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ABSTRACT

An analytic solution is developed for blunt-body flows involving
nonequilibrium chemistry, The chemical model describes a diatomic
gas with a single dissociation recombination reaction. The progress of
the reaction is determined behind the bow shock under conditions of vib-
rational equilibrium. The analysis seeks an improved understanding
of the structure of the chemical relaxation zone along streamlines, in
particular, its dependence on flow parameters,

In high-altitude flight, three-body recombination becomes
ineffectiv.ne:l and dissociation or binary scaling can be applied. The range
of validity of binary scaling is found and the implications for hypersonic
testing are discussed. The analytic approach also applies for cases where
recombination is important, including equilibrium flow, Numerical
examples are given for spherical bodies and for a range of body sizes

and flight altitudes.
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INTRODUCTION

Real-gas effects play an ever increasing role in research per-
taining to hypersonic flight through planetary atmospheres. They are
established in a complex interaction between chemical processes in high-
temperature gases and fluid-dynamic expansions., Technically important
examples are given by nozzle flows and hypersonic flows about blunted bodies
Recent theoretical work in these areas has a dual objective: prediction
of real-gas effects in flight situations and correlation of flight tests with
laboratory experiments. Exact numerical solutions are now a.vailablez
for both nozzle flows and blunt-body flows with the coupled ncnequilibrium
chemistry of high-temperature air. Concurrently, there exists a pressing
need for analytic approximations which stress the basic features of
seemingly different solutions, For instance, analytic solutions should
clarify the dependence of real-gas effects on flow parameters and suggest
scaling laws which would be of paramount importance in the interpretation
of experimental data.

Analytic methods were first represented by linearized theories™
which assume small departures from an initial state of chemical
equilibrium in flow past an airfoil. The work of Refs. 3 and 4 typifies
this approach. The transition to a new level of chemical equilibrium
appropriate to the airfoil shape occurs through diffusion of Mach waves.

The leading wave proceeds with a sound speed corresponding to frozen
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chemistry; eventually, the main part of the disturbance is shifted to an
equilibrium wave. Using the closeness of frozen to equilibrium speed

of sound, one is able to describe the transition by solving a simple
telegraph equation, 3 The existence of two sound speeds is a basic feature
of nonequilibrium flows and the above studies should help to establish
characteristic methods for supersonic, nonequilibrium flows.

Another basic trait is the variation of relaxation time with tem-
perature. This effect is responsible for chemical freezing in rapid {low
expansions, as strikingly demonstrated by nozzle flow solutions, 2
Here, a nonlinear analytic theory is required. The present report
develops such a theory for the case of blunt-body flows., The approach
is based on the Newtonian assumptions made in Ref. 5 which are most
accurate for the high compressions associated with hypersonic nonequilibrium
.flows. Then, Newtonian theory provides simple solutions for velocity
and pressure distributions which are, in the first approximation, inde-
pendent of real-gas effects. Based on this information, the present analysis
determines analytic solutions for nonequilibrium chemistry along stream-
line s,

The chemical model is that of Ref. 5, i.e., a single Lighthill
dissociating gas. 6 The dissociation-recombination reaction represents
correctly the controlling chemical mechanism for high-temperature air
at IRBM speeds. At higher speeds, a detailed consideration of coupled
chemistry is imperative. 2 However, the methods developed here are

easily applicab1e7 to the full air chemistry. The present work seeks
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understanding of chemical relaxation along streamlines. The two main
results are the establishment of a simple freezing criterion and the
development of a scaling law for nonequilibrium flows. The scaling
law is justified by the fact that three-body recombination is a slow
process at high altitudes of flight. Its range of validity is determined
on the basis of the analytic solutions.

The report is divided into three sections. The first section
describes the similitude relationship for binary scaling. Both blunt
and slender bodies are considered as well as unsteady blast waves. The
second section contains a study of normal shock structure and shows
how the chemical relaxation zone behind a normal shock (chemical shock)
constitutes a basic element of nonequilibrium flows. Binary scaling of
chemical shocks is discussed in a form directly applicable to blunt-
body flows, The third section treats two problems. The first problem
concerns the mapping of chemical shocks to streamline distributions in
blunt-body flows. The accuracy of this procedure is discussed in detail
and the freezing criterion is checked, The second problem is the range
of validity of binary scaling,

Applications to inviscid nonequilibrium airflows have been
carried ou'c7 and they demonstrate the wide applicability of the present
methods. The approach could also be applied to slender bodies, In
addition, the extension to include viscous effects is of considerable

interest,
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SECTION I

BINARY SCALING

Before determining the range of validity of binary scaling, it is
useful to note the parameters which control high-speed flows about blunt
or slender bodies when chemical rate processes are considered. For
binary scaling, the analysis specifies a2 similitude for nonequilibrium
hypersonic flows.

When three-body recombinations are negligibly small, binary
scaling is justified as follows. Consider a cold free-stream of density
P 1 velocity U, , and chemical composition denoted by { oc,, ).
Agsume that the strong hypersonic shock equilibrates only the non-chemical

degrees of freedom, The Rankine-Hugoniot conditions give

r z
F’S 2 - &2 Ls - (éi) + F4
”’/%,,r_'lé*fm O, U = |- ¥y T

2 ifz
Fs 7+l g 2 (;{’,-—I) .2
G~ %l U '[ My 8

5

ocs=oc

(1)

where @s is the angle of the shock with the free stream and where
7%= 7 Uy, oy s 6) (2)

Equation (2) derives from the general property
L= 4 (e, T) (3)

common to the enthalpies of any mixture of ideal gases in vibrational
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equilibrium, The result expressed by Eq. (2) plays a basic role in binary
scaling, since it allows the shock conditions to be scaled in terms of
 free-stream density.

The dimensionless variables defined in Eqs. (1) scale exactly the
momentum, continuity and energy equations for inviscid flow as well as
the state equation. Retaining only binary reaction rates, the chemical

rate equations assume the typical form

D
_b% = p fen{x,T)

and, to scale these equations, the characteristic length, L , of the
flow field must satisfy

p L = const (4)

o

Equation (4) states the condition for binary scaling. Since this condition

preserves the Reynolds number, the viscous flow equations will also

scale provided the viscosity coefficients and the Lewis and Prandtl

numbers of the various chemical species depend only on ( ¢ ) and 7
Consider now the boundary conditions at the body. For inviscid

flow, L must represent the body scale and the body shape must be:

kept fixed, For viscous flow, the same requirements handle the case

of an insulated and noncatalytic wall. In other cases, the catalytic efficiencies,

temperature, and equilibrium concentrations at the wall must also be

preserved. Thus, /O.p must be kept fixed unless the wall is cold, 1
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say Tw < 2000°K, which is generally true of most practical applications,
Before considering in more detail the scaling parameters for inviscid
flows, one should note that the above requirements insure scaling of the
viscous shock boundary conditions proposed in Ref., 8 for low Reynolds
numbers.

