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ABSTRACT

The central nervous system 1s believed to consist of a
network of neurons, combining in its structure genetically
determined design with probabilistic features. A model is
described in which probabilistic nets are used as building
blocks from which systems can be assembled, approximating for
example the Iinteraction between sensory projection areas in the
cortex'with cortical association areas. The operation of such
compound nets 1s based on the dynamics of single probabilistic
nets and on a set of assumptions concerning the coding of
sensory information into the language of central neuronal
activity. Data describing the dynamics of simple nets are
presented. It is found that various types of information
processing can be explained by applying the hypothesis of

synaptic facilitation to compound nets. Sustained neural

activity is investigated, particularly the problem of ergodicity.

Highly non-ergodic types of reverberations were found both
theoretically and by computer simulation for certain types of

nets.
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SECTION I

INTRCDUCTION

In a recent paper {(Harth and Edgar, 1967), which will be
referred to as (I}, the behavior of simple, randomly connected
neural nets was investigated analytically and by computer
simulation. Under appropriate conditions such nets can be
made to perform a variety of cognitive functions.

The assumptions made in (I) were highly restrictive both
as regards network structure and the functioning of individual
neurons. Time dependencies were ignored and the connectivity
was completely random. The system could be cconsidered to
represent a primitive model of one component of the association
cortex of the brain, and that it would would lend itself to
being extended in the future to conform with a somewhat larger
body of biological reality. Such an extension will be attempted
in the present paper.

Attempts to understand the functioning of the brain cften
take the form of contriving networks of interconnected neurons
and studying the dynamics of such systems. The problems cne
encounters may be classified roughly under these three
headings:

+ Anatomy and physiology. Questions concerning the
functioning of the individual neuron, the role of the synapse
and all of the micro- and macrostructure of the brain belong in
this category. Information concerning many of these subjects is

still fragmentary. Soame of the most fundamental questions, such



as the nature of the physical changes that must underlie

learning have not been answered. In other respects the

biclogist often succeeds in uncovering a plethora of detail which
the theorist at this stage is incapable of absorbing into a
meaningful pattern.

» Behavior of neural nets. Caloulation of the dynamics
of neural activity, even under the most stringent simplifying
assumptions, presents formidable mathematical difficulties.

Only the most primitive types of nets, such as homogeneous,
randomly connected nets, have been studied in any detail.
Computer simulation is often resorted to as a means of cir-
cumventing computational difficulties. In doing so, net sizes
are in practice restricted to at most a few thousand neurons.

+ The meaning of neural activity. This complex of problems
concerns the presumed correspondence between neuronal activity
and such psychologically defined functions as teo know, to
remember, to feel, to perceive, to associate, etc, FPut ;
differently, we would like to know what are the parameters in i
neural activity that determine what we may loosely call our ‘
state of mind, a quantity observable only by a single person.

Is this state completely determined by the time dependence of

all of the action potentials emanating from about 10!? neurons?

Or must a complete description alsoc contain the specification

of such variables as the subthreshold postsynaptic potentials

or perhaps also glial processes? :
The theorist, of course, always hopes for simplicity, so

the non linear character of the response of the individual



neurons to membrane changes received within its dendritic

field--the so-called all-or-none-effect--has been taken as a

hint that the results of these integrations and the ensuing

action potentials, are the physically significant variables.

A description of neural dynamics would thus be reduced to the

specification of firing times for all neurons in the net,

still an enormous task. Conceivably some degeneracy still

remains, that is to say, it may be possible to eliminate

further details of the description of the neurcnal state with-

out attendant loss of the information carried by the net. It

has been postulated, for example, that information resides

in the temporal distribution of activity, and that

therefore a significant amount of information could be elicited

from the net by monitoring a single neuron (Bullock, 1967).
This has been an attractive postulate for a number of

reasons. Not only are we used to employing a frequency code in

communication, but it is also known experimentally (Granit and

Renkin, 1961) that, at least in the peripheral nervous system,

firing frequency is often directly related to sensory parameters

such as intensity of a stimulus. Alsoc, we know a lot more

about the temporal response of single neurons than about the

spatial distribution of neurcnal activity. This is merely

due to the fact that neurophysiologists can readily monitor

a single neuron while the simultaneous detailed observation

of more than a very small number of neurons presents great

technical difficulties.

We shall nevertheless maintain the point of view taken in
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(I) that the information we seek is expressed by the spatial
distribution of activity, specifically by the set of neurons
active at a given instant., We call this the neuronal state

at time ¢: it may be expressed by the column matrix:

a.(t)

4

g(t) = .
a;(t)

where 4 is the total number of neurons in the net and ai(t)

equals 1 or 0 according to whether or not the {-th neuron fires

at time ¢. The matrix a(¢) thus describes the instantaneous
state of the net. Implicit in this formulation is the
assumption that axonal transmission over intra-cerebral
distances is fast compared with synaptic delays, refractory
periods,and other time constants, so that simultaneity may

be defined not just locally, but for the entire network under
study. This assumption appears to be reasonably justified

(Ruch and Patton, 1966; Ochs, 1965),
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SECTION II

DESIGN AND RANDOMNESS

The controversy between these two viewpoints concerning
cerebral organization has a long history, and may be compared
with the classic controversy over the wave or particle nature of
light in physilcs. Both points of view have amassed an impressive
repertoire of supporting evidence. The wave-particle controversy
finally ended not with the victory of one and the defeat of the
other, but with a reconciliation of the seemingly irreconcilable
points of view--the principle of complementarity.

