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ABSTRACT

This report documents a study made of the optimization
of typical aircraft structural components using the Automated
Structural Optimization Program (ASOP) described in AFFDL-TR-T0-118.
The structures examined were a fuselage structure for a proposed
space shuttle orbiter and a wing structure for the same vehicle.
Examples are given of practical finite element modeling of these

structures.
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INTRODUCTION

Automated structural optimization methods using finite-element analysis
are now avallable with sufficlent capability to be used in practical design
studies. To examine thelr use in an actusal design, the optimization of two
components of a shuttle orbiter wvehicle is described. The compuber program
used is the Automated Structural Optimization Program (ASOP) described in
Reference 1. Several extensions of this program which were developed to
increase its generality are also described.

Many different orbiter and booster configurations were examined during
Grumman's initial studies of the space shuttle system. In these studies the
ASQP program was used extensively on the wing and tail surfaces. However,
becanse of the lack of experience with the optimization of fuselage structures,
no automated optimization of the fuselsge was initially attempted, For the
study reported herein, use of the program for optimization of both the wing
and the fuselage was undertgken to demonstrate the versatility of ASOP.
Results obtained from the automated design procedure are compared with the
structural design obtained by more traditional methods.

The particular design chosen for this study is known as the H-3T
configuration; its general structursl arrangement is shown in Figure 1. The
orbiter vehicle for this design has a delts wing and two main propulsion
engines. Four air breathing engines ars also provided for flight within the
atmosphere, The liquid hydrogen for the main propulsion engines is carried
in two external disposable tanks attached to the side of the fuselage. The

crew compartment is also jettisonable in an emergency and is not structurally



part of the fuselage. Access to the paylead is through clam shell doors

along the top of the fuselage. These doors are also not part of the primary
structure.

This report shows how both the wing and fuselage structures are idealized
into finite element mathematical models. This will serve to guide the program
ugser in establishing the idealizations needed for the optimization process.

To demonstrate the program's usefulness, results obtained from the automated
calculations for the element gages are compared to material distributions
obtained by the more traditional non-automated methods. To demonstrate the
program's convergence characteristics, the fuselage structure was optimized
twice starting with different material distributions, with essentially the

same final results.
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DISCUSSION

A. Wing Design Study

1l. Structural Idealization

The general planform of the wing is shown in Figure 1. The semi-
span from the centerline of the fuselage to the tip is about 650 inches;
the root chord is approximately 800 inches. The development of the finite-
element model of the primary structural box evolves naturally from the defined
positions of the spars and ribs as shown in Figure 2. Each of the covers,
outboard of the root, is ideslized as anistropic membrane quadrilateral
and triangular elements which carry all shear and axial stress - i.e., no
bar elements are used (see Appendix B). The webs of the spars and ribs are
treated as shear panels separated by posts which enable transfer of external
loads to the structure, Inboard of the root, the type of construction dictates
the need for introducing bar elements to represent the carry-through beams.
Sufficient sttention to the details of the carry-through structure is required to

preoperly account for the boundary effects on the outer portion of the wing.

The configurstion employs covers of stringer-reinforced titanium
sheet, The internal construction uses standard titanium spars and ribs. By
using the spar and rib inter section as the nodal points for the finite element
model, the exposed wing is broken into ten spanwise segments and an average
of five segments in the chordwise direction., Since the distribution of
pressure in the chordwise direction is expected to be smooth and since there
are no internal cutouts in the covers, the subdivisions in the chordwise
direction should be adequate to represent the true state of stress. All the

elements in the cover of the wing are well shaped, that is, the triangular
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Figure 2 Idealization of Orbiter Wing
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elements are approximately 45° isosceles triangles and the quadrilateral
elements are all of aspect ratio of two or less with the exception of the

last element in the trailling edge root region. This element is not connected
to a fixed point on the boundary and the strain energy in the element can be
expected to be low. For this reason the discrepancy between the predicted
and true stress distributions can be expected to be unimportant to the overall

behavior of the structure.

The spars and ribs are represented by shear panels. The
axial load-carrying capacity of the web material near the covers
is gssumed to be accounted for in the adjacent cover elements, a
factor which must be considered in the final interpretation of the

results obtained in the computer program.