The controlling parameters for inviscid nonequilibrium flows
about blunt bodies have been discussed in Ref. 1 using the chemical model
of a Lighthill gas. 6 The model introduces three numerical data: a
dissociation temperature T, , a rate constant € in cm3/gm sec
( € replaces C 7;-5 in Ref. 5) and a characteristic density Ay
For fixed ( , the recombination term is proportional to ,od-I and
binary'lsca.ling corresponds to the formal limit £ = e . Let vy =
C%{—Td) ' be a characteristic velocity6 based on ’I; and the molecular

weight of the free stream, The relevant Mach number is

oy
Ma = 2o (s)

If R, isthe radius of the blunt body, the parameter of binary scaling

is found to be

EQN /oaa
sl | (6)

o

Finally, three-body recombination would introduce the altitude parameter

Foo

"I=f%

(7
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Thus, nonequilibrium blunt-body flows obey the general similitude

—
- X
V """FCN(RN' )Md)A)anCm) (8)
where V' denotes the dimensionless variables 7@?_ , ZT >
T,
. >
+

A’f . £ R j , and o ;4 is a coordinate vector.

For binary scaling, n = 0 . For frozen flow, one sets M, = N =0,

For equilibrium flow, the /\. dependence drops out of Eq. (8). In the
equilibrium limit, the present result agrees with the remark made in
Ref. 9 that free-stream pressure and temperature need not be simulated.
Furthermore, the Mach number Mm based on the sound speed in the
free stream becomes a parameter only if the shock cannot be considered
as strong. 2 Equation (8} applies to nonequilibrium airflows when reference
conditions have heen chosen for Té . E and ,Od

In the case of slender bodies without nose bluntness, a thickness
parameter must also be considered, If L is the body scale and b

the thickness ratio, Md is replaced by

! Uoo'b
My = wly (9)

while the scaling parameter retains the same form

—-—

_CL P
A = U (10)

a0
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; :
Then, M, , /A and n control the leading approximation of slender-

body theory for nonequilibrium flows

! % Y f
where \/' represents the dimensionless variables ? 7 2T '
U ML,
' P ~ "~
fad
e = z and o« ., Here, U and 2F

) A
Uab> ' Po " Ugb? ' ULDB
are the streamwise and lateral perturbation velocities; 4« is measured

in the streamwise direction .and ’3' normal to « . The flow is two-

dimensiconal or axially symmetric. For a wedge or cone

= b

and the scale L. loses its significance. Equation (11) becomes

' C x o, '
V:Fcn(_b’i: Uf ; d,r],cxw>

(12)

Again, rl = 0 in Eqs. (11) and (12) corresponds to binary scaling.
As noted above, v and (‘-, assume definite values for non-
equilibrium airflows. Thus, the above requirements for binary scaling

of inviscid airflows can be summarized

a) fixed body shape

b) U b = constant { b =1 for blunt-bodies)
c) —-l-'--uf—’ﬂ- = constant ( L length scale of body)
d) fixe:’composition of the free-stream
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Consider now a blunt body with flat-plate afterbody and assume
that the chemical concentrations have been established by freezing in
the nose region

Xp = rcn(——h’_ ; M, ,AJQ)“QF,)

B, Uy RS (13)
where V’ is the stream function and 3 =0, 1 for plane and axisymmetric
flows respectively. Equation (13) describes conditions within the entropy
layer; in the remainder of the flow, o = o(, . Neglecting non-chemical

contributions to the gas enthalpy, one finds

¢ % U,

outside of the entropy layer (small perturbation) and

2
e )

within the entropy layer, Introducing the entropy frozen at the nose

%
Y (ﬁ.,, ! p
o (77 = % (gl mos o) o

with

%
7; = 4(/%,“00?“‘»” SMd :A:q; OCoo>
(15)

the energy balance of the flow may be expressed. Combining this condition
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with the equation for centrifugal pressure drop in the classical blast-

wave approach, 10 it is easy to check the following functional form

‘P’afterbody L /% o+ (16)
P Uk :RnZ(—E’Tf) "Md’A"l’“w}

where & denotes the nose drag coefficient. Equation (16) generalizes
Eq. (30} of Ref, 4 in the case of a flat-plate afterbody, ( b = 1). Note
the dependence of .£ on Md s AN, n and o, 2as well as the
additional dependence introduced in Eqg. (16) by the variation of ’/-F

For binary scaling, Eq. (16) reduces to

- I+l
_f%!_?i[ :F&n&'(-g;—) 3Md)A)°<ca]
w e

with & = & | M, » /A + o, ). This result expresses the scaling
law for afterbody pressure.

It is also interesting to note the application of binary scaling to
unsteady blast waves. A blast wave expanding into an atmosphere of
density B and creating nonequilibrium flow without recombination is
controlled by three numerical data: ff,aw , My and E the total
energy. In distinction from the case of ideal gas flow, 1 the data define

a characteristic length

l[s
L* = (—E-—T>
Foo Vo

so that the blast-wave equivalent to A is given by

10
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The characteristic time scale is

™= ( E )Vs
= (S5
w Vg

and consequently _;‘La, , OC —ﬁ- , etc. must be functions of
L and A" only. Thus, keeping _A* fixed insures

sirmilitude of the blast wave solutions. For instance, blast waves in air

are scaled by maintaining

E pwz = const 0

when three-body recombinations are negligible., The structure of
Taylor's E;olu.tionl 1 with its spectacular density drop behind the shock

suggests a wide range of validity for Eq. (17).