Unquestionably the brain has structure, that is present
at birth, serves important biclogical functions and is presumably
genetically determined. In recent years evidence has heen
accumulating for the existence of highly specific, inborn
neural circuits in parts of the cerebral cortex, in seeming
contradiction to the mass action principle and the concept of
cortical equipotentiality (Lashley, 1931; 1933; 1850). The
similarity of the design principles extant in nearly all sensory
systems {(v. Békésy, 1967) makes it tempting to postulate that this
kind of genetically determined neural organization is character-
istic of the entire neocortex. An extreme view of this work
would be that statement that every synaptic connection throughout
the nervous system 1s genetically determined. It has been argued
that the limited information content of the DNA molecule precludes
such a view and that therefore elements of randomness must he

present. But this argument if specious; it is clearly possible



to specify the connectivity in every detail and yet use only a
very limited amount of information, in the same way in which we
can describe the space coordinates of large numbers of atoms in
a crystal merely by giving the parameters of the lattice. Thus,
any symmetry principle that can be found, reduces the amount of
information required for a detailed specification of the system.
Symmetry principles are information-saving devices. In the case
of neural connectivity in the higher cortical areas we know as
yet too little about symmetry laws to be able to tell whether all
of the remaining information content of a particular connectivity
can be supplied by our genes,

Opposed to the view of complete specification in the
design of the neural net is the assumption of a probabilistic
net in which stochastic rules form a significant part of the
blueprint, Whether or not a particular network is probabilistic
is of course a question that cannot be readily answered., It
assumes meaning if we inquire, for example, into the processes of
formation. There is however another way of defining randomness,
and this is of particular interest to the theorist attempting
to find a model of brain function. Suppose that we were to
generate a class of neural networks by allowing certain variables
to vary in a random fashion within predetermined probability

distributions, and suppose that each of these nets! is found to

lSome pathological configurations whose occurrence would he rare,
may be possible exceptions.

i



exhibit the same behavior. We would then say that the behavior
is characteristic of this elass of probabilistic nets. It is

now conceivable that a brain which, by virtue of its formation,
is completely deterministic, i.e., its connectivity is completely
specified by a combination of genetic information and symmetry
principles, is found nevertheless to be, functionally, a
probabilistic net. This would merely imply that the biological
solution is not the only one, but that some parameters could

have been left to chance without ill effects.

As a practical matter, a probabilistic model is often used
because knowledge concerning the precise connectivity of real
neural nets is lacking, and because of the assumption that the
behavior of the net is not affected by allowing the connectivity
to vary within specified limits. There is however yet another
aspect to randomness: it is the assertion that a lack of
organization is a functional property of the net, or that a
certain amount of disorder is required to allow that establish-
ment of the kind of ordering we associate with learning,
expecially if the tasks to be learned are unpredictable.

We can now write down sets of properties which, if not
mutually exclusive, are at least antagonistic, one set loosely
associated with deterministic and one with probabilistic nets

(table I.).
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Table I

Deterministic Nets Probabilistic Nets
Design Disorder, Randomness
Stability, Consistency Adaptability, Learning ;
Specificity, Localization Equipotentiality
Resettability Hysteresis, Memory
Predictable Tasks Unpredictable Tasks

Design, if it is of functional significance, apparently
implies a predictability of tasks. In this sense the brain is
genetically designed from birth to prevent the infant from
falling off a ledge. On the other hand, the necessity of
stqpping an automobile upon a certain visual cue (red light)
is a genetically unpredictable cerebral task, hence must be
learned.

We argue that there exists in the brain an immense pool
of specialized circuitry capable of taking care of every
possible exigency, and that circuits are activated as experience
requires. Bremermann (1967) showed that the "genetic cost"
of such a system would be staggering. On the other hand, it
was shown in (I) how a completely random net can become structured
as a result of sensory inputs and perform a variety of learned
tasks. We shall continue to assume that the portions of the
cortex whose function it is to carry out the fundamentally
unpredictable tasks, the so-called assoclation cortex, is a

relatively unstructured probabilistic net.



In summary, we believe that, as in the particle-wave
duality, we have in the brain a duality of design and randomness,
with design predominating in the more peripheral sensory and motor
portions, and randomness in the highest, or association areas of
the cortex., Possibly no area is completely designed, nor com-

pletely probabilistic.



