constant stress level,

o. When experimental stress values are plotted against their rupture
times on Togarithmic scales the relationship is often linear in the
region of practical interest. Thus if M and C are material constants
1t is assumed that

o t (o) =¢C (62)

.jr r
oM dt = C (63)

The description of creep rupture given by Equations 61 through 63 was
discussed by Goodall and Chubb. The reference mentions that this rupture
model is only one of several possible formulations. However, neither
experimental nor theoretical work has provided an alternative to Equation
61 that gives a significantly better description of material response.

It is recognized that Equation 62 applies most directly to creep
rupture of uncracked uniaxial components. However, the present author
considers that similar behavior might be possible in creep crack
propagation. A schematic of the postulated behavior involved with creep
crack propagation is given in Fiqure 52. This figure shows a creep
damage front preceding the crack. Within this front, the material is
accumulating creep damage in the form of microcracks. This type of
creep damage is also associated with creep rupture of uncracked
components.
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Figure 52. Schematic Representation of Creep Crack Propagation
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In order to apply Equation 63 as a crack growth criterion, a process
zone § is required and defined in Figure 52. 1In addition, the rupture
time tr is redefined from Equation 61 to the elapsed time the crack
requires to grow from one node, in the HEN VISCO results, to the next
node. In other words, it is the time period during which the process
zone § is exposed to the crack tip stress field prior to rupture. In
the VISCO finite element analysis, this process zone was taken as one
element preceding the crack tip. The average component of stress
normal to the crackline from three elements adjacent to the crack tip
was used as the stress, &, in Equation 63 as shown in Figure 52.

Since the greatest stress exists at the crack tip and environmental
degradation is considered to be most prevalent there, most damage accumu-
lation was assumed to occur in the process zone after the arrival of the
crack tip to the process zone's border. Therefore time in Equation 63
was measured from crack tip arrival time to the current crack tip node,

/ tA+tr'
GM dt c (64 )

ta =

tA’ or

The constants M and C were determined based on results from the HEN VISCO
runs. To accomplish this, Equation 64 was approximated as

M

Savg tr'= C {65)

The rupture time or crack growth times tr were taken from HEN VISCO

results. The stress, Uavg’ also based on HEN results, was an average
over time tr of the crack tip stress defined previously. Since the
interest here is to develop values for M and C which apply to the

entire set of tests, it became obvious that there were more combinations

of tr and Uavg’ than necessary to uniquely define M and C. Consequently,

to include the data from each HEN VISCO run, a least square fit of the
data on a log-log plot was used to best fit the time-stress data. The

values chosen were M=15

C=8.63 x 10?9 (psi)15 sec
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Equation 64 along with the previous constants were then incorporated
into VISCO as a critical damage accumulation criterion for crack growth.
Table 10 summarizes the basic details of the VYISCO runs using this crack
growth criterion.

Figures 53 through 58 give the results of applying VISCO with the
critical damage accumulation criterion to the indicated test number in
each figure. The resulting VISCO displacements are compared to test
data in Figures 53a through 58a whereas the resulting crack growth from
VISCO is given in Figures 53b through 58b. For the higher loadings such
as Test 9 in Figure 56a the difference between test data and VISCO results
is greatest. Part of this difference may be due to the fact that at this
high 1oad (KFE=36.8 ksi/in) the damage zone as indicated in Figure 52 is

larger than the process zone used herein (i.e., one element size or a
characteristic dimension of 7.81 x 10'4 inches). Hence significant
damage accumulation may occur in the material before arrival of the
crack tip or time tA for a given element in the crack path. This

damage occurring in an element prior to tA for that respective element
was neglected in the present damage accumulation criterion. However,
for the lower loads agreement with the test data is quite good consider-
ing that creep rates for the same test conditions can easily vary by a
factor of two or three which is why log-log plots are used to plot creep
data (Reference 29).

It should also be noted that the M and C values used were determined
from the approximate Equation 65 expression. Crack growth results from
this criterion might be improved by iterating or making small changes
to M and C and making further VISCO runs in an effort to better fit
test data.

3. CRACK GROWTH RATE CRITERIA

In this section crack growth rate criteria will be discussed based
on the steady state crack growth rates developed by the HEN YISCO runs.
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The steady state crack growth rates were determined by best fitting a
straight line to the crack growth curves in Figures 37b through 42b.
The initial transient portion of these crack growth curves was ignored
for these steady state values. Also a discussion of the merits of the
*C 1ntegral as a crack growth rate criterion will be given.

a. Stress Intensity Factor Criterion

Crack growth rate, 5, has previously been found to correlate with
the elastic stress intensity factor as given in Equation 2 and recalled

here . o
a =A (K} (66)

This relationship plots as a straight 1ine on log-log paper, as shown in
Figure 59. The experimental data referred to in Figure 59 was for IN-100
behavior at 1350°F which is the same alloy and temperature used in the
present investigation. Note that Donat's experimental data (Reference
76) covered a range in K values from 30 to approximately 80 ksi inches.
In order to compare with the lTower K levels in the current investigation,
the line representing the best fit to Donat's data was extrapolated as
shown by the dashed line in Figure 59. Agreement with the present HEN
VISCO results, in which KFE is taken from Table 5 and a from Figures

37b through 42b is good especially considering the fact that the test
data line was extrapolated.