11
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SECTION 1I

NORMAL SHOCKS FOR A LIGHTHILL GAS

This section is concerned with an analysis of the relaxation
zone for a normal shock in a Lighthill disscciating gas, One seeks a
simplified description of normal shock solutions which will point out
their role as basic elements of nonequilibrium flow solutions about
blunt bodies. The exact solutions for a normal shock is discussed in
Section 2.1, in particular the range of validity of binary scaling,
Section 2, 2 presents an analytic solution for zero recombination which
is valid within the scaling range. In Section 2.3, the analytic solution is
extended to account for recombination and a uniformly valid solution is
developed for the whole shock relaxation zone. This solution will be
applied in Section 3 to blunt-body flows,

2.1 Exact Solutions for Normal Shocks

Freeman's a.na.lysisa5 assumes a cold incident stream of density
/Om and hypersonic velocity U . Behind a strong, non-chemical

shock, the state of the Lighthill gas is given by

r 7 L S
0 Up ~— 7
2 {18)
A 2 6 Y
=2 p U T =2 e
PET e 9 R,
with & = 0. Through the chemical relaxation zone, pressure, density,

velocity and internal enthalpy are related by the classical conservation

12
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equations

~F/+,0L(2: RoloT(lf-oc)-F,Ob{Z: oo Uq: 3 pu =/000Um

(19)

2 2,

A ' =1
A+ u =@ +ro)R T+ R, Ty+5 U™ = 7 Uy,
where Td is the characteristic temperature of dissociation. If C

is the rate coefficient and § the temperature exponent of recombination,

the rate equation5 is

& ec Cf -G ) -I{ i 2 ,-}
“Ti =R T, T (l+x) {l-x)e x"n p (20)
T / e o . 6 .
where T' = — , = 4— and = -—2. ., Since P is
T T A LA ’
of order 100 gm/cc, n ranges from 10~ at sea level to 10-(;l at 200 kft
altitude.

For the present application, a new variable is defined
c ¥ pd’ﬂ
1 = RT o T (21)
0

where 4 = 0 denotes the houndary of the translational shock, and a formal

integration of Eq. (20) yields

fj“" e S dw 0% A
(2  Fe)e T —patp | FlsTh e 50

(22)

13
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i
Since T and p" can be expressed in terms of « by means of

Egs. (19), F{ x , T', p', N ) becomes a function of the variable «
' 2

and of the parameters n and 4 = 2—:%7"2— . Then, the integration
may be performed in Eq. (22) to yield « (7)) for prescribed choices of
the parameters. The results are shown in Fig. 1 for ,/Lm =1, s =2
and 1 =107, 107%, 1078 and 107, One notes the following

general property of shock solutions for fixed enthalpy: the solutions
corresponding to 1 & /| correlate over a significant range of values

of 4, , 0%7 % %re.:(qo; ,é’,oo) . The table lists values of Trec

which insure no more than a 1% difference between o (%rec (qo); Qo) and

. (’)Lrec(rlo ) 3 !O-' Qo)'

TABLE 1
1, 107° 10°® {1078
Tre | 3 10 100

To understand the correlation, consider the curves labelled R, in
Fig. 1 which show the ratio of recombination rate to dissociation rate
for the various shock solutions.

2 L
o T

|-«

R,(1504,) = np'e

Over the range O0& 71 £ ircc. (n,) + R, 1is smaller than 0.3. In

fact, the rise of R' to 0.3 is achieved very suddentlyl as evidenced

14
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by the {v?, - &:urves.4 Hence, when 0% 7 < 7lrec , chemical recom-
bination cannot affect the concentration field. The altitude dependence
introduced by n drops out of the problem and the shock solutions may
be scaled for free-stream density, Then, o is only a function of 7

and ‘ﬂ"oa

2,2 Analytic Solution for Zero Recombination

The use of the variable 7 allows a direct application of the shock

solution to other flow problems. Consider first the range 0% 3 & %ra’c .

Through the shock relaxation zone, the internal enthalpy remains nearly

3
constant because ( ) is small compared to one and Eq. (22) can be

Voo
approximated by

f o S+
— “_“2"_ T | +0¢ (”g-'oa““\ .__iti(._
q’ ‘i [ (T ) e dq ﬂ.’/J‘ I~ o 4+u/ EXP »‘/OO"OC dOC (23)

o]

Equa;c.ion (23) provides a formal solution of the rate equation for zero
recombination and a fixed enthalpy. Several important flows satisfy this
last requirement. For instance, Newtonian theory for blunt-body flows
predicts constant enthalpy along streamlines. More generally, in the
subsonic region of a blunt-body flow, the enthalpy is nearly uniform because
of low fluid velocities. Another example is that of inviscid wedge flows

for which the pressure variations are negligible. In such cases, the

required interpretation of % is

15
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a
C ikl (24)
1 = wFer ——
d o) ?’ along a
streamline

where (¢ denotes the arc length along a streamline, measured from
the shock and ?. is the flow velocity. An a priori knowledge of the
function 9%, can be obtained from Newtonian theory as discussed in Sec-

tion 2, 1.

The function

5+
%y Lh - 4
I(miﬁ)zjﬂ ;tz (4.4—0(.) xp (At: ) du (25)
o

plays an important role in the theory of nonequilibrium flows. It is
plotted in Fig. 2 for 0.2 &£ .4 & 1l and 5 =2, a choice suggested by
the experimental results of Ref, 12 for oxygen dissociation. The dashed
lines of Fig. 2 will be discussed later. As o tendsto A , T (x;4)
becomes infinite., The asymptotic behavior is found by integrating by

parts the rapidly varying exponential term,

1 (h-oe)™ 4o 2
I(o(;l,)w(:: (4'4-/»)(41*—0&)5” SRR ){I+O(JA~O€)} (26)

Along the steep parts of the T curves, a large increase of % has
little effect on o , a circumstance which suggests chemical freezing

(cf. Section 2,3). By comparing Figs. 1 and 2, one finds that the

16
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""dissociation" solution

A= I {x;.h) 27

agrees very well with the shock solutions for 0 £ 7 £ For

ZI"GC
a very high enthalpy, A = 3, which is not shown in Fig., 2, the agree-
ment is complete including the final equilibrium value (o a« 1. Indeed
the dissociation rate vanishes for o = 1 so that, when o(g ~r 1, the
neglect of recombination will provide a uniformly valid solution for all 7,
Then, dissociation scaling a.pplies5 in the whole shock. Figure 3 presents
the function T (ac, 5 },,) for s = 0. These curves will be used

in the comparison with airflows discussed in Section 3,6,

2.3 Analytic Solution Including Recombination

When o, < ] , a sizeable g - range of the shock transition
cannot be scaled and the problem is to render Eq. (27) uniformly valid.
To achieve this, one notes that R, is a very sensitive function of >
When the enthalpy remains constant, the condition R, = 1 determines

the infinite-rate equilibrium solution corresponding to the given pressure

field, say “e,w . As shown in Fig. 1, R, is generally very

small and rises to one in a small neighborhood of «. _ . For

3
X - Kg o, 4L | , the function [ of Eq. (22) can be approximated
by

s+l
F ,u(‘“"‘w) o )oxp (- 3E2) e - 4+o<m)
‘&'“e,oo I+ e A= /’b"‘“elm
where only the variation of the exponential term is preserved., Using

17
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Y= ?f—,— as a variable, one obtains the asymptotic behavior for large ¥

¥ dy I+ %e, o (A - oo m£+5
7L~A§ c—?_e'?w s A= I—cce,.g (4.,.}_)(4,, ‘xeoo)’” {(28)
Hence
oo ¥ A A
1 ~ ~Ae ,&70“: )‘-“\-’4 —I(xelwgﬁ),&?/'}-exp%_iﬂ

since T (o(e‘a, 3 A) is generally so large that Eq. (26) may be applied.