SECTION III

DYNAMICS OF PROBABILISTIC NETS

In many quantitative studies, investigators sought to
establish brain-like functions by computer simulation or
mathematical analysis. This work was to a large extent inspired ?
by Hebb's hypothesis of synaptic facilitation (liebb, 1949)
according to which the effectiveness of a synapse in triggering
a postsynaptic neuron is enhanced whenever a presynaptic action
potential succeeds in firing the cell., This facilitation of
selected pathways was believed to constitute the physical basis _
of memory. - %

If memory is to be established in the network as a result
of a single experience one may argue that mechanisms must exist

that produce sustained reexcitation of the same neural pathways

following the sensory input., Hebb postulated that such reexcitation
can occur in a richly connected network through reverberations
and concomitant synaptic facilitation of neurons involved in the
reverberating circuits. As a result of this process and the
interaction between the various reverberatory pathways a subset
of the neural net would differentiate itself into what Hebb called
a cell assembly. This would represent something like the
emergence of meaning in the firing patterns of cortical neurons,
Accordingly much subsequent work was aimed at establishing the
existence of quasi-stable modes of sustained neural activity.

Most of the studies concerning the dynamics of neural nets

performed to date had the following features in common: The
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network was assumed to consist of randomly interconnected
neuron-like elements possessing these properties:

all-or-none law of discharge;

spatial and temporal summation of stimulij;

a synaptic delay; and

a relative refractory period.
Refractoriness was assumed to be absolute for a fixed period
following an action potential, In some cases, it was assumed
that this was followed by a relative refractory period. Times
were usually quantized in units of the synaptic delay. The
network itself was described in terms of the following
parameters:

the number of outgoing and iﬁcoming connections per
neuron;

the threshold of neurons; and

the effectiveness of synaptic coupling ("coupling
coefficient").
The latter parameter expressed the magnitude of the postsynaptic
potential and the threshold gave the amount of total excitation
needed to fire a particular neuron,

In one of the earlier studiés of network dynamics, Beurle
(1956) used a quasi-field theoretical approach: the neurons
were assumed to be distributed continuously with a volumetric
density [ and the axonal and dendritic fields were specified
by the connectional density w. For mathematical convenience,
variations were assumed to occur in the x-direction only and

inhibitory connections were excluded from consideration,

11
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Based on Scholl's findings (Scholl, 1953) an exponential form

was assumed for uw(x), i.e., interactions between neurons were
restricted mainly to near neighbors. The analysis showed that
the fractional activity ¢ e at tz{n+l)t is related to the
activity o at t=n7T in a way depicted in figure 1. From the
graph the net tends toward one of two stable states, namely
complete cessation of activity or saturated activity. Thus

the information content of the net is just one bit. Subsequently
Beurle pointed out that the inclusion of inhibition would

allow for sustained intermediate activity (Beurle, 1962a; 1962b).

In a later study, Ashby, et al. (1962) assumed that the
activity of the net could be described by a single variable,
the probability of firing of a neuron in a given interval of
time. Like Beurle (1956), he did not include inhibition in
his model, and the results were quite similar.

Griffith (19633 1965) included inhibitory neurons in the
net and was able to demonstrate that sustained oscillation of
activity is indeed possible in the net under these conditions.
Subsequently he developed a field theoretical approach and
succeeded in obtaining intermediate activity in the net.

Working with so-called discrete nets, Rapoport (1952)
showed that excitation will spread through the net until a
steady state is reached provided the initial activity is larger
than a certain critical value. Otherwise the activity tends
to zero. Subsequently Trucco (1952) extended this work by
deriving additional conditions for what he called ignition

phenomena.

12
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Figure 1. Relationship between fractional activities arising
one synaptic delay apart in a nonrefractory network of
excitatory neurcns (Beurle, 1956).
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In an extensive mathematical analysis Allanson (1956)
investigated the dependence of net dynamics on the para-
meters of a randomly connected neural net., Depending on the
parameters, such nets could oscillate continuously, remain
quiescent, or exhibit damped oscillations, Inhibition was
included in Allanson's model.

The first analysis of net dynamics using simulation by
digital computer was carried out by Rochester, et. al. (1956).
In their first study, a probabilistic network of 6u4 neurons
was simulated on an IBM 704 digital computer. All connections
were excitatory and synaptic facilitation, as outlined by
Hebb, was included. It was found that such a network exhibits
diffuse reverberation, an aperiodic activity involving
virtually the entire net.

In the second phase of their work, the number of neurons
was increased to 512 and inhibitory connections were permitted
to occur. The vriginally random connectivity pattern in the
net was modified by introducing a "distance bias" so that
near neighbors were more likely to be coupled than distant ones.
Synaptic facilitation was again assumed to occur but the
additional constraint was imposed that the sum of synaptic
coupling strengths for the entire net had to remain constant,
This caused a degeneration of the less frequently used
connections. The results showed that cell assemblies are
formed under these conditions and that the activity in the

assemblies is reverberatory.

14
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Farley and Clark (1961) simulated a planar net of 1296
neurcons in which the interconnections were specified by two-
dimensional probability distributions again introducing a
"distance bias" in the network. Inhibitories were not included.
In general, their results confirmed Beurle's analysis that the
activity in the net leads to either saturation or quiescence.
It yielded, however, the additional information that a
randomly connected network can, under certain circumstances,
such as low threshold and repetitive stimulation exhibit
sustained oscillations, even though the net does not contain
inhibitory connections.