This criterion has the distinct advantage relative to criteria pre-
sented earlier that once the constants A and o are determined, it can be
used independent of finite element analyses. This advantage is due to
the fact that K can be calculated for most test geometries by relatively
simple equations Tike Equation 56. Thus the so-called steady state
creep crack growth rate can be simply calculated from Equation 66, but
it should be kept in mind that incubation time for crack initiation nor
the initial rapid crack growth observed in the HEN VISCO results is
captured with this criterion.
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b. Net Section Stress Criterion

Crack growth rates have also been shown to be related to net section
stress as given in Equation 3 and recalled here

a = B(on)B (67)

Figure 60 shows how Equation 66 also plots as a straight 1ine (the dashed
1ine) on log-log paper. The present results seem to correlate to Equa-
tion 67 as well as they did to Equation 65 on log-log paper. This is

not surprising since for the center cracked plate it can be shown that

K is approximately directly proportional to oh for crack lengths of

afW from .2 to .7 which spans the crack lengths in the current study.

The net section stress criterion, 1ike the K criterion, also neglects
crack growth characteristics.

c. C* Integral Criterion

The C* integral is an extension of the J integral concept for
application to creep crack growth (a detailed discussion of C* is given
in Appendix C). Theoretically the C* integral is path independent for
a creeping solid where stress is only a function of the plastic strain
rate and elastic strain rates do not enter into the formulation. In the
present research, C* was calculated as shown in Appendix C. In this
calculation total strain rates were attributed to creeping plastic
strain rates which implies no elastic strain rates exist. For a
realistic material that includes elastic behavior, if the elastic strain
rates are zero then the stress state is constant with time, and there-
fore, the creeping plastic strains, since they are a function of stress
must also be constant. Accordingly, with constant stress and strain
rate the W* integral was integrated directly in Appendix C.

The previous description for calculating C* in VISCO was implemented
and applied to a realistic elastic-viscoplastic material {i.e., IN-100)
being studied herein. It was observed that during load application the
C* values were extremely high due to the elastic strain rate contribution.
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After maximum load was achieved C* values reduced down to much lower
steady state values until crack growth began in the HEN VISCO runs.
Again as crack growth began, the C* values increased significantly

due to the elastic strain rate contribution as stress was redistributing
around the moving crack tip. It should be noted that any attempt to
remove elastic contributions to strain and displacements will result

tn an 111-posed problem since the displacement rate components needed

in Equation 7 cannot be resolved into an elastic and plastic portion.

Thus far evaluation of the C* integral given in Equation 7, the
elastic part of the strain rate is neglected, otherwise the integral
has no meaning. But when the elastic strain rates are ignored, C*
should only be calculated after the stresses are fairly constant and
prior to crack initiation, C* will then be a constant until the crack
begins to grow. Therefore, it is impossible to relate C* to any
incubation time for crack growth., Moreover, during crack growth the
contribution from elastic strain rates is again substantial and cannot
be ignored. Thus, 1t appears that the C* integral is ineffective as a
fracture criterion in a finite element model for creep crack growth
in the current investigation.

d. Load Point Displacement Rate Criterion

An expression relating crack growth rates to load point displace-
ment rate was given in Equation 4. Unfortunately this criterion suffers
from problems similar to the C* integral. The load point displacement
rate after reaching maximum load is the sum of the displacement rate
due to crack growth as well as the displacement rate due to plastic
deformation. Hence the Toad point displacement rate may have several
values for the same crack growth rate depending on the rate of plastic
deformation such as demonstrated in Equation 5%. One can get an appre-
ciation of how much plastic deformation contributes to the overall
displacements by looking at the no-crack-growth displacements versus
time in Figures 37a through 42a which are totally a result of plastic
deformation. Therefore the load displacement rate does not provide a
unique solution to the crack growth rate unless variations in the plas-
tic deformation rate can be neglected.
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SECTION VI

SUMMARY AND CONCLUSIONS

A two-dimensional (plane stress/plane strain) finite element program
has been developed which accounts for both nonlinear viscop1astic‘materia1
behavior and changing boundary conditions due to crack growth. Three
viscoplastic material models: (1) Malvern Flow Law, (2) Norton's Creep
Law, and {3) Bodner-Partom Flow Law were incorporated into the program.
These time dependent material models were numerically integrated through
time by a linear Euler extrapolation technique. A variable time step
algorithm was included that maximized time step size during the analysis
while maintaining good accuracy. This program was used as the plane
stress theoretical model for the hybrid experimental-numerical procedure
employed to analyze sustained load creep crack growth test data. The
test specimens were center cracked plates made of IN-100 and tested at
1350°F,

The following statements and conclusions are based on the creep
crack growth analysis herein.

1. A method for getting crack growth behavior solely from displacement
measurements in conjunction with a cracked specimen model which
utilizes realistic constitutive relationships has been developed.
The constitutive Jaw was especially tailored to the nickel-base
alloy studied which displays time dependent nonlinear inelastic
behavior at elevated temperatures. It has been demonstrated that
the technique can be applied where crack extension is very small
and could not otherwise be resolved by conventional experimental
crack measuring techniques (e.g., compliance techniques or using a
travelling microscope). This method provides realistic mono-
tonically increasing crack growth values with resolution better
than 0.001 inch. Crack growth predictions agreed to within 10%

of post-test measurements.
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Numerical procedures were developed to efficiently integrate the
nonlinear time dependent material models and simulate crack growth
by two crack tip node unloading methods. The numerical time inte-
gration procedure utilized an Euler linear extrapolation technique
with a variable time step algorithm that maximized time step size
during the simulation while maintaining good accuracy. One crack
tip node unload method diminished the restraining force on the
finite element crack tip node in a specified five-second time
period independent of crack growth rate whereas the second method
continuously unloaded crack tip nodes in proportion to a predeter-
mined crack growth rate. Unloading the nodes continuously provided
a closer fit to displacement versus time test data however the
average displacement versus time was approximately the same for
both node unloading methods.