Now exp ( —TL’ - —7-_17— ) is equal to the ratio of recombination rate to
&
dissociation rate when T' is closetoe T » i.e., when R, is

of order one, and the function may be approximated by

- o 1
|+ (T) < P T I(oce’,,i.&)

with good accuracy for both small and large 4 . Finally, the

differential form of Eq. (22) becomes

— 1
AL (i h) = exp |- a
) PA™ Tlece 5A) | *7
or
Tls4)=T fe,uid) |1- o0 ~(Fa
2 ) o2 I(O(e s 3 ,’L) 2
) (29)
Equation {29) has been derived under the tacit assumption of constant
cxe_)w , i.e., of constant pressure. When the pressure varies, one
finds that T («e)w; 4 ) is a slowly varying function of the physical co-
o)}
ordinates, say @ , as compared with 7[ (a") . Hence, dI[xe‘” ”A’]
Z % (o)

18
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is small and the above result is still valid so that Eq. (29) may be applied
for a variable equilibrium concentration, He w (o) . This result
recovers the correct equilibrium limit for 7 » ! and the correct behavior
for small 7 (dissociation solution). It compares accurately with exact
shock solutions for all values of § andfor n & 1076,

Equation {(29) provides a convenient tool for the study of nonequili-
brium flows when the assumption of constant enthalpy is correct. The

formal analogy with linearized solutions of chemical relaxation is

particularly satisfying.

19
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SECTION IIX

APPLICATION TO BLUNT-BODY FLOWS

The normal shock solutions are now adapted to describe nonequili-
brium flow about blunt bodies. The adaptation is based on the Newtonian
Theory for pressure and velocity distributions which is reviewed
in Section 3.1. The limiting case of equilibrium flows is considered in
Section 3.2 and the limit of small recombination is analyzed in Section 3. 3.
Next, a more detailed study of the rate process is developed. It reveals
the existence of a nonequilibrium sublayer near the shock {Section 3, 4)
followed by a region of small o« variations (Section 3,5). Finally,

Section 3. 6 applies the results to determine the range of validity of binary

scaling.

3.1 Newtonian Theory

The analytic approach is now applied to nonequilibrium flow of an
ideal dissociating gas around a blunt body. An a priori knowledge of the
L :
"transit time' 'vf il and of the infinite rate equilibrium solution
]

is required. Newtonian flow theory provides the basic data.
If !/e is the {large) compression ratio across a hypersonic shock, the
following classical results are subject to errors of nominal order €

velocity and enthalpy remain constant along a streamline and the pressure

field is given in terms of shock shape (or body shape in this approximation),
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Furthermore, the streamlines remain close to the shock (thin shock
layer). These results apply for both ideal and nonequilibrium gas flows.

In the subsonic region behind the bow shock, the error in velocity
becomes of order Ye¢ . It may be corrected in the manner of
Freeman. 13 However, o« 1is then close to stagnation equilibrium since
the flow is assumed to be inviscid and an accurate determination of 4
is not critical. In the supersonic region, the Newtonian pressure generally
vanishes along a singular line (starting at 60° on a spherical body). To
remove this singularity is cliffir:ult14 and one may prefer to interpret it
as a symptom of shock-layer detachment. 6 For the present purpose,
one takes # 2z O beyond the zero pressure line so that y has a finite
maximum for all but the body streamline. At the stagnation point, 7
becomes infinite,

The Newtonian approximation of constant enthalpy along a stream-
line is inaccurate for the computation of certain real gas effects. Indeed,
the exponential term, e_?Lr , which appears in the rate equation
and in the equilibrium constant is quite sensitive to enthalpy for a given
concentration., The error in the argument is of order G/T’:t’, 0(1), as

TI

£ 0.2 in most applications. Fortunately, the enthalpy drop along

a streamline can be determined in terms of the zero-order Newtonian
solution for pressure. The associated velocity rise affects only the transit
time § on which o¢ depends rather weakly. Thus, including the

enthalpy drop, the expected accuracy of the concentration field is of

order ¢
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The example chosen is that of a spherical shock cap of radius R

for which Freeman's 13 solution is available

) wn 3d+sinE T

P Uz T T30 ? Feo e

[ = cT, e ‘r' i _ (30)
R S

ﬁi\_{u-@mw-wz £+ sin’S Loy _K?Z_’i_“’}

3ain &

The basic nonequilibrium parameter of the present analysis is

~E+1)
A= R (31)
[#]
It is simply related to Freeman's parameter A\ . The angle ¥

locates the point at which a streamline crosses the shock and 40 is

the running angle coordinate. Both angles are measured from the axis
(see Fig. 4). The stagnation streamline is obtained when 2/ and 12

both tend to zero for a given limit of % . Ideal flow of the Light-
hill gas corresponds to _/—L——>O ,» whereas equilibrium flow obtains

for large values of A . In the absence of dissociation in the free
stream, two other parameters control the blunt-body nonequilibrium flow:
the enthalpy ratio .f.,m =—%M: and the density ratio q:: —SZ’L- . The

purpose of the subsequent analysis is to classify flow regimes according

to the values of _/_L and h for }.,m =1 (5.5 Km/sec in OZ)'
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3.2 Equilibrium Flows

For equilibrium flows, the recombination rate plays a dominant
role and binary scaling cannot apply. Then, the body size no longer
controls the concentration field and the problem is to ascertain the altitude
dependence of equilibrium concentrations.

The analysis uses an approximate solution which demonstrates
the following striking features also noted in equilibrium airflows

(1) at fixed enthalpy, the c’onc:entra.tions15 depend very weakly

on density,

(2) at fixed entropy, 16 the pressure dependence is weak.