The above results obtained by Farley and Clark were in
tightly connected nets in which the connectivity pattern
favored interactions between nearest neighbors only. In
locsely connected nets in which connections to remote elements
were equally likely, scattered activity over the entire net
was seen. Under some conditions the whole net oscillated
disfusely, the oscillations either continuing indefinitely or
else stopping spontaneously after a few cycles.

Smith and Davidson (1962a; 1862b) in an analytical study
examined networks similar to those of Farley and Clark, but
included inhibitory neurons. Without inhibition, their
results were similar to those of Beurle as shown in figure 2.
With inhibitory connections added, the activity curves ex-
hibited several stable and unstable equilibrium peints as
shown in figure 3. Periodic firing of identical subsets

of elements is possible both in stable steady-state

15
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Figure 2. Relationship between fractional activities arising
one synaptic delay apart in a nonrefractory network of excita-
tory neurons (Smith and Davidson, 1962a, 1962b).
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Figure 3. Relationship between fractional activities arising
one synaptic delay apart in a nonrefractory network of

excitatory and inhibitory neurons (Smith and Davidson, 1962a,

1962b).
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activity and in oscillatory behavior,

Finaliy, Caianiello, et. al. (1967) have investigated
theoretically the conditions of net structure which would
lead to collective modes of excitation., Along similar lines,
Ricciardi and Umezawa (1967) suggest the application of the
formalism of many-body problems in physics to a description
of neural nets.

We have investigated the dynamical properties of some
very simple probabilistic nets. We give first a brief
description of the systems to be studies and the assumptions
used. A list of symbols is given in the Index.

A neural net consists of 4 neurons. A neuron may be
either excitatory or inhibitory. The fraction of inhibitory
neurons in the net is denoted by h. Each neuron is connected
synaptically to a number of other neurons to which it will
transmit signals, the analogues of the postsynaptic potentials
(PSP's) identified by neurophysiologists. The PSP produced
at the Zi-th neuron as a result of the firing of the j-th

neuron is called the eoupling coefficient?® k. If the 2«th

1
neuron is excitatory, then all coefficients kii are positive;
if the m-th neuron is inhibitory, all the coefficients k;,
are negative, We speak of exeitatory and imhibitory post-

synaptie potentials respectively (EPSP's and IPSP's)., The

2 A connection k., as defined here represents the sum total of
all couplings ¥fom the j~-th to the i-th neuron, hence may be
the combined effect of any number of synapses.

18
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average EPSP shall be denoted by k,, the average IPSP by k_.
We also denote by u, the average number of neurons receiving
EPSP's from an excitatory neuron, by u_ the average number of
neurons receiving IPSP's from an inhibitory neuron, It is
assumed that for each neuron the outgoing connections are
randomly distributed over the entire net.

The connectivity of the net is completely described by the
matrix gij of coupling coefficients. In this matrix each non-
vanishing element represents a one-way connection; the
absence of synaptic links from the &-th te the m~th neuron is
characterized by km£=0.

If the neurons are numbered in an arbitrary fashion from
1 to A, the network described above is represented by a square
matrix which is uniformly seeded with non-vanishing elements,

The minimum number of EPSP's required on the average such
that their sum is equal to or greater than the firing threshold
@, turns out to be a useful parameter. If we call this number
n, and if the function u(x} is defined to be the largest

integer equal to or smaller than x, then
n = u(G/k+) (1)

Dynamical Assumptions

The number of neurons firing at any given moment is called
a. It is convenient to define also the fraction of active
neurons oza/4. Each neuron active at time ¢ is assumed to
produce the appropriate PSP's aftgr a fixed time interval T,

the synaptie delay. All PSP's arriving at a neuron are summed

19
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instantly and, if theylexceed the threshold, will cause the
neuron to fire without further delay. Firing is momentary

and causes the neuron to be insensitive to further stimulation
for a period of time called the nrefractory period. Postsynaptic
potentials, of below threshold, will persist with or without
decrement for a period of time, called the summation time. 1
For our immediate purposes it will be assumed that the :
refractory period is greater than the synaptic delay, but less

than twice the synaptic delay, and that the summation time is

less than the synaptic delay. These assumptions lead to the
following effect: if a number of neurons are fired synchro-
nously at time t, than all neural activity resulting from this

initial activity will be restricted to times t+1, ¢+21, etc.

Furthermore the activity at t+nt,; call it @ s uniquely
determines the activity O 41 occuring exactly one synaptic
delay later.

In Appendix I, the expectation value <0417 for the

+1
activity generated by an activity a, is given by - i

M

e - - m [ ]
<an+1> = (l-a Jexp( anhu- mzo(anhu_) /m!

n<1 2
{1-exp[=a, (1-n)u,] £EU£G"(1-h)u+] /%1% (2)

where n”=u[(0-mk_}/k,] and ¥ is an integer sufficiently large
so that the addition of higher terms in the summation may be
neglected,

Curves of <a,,,> vs. o, are shown in figure 4 for u, =5,

and k=0. A number of important features are apparent, All

st e i

e g sk
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Figure Y4,

Curves of <a_,4.> vs

a

21

for nets with u,=s5, k=0,
A is a point of unstabl¥,’B a poifit of stable equilibrium.