A procedure was developed for determining crack extension using
calculations of viscoplastic deformation with no crack growth.
In this procedure, the difference between total test deformation
and viscoplastic deformation is attributed to crack extension.
Extremely good crack growth predictions were made.

The elastic compliance method for resolving creep crack extension
has been shown to imply negative unrealistic crack growth and is
unreliable especfally during the first part of a creep crack growth
test.

Several parameters were studied for their potential as creep crack
growth controlling parameters.

a. No single fixed value of strain for a critical strain crack
growth criterion was found to match all test conditions in this
investigation. Environmental effects apparently tend to lower
the critical strain magnitude with time, under load. An
empirical relationship was developed, based on the HEN results,
which gives the critical strain a diminishing value with time.
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This investigation did not include any plane strain analyses.
Due to higher constraint at the crack tip for plane strain,
less stress redistribution would occur. Therefore, it seems
possible that the critical strain for all test conditions may
vary less in a plane strain simulation.

b. No single fixed value for C.0.D. was found to match all test
conditions using a critical C.0.D. crack growth criterion.
The C.0.D. behaved similar to the crack tip strain with time,

however, its percent variation was less.

¢. A critical damage accumulation criterion for crack growth was
developed based on a modification of the 1ife fraction rule
for creep rupture to account for environmental effects at the
crack tip. Application of this criterion provided good
agreement with the Tow to medium load test conditions. For
the highest load test cases, this criterion predicted crack
growth rates somewhat lTower than the HEN results. It appears
that accumulation of damage over all time and not just crack

tip exposure time might improve the results.

Data obtained in this investigation through numerical calculations
provided crack growth versus time and thus crack growth rate time,
a. The a data compared well with published data for the same
material and temperature when plotted against stress intensity
factor. The present data was obtained for a and K values Tower
than the referenced data. Net section stress also provided good
correlation with the predicted crack growth rates.

The C* integral and load line displacement rate were investigated
as possible parameters controlling crack growth rate, a. The C*
integral is an unreliable parameter for predicting creep crack
growth due to its formulation which is based on a creeping solid
behavior that neglects elastic strain rates. The load Tine dis-
placement rate which can be shown to be proportional to C* also
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10.

does not provide a unique solution for the crack growth rate unless
variations in plastic deformation rate can be ignored. In general
these parameters appear to have no applicability to crack growth
rate prediction using numerical modeling of materials. However
these parameters seem to correlate a data fairly well once the
solution is known as seen in the literature.

Constant strain triangular finite elements of the size of grains
at the crack tip work well for resolving small increments of creep
crack growth through the method developed herein.

VISCO results using the Bodner-Partom material model were very
similar to the VISCO results incorporating the Malvern-Norton
superposition model for the center cracked plate, especially for
times greater than 200 seconds after load application. Also for
times greater than 200 seconds, MNorton's law alone in VISCO was
very similar to VISCO results using the Bodner-Parton material
model,

Displacements and the associated crack growth were found to be
significantly dependent on prior deformation history. Prior
deformation history became very important in the case of Test 8
where no fatigue precracking was done between creep crack growth
tests.

The above advancements in the understanding of creep crack growth

behavior at elevated temperature are especially suited for aiding future

slow crack growth tests for determining the threshold load levels for

creep crack growth. [In addition the crack growth criteria investigations

provide significant progress towards life prediction of actual turbine
disks.
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The following additional research work is recommended to further
the life prediction capability developed in the present work.

1. Use present approach to analyze other test specimen geometries
(e.g., compact tension specimen) to determine dependence/independence
of results on specimen geometry and also assess repeatability and material
data scatter.

2. As computers become faster and more efficient finite element
techniques are developed, a three-dimensional analysis of creep crack
growth should be accomplished to correctly model through the thickness
variations in test specimen behavior. As a first step in this direction,
plane strain analyses similar to the present work might provide addi-
tional insight into creep crack growth behavior.

3. Future work needs to include cyclic or engine spectrum loading
conditions.

4, Additional material characterization test data is needed in
general for IN-100. Tests providing this data should be done at several
temperatures such that the constitutive model could be further developed
and include temperature dependence.

5. Environmental effects should be further researched by perform-
ing creep crack growth testing in several different environments such
as vacuum, inert, salt spray, high sulfur content, variable oxygen
partial pressures, etc.

In summary the technique developed herein is worth exploring further
in that {t has potential for providing information on crack growth rate
behavior in engine materials under typical operating conditions which
might not be readily obtained using conventional techniques. This
information in turn, is necessary in order to implement a retirement
for cause philosophy for U.S. Air Force jet engine components.
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APPENDIX A
FINITE ELEMENT FORMULATION

In the following sections the basic concepts and equations used in
the finite-element analysis of elastic and elastic-plastic materials are
briefly reviewed. These equations provide background for the elastic-
viscoplastic nonlinear finite-element computer program development.

The basic philosophy of the finite-element method (Reference 31) is
that an approximate solution to a complicated problem can be obtained by
subdividing the region of interest into a finite number of discrete ele-
ments and then choosing appropriate relatively simple functions to
represent the solution within each element. These functions are simple
compared to the so-called "exact" solutions which account for the entire
region of interest. In this section the equations associated with
representing a two-dimensional body as a finite number of elements are
presented. The displacements in each element were expressed as a simple
polynomial and the equations relating displacements to applied loading
for both plane-stress and plane-strain conditions are given.