Consider now a Lighthill gas. Let ( T;', e« , j“l s #; ) and

( T; r 0L, ’&z » 7, ) be two solutions of the equilibrium equations
o’ 7y ! / )
: A exp (7)) Aoe (@ ro)T 4o
- o

(32)

A =0T (1+e) d(lr?/fu)

with » = 0 for case ! and 3 =1 for case 2. Expecting small differences

]
between { «, , &, } and { T' R Tzf } respectively, one assumes

o¢2=oc,lz+al7 :l ’ Tzf’T,’ [/,Lbﬁe?r 7::;] {(33)

P
#

with a , pH«d 1. Then
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/ /b"Z / ! 2
Aoy = R+ DT r o) o S+ o(a,T,,mj),uﬂ?,a _;:;_

and by substitution into Eqs. {32)
p R
ST (1 M+T )=+ 0,) T
4+ ot Z
oyt 2“17;'+(O<i +2 _""E'")T:’

f =0,
(34)
b= T,l N JZ.::.T_,'r
= ’+T'f (!—0(’2)(“-7,')
For equilibrium flows and moderate enthalpies, .4, < 1, T,
is smaller than 0.1 and one may expand in powers of 7',' . The present

. . )2 3 .
solution is subject to an error of order T, or T,’ for a if

¥y =0; @ and b are at most of order T'J

, so that the weak logarithmic

dependence on pressure is further reduced by small coefficients. At
fixed enthalpy, @ 1is of order 7:/ ¢ and the pressure dependence
becomes even weaker (case 1), If the flow is isentropic, « is controlled
by enthalpy changes whereas 7' is quite insensitive. Hence, a shock-
layer solution for equilibrium concentration must account for the enthalpy
drop.

It is interesting to note that, by combining Eqs. (33) with the
state equation, one recovers the concept of adiabatic exponent” for

equilibrium flow

/

7
P2 ~ /02 ‘o _ a,da _
L= ,v(pj , 7= (: el b)

(35)
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If the flow is isentropic, the ideal gas limit, = 4/3, is recovered

as «, , T,'——:»o whereas o’ = 5/3 for e, =1 and any T‘,'r
Equations (34) are accurate over a pressure drop by a factor of the order
10, They may be applied along streamlines with given equilibrium

shock conditions { o, , T,’ , j;,, » B ).

3.3 Newtonian Solution for Small Recombination

At high altitudes of flight, the density ratio n which controls
chemical recombination is very small and one expects recombination to
have a negligible effect on the concentration field except in the close
neighborhood of the stagnation point where equilibrium must obtain in
inviscid flow, Then, N is no longer a parameter of the problem and,
if 7&_ s ,ﬁ,m , and the shock shape (or body shape) are kept fixed, the
nonequilibrium solutions will sca,le1 for body size and free stream density,
For airflows with a fixed chemical model, the scaling requirements are
that o K, , U, andthe shock shape (or body shape) remain

1

fixed. Successful correlations of blunt-body airflows have been
demonstrated. For a Lighthill dissociating gas, keeping A  and Ao o
fixed also transforms from one Lighthill gas to another.

As noted in Section 2.2, a simple solution is readily obtained

for zero recombination under the Newtonian assumptions. It is given

by

- o p’afo-"
3A) = A ——
T (e 5.4) f - o)
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where ¢’ is the dimensionless arc length measured along a streamline

starting at the shock., For the spherical shock of Section 3, 1, one finds

= o' &y T ety hgeoe )= AT (W, E)

Z6E) = J—£+M2J—M22+M3§,&?(@£W@J£g> 37

3.4nk

Equations (37) determine the concentration field for a prescribed choice
of A, and A (see Fig. 2 for T (x,.A) ) Figure 5 gives a plot of
the coordinate I (¢/, Fs) for a typical streamline corresponding to
£ = 0.5; the curve stops at shock-layer detachment ( .4 311?“‘ = —A}m}g )
where 4 attains its maximum value ;max (§). One notes the rapid
rise of £ to its maximum value. This result suggests that the unrealistic
behavior of the Newtonian solution near shock-layer detachment will not
compromise the solution for nonequilibrium concentration field.

The function gm () is plotted as the full curve of Fig. 6. At
the body, ;ml is infinite. Close to the body, d T and one

max 32

may use the approximation

z N ?ﬂ;’!!( + A thm“ - 0.64

mex " 3t z (38)

&

Q

For g > 10°, gmx is of order one. It becomes very small near ¢ =5
to provide a practical cutoff of dissociation when the shock is no longer

strong, On each streamline, the maximum value of o¢ 1is given by

T (g Ao <o’ E) = A T, (E)

Max

(39)
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Figure 7 shows the profiles of ocm“(g ) for ,ﬁ,m =1and A =10,
102, 103, and 104. These results define the final levels established

by dissociation freezing in expansion around the blunt body. They apply
when chemical recombination is very smali, i.e., at high altitudes of
flight. For a fixed enthalpy {fixed % ) the concentration depends
weakly on the rate parameter A , an order of magnitude increase

of A corresponding only to a 10% rise in o¢ ey . This feature has
been previcusly noted in numerical solutions for nozzle flows18 where
freezing occurs in a flow initially in chemical equilibrium. The dashed
curves in Figs. 6 and 7 will be discussed lat;r.

Since recombination has been neglected, o tends to A, =1

max,
as } —> 0, rather than to the stagnation equilibrium level. For higher
values of 4 ,-say ’K’m 24 3, the dissociation solution of Eq. {37) still
(0) = 1, since I (x ,j,”) first becomes infinite at oc = 1

gives o(mx

(see Section 2. 2) rather than at o« = %w .

The result ot ,,, (0) =1 is,
in fact, correct because stagnation equilibrium corresponds to full
dissociation for such high enthalpies. Then, recombination can be
neglected even at the stagnation point. 1 Under such extreme conditions,
however, the physical significance of the Lighthill gas model is open to
doubt.

At lower enthalpies, chemical recombination must be included

near the stagnation point even when ] is very small. To account for

it, one may apply a normal shock solution as explained in Section 2. 2.
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For the present case ,ﬂ,w = 1, the shock solutions plotted in Fig. 1 are
appropriate since the method is justified only for streamline enthalpies
close to A, . Figure 8 shows the concentration profiles obtained for

n = 10 8 (about 150 kft altitude) and A =10, 102. Using the notation

of Section 2. 2, one finds

Lo, (1210 5 Aog=1) 2100

The criterion is then 10
S ree ¥ "5

and, for streamlines such that Qm‘ £ Cra:. , recombination can bhe

neglected. Thus, for A in the range 103, 104, one would predict

that recombination would affect the whole flow field, whereas, for A

in the range 10, 102, the effect is concentrated in a small region near

the body. Note that o {0) remains constant along the body which

max
requires immediate freezing after the stagnation point., The work of
Ref. 19 verifies this assumption.