curves go to zero for un=0 and an=1; the last is a saturation
effect having to do with the refractoriness of the neurons,
The slopes of the curves at the origin are of interest.
If we take (3<“n+1>/3an)an=0 from Equation 2, we find that
all terms of the summation over m vanish with the exception
of m=0. Accordingly the parameter n” in the second summation

reduces to n“=n according to (2) and we obtain

(B<an+1>/aun)an=0 = (1-h)u, -
n-1
{3/%, I [a,(1-mou,]%2r o
2=0 n
But the derivative of the summation over £ has only cne
non vanishing term, corresponding to %=1, which gives (1-h)u,.
Accordingly we obtain
(1-h)u; for n=1
(3<an+1>/3aaan=0 = 0 for ns2 (3}
The curve for n=1 in figure 4 is clearly a special one,
For (1-h)us>1 and for the smallest activities @, we have
according to (3) the condition that a,4q>a,, i.e. the activity
will build up. The point a,=0 is therefore a point of
unstable equilibrium, since the smallest fluctuation would
cause the net to go into sustained activity. The equilibrium
activity is the point near o,%0.5 where the curve crosses the
45° line (figure 4).
The fact that all curves of <an+1> vs, an for n»2Z start

with zero slope, which is also apparent in figure 4, has an

22
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interesting consequence. In all these nets, for small initial
activities, <0 4q” will always be less than o hence activity
in the net will rapidly be extinguished. If a, is sufficiently

small, will be zero for practical purposes. In figure U4

41
for u =5, n=5 this condition is satisfied for initial activities
as high as about 0.25. We call such nets highly damped.

For some nets the curve <@ 41> VS. a will cross into the region

above the U5° line where <qo >a . This is illustrated in

n+1”
figure 4 by point 4 on the n=2 curve. Eventually the curve
must descend again into the lower region because of the assumed
refractoriness; this will happen at an<0.5 (point B in
figure 4). The first crossing is clearly a point of unstable
equilibrium, below which activity decreases with time and above
which it will build up to the value of the stable equilibrium
B. The entire net has thus the property of a highly nonlinear
decision element, not unlike the single neuron, having two
stable states and a threshold for being excited from the inactive
to the active state. The existence of such thresholds was
peinted out by Rapoport (1952) and by Trucco (1952), and the
bistable character of nets similar to ocurs was discussed by
Ashby, et al. (1962) and Griffith (1963).

Finally for n sufficiently high, e.g., n23, u =5 (figure 4),
the curve never rises above the 45° line; <an+l> wlll be less

than a, for all values of a s hence any initial activity will

die out in time. As a convenilent classification we shall
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denote by elass A all nets which will produce sustained
activity for any initial activity LI however small, by

elass B those which have a threshold a,>0 for being triggered
into sustained activity, and by.claas ¢ those which will show
monotonically decreasing activity for all initial activities.
The effect of inhibitory neurons is shown in figure 5 in

which <a,.4> is plotted against o, for a net having the same

n
multiplicity of excitatory connections us=5 but in which
5% of all neurons are inhibitory, with an average multiplicity

u_=6,
Time Course of Neural Activity

The formalism of the preceding section may be used to
predict the development of neural activity in the net
following a given initial excitation., The assumption that
the state_an+1 is determined only by the preceding state a s
rests of course on the assumption that the summation time for
PSP's does not exceed the period t of one synaptic delay,
and that the refractory period is greater than T but less
than 2t.

A graphic way of obtaining the time course of activity
is shown in figure 6 for a typical class B net., A time axis,
labeled n, extends down from the abscissa. Here n refers to
the number of synaptic delays that have elapsed since the
initial activity; the lines with arrows illustrate the method
by which each successive activity may be found. The time

course of activity is shown for three different initial
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1.0

Qn+t

> VS,

a, for nets with u,.=5, u_=6,
h=0,05 and ﬁ+=-k_

Figure 5., Curves of <a,4q
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Figure 6. Graphic determination of time dependence of activity
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(3)ao>X
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activities, one in the damped portion below point 4, one in
the ignition region, and one above a point marked X, which
would have 4 as its successor, Such a high initial activity
would produce a subsequent state below the threshold A4, hence
would not produce sustained activity.

In the sustained activity shown as the second case, we
digtinguish two phases: an initial monotonic rise, followed
by a damped oscillation about the equilibrium point B.

Computer generated curves of a vs, n are shown in
figures 7, 8, and 9 for h=0, u,=10., Three values of n were
chosen which make the nets class 4, B, and ¢ respectively.
Each figure shows the time course of activity for different
initial activities., These curves represent not simulation
experiments, but computations based on equation 2, Some
difference between the two is expected for reasons described
below. Simulation experiments on the IBM System/ 360-50
digital computer are now being carried out in this laboratory.
They will enable us also to extend the study to nets in which
summation times and refractory times can be varied at will,
and neuronal threshold following an absolute refractory
period can be made to follow any arbitrary time dependence.
In addition the net can be given structure, as explained
in Section V of this report. The calculations carried
out above, despite their very restrictive assumptions,
are providing interesting limiting cases and guidelines for
the more general and, we believe, biclogically more realistic,

systems which are now being studied by computer simulation
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methods.