1. DISPLACEMENT MODEL

The displacement function used in the displacement formulation is
generally selected as a polynomial. The polynomial expression allows
for simple differentiation and integration. Also, as the element size
becomes small, the polynomial expression permits a simple approximation
to the exact solution. A polynomial of infinite order corresponds to
an exact solution. However, for practical purposes the polynomial must
" be truncated to a finite number of terms. Thus, the number of elements
in a structure must be large enough so that the displacement function
for each element closely approximates the exact displacements in that
particular region.

In any numerical method, the solution should converge to the exact
solution as the size of the elements become small. For the displacement
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formulation, it has been shown that under certain conditions the solution
provides a lower bound to the exact displacements (Reference 31}. To
assure this convergence certain conditions must be satisfied. First, the
displacement function must be chosen so that rigid body displacements do
not cause straining of the element. Second, the function must also be
chosen so that a constant state of strain is obtained as the element size
approaches zero. The simplest polynomial function which satisfies these
two requirements and also maintains displacement continuity between adja-
cent elements is the Tinear-displacement function.

a. Displacement Function

Figure A-1 shows a typical triangular element, m, with nodes i, j,
k numbered in a counter-clockwise direction. The linear-displacement
function which defines the displacements within the element is given by

U Gl+ﬂzx+a3y (A_-I)

v

n

al,+a5)(+usy

where the constants a; are determined from the six nodal displacements
and nodal coordinates as

aq a; Ay 8y u,
0 | = %E; by by by u (A-2)
a3 ¢ ¢ Cy Uy

and
ay a; Ay A Vs
ag b %ﬁ;’ by by by Vs (A-3)
ag C_I Cj Ck Vk

where Am is the in-plane area of the element. The coefficients a5, bi’

and c; are given by
(A-4)

a5 = X5¥ 7 XY

J J

146



ATWAL-TR-80-4140

YA

— X

Figure A-1. Constant Strain Triangular Element
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by =¥y - ¥ (A-4)

C1=Xk-XJ

where x and y are coordinates of the nodal points. The other coefficients
for subscripts "j" and "k" are obtained by cyclic permutation of the
subscripts 1, J, and k.

b. Element Strain

The total strains at any point within an element are defined in terms
of the displacement derivatives as

£ au

X X

{e} = £ = v
y 2y (A-5)

ay 9X

From Equations A-1 to A-5, the total strains are written in terms of
nodal displacements and coordinates as

{e} = [B] {U} (A-6)
where {U} is the generalized nodal displacement {U}T = {uiviujvjukvk}
and
b1 0 bj 0 bk 0
- m
<5 b1 c; bj Cy bk

The superscript T denotes the matrix transpose.

2, ELASTIC ANALYSIS

For linear elastic and isotropic materials, the relationship between
stresses {o}, strains {c}, Initial stresses {co} and any initial strains

{eo} is given by
a

X
{o} = g, 1 [D] i{e} - {eg}} + {o,} (A-8)

cxy
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where [D] is the elastic material property matrix. The matrix [D] for

plane-stress conditions where Oy = Oxz = Oyp = 0 is given by
1 v 0
[n] - £ |1v 1 o (A-9)
1-v 0 0 1-v
2

where E and v are the modulus of elasticity and Poisson's ratio,
respectively. For plane-strain conditions where e, = 0, the elastic
material property matrix is given by

1 Vi-v 0
_ E(1-v
(o] ‘(TE%TTT%EGT vy ] 0 (A-10)
0 0 1-2v

Under plane-strain conditions a normal stress also exists and is given by

o, =V (cx + oy) (A-11)

a. Method of Solution

The equation which governs the elastic response of a discretized
structure can be derived from the principle of virtual work (Reference
31) and is given by

[K] (U} = (P} +{Q} (A-12)

where [K] is the elastic stiffness matrix of the structure, {U} is the
generalized displacement vector, {P} is the external applied load vector,
and {Q} is the force vector due to the presence of initial stress and/or
initial strain.
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The coefficients of the elastic stiffness matrix are obtained from

M
K] = % f[B]T[D] [B] dvol (A-13)
m=1

where the integration is taken over the volume of each element and the
summation is over all elements in the structure. The nodal forces due to
initial stresses are given by

M
{Q} ) f[B]T{cr } d vol (A-18)
O'o " 0
m=

and the nodal forces due to initial strains are given by

M
e, = 3 f[B]T [0] e } d vol (A-15)

m=1

3. ELASTIC-PLASTIC ANALYSIS

The application of the finite element method to problems involving
materials that obey Tinear constitutive laws is straightforward because
the material properties are constant. Therefore only one solution is
required to obtain displacements for the elastic structure. However, for
elastic-plastic problems the coefficients in the stiffness matrix vary as
a function of loading. Thus, the elastic-plastic displacements are
usually obtained by applying small load increments to the structure and
updating the coefficients of the stiffness matrix. Another technique
called the "residual force" method (Reference 11) avoids modifications
of the stiffness matrix by adding on a so-called plastic load vector
to the force side of the equilibrium equation (i.e., Equation A-12).