The above solution is subject to two main sources of errors. The
solution without recombination does not allow for enthalpy drop along a
streamline while the adaptation of the normal shock sclution in addition
neglects the decrease of recombination rate with streamline pressure,

The first error over-estimates dissociation rates whereas the second
one exaggerates recombination rates, It is interesting to study the inter-
play of these two causes of error and to obtain solutions when recombination

is important over the whole flow field. This purpose requires a closer

study of the freezing process,
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3.4 Nonequilibrium Sublayer with Recombination

The process of chemical relaxation along a blunt-body streamline
occurs in two distinct stages. The first stage develops within a non-
equilibrium sublayer close to the shock for which pressure and enthalpy
remain essentially fixed at shock conditions, This sublayer is analyzed
below. The second stage occurs during the flow expansion around the
blunt body; it corresponds to small o - variations and may be described
by the exact solution of Section 3. 5.

Consider Fig. 9 which is based on the dissociation sclution of
Section 3.3, Two typical o - profiles are shown along streamlines
which have the same enthalpy. Curve 4 is obtained for a low value
of A ; o rises slowly to its final value. In case b , one observes
a sharp rise behind the shock followed by a slow final increase. Case b
is of main interest as it corresponds to much higher final concentrations.
The solution then displays the typical behavior of chemical freezing

which is intuitively assigned to the point where

A
e =}
I +oc (40)

d - _
—d% (c, A b)=AT

Let o

o ¢ 7;’ and C_ be the coordinates of this point; o, and ToJr

depend only on A and .4 and the definition is independent of the type
of solution considered. In a general case where recombination may be
effective, the conditions { To' s oL, ) still represent a ""turning point"

for the dissociation rate. Indeed, the controlling factor is A exp(- ?’7),
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which may be approximated as exp I::_%—’) ; To' is small compared
to one so that the dissociation rate is finite only in a small range near T, .
This rate is large if 7T - TO' »Torz (sharp rise near the shock) and small
when Ta' “T'>» T, ¢ (slow final rise). Thus, dissociation freezing
will occur only for T' close to To'

The functions o, (_/—\_ , A ) and 7;'(/1,,&) are plotted in Figs. 10
and 11 for the present choice 5§ = 2 of the temperature exponent of the
recombination rate, The dashed curve of Fig., 11 defines the values
of j-\ = _Zi, (#) such that 'I",|| = T;’ for ideal gas conditions, i.e. T;lzé’— .
Case b) of Fig. 9 corresponds to points above the dashed curve of

Fig. 11. To discuss possible freezing, one must evaluate the recombination

rate 2, (Co) . When the rate equation is expressed in terms of the variable

o 2 ;16D
C s A.E(C) is given by T+ o qPT and if -pz(éa)x—/a»ﬁq,,eo&*g&
by the strong shock conditions, one finds
x? W - o z
- ] ¢ _ o
8D fh e Tee” = kA [(Jma)?;’] (41)

-5 -
The function [0 i"fq(—ci)(j\,‘)is plotted in Fig. 12 which serves to define
the values of A = K_z(,ﬂ,’q) for which ‘T;‘ is equal to equilibrium shock

temperature (1 e. "’R(Co) = 1). These values are listed in the following

table:
TABLE 2
y'y 1 0.8 0.6 0.4
A, (hy107°) 150 250 500 1800
AL (A, 1077 4
LA, 1 950 1500 3000 10
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For a chosen altitude { n fixed), the range of primary interest
for nonequilibrium flow along a streamline is [—L, £ £ ﬁ‘z If
A < A, , case 4 of Fig., 9 obtains and the gas may be considered
as nearly ideal. If A = ﬁz , the flow is in chemical equilibrium.
Figure 12 also reveals a marked decrease of ~, (z,) for fixed A and
decreasing .4, . Hence, the method of Section 3.3 which predicts the
range of influence of recombination on the basis of the stagnation shock
solution may be conservative.

‘One should now ascertain the sublayer character of the region
under consideration. Its existence has been tacitly assumed since enthalpy
and pressure have been kept fixed at shock conditions, To estimate
for small recombination, a steepest descent evaluation of T (ag}j,) may

be used

(Mt ep-sT E

N _ / '
Co—ﬂ I(xﬂ"'g')__x_ (’+Tl)z ""‘A‘I“.‘J-T’ T = dT
ral
(42)

gt (7 wr (BT

s + [ r, + o

+55r | Py 1T e

TO

This value is generally small since ‘J;' is smalland (4 + 4 ) T, s

at most of order one. In the sublayer, recombination may be important
for large values of /A and a more precise evaluation of ;’a makes
use of the appropriate normal shock solution. The results listed in the
following table are obtained by combining Figs. 1 and 10 for the represen-

tative case N = 10-8, A= 1,
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TABLE 3
N 10 102 103 3 x 103
z, 0.13 0. 07 0. 05 0.03

As A increases, S, decreases and the concentration rise behind

as
o’

In the superscnic region, a-o" is measured in a direction parallel to the

the shock becomes sharper'. Since = 0 ., o;,' is even smaller,
shock (Newtonian streamlines) along which fluid properties vary slowly
in the sense of the shock-layer approximation. In the subsonic region,
pressure and enthalpy vary slowly in all directions. Hence, the sublayer
assumptions are justified and, if the flow reaches equilibrium in the sub-
layer, the equilibrium level must be that prevailing at the shock, Thus,

Eq. (29) is accurate within the sublayer.

3.5 Exponential Approximation

Consider now the chemical process heyond the turning point,
i.e., in the range T'< 'l:,' for any given streamline. Two possibilities
may occur
1. Freezing before reaching equilibrium
2. Equilibrium flow
Case 1 is described in Section 3, 3 with the assumption of constant enthalpy.
Comparing Figs. 7 and 10 shows that the final frozen level is always close

to o The inclusion of enthalpy drop and recombination enhance

o

this result. For case 2, the study of Section 3. 3 shows small perturbations
from shock equilibrium conditions which must be close to { X, 7! ) if

o

equilibrium is to be attained.
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The analysis assumes small perturbations from { «, , 7. )
together with the exponential approximation introduced in Section 3. 4,

The basic equations become

dex TLT, Vi

— = &x — —

Y PrE T A g
A= (4 oc.o)"r'+ o (43)

=
e A PR ks ol
Jg ° G
where /fo = g (;o) is the recombination rate at the turning point (see

Fig. 12). Combining the second and third Eqs. (43), one finds

A= h, 4+ To'(/+o¢°),£7 Ladi (4""'0(0)7_""" o

P (44)
and, substituting for 'T’ in the first equation, one obtains an equation
for ec
Do :(-p/ )’M" o, — K _ {5 (_7@_
ok P e E o (45)
with
Ao = (4+:c:;c;;' (46)
Equation (45) suggests the use of small perturbation variables
o :ﬁ%}%— ’ 5725% y ([ree)T, « “n
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giving

w
R1

N
T

:_)’“" exp (&) —,@‘%

W
Y|

(48)