It should be made clear that Equation 2 gives only the
expectation values of the levels of neuronal activity, but
does not tell whieh neurcns are being excited. Also, implicit
in the calculations is the assumption of complete incoherence
in the temporal development of the activity, by which we mean
that the connections are not only random, but are re-randomized
after every interval t, They apply thus, strictly speaking,
not to a fixed net, but to something that could be described
as a neuron gae. Earlier studies by Rochester, et. al. (1956)
seem to indicate that such coherence effects are not significant

beyond a few cycles of activity.

Ergodieity

We wish to raise the following two guestions concerned
with what may be called the ergodic behavior of nets:

1. Given a elagss B net of the type described above, and
assuming sustained equilibrium activity o®, what fraction of
all the A neurons in the net will fire at least once if the
activity is indefinitely sustained?

2., What fraction of the total number of possible neuronal
states of size a®* are reached by the system which sustains
equilibrium activity of size a¥?

We shall tyry to answer these questions first by using the
neuron gas model and then consider the coherence effects. The

differences, as we shall see, are very significant.
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Neuron Gas Model. We consider first the question of the
number of neurons involved in sustained activity. Let the
successive neuronal states be Gy 3.y 2,9 etc. and assume that
each state has precisely the size a*, where a%*=za¥%4, The
assumption of refractoriness requires that gor_1g1=2, and in
general gnr—12ﬂ+1=g° If we denote by bi the number of those
neurons that were active in the i-th state but have not
been active previously, then clearly bo=a*, b;=a*, and
bz=a*(4-2a%)/(A-a*). It follows that

-1

b, = a*(4-2a%- I b )/(4-a*)
i=2 *

Introducing Bizbi/A’ we readily obtain

(4)
B,=a*{1-2a*)/(1-a%)
In general
£=1
Bl=a*(1~2a*- L B.)/(1l-a¥) (5)
‘_.. t
1=2
and
52+1=B£(1-2a*)/(1-a*) for £»1 (6)
Finally from (4), (5), and (6)
By=a*{(1-20%)/(1-a*)}*=2 (7

The total number of neurons firing at least once during
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an equilibrium activity, sustained for N intervals 1, expressed
as a fraction &y of the total number of neurcns in the net, is
now given by the expression
N

uN=2a*+i§28i (8)
Substitution of (7) intc (8) shows that oy will approach 1 as
¥ goes to infinity., This result indicates that in time every
neurcn in the net will partake in the activity.

The most obvious coherence effect is eyeling, the
continuous repetition of a given sequence of states. With
cur assumptions of summation time and refractory period, the
precise repetition of a single neuronal state g, will cause
the system to repeat indefinitely the sequence of states
between the first appearance of a and its first repetition.
(With longer summation times or refractory periods, a
sequence of states will have to be precisely repeated before
cycling is assured. Such nets would therefore be expected
to approximate the gas model behavior for much longer periods
of time.,)

We shall now make an approximate calculation of the
average length of time it will take before a state is
repeated, There are (aﬁA) different states of size a¥*, hence
the probability of repeating in one trial one of » previous
states is r/(aéA), and the probability P, that in a sequence
of » successive states there have been no repetitions, is
given by

r{r+tl) 4

r A
P= 51[1-2/(0‘*.4)] = 1= " 2 (a*A

2
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The approximation holds for ( ﬁA)>>1. Now let ¥ be the
o
number of successive states such that there is a 50% chance

for a repetition., We have therefore Py =0,5 and

BB+ = N2 = () (9)

With Stirling's approximation this becomes
—A(1-a* -
§? = (1~q#)~4(1=0%) (pay-atd ey (10)

We are now in a position to give an approximate answer to the
first of the questions raised above. The fraction of the net
that will ultimately be involved, if the cycling begins after
N synaptic delays, is obtained by substituting eguation (7)

into equation (8). We obtain

1-(1-a*) {(1-20%) /(1oa®) V1 (11)

Oy

The parameter N in this model is given by (10); it will in
general be a large number, so that, according to (11}, y
will be very close to unity.

The second question, regarding the fraction of possible
states reached can also be answered now., Let this fraction

be f. Evidently
A
f = N/(Q*AJ = 1/ (12)

This would predict that even though many states will in general
be passed before cycling sets in, the fraction of states

accessible from a given initial state is small,
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Fixed Net. In a neural net in which the connectivity
remains fixed, the refractoriness of neurons will cause
strong correlations between successive states; thus the number
of available states 1s reduced and the probability for repeating
a previous state ghould be enhanced. With a refractory period
equal to one synaptic delay, any twoc successive states a, and
a will be disjoint. If these states have sizes a* close to

—-n+1

0.5, there would thus be an increased probability for a state

G4y TO be identical to 2, This probability might be expected
(l—OL*)A -1 . +
to be about ( o A ) which goes to unity as o% approaches

0.5. The average number of successive states preceding
repetition due to this short-range order would be of the order
of the reciprocal of this expression:

(1-a*)4

v (Y

} (13)

Comparing eguations (13) and (9) we see that the short range
order should contribute a negligible effect to the probability
for repeating a state as long as % is small, but will become
the dominant factor as og* approaches 0.5.