Only the residual force method will be discussed herein.

a. Yield Criterion

In any elastic-plastic material the elastic formulation can be used
prior to plastic yielding. Thereafter it is necessary to have a yijeld
criterion to determine the state of stress at which yielding occurs. The
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von Mises yield criterion is one of the most widely used. This criterion
assumes yielding is caused by the maximum distortion energy (Reference
64). The yield criterion for plane stress conditions is given by

F=Fot=[c2+062-00 + 3Ux;j%; g (A-16)

X y Xy
and for plane strain

&
F = Flg} = [ox2 + cy2 + 022 = 90y T 940, T Oy, + 30x§] -0 (A-17)

where ¢ is the uniaxial yield stress. If the state of stress is such
that F < 0, the material is still in the elastic range. When F = 0, a
plastic state is obtained and one of the flow theories of plasticity
must be employed to determine subsequent plastic behavior under increas-
ing stress or strain.

b. Flow Theory

One of the basic assumptions in the theory of plasticity is that
the total strain {c} or total strain increment {de} can be decomposed
into elastic and plastic strain components as follows:

fe} = By + 1D (A-18)
or, incrementally,

tde} = (def) + {dehy (A-19)
In the incremental theory of plasticity the plastic strain increment

vector {dcp} is a function of the current state of stress and is related
to the yield criterion through the Theory of Plastic Potential (Refer-

ence 80)
Py - §£_} _
tde™) *{a{c} (A-20)
where X is a positive scalar quantity. This flow law is also written
in terms of strain rate

(diPy = 27 {a%g}} (A-21)
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In this case »' has the significance of the coefficient of viscosity.
Equations A-20 and A-21 are also known as Drucker's Normality Principle
(Reference 64) which by its name specifies that the plastic-strain
increment vector is to be aligned normal to the yield surface in nine-
dimensional stress space. When the von Mises yield criterion is used
with Equation A-20 the resulting expression for {deP} is identical to
that proposed by Prandtl and Reuss (Reference 64). The total strain
increment vector can now be written as

tde} = [D]{do} + ;\{a%} (A-22)

where the elastic strain increment vector has been related to the stress
increments {do} through the elasticity matrix. Therefore, if A» was known,
then the desired stress-strain relation for an elastic-plastic material
would be obtained. When yielding is occurring, the total differential

of Equation A-16 or Equation A-17 gives

dF = {i }T {do} - d5 = 0 (A-23)
3{a}

The increment in yield stress do is obtained from a uniaxial tensile

test as

ds = do" = (g—‘;;) de? = H' dP (A-24)

where H' is the slope of the stress-plastic strain curve, do¥ is the
uniaxial stress increment, dé® is the uniaxial plastic strain increment.
Using Equation A-20 for the uniaxial case gives deP = A. Thus Equation
A-23 becomes

{afd}} fdo} - H' A = 0 (A-25)

ar
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Eliminating » from Equations A-22 and A-25 results in an explicit expres-
sion relating increments in stress to increments in total strain (Refer-
ence 44). This expression is

where
[Dgpl = [D] -[D]{%{F_o}}{g%o}}T (0] [”' *{%E“o} 0] {3%,, ]-1 (A-27)

The matrix [DEP] is the elastic-plastic matrix which replaces the

elasticity matrix [D] in ar incremental analysis. For an elastic-perfectly
plastic material, H' is set equal to zero. In general the slope of the
uniaxial stress-plastic strain curve, H', varies with plastic strain.
Therefore, to relate a multiaxial plastic strain state to a uniaxial
experimental stress-plastic strain curve, an effective plastic strain

is defined in incremental form as

dsz = o< deP. deP

3 ij (A-28)

4. [ELASTIC-PLASTIC SOLUTION TECHNIQUES

The procedures used to solve small displacement elastic-plastic
problems incrementally within a finite element computer program may be
divided into two categories. In one the effects of plasticity are
accounted for directly in the stiffness matrix. The second category
treats plastic behavior as an additional plastic load that is combined
with applied or external loads in the equilibrium equation {i.e. Equa-
tion A-12). These two procedures are referred to as the "tangent modu-
lus" and "residual force" methods respectively. Only the residual force
method in the form of "initial stress" and "initial strain" will be
summarized herein,
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a. Initial Stress Method {Reference 44)

The equation which governs the response of a discretized structure
under loads which cause plastic deformation (Reference 31) is

[K] {U}; -yl 4 {Q}::: (A-29)

where [KE] is the elastic stiffness matrix, {U} is the generalized dis-
placement vector, {P} is the applied load vector, and {Q} is the "effec-
tive" plastic-load vector which accounts for elements in a plastic state.
The initial stress method approaches the solution to an elastic plastic
problem by applying a series of small load increments to the structure
until the desired load is reached ( (P}l = {P}i'] + {dP}). The super-
script i denotes the current increment and i-1 denotes the preceding
increment. After each load increment an iterative process is required
to stabilize the plastic-load vector. The subscript I denotes the
current iteration and I-1 denotes the preceding iteration. During the
ith increment a purely elastic problem is solved and the increments in
total strain {de} and corresponding elastic stress {doE} are computed
from the displacement increments {dU} for every element. Because of

the material nonlinearity the stress increments are not, in general
correct or if the correct stress increment for the corresponding strain
increment is {dc}, then a set of body forces or plastic-load vectors
{dQ} caused by the "initial" stress {dco} = {dog} - {do}) is required to
maintain the stress components on the yield surface or compatible with
the uniaxial stress-strain curve. The correct stress increment is com-
puted with Equation A-26. The plastic load increments are computed from
Equation A-14

M
{dQ} = > _/‘[B]T {do,} d vol (A-30)
m=1

Elements are in the elastic state when {dco} = 0. The total plastic-load
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vector is then computed as

@] = ]

11 + {dQ}I (A-31)

At the second stage of computation the new force system {0}1 is added to

the applied load vector and a new set of displacements is obtained.
Again, some of the stresses are likely to exceed the yield criterion
and a new set of plastic-load increments are computed. This iteration
process is repeated until the change in the plastic-load vector is
sufficiently small. See Figure A-2 for a uniaxial schematic of this
iterative procedure and Figure A-3 for the mathematical algorithm.
Consider points A, B, and C in Figure A-2. Point A is the state prior
to the load increment. Point B is the state after the load increment
has been applied and one "initial" stress iteration has been accomplished.
Point C is the state of stress and strain sought after which satisfies
equilibrium with external loads and compatibility with the material's
stress-strain curve. Notice point B satisfies compatibility but not
equilibrium since {dc}I 5_{ch}I.