The boundary condition insures matching of the present solution with the

sublayer distribution

C-TO H O—C=O (49)

In Eq. (48), —% is a known function of ¢ through Eqgs. (30) and (37).
2

Equation (48) has an explicit solution
g o T z
~ ?
X = I+A°J'(f—)ﬂ (&f 2 4 )af; -55 - d
Log ATV AR ANS I c °), > o

where, for convenience, the following parameters have been introduced

ﬁo

IS S -
A, = (4+e,)T,' " >l B (4+0c,)T,' " (51)

Since & is small compared to T e (§) » the solution may be applied

in 2 more convenient form

4 a 4 g
- # ﬁ/
= = Loy ”"°£(%) e"*’(sof s “‘;}‘; 'ﬁoL P (52)

the turning point being approximated by & = 0.
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Equation (52) reveals a number of interesting features of non-
equilibrium flows. The infinite rate equilibrium limit is obtained from

Eq. (48) by solving

exp &) =4, (fw_)"w. _ (75, )"'»“o

P o (53)
since 4 =1 for infinite rate equilibrium. Hence
2
= % (1) T = e )T g B (54
[

where ( «, , Tl'

) describe equilibrium at the shock. The coefficient
of zf?,-% in Eq. {54) compares well with the more exact Eq. (35) of
Section 3.2, This result could be expected since Eq. (54) derives from
Eq. (35) by neglect of 0 (7-"2 ).t . When 4, is different from one,
Eqg. (53) defines the local equilibrium which is very cloase to infinite

rate equilibrium whenever 4, is of order one. The infinite rate equili-
brium is also recovered from Eq. {52) by letting &, tend to infinity for
PR

The other limiting case is that of the dissociation solution, A = 0,

obtained in the spirit of Section 3, 3. One finds

& max o
2 (™ ;,5:0):«0+(4+oca)72'2l7[’+7tof (‘E‘) ‘“} (55)

]

The pressure dependence accounts for the enthalpy drop along streamlines

which was previously neglected. To test the exponential approximation,
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one may compare the final frozen levels obtained by setting «, = 0,

& = g, (E) tothose obtained in Fig. 7for A = 10, 102, 103,

104. The comparison is shown as the dashed curves of Fig, 7. It is
satisfactory except in the neighborhood of the body where the dissociation
solution of Section 3, 3 must also fail. When using Eq. {55), one takes

o =0 for streamlines where To' >'l"6.lr =4+,,ﬂ'o (case a cof Fig. 9).

Figure 6 shows this to be correct.

3.6 Range of Validity of Binary Scaling

The above comparisons give confidence in Eq. (52) which describes
accurately both dissociation freezing and equilibrium flow. Egquation {52)
is now applied to discuss the transition. The range of validity of binary
scaling is found by comparing nonequilibrium flows for the same body
shape, the same flight speed { .4, = 1), the same value of /A and for
increasing values of ] . Fora fixed streamline, the recombination rate
at the turning point, /LR(QQ ,q) , increases with r? . If ne (§o3 7)( 0.3,
three-body recombination does not affect the nonequilibrium sublayer {(cf.
Section 2,2} and there exists a possibility of scaling the whole concentra-
tion field with the exception of a small region near the stagnation point.

53 Mo (go 5 ) = 0.3 the sublayer approaches chemical equilibrium.
However, o, does not depend on n and changes of o¢ beyond the
turning point are expected to be small (cf. Section 3.5), Hence, for

S »a, (2 s A\ rl) , oc(é s 85 A, q) should have only a weak depen-

dence on n for fixed A, and £ . Here, one considers the scaling
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range

""R(goirf) < 0.3

It is then required to check the solution of Section 3.3 which was trans-
cribed from a normal shock.

Equation (52) may be evaluated numerically for a given pressure
distribution and for a prescribed shock shape. The use of a Newtonian
solution for —2—0- (C) is not essential as long as the pressure field
remains unaffected by the chemical processes. As checked in Ref, 7,
this prediction of Newtonian theory appears to have a wide range of

validity. Most of the subsequent analysis assumes a linear pressure

variation
o Yy = _ 34n*E
Po-l-—AC; A_—_T—M {(56)

with the pressure gradient defined at the shock by the Newtonian solution.
The assumption is particularly justified for evaluating the log term in
Eq. {45). A numerical study shows that e, (A ; A,) is practically

a function of A only and takes on high values (cf. Table 4).

TABLE 4
A 10 10° 103 10%
e 2.35 3,50 4,70 5.55

37



AEDC-TDR+62-172

At

Hence, the term (: ) ’ which is associated with the enthalpy drop
(<]

provides an effective cutoif for the log integral and the major contribution

develops in the range where Eq. {56) is accurate, Similarly, one may

approximate

S'; (%)ﬂoexp (&,J‘;ﬂ dC) AR by
g, g, ' °

fg?cx? liﬁoig% d;._/ao(,'-%)] az

and, upon substitution of Eq. (56), one finds

P e (o[ 2 4e) <

5
(57)
5,5 . _ -
oo 7/%7: {uf A-2,)+B] /4 -wfE /a;_}
with
= 'R - Al
Boak o v 28 {58)

The parameter @, expresses the need for a higher recombination
rate at the turning point to offset a larger pressure drop.

The first step is to evaluate the effect of enthalpy drop for zero
recombination. The solution is defined by Eq. (55} into which Eq. (56)
has been introduced. The final frozen level is given by

<, & (E)54=0) = «, +(4+o<,)7;’21&7 [”f Z;u_%ﬂ“x—]

(59)
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The results are shown as the dashed curves in Fig. 13. The full curves
represent the exact solution of Section 3.3 (for &, = A = 0). Since the
exponential approximation is accurate for 4, = 0, the comparison dis-
plays the effect of enthalpy drop. Because (4 + «, ) T,/ ¢ is small and
of the weak logarithmic dependence, the effect of enthalpy drop is small.
It is most marked for high values of A . The trend is to decrease
X 4 (me)and make it even closer to o, . Thus, inthe present case,
important departures from o, can only be caused by recombination.
Consider now Eq. (52) for £, (Co 3 q) £ 0.3. The contribution

of & to &« may be expressed as a sum of two terms

x = («o _,,,R((;,)j" z
%

* % .
+(‘1J+0<.,)7;' ,&?f I+ loy;(%)ﬂexp (8,5;;% 6(;) Zg

{60)

The first term expresses the effect of recombination for zero dissociation
rate., The second term demonstrates that the dissociation rate is enhanced
by recombination., This is not surprising since, for a given pressure
drop, recombination provides a mechanism for raising the temperature,

A bound on the integral in the second term is obtained as follows.