However the correlation between states 2, and &40 is
even stronger than indicated by equation (13). This may be shown
in the following manner. In figure 10 we show in a Venn diagram

four successive neuronal states 2,1 4

a and a
Ly Zpyye 20 4y

+2°

We calculate the fractional overlap bLetween En and gn+2,

called fn The calculation will be based on two assumptiocns:

SJt2°

a) if a state a, generates the state a then a state g%

1+1?

which 1s a proper subset of a. will generate a state 5£+1
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Figure 10.

“fn.n+ 2

Venn diagram of four successive neuronal states

Figure 11.

l 2 3 4 5 6
TIME t=nv

Fractional overlap between alternating states vs., time
for sustained activity a#
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which is a proper subset of a;.45 and b) the size of the
proper subset gé+1 will be proportional to the size of the
proper subset EE'

The first of these assumptions can be shown to be
strictly true if there are no inhibitories, and will be
approximately true as long as the fraction 2 of inhibitories
is small. Assumption b) is an approximation which is good for
small activities,

If we now let fn,n+2 be the fractional overlap between

states a, and a

a, [ (Figure 10), then the above assumptions

easily lead to the following

Jc‘ﬂ,n'l'2=f -1,n+1+(1'fn__1‘h+1)(ﬂ*/i-a*) (14}
from which
T i % %
fn’n.i.z-kifo(i-kj where k=oa¥/l-o (15)
but
n N
710 1::0

It follows that for large n, Equation 15 gives

fﬁ,n+2 =1

This implies that alternating states would become identicalj
the activity of the system would switch back and forth between
two fixed states. Figure 11 shows that equation 15 would
predict the system to approach quite rapidly this non ergodic

state, Computer simulations have indicated that this indeed
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is the valid approximation. In a net of 1000 neurons, two-

state cycling was observed to occur every time, shortly after

the net reached sustained activity near the point of stable

equilibrium,.
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SECTION IV

INFORMATION PROCESSING IN THE ASSOCIATION NET

It was shown in (X) that a completely unstructured,
randomly connected network of neurons was capable of performing
a variety of cognitive tasks under the following assumptions:

the network in its naive state is highly damped, i.e.
its operation would correspond to what we termed class C,
operated in the portion of the graph where <a,, >=0;

synaptic facilitation occurs whenever presynaptic
action potentials coincide with postsynaptic firing;

information is carried by the network in the form
of neuronal statee that specify the set of neurons active in
the net at one instant. The significance of the neuronal
states is described by the correspondences M ("means"),
I ("implies"), and § ("suggests") between these states on the
one hand and a gensory state g on the other. We say that a
state g means g, written as gMs, if the sensory input g
incident on the quiescent assoc¢iator net produces in the
latter the state g. A state b implies 8, written ple, if
b )a and aMs. A state ¢ suggests g, written ¢Ss, if
e[ )a#0, aMa , and (el ]aX_ e. These correspondences are
shown schematically in figure 12,

The necessity of the strong damping became quite
apparent in early computer simulation runs., Whenever sig-
nificant spreading of activity took place in the naive net
following stimulation, the net performed poorly upon learning.

This can be understoed in the light of the results of
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Rochester, et al (1956), Allanson (1956), Beurle (1956),
Farley and Clark (1961), Smith and Davidson (1962a; 1962b),
and Griffith (1963; 1965), all of which demonstrate that
randcom nets rapidly lose information when they are reverberating.
Only in so-called loeal nets, in which there existed a strong
preference for connections to nearest neighbors, did sustained
activity remain confined spatially, and hence preserve infor-
mation concerning its origin (Rochester, et. al., 1956).

Such a net however would be expected to perform poorly as an
associator net, in which strong interconnections must exist
between different modalities. We have here an example of the
complementarity discussed in Section II: the design of strong
local bias in the connectivity (which is information-
preserving) is antagoristic to the capability to carry out
unpredictable tasks. This complementarity prevents

the spontaneous formaticn of information-preserving cell
assemblies predicted by Febb (1949) in a reverberating random
associator net.

The above reasoning suggsests that, if synaptic facilitation
is the basis of memory formation and learning, and if synaptic
facilitation is brought about by repeated transmission of
activity across the synapse, then the repeated stimulation
must be generated outside the association area, The sources
of such sustained activity in the association area may be
either repetition of the sensory input, or neurcnal rever-
berations occuring in structured, information-preserving

portions of the brain. We need only postulate that each of
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of the states in this association net is in turn triggered

by a specific sensory input--the meaning of that state--and
our model of learning will have a close biological counter-
part in what is known as sensory-sensory cortical conditioning
(Morrell, 1957; Yoshii, et. al., 1957, 1960)., Here paired
stimuli of different modalities become functionally connected
in such a way that the application of only one of the stimuli
will produce neuronal activity characteristic of both,

The effect of applying the reinforcement rules to
particular states in the association net was discussed in (I).
The fundamental operation involved in learning was defined to
be the association of neural states., In brief, this consisted
of applying the reinforcement rules over a domain of neurons
activated by the simultaneous presentation of two or more
stimuli. It results in the enhancement of coupling coeffi-
cients ki' over an area in the connectivity matrix, Schematic
diagrams, the so-called association diagrams, were introduced
in (I) as an aid in visualizing the effect.