5. INITIAL STRAIN METHOD

The initial strain method parallels the initial stress method
somewhat and accordingly this development will begin just after Step
4 in the "Initial Stress" algorithm in Figure A-3.

The elastic-plastic material matrix [DEP] is used as follows

-1
(dePy) = tded; -[D17" [Dgp] (ded, (A-32)

This plastic strain increment {dep}I is then used to calculate a plastic
force vector increment

M
;= X S181" 0] (dePy_ d vol (A-33)

m=]
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Figure A-2. Uniaxial "Initial" Stress Iteration Schematic
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For Each Load Increment dP in Plastic Range 44

1. {du}y (K1~ ( (aP) + (dQ};_q )
2. {de}; = [B] {dU};
3. {dogd; = [D] {del;
4. Lo’} = fo}y 4 ¢ {doE}I

i

6. {doo} {doE}I - {do}I

7. {U}I {U'}I - {dco}I

{E}I = {E}I-1 + {dE}I

8. 1dQ}, = f8]" {do }; dvol

9. Continue steps 1+8 until {dQ}I = {dQ}I_1

Figure A-3. Initial Stress Algorithm
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This plastic force vector increment is added to the external force vector
increment {dP} for the augmented global force vector used in the next
iteration as follows:

-1
(b, = [KIT ¢ (dP} + {dQ}p) (A-34)

{de}pyq = [B] (U}, (A-35)

The stress increment {do} is calculated as follows

{do}p,; = [D] ( {de} - {deP}p) (A-36)

Steps (1) - (4) of the Initial Stress algorithm and Equations A-32 through
A-36 above are repeated until compatibility with the materials stress-
strain curve is established. Compatibility is shown to be achieved after
“n" iterations in Figure A-4, Also, compatibility would display itself

by Tittle or no change in the plastic strain increment between iterations.
Note that equilibrium is continually satisfied in this initial strain
method. This version of the initial strain method differs from Marcal
{Reference 45) by the fact that iterations within a load increment are
done globally rather than within each element as the "constant strain"
method of iteration implies in Marcal's paper.

158



AFWAL-TR-80-4140

STRESS

/

A\Elastlc Slope
It_eratlon o

VN

—— m—— — ——

N
™~

'Unlaxlal- Stress-Straln' Curve

1
|
L]
1
I
|
|
!
|
|
]
|
[

 J PR
" NOTE: Compatabliity Satisfied
After “n” Interations

Figure A-4.

STRAIN

Uniaxial Initial Strain Iteration Schematic

159



AFWAL-TR-80-4140

APPENDIX B

ITERATIVE SOLUTION TECHNIQUE
FOR NODE POINT DISPLACEMENTS

The matrix equation which governs the response of a discretized
structure is

[K] {U} = {P} (B-1)

where [K] is a symmetric positive-definite n x n matrix, {U} is the unknown
node point displacement vector, and {P} is a known load vector. In the
finite element method for structural analysis, the matrix [K] is usually
highty banded and if stored in compacted form (i.e., only nonzero terms
retained} requires much less space in the computer than the product n x n
reflects. Also, if there are changing boundary conditions, such as free-
ing nodes to simulate crack growth, then the [K] matrix must be recomputed.
A solution technique that works well with compacted [K] matrices and
conveniently admits boundary condition changes, is the Gauss-Seidel
iterative technique with over-relaxation (Reference 14}. This technique
may be implemented in the following manner (Reference 87). Consider

Equation B-1 rewritten as
u P
U P

represent node point displacement vectors in the x and y

where Ux and Uy

direction respectively, Px and P_ represent the node force vectors in the

y
X and y direction respectively. The submatrices SXX, SXY, SYX, and SYY

in the matrix [K] have dimensions & x I, but due to their bandedness

2 2
can be compacted to a matrix which is % X 9. The dimension 9 minus 1

reflects how many adjacent nodes can be connected to any given node.
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This is not very restrictive since triangular finite elements develop
undesirable aspect ratios if there are more than eight nodes connected
to any one node.

Appropriate terms of the matrix [K] are retrieved from the compacted
submatrices with the help of a matrix NP and a vector NAP. The vector

NAP has the dimension %—and the matrix NP has the dimension % x 9. The

Ith component of NAP or NAP(I) stores the number of adjacent node points
connected to node point I. The (I, J} component of NP or NP(I,J) stores
the address of the terms in the submatrices associated with the Jth
adjacent node point connected to node point I. Note that for node I, J
may go from 1 to NAP(I).