In constructing the gecmetry data for structures where the primary
stresses arise from bending moments, for example wings and tails, a pre-
liminary estimate must be made of the radius of gyration so that the behavior
of the structure will be accurately reflected in the finite element model.

Consider the portion of a wing cross seciion shown in Figure 3.
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Figure 3 Portion of a Typleal Wing Cross Section
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Here {4 is the spacing between stringers, b is the depth of the stringer from
the center of the cover sheet, and x is the height of the cover sheet above
the centroidal axis of the wing. The moment of inertia of the finite element

model about this axis should be the same ag the actual wing, that is:

- 1 2 2 b
I =y A=I_+733 Ast + Asx + Ast(x - 2)

where y is the height of the element above the neutral axis of the finite element
model, A i1s the total cross section area of the cover sheet of width 4 and
thickness t. Ixx is the moment of inertia of the stringer, AS is the sheet ares
between stringers and As £ is the area of the stringer (it is assumed that the
centroid of the stringer is at b/2 from the center of the cover skin). Making

the cross section area of the model and the actual structure the same and defining

R as the ratio of stringer area to sheet area, one obtains

2

1l 2 2 b
— A -=
As t° o+ s X tR (x 2) As

2
I =y A= Ixx + o

\ 1 2
or neglecting b2 compared to x2 and thereby neglecting Ixx’ and > Ast as compared
to the remaining terms in the expression for inertis,

y2 (1+R)= e (L+R) -Rbx

2 2 Rbx
or Yy =X - IFR) ,

Here, y is the desired height at which the finite element nodal point should be
above the centerline. The thickness of the elements is now t' = t + Ast/L, the
average thickness of the cover and the element idealization would be as shown

in PFigure 4.



Figure 4 Finite Element Idealization of Typical Cover Element

We have now replaced the actual structure by a finite element idealization

that will have the same bending stiffnesz. One should note that there is a
slight decresse in torsional stiffness becguse the two covers are now closer to-
gether, and there is a slight increase in torsiocnal stiffness because the covers
contain material that is normally in the stringers. In general, if these effects
are regarded as significant, the covers should be represented by a combinstion

of bars and membrane elements.

2. Loading Conditions

Because of the preliminary design nature of these studies, exact
pressure distributions on the wing were not available. Consequently,
simplified but realistic distributions hed to be assumed. Five loading
conditions were selected as being critical. These include: two maximum
dynamic pressure conditions at positive and negative angles of attack; a 2.5g
pullout condition on dewcent from orbit;and two landing conditions. The
megnitudes of the loads are shown in Figure 5. The distribution of the loads
on the exposed surface of the wing was assumed to be as shown in Figure 6.
These distributions consist of a subsonic configuration and a transonic

configuration. The subsonlc distribution peaks rather sharply at the

leading edge and tapers to zero at the trailing edge, with the
8
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spanwise distribution decreasing uniformly from root to tip. The transonic
distribution, in contrast, has a linear distribution from leading to
trailing edge and a constant magnitude from root to tip. These distributions
are adjusted to give the correct total load and center of pressure locations
for each of the loading conditions. The determination of the locads gpplied
to a particular nodal point is based on the pressure acting at that nodal

point and its asscociated cover area.

3. Design Criterls

The material assumed for the optimization is titanium Ti-6A1-6V-28n

annealed having the room temperature properties given below:

Ftu = 155 ksi
by = 145 ksi
P = 148 ksi
cy
F_ = 100 ksi
su
E =17.0x 103ksi

In using the ASOP program, curves of allowable stress versus the appropriate
structural index must first be developed, tabulated, and then appliéd

to account for the instability of the cover panels (see Reference 2). The
allowable stress curve used for this particular example is the curve for
Y-stiffened panels shown in Figure 7. A length of thirty inches is assumed

hetween supports.

11



859195 AATEFIIdEO) STARMOTTY JIOAO) TBUOTIUIAUOD ) SJnBEg

& £ - 5 o+ £ z 7 -]
~Nrsrar & [« V'
oz
o
HIPNT7 AP, OF 09
m.J
g
[
o e
E - o8
\
=L
p 2 z
ooy
oxs
Oy




4, Optimization Results

The wing idealizgtion was optimized using the fully stressed design
option of the ASOP program. Three lterations were performed. After three
iterations the element sizes change only in the third significant figure,
Therefore,for this idealization no more iterations are necessary. The top
cover thicknesses are shown in Figure 8. The thicknesses increase, as expected
from tip to root. The only exceptions are at a few locations near the tip
where the local applied loads are high and the wing is still fairly thin,
resulting in high bending stresses. The thicknesses of the spars and ribs

are glmost gll at the minimum of .02 inches and for this reason are not shown.