S b s [l B

N R A P I
A ”<8°£ 7 ‘“)

(61)
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At the same initial enthalpy, the normal shock sclution is obtained

by putting s AR Eq. (50), giving

(]

* 5(5 ) = I}‘a -”R(go) (% - ;,):l
(62)

2
+ @ +ot)T Ayl}zﬁgj {'—"‘P 8 (£- 59“'}]

For a given choice of /A , Eq. (62) defines the shock solution as a
function of ¥ = AT  in the range o > &, . The comparison of

Eqgs. {60), (61) and (62) suggests a new streamline coordinate, namely

5
j -; a4z rather than ¢ . Within the sublayer, the two streamline
[+ o

variables agree, since o remains essentially constant. Beyond the
o
sublayer but within the scaling range 7 & 1 (q jz{,) , the new trans-
rec
formation provides a2 more accurate evaluation of the effect of recombina-

tion. Indeed, in this range, one expects
<
/ne(é,)f L Az < 001 «,
(4 Pe

2
as noted in Section 2. 1; since {4 + o, )} Ts is larger or equal to 0. 03

in all cases of present interest ( A >0 , 0.4 € Ah,< | ), one finds

30J;ﬁ L7 = =G r 2 ar o e
;a ﬁ"o ;0

(‘4'4' DC,_,)T;’Z Po 32

Consequently

z z
7 2
exp Scj‘ d;) ~ o+ 60\{ A
( c po ;o PO g

and the contribution of recombination to the right-hand side of Eq. (61) is
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negligible, This result is all the more true of the left-hand side and it
justifies the new adaptation of shock solutions to determine the range
of validity of binary scaling.

The criterion for binary scaling is then expressed as

ZnaE)
A g, (5) =7ky 2 g < fm(’“ﬁ’(gﬁ (63)

In terms of the Newtonian solution, ;;m () is given by

Y &) z
e (B)= g st eans)
= T
mex dins § <ow” & sinf (64)

3

which is plotted as the dashed line of Fig. 6. The recombination time

r;:m (E) is typically 30% smaller than a;m(‘;) for ¥ > 0.3 radians,

As E—>0, Q;xtends to é',m » since —%— tends to one. The equality

sign in Eq. (63) defines § = g._“ (A 50 )suchthat, for E> % ,

recombination does not affect the concentration field, The following

table lists the values of § .. which are obtained for -A,_ =1 ( Uy =5.5

km/sec in oxygen), n o= 10-6, 10-7, and 10"8 and A = 10, 102, 103,
and 104.
TABLE 5
A 1 107° 1077 1078

10 0.27 0.17 0. 06

107 0.69 0.55 0.28

10° 1.0 0.85 0.64

10% 1.2 1.2 1.2
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The results were derived by combining the data of Fig. 6 (for

1
C,,m (g) ) and the values of 7{'r‘ec { Q , A ) defined in Fig. 2,
Since R, ( 7[ ) = 0.3, one {finds
| rec

R (1, ) =Ry (% Q3 A)51] = FR [ (5, 543537 (o5)

Fec

and consequently

(1, 34) == (35 4) (66)

Equation (66) provides a convenient method for determining 7 { n i 4, )
rec
which does not require the computation of a complete normal shock solution,

This method does not apply to airflows since R, depends then on more

P -6

than one chemical concentration. For A. > 10“ and 1078 ¢ n £ 10
Table 5 shows that a large fraction of the flow field is affected by recom-
bination. This result checks with Table 2 which indicates that, if A=
103 and n = 10'6, for instance, the flow is in equilibrium up to & =
0.8 ("'w‘-' ).

To evaluate the practical implications of the results listed in
Table 5, the following numerical data will be applied

2) )’

where £, denotes the atmospheric density at sea level. Equations (67)

apply for pure oxygen ( P % 130 gm/cc, a;, = 3.9 km/sec) and they
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are based on the rate coefficient reported in Ref. 12 { § = 2). Thus, a

body radius of 30 cms, corresponds to A =2 x 103, 2 x 102 and 40 at

altitudes!® -6 ,

-1

of 60 kft, 110 kft, and 160 kft, respectively, i.e. for n =10

, and 10”8, respectively. For the present value of (/,, , the high

oo

10
chemical concentrations occur below £ = 0.8 (see Fig. 7). Hence, at
60 kft altitude, chemical recombination controls the flow field around

a pellet-sized body ( Ry~ 3 cms). At 110 kft altitude, K, = 150 cms is
required for recombination to affect the whole flow field. At 160 kft
altitude, one should take I?s = 750 cms., For scaling purposes, the limit
|4 rec & 0.3 appears to be acceptable since only 10% of the mass flow
giving rise to real-gas effects is then influenced by recombination, Tl;us,
any R, £ 3 cms at 100 kft and < 75 cms at 160 kft allows scaling to

higher altitude conditions.
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CONCLUSIONS

The present report describes an analytic method for determining
the chemical composition of the shock layer around a blunt body in hyper-
sonic flow, The method is based on a correspondence between the chemical
relaxation zone behind a normal shock and the reaction zone along a
streamline. In both cases, the internal enthalpy of the gas remains
essentially constant since Newtonian theory is applicable. Thus, the corres-
pondence can be established by taking proper account of pressure and
velocity distributions along streamlines. These distribtuions are defined
by Newtonian theory, The correspondence is justified when three-body
recombinations are neglected, that is, under conditions appropriate to
binary scaling.

The similitude corresponding to binary scaling is discussed in
detail and the range of validity of binary scaling is determined. By means
of the above correspondence, the problem is reduced to binary scaling
of normal shock solutions which is readily analyzed, The structure of the
reaction zone along a streamline is investigated and a simple criterion
is obtained for the concentration level at which freezing occurs. The
accuracy of this criterion is ascertained by comparison with more complex
analytic solutions which account for the smal enthalpy drop along Newtonian
streamlines. A general analytic solution including three-body recom-

binations is alsc presented.
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The results show that binary scaling constitutes a useful tool
for the interpretation of experimental data., For instance, the nonequili-
brium flow field of a pellet-size body at 100 kft altitude and 16 kit/sec
flight speed can be satisfactorily scaled to higher altitudes. In general,
binary scaling allows a reliable simplification of experimental studies

in modern high-enthalpy facilities,
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Figure 4 GEOMETRY OF SPHERICAL SHOCK
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Figure 13

EFFECT OF ENTHALPY DROP FOR ZERO RECOMBINATION

61