Consider the governing equation for node point I dispiacements
written as

SXx (I, 1) SXY (I, 1) u, (I}
SYX (I, 1) SYY (1, 1)

NAP(I}
Py (1| . Sxx (I,J) SXY (I,J) U, (J)
Py (1) :E: SYX (I,J) SYY (I,J) U, (9} (B-3}

J=2

If the right-hand side of Equation B-3 {s defined as the vector {EE?}

then solving for the displacements at node I yields

(B-4)

u, (1)

u, (1) sxx (I, 1} SXY (I, 1) U ey
‘ SYX (I, 1) SYY (I, 1) FRY

Note that the matrix to be inverted in Equation B-4 is only a 2 x 2.
Also since this is the only place these terms of the submatrices are
used this 2 x 2 may be inverted and its components stored in their
original submatrix locations.
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To incorporate an over-relaxation factor, Equation B-4 is modified

as follows
m =1 m m-1
al, (1) SXX (I, 1)  SXY (I, 1)]|FRrRX U, (I)
i R
Al (1) SYX (I, 1) SYY (I, 1)|| FRY UV (1)

where the superscripts m and m-1 refer to iteration number. The left-

hand side of Equation B-5 is the change in displacements between iterations
without applying an over-relaxation factor. But the new total displace-
ments for iteration m using an over-relaxation factor are

oo™ u (n)y ™! U, (1)
S 0 e 2] e

Uy (1) Uy (1) AUy (1)

where XFAC is the over-relaxation factor which normally ranges from 1.8
to 1.9 for structural analysis.

Convergence of these iterations is checked by computing an effective
force unbalance term, SUM, defined as

n/2
SIM = ) [|AUX (1) * SXX (1.1} + | AUy (I) * sYY (I1,1)]] (B-7)
I=1

If SUM becomes less than a specified small value, &, iterations are
stopped and the node point displacement solution is obtained. The value
of 8 is chosen based on examining solutions for various sizes of @.

A good starting value for @ is one tenth of the applied load. The final
8 is then chosen based on the amount of accuracy desired.

Displacement boundary conditions are easily input to this solution
routine by simply specifying the desired node point displacements and then
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require the iteration algorithm to skip over the node displacement equa-
tions which have fixed displacements. Likewise, if a fixed node is
released during the analysis such as for modeling crack growth, this
node's displacement equation may be reactivated in the iteration
algorithm,

Convergence of this solution technique (i.e., when SUM < @} is
dependent on the initial guess for the node displacements. Usually for
convenience all unknown displacements are initialized at zero. However,
for each succeeding solution, such as in a nonlinear incremental analysis,
much better initial displacement values are available from the prior solu-
tion. These initial displacements from prior solutions significantly
reduce the number of iterations to convergence.
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APPENDIX C
THE J AND C* INTEGRALS

1. J INTEGRAL

Rice's J integral is defined as

J = fEW(eij)dy-Ti%ids] (c-1)

where

€mn
W(a_ij) = '/O.U'i.]' de_ij (c-2)

and T is a closed loop around the crack tip as shown in Figure 2.
Expanding J and integrating along a rectilinear path in the x and y
directions results in

- au _ v au v -
J = _,r [ (W-o ax ~ Oxy X ) dy + (ny il % 5% ) dx ] (C-3)

The following describes a numerical procedure for calculating the J
integral with a finite element program that incorporates constant strain
triangles. Consider Figure C-1 which is a region of elements taken from
a finite element model of a cracked geometry. Paths 1 and 2 are two
possible paths. The contribution to Path 1 from Element 2 is

Path 1

MESem 2 = [H(2) - 0, (2) 32 (2) - oy, (2) T (2) ]y (C-4)

where the number inside parenthesis refers to the element number these
values came from. A similar contribution would come from Element 5 for
Path 1. Path 2 which also runs through Element 2 would also have the
above contribution from Element 2 but as Path 2 turns and runs along
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<

Figure C-1. J Integral Paths within a Constant Strain Triangular
Finite Element Model
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the border of Elements 6 and 1 the following is the contribution

Path 2
2 o,y (6) 33 (6) + o, (6) 3% (6)1() (C-5)

Elements
1 &6

o,y (02 +a, 3] (5)

Notice in this case an average of the stresses and strains in the two
elements is taken by effectively running half the element length in
Element 6 and half in Element 1.

The strain energy term N(z) in Equation C-4 is calculated as

follows
P

H(2) = 1oy (2) e (2) f s (c-6)
0

Although these equations are shown for specific element numbers their
form is used for all elements along the J integral path.

2. C* INTEGRAL

The C* Integral {Reference 23) defined as

Uy
ﬁ (W* dy - T1 -a—)-(— ds] (C-7)
where -p
Jremn .p
* = -
W / 043 d €13 (C-8)

and T is the same type of path as for the J integral. C* may be obtained
by replacing strain and displacement in the J integral with strain rate
and displacement rate respectively. The rational behind this is based
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on the assumption that the material being analyzed behaves as a creeping
solid such that

P =y (0)® (C-9)
or in a multiaxial sense
swx (eP))
o,, = ——H- (c-10)
RUBEE S
13

where W* was defined in Equation C-8. Notice Equation C-9, which is
considered a plastic strain rate, makes no provision for admitting elastic
strain rates. Hence the claim of path independence for the C* integral
can only be approached in a realistic elastic-plastic material once the

stresses have reached a steady state value (i.e., 61j = Q). With this

restriction on stresses, C* may also be defined as J or the time rate of
change of the J integral. In general J would include the time derivatives
of stress and traction but if they are restricted to zero then J is equal
to C* for a creeping solid. Also with éij equal to zero, Equation C-8

may be directly integrated to

.P
W = %55 Sij (C-11)

Using this form of W*, C* may be numerically calculated in the same

fashion as the J integral with the exception of using strain rates and
displacement.

167



AFWAL-TR-80-4140

APPENDIX D

DETERMINATION OF BODNER
MATERIAL MODEL CONSTANTS

This appendix describes how each of the material constants for the
Bodner-Partom material model can be determined. Normally high costs
and material shortages prevent obtaining more than one or two stress-
strain curves and the same number of creep tests. Ideally, to best
characterize the material, several stress-strain curves should be
generated over a wide range of strain rates, similar to Figure 5.

Likewise, several creep tests should be performed over a wide spectrum
of stress levels.