13
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B, Fuselage Design Study

l, Structural Idealization

The idealization of the orbiter begins at fuselage reference station
408, {See Figure 1 ). Forward of this point the structure is essentially
an aerodynamic fairing and is not considered as primasry structure, The bulk-
head station 408 is treated as a simple combination of bars, beams, and shear
panels as shown in Figure 9 . The shear panels and beams allow the shear,
axial load apnd moment from the forward tip of the fuselage to be introduced
into the structure as concentrated locads at this station. The bulkhead
and frame idealizations at éach of the important fuselage stations is shown
in Figures 10 and 11. It should be understood that the idealization includes
lumped properties of the adjacent members in the real structure and not only
the properties of the particular bulkhead or frame alone. Some specific
comments on these structural components are now given.

The next bulkhead in the idealization is at station 548. The

corresponding structure is shown in the structural arrangement drawing in

Figure 11. The important point +to note when comparing the idealization

and the actual structural arrangement (Figure 11 ) at this station is the

15






level of detall preserved in the ideaglization. The number of shear panels
used in the bulkhead is the minimum necessary to preserve the size and
location of the cutout for the forward oxygen tank support, and to provide
the baclkayp structure for the extermal hydrogen tank support. There are
two beam elements to maintaln the approximate external contour across the
top of the bulkhead,

Ancther point of interest is station 608, This is the point of attache
ment of the cabin to the fuselage. The bar element representing this
ettachment can be seen in the idealization. The frame is composed only of
beams around the outside and bar elements on the interior. The bar elements
are needed to support node 52 and to represent the lumped areas of the shear
panels between the adjacent bulkheads.

The next bulkhead at station 686 serves mainly as a point of application
for a portion of the distributed loads on the fuselage and also serves to
break up the shear panels along the side of the fuselage into elements of
reasonable aspect ratio.

Station 825 is at the bulkhead between the cabin and the cargo bay.
Because the cargo bay covers are non-structural, the bulkhead is idealized
only up to the hinge line of the cover. The aft cabin support is at node 83.
This dictates the form of the subdivision of the bulkhead into shear panels.
Again the outside of the bulkhead is defined by beam elements,

The bulkheads at stations 955 and 1083 are similar. Each is a series
of beam elements around the fuselage countour and bar elements defining the
central keel of the fuselage and the floor of the cargo bgy. In this region

the fuselage is essentially & two cell box beam. The structural idealization at

17



these two statlions can be compared to the typical construction in this region
shown in the structural arrangement drawing at station 1138 {Figure 11).

The next section of interest is at station 1213, This bulkhead supports
the aft end of the main oxygen tank and receives the most forward wing spar.
This is also the beginning of the air breathing engine bay. The bar from
node 159 to 173 is added to stabilize one of the fuselage longerons that ends
at this bulkhead and it is not structural. At this statlion the bulkhead has
agaln been divided into as few shear panels as is necessary to preserve the
basic behavior of the bulkhead.

The next idealized bulkhead is at 1326 where the air breathing engines
are connected to the structure. The bulkhead at station 1400 is the aft booster
atbtachment bulkhead. At this point the booster thrust loads are transferred
to the orbiter making the longeron just forward of the interstage attachment
point ome of the heaviest members in the structure.

The bulkhead at station 1502 provides aft support for the externsl
hydrogen tank attachment, The beam elements that make up the perimeter of
the frame portion do not represent actual members in the structure, but are
the result of lumping together the properties of the frames on both sides of
station 1502,

The thrust structure for the main orbiter propulsion engines is provided
by bulkheads at 1572 and 1622. The structural arrangement drawing (Figure 11 )
is presented only at 1572 which is also the end of the cargo bay and the forward
attachment point for the vertical fin.

There are several interesting details in the structural idealization of
this bulkhead that should be noted. One of the shear panels in the original

idealization had to be replaced by a bar element because the adjacent sides of

18



the element were almost parallel. The main thrust structure is represented by
a horizontal beam between 1572 and 1622, The forward side of this beam is
represented by the bgrs and shear panels between ncdes 273 and 257, and
274 and 259. The shear webs for the beam are represented by shear panels
between the two bulkheads. Becguse this bulkhead represents the end of the
cargo bay,support must be provided for the shear panels comprising the inner
shell of the bay. These supporting nodes and the shape of the inside of the
cargo bay can be seen by tracing out the nodes 274, 283, 281 and 279.

The bulkhead idealization at 1622 shows the rear end of the thrust struc-
ture beam., Also attached at this bulkhead is the support for the on orbit LO2
tank which occupies most of the space above the center of the bulkhead.

The 1ast two bulkheads are almost rings because of the large cutouts for

the rocket exhaust. The tops of these two are attachment points for the fin,

19
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2, Ioading Conditions

Sixteen loading conditions were selected as possibly being critical for
different portions of the orbiter fuselage. A schemetic of the mission
profile is shown in Figure 12,  The points where the different loading
conditions occur are indicated, A summary of these loading conditions, with
the magnitude of the safety factor for each condition, is given in Figure 13,
The magnitude of the loads in each of the conditions and other relevant
inform tion is given in Figureld . To make this information more meaningful,
the envelopes of ultimate bending moment, shear, and axial loads are plotted
in Figures15, 16, and17. In these figures the critical loading condition
for each point along the fuselage is also indicated. As can be seen, the critical
bending moment conditions over much of the fuselage is load condition 5 during boosted
flight when the booster thrust line is seversl feet below the orbiter centerline.

The interface loads between the wing and fuselage and between the vertical

fin and fuselage were obtained by calculating the reaction loads of the wing and
tail when coptimized independently as cantilevered structures. For a more
rigorous analysis of these interactions it would be necessary to do a coupling
analysis of the wing,tail and fuselage or alternatively analyze the entire
vehicle as one structure., The interaction loads for the orbiter and booster

were obtained from a previous analysis of the two vehicles together.
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3, Design Criteria

The orbiter fuselage is assumed to be made of the same material as the
wing as given previously. But because in the fuselage large portions of the
skin ere in diagonal tension the elastic properties of most of the shear
panels must be modlified., The only exceptions are several panels near the main
propulsion.engines which are heavlly loaded and therefore thick enocugh to resist
shear buckling.

To modify the shear stiffness of the panels in diagonal tension, the
shear modulus was reduced to 75% of its normal value. The justification

for this is based on the graph in Figure 18 which is copied from Reference 3.

1.0
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Figure 18 Modulus Retio for Buckled Elastic Web
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In this figure T/'rcr is the ratio of shear stress to shear buckling stress.
GIDT/G is the ratio of effective shear modulus for the buckled panel to shear
modulus for an unbuckled panel. Aue/dt is the effective area of the upright
(in this particular case a ring) to the cross section area of the sheet. For
& wide range of T/Tcr, the shear stiffness ratio 1s about .75 when the upright
area is large compared to the sheet area between uprights. In the ASOP
program the input is in terms of E (Young's modulus) and v Poisson's ratio
and it is therefore not possible to specify G directly. Instead orthotropic
material properties are specified for all shear panels in diagonal tension.
The failure criteria used for the fuselage are the standard criteria in
AB0P, that is,maximum shear stress in the shear panels and maximum allowable
axial stress in the bar elements that are buckle-resistant. The buckling
stress criteria used for optimization for those bar elements that are not well
supported, for example the hydrogen tank attachment struts,is shown in Figure 19.

4, Optimization Resulbs

Two separate optimizations of the fuselage were performed starting with
different initial element sizes. The initial optimization started with s
size distribution that was generated by hand. First,the structure was sized
using simple strength of materials formulas and the ultimate gpplied moment
and shear envelopes. Usling these rough sizes a finite element analysis was
performed to obtaln accurste internal loads. With these internal loads the
structure was again resized by hand., The weight of the resulting finite
element model was 17,200 pounds. Except for a few minor excepticns, all the
shear panels in the structure were gt the minimum ellowable thickness. The
structure was then optimized using ASOP. Three iterations were performed using
the fully stressed design option in the program. The weights of the structure