In general the Bodner material constants are dependent on tempera-
ture. However, the temperature dependence is suppressed by performing
the material characterization tests (i.e., stress-strain and creep) at
the same temperature that the Bodner model will be applied.

To determine the Bodner constants from uniaxial test data, the
Bodner equations are written in uniaxial form as follows: {the total
strain rate is the sum of plastic and elastic strain rates)

é=%+ép (D-1)

and the plastic strain rate for uniaxial tension is

P _2 _ 142,20 4l i
£ /§'Do exp[ 2(0) . {D-2)
where
1= 21 - (Z] - 20) exp[-mNp] (D-3)
1;I=ct.:p+—%m- (D-4)
p m Z]—Z)
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. - Zi r
Zpae = A Z Zy (D-5)

over small time intervals, such as a typical stress-strain test at 10'3
sec"1 strain rate, the recovery term, Zrec’ may be ignored and then
W=o¢P (D-6)

Since test data can be resolved into the forms, ép and o, Equation
D-2 is solved for Z which then is a function of ép and o as follows

1

_ 2n 2 Dy 2
Z = U[m ]n(/3_ g‘ﬁ)] (D‘7)

The viscoplastic material constants in these equations are broken
into "short time response" and “creep" groupings for determination.

1. SHORT TIME RESPONSE CONSTANTS

The short time response constants for the Bodner model are DO, n,

m, ZO, 21. These constants are primarily determined by using stress-

strain test data.

-1

The constant D, is normally assigned the value of 104 sec For

high strain rate applications, D0 may be set higher (e.qg., 100 sec'1)

which would result in small changes to the other constants.

The constant n is directly related to the model's strain rate
sensitivity. High n values reflect Tow strain rate sensitivity and
vice versa. Changes in n affect the stress values for a given strain
rate by shifting up or down the family of stress-strain curves, but the
shape of the curve is preserved. The value of n is determined in an
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iterative fashion. The first estimate of n should be between 1 and 10
based on past material modeling efforts {Reference 8). Plots of Z versus
Np are then made by simultaneous use of each stress-strain curve, Equa-

tions D-1, D-6, and D-7. The value of n is then adjusted with the objec-
tive of making all Z versus Hp curves from each stress-strain test fall

on top one another. This value of n will then satisfy the requirement
that Z is a single value function of Np as given in Equation D-3.

The first approximation of Z0 can also be determined from Equation

D-7. A small value of ép (e.qg., 10'6 sec']) and the lowest apparent

initial yield stress from the stress-strain test data are substituted
into Equation D-7. The resulting value of Z is defined as Zo' Note

that Z0 is the primary constant that determines the stress level at which
significant plastic straining (i.e., &P 3_10'6 sec'1) begins.

The constants Z] and m are determined by rewriting Equation D-3 as
Tn (Z1 -2) = 1n (Z1 - ZO) - mWp (D-8)

An iterative process is now begun to determine 21. The first estimate
of Z1 should be larger than Z0 (e.g., 1.5 Zo) since Z1 is the maximum

value for Z. By incorporating this estimate of 21, a plot of 1In (Z]-Z)
versus wp is made based again on stress-strain test data, Equations D-1,

D-6, and D-7. This should approximate a straight line whose slope is

the constant m and extrapolation of the line to wp = 0 provides a value
of Zo‘ If this Z0 obtained graphically does not agree with the previous

value for ZO, adjust Z1 accordingly and reiterate.

These values for n, m, Zo’ and Z1 which primarily govern the

short-term stress-strain behavior should be input to a computer program
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that numerically integrates Equations D-1 through D-4. Stress-strain
predictions from the model should be made for each experimental strain
rate to see how good the fit is. Only minor adjustments to the short-
time-response constants should be necessary to best fit test data.

2. CREEP CONSTANTS
The creep constants for the Bodner model are Zi, A, and r. These

constants are determined based on data from at least two creep tests at
different stress levels.

During secondary creep, when plastic strain rate is approximately
constant, it follows from Equation D-7 that Z must also be a constant.
In addition, if Z is a constant it follows from Equation D-3 that Np

is a constant which makes ﬂp = 0. Hence, with ﬁp = 0 in Equation D-4
and combining with Equation D-5

. 7 -172.\"
ceP=2n Y)Y oz, /m(z, - 2) (D-9)
z] 1 1

The constant Zi represents the minimum value for Z corresponding

to secondary creep. If creep occurs helow the apparent yield stress
implied by ZO, the value of Z1 must be less than ZO. Moreover, 21

must be less than or equal to the smallest value of Z from Equation D-7
when using creep test data (i.e., eP and o). After selecting a value
for Zi’ the constants A and r can be determined after rewriting Equation

D-9 in terms of natural Togarithms

. ‘ 2-7.
In(c = Py + 1n[m(Z1-Z)] = Tn(A 21) +r 1n ( 211) (D-10}

Stress and plastic strain rate are substituted into Equation D-10 along
with the appropriate Z from Equation D-7 and creep test data. With data
from creep tests at two different stress levels two Tinear equations in
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terms of the two unknowns A and r are developed. The constants A and r
are then determined by simultaneous solution of these two equations
based on Equation D-10 and creep test data.

The complete Bodner model should then be tried out in a computerized
numerical integration scheme in an effort to make final adjustments
to the constants for a best fit to the test data.

It became apparent to the author that in working with this material
model a sensitivity study is required in order to see the effect of
changes in the respective constants on creep crack growth. Yet it is
felt that the results and conclusions presented in the main body of this
report provide realistic directions and trends of creep crack growth.
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