for the iterations were 12,150 1bs.,12,200 lbs. and 12,080 lbs, The major
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o0
The optimum stress in a tubular column is given
by the expressgion,
3
R \ P, 8 g Ref: GShanley,
" * T h, E* T¥ "Weight-Strength
Analysis of Alr-
n
where 7- s _£2_r k- i crgft Structures
Substituting F e A and rearranging terms
2?3
20 oo |fETITZA
£.37 L*
Let £* 7‘”:) = c?
6'37
& = -C—ﬁ
/00 L
or _L.. = E......
va 2
This is the form in which the stability table
ge for spar caps and diagonals is entered into
the FSD optimization progream.
60 .
" = \
/17
&0 Y] /50 z2oo 256 300 350

Figure 19 Allowable Compressive Stress for Bar Elements
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difference between the final structure weighing 12,080 lbs. and the initial
structure weighing 17,200 lbs. was the aress of the frame elements which were not
initially sized for the applied loads, instesd only approximate values were
used., The most interesting results of the coptimization are the sizes of the
mein longerons. For convenience these longerons have been identified in
Figure 20. The areas of these longerons st the start of the optimization
and after the final iterations are given in Figure 21. Also the critical
loading condition is indicated. As cen be expected from en examination of
ultimate bending moment envelope, load condition 5 is the critical conditicon
over most of the length for those longerons near the top and bottom of the
fuselage.

In general, the longerons near the forward and aft ends of the fuselage
gre at minimum area. From a comparison of the starting size and the final size
it can be seen that the initial celeulations using strength of materials
theory and s single finite element analysis gave a materlsal distribution that
is fairly close to the final distribution. This is important because it
indicates that the ASQOP progrem is generating material distributions similar
to those that would be generated by more traditional methods.

After this first optimization of the structure was completed, another
one was performed starting with uniform element gages. The results of this
exercise are shown in Figure 22 where the longercn areas are given in a form
similar to Figure 21, This time the areas for the first resizing and the
last resizing are given. BSeven iterations were performed in all. The
critical loading conditions are the same as before and are not repeated
in the figure. The weight of the structure after three iterations is essentially
the same as the final weight in the previous case. The welght after seven

iterations is 11,750 pounds. An examination of these final element sizes and
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the final sizes for the previous example shows that the two designs are

essentially the same even though the starting points were different.
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APPENDIX A

Modifications for Anisotropic Ioad Distribution

Equation 4-2 pages 48 and 49 of reference 1 has been modified to
give the correct load distribution for anisotropic construction. This
has been accomplished by using the values of E in the direction of the

element edges in formula 4.2.6,

Elastic Property Axis

from Input Data
x U
4

This is done by pre and post multiplying the elastic constant Alj by the

transformation matrix sin v + cos ¥y where vy

siny « cos v

i cos 2y

is the angle between the elagtic property axis and the side of the element,

This gives & new elastic property matrix E' +» From ﬁﬁj, E can be easily extracted.

i3
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APPENDIX B

ORTHOTROPIC EEHAVICOR OF INTEGRALLY STIFFENED PANELS

A non-isotropic structure frequently encountered in present day aircraft
structural analysis is the integrally atiffened panel, Fig. 23. The following
derivation is made with the purpose of applying the anistropic finite elements
herein described to problems of analysis of such structures, where the
stiffeners form a regularly distributed orthotropic gridwork. This work does
pot consider the flexural behavior of such structures but does describe the

in-plane mechanics of deformation.

Fig. 23, Integrally Stiffened Panel

b = Stiffener spacing in x direction 2= 1 +'F3(l*y?)

g = Stiffener spacing in y direction o
. A=1+ € (1~p)
Al = hltl area of stiffener in x direction 2 2

A, = heta areg of stiffener in y direction

B. = A1 _ Stiffener area - x direction

1 at = TPlate area - x direction

B, = A2 - Stiffeper aresa - y direction
2 bt Plate area = y direction

by



Consider the strain energy of the module pictured on P. 47

d b
U:% j / (ﬁéx*d}éy*'ﬁ,yi“_)dxlr
(-] [+ (CL)

Where o7 , o3 Tiys €x > €y );r are stress and strain
components in the plate. g7 , ¢, are stress and strain of the stiffeper in
the x direction while G ;s €, 8re the stress and strain of the stiffener

in the direction.

Assumptions:

1. BStress, and therefore straln, does not vary with coordinstes
(i.e. independent of x, y).
2. TFor compatibility of the structural components we must

assume €, =€, and €, = €

fdﬁ £ | r2e | (]
Stress-Strain Relations: ¥ =% | y-p3 v
Y R
; T l
Ja-y B YE ' E & ? (b1)
t=-p* 1 o I Y
-_— —'.. P
' !
Loy ' é Y,
- 4 | : L "fl
7 E : €y
_—— el - - (b2)
i
U.Z 1 E 6;
]
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Substituting the stresa-strain relations into the
straln energy equation and performing the indicated volume integrations,

we obtain the following expression for strain energy.

¢t | EA 1 ED; > 2EV * (C)
v =a£:'£ ;-:-;’i' €x * /=Pt €y + /‘y‘"é"éy *6 ?*r'

tm!

In order to obtaln generalized stress components we must
define a strain energy density function with respect to the plate
volume in order that integration over the plate volume yields the total
strain energy in the stiffened panel.

d )
UV = #f e P = a¢ s (

veu. PI,

It must be noted that the modified Hooke's Law that follows
is based on this step. When the modified Hooke'’s Law is used to derive
a atiffness or flexibility matrix, the integration must be done over
the plate volume only. The strain energy density is therefore:

. 1| EX, 2 [ EA2 " 2EYP 2
Up= 3|2t b 4SS €r w555 8er vG Uy «©

The generalized stress-strain relations are cbtained by
differentiating the strain energy density with respect to the components
of the strain tensor, for example;

@ = Fe. (f)
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The resulting modified stress-strain relations are:

£x | i
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From agsumption (2) and equations (b) and (h) we can obtain the

actual stress in the plate and ribs.

[ Y 23_ "v
T (3% -9%)
G—Y V'(z-;"l)

(2421,'9)

4 t,\,!'-'- o]

- 711.(1-1}‘./-'

' (A, A -9
a, -V -p7)
(- pY

50

y(;‘:')')
(%, 2.-v")

— e e o —

VoA, (=9
V(a0

@
(5}1
_ #)
5
¢y
z,
L
S
7
5 ) (i)




Unclasgsified
Securitx Classification

DOCUMENT CONTROL DATA-R&D

(Security classliication ol title, Body of abseiract and indexing annoiation must be anterad whon the overall report ia claawnilled)

1. ORIGINATING ACTIVITY (Corporate author)

Grumman Aerocspace Corporation
Bathpage, New York

28. REPCRT SECURITY CLASBIFICATION

Unclassified

2b. GROUP

3. REFPOAT TITLE

Finite Element Modeling and Optimizstion of Aercspace Structures

4. DESCRIPTIVE NOTES (Type of report and incluaive dates)

Final

B. AU THOR{S} (Firaf name, middle Initial, Iast nama)

Walter J. Dwyer

4. AEPORT DATE

78 YOTAL NG, OF PAGES Th, NO. OF REFS

b. PROJECT NO.

d.

August 1972 50 3
0. CONTRACT OR GRAMT NO. 88, ORIGINATOR'S REPORT NUMBER(S)
F33615-72-C=1466 AFFDL TR-T2-59

sb. OTHER REPORT NO(S] (Any other numbers that! may be aselgned
thia report)

10. DISTRIBUTION $TATEMENT

Distribution of this document is unlimited.

11. BURPLEMENTARY NOTES

12. SPONSICRING MILITARY ACTIVATY

Air Force Flight Dynamics Leboratory
Wright-Patterson AFB, Chio

T
13. ABSTRACT

This report documents a study made of the optimization of typiecal aircraft
structural components using the Automated Structural Optimization Program (ASOP)
described in AFFDL-TR-70-118. The structures examined were a fuselage structure
for a proposed gpace shuttle orblter and a wing structure for the same wvehicle.
Examples are given of practical finite element modeling of these gtructures. (U)

DD ¥.1473

Unclassified
Security Classification




Unclagsified

Security Classification

#U.S.Government Printing Offlce: 1972 — 759-489/277

14, LINK A LINK B LINK €
KEY WORODS
AOLE wT ROLE wT ROLE wWT
Finite Element Method
Structural Optimization
Automsted Design
Unclassified

Security Classification