In one of the examples the system was used to simulate
what Asratian (1965) has called the switching reflex. An
animal learns to associate a certain conditioned stimulus ¢
with an unconditioned stimulus ¥; until ¢ alone will elicit
the reflex R;. The training is done under certain environ-
mental conditions we call 4;.

Next, the animal is placed in a different environment,
where the same conditioned stimulus ¢ is associated with a

different unconditioned stimulus, U,, which produces the
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reaction R,. After appropriate training the conditioned
stimulus ¢ will elicit the conditioned reflex R, under
conditions 4, and R, under conditions 4,;. This is called
switohing,

In our interpretation of the conditioned reflex ¢, U,,
and A, produce neuronal activity in distinct neuron pools in
the association net and we let C, U,» and 4, be the cortical
representations of these stimuli., Also it was assumed that
strong inborn neural pathways lead from Y, to a pool of
motor neurons R, such that whenever a significant fraction of
neurcns in Y, is active, the reflex R, will ensue. By the
ternary association of ¢, U,, and A  we mean the simultaneous
activation of these three neuronal states and the consequent
strengthening of synaptic connections between any two neurons
which belong to either of these states., The switching reflex
may now be pictured in ocur interpretation as resulting from
two ternary associations (C,4,,U,) and (C,4,,U,) which is
shown schematically in figure 13 where the heavy lines represent
inborn pathways, all other lines facilitated pathways between
neuron pools, The reader is referred to (I) for detailed
discussions of this and other cognitive tasks.

It is instructive to look at the network parameters used
above, and compare them with the curve presented in Section III,
The naive net had the parameters u,=4, u_=6, k,=0.19, k_=-0,19,
©=1, and h=0.05. The increment used in learning was §=0.38,
Comparison with the curves for the (less strongly damped) net

=5, n=5, #=0.05 (figure 5) shows that the system had been
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Figure 13. ASSOCIATIONS MADE IN SWITCHING REFLEX. Heavy
lines are inborn connections leading to motor neurons control-
ling the reflexes R; and Rs:. Thin lines represent reinforced
pathways between the states €, U; and 4, and between

€, Uz and 4,, respectively.
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what we called above a class ¢ net and that with activities up
to about 0.2 it was in the highly damped mode of operation., On
the other hand, learning will establish a net-within-a-net,
this one with n=2 which should be on the verge of being a
reverberating class B net. The data suggest that it either just
missed being class B, or was operated just below the ignition
point. It seems clear now, that slight modifications in the
design parameters could have produced much more impressive
effects than those reported in (I).

In summary, learning in the association net was considered
to involve the establishment through synaptic facilitation of
reverberating or almost reverberating subnets, embedded in an

otherwise unstructured and highly damped matrix of neurons,
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SECTION V

COMPOUND NET MODEL

Our next objective is to incorporate into a single
dynamic model both the design known to exist in the sensory
system up to and including the sensory areas of fhe cortex,
and the presumed lack of organization at the higher cortical
levels. We shall not be concerned here with the role of
other, subcortical, structures.

The sensory system that has been explored in greatest

detail is probably the visual system, Lateral inhibition was

A S o € SO ST Y S SR b VST ST R g SR A S 2

first studied in the eye of the horseshoe crab (Hartline, 1949),
and receptive fields of retinal ganglion cells were plotted for
the frog (Lettwin, et. al., 1959) and for the cat (Hubel and
Wiesel, 1962). The results all demonstrate neural organizations
designed to cope with tasks that are reasconably well under-
stood and of genetically predictable value to the organism.

In a series of studies, Hubel and Wiesel extended their work

to neurons in the lateral geniculate body (1963) and in areas
17, 18, and 19 of the visual cortex (1965). These studies

again revealed a remarkable degree of structure and design,
characterized by spatially circumscribed pools of neurons with
identical or nearly identical receptive fields. Thus there
exist in area 17 columnar structures, comprising probably many
thousands of neurons, "wired" to act as detectors of a
particular cognitive element such as a directed line or edge

of light located in a particular portion of the visual field,

Besides such simple fields, Hubel and Wiesel also observed
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more complex structures such as detectors for directed lines
but differing from the above-mentioned fields in that the
precise location of the line was immaterial, Other pools of
neurons were triggered when a directed line moved across the
field. Such and other complex fields were rare in area 17
but increased in frequency in areas 18 and 19. The fact that
all of these functions and the requisite neural designs were

inborn was definitely established (Hubel and Wiesel, 1966).
Compound Nets

In (I) the structure of a neural net was represented by
the connectivity matrix Eij of coupling coefficients,

Figure 14 represents a schematic diagram of the connectivity
matrix of a net which incorporates some of the features
discussed above, Here ¢,, 8,, 8,, etc. are pools of neurons
in the sensory cortex. Each pool consists of neurons of
identical receptive fields; we may therefore consider that
the set g,, for example, is simultaneously activated when its
receptive field is stimulated.

We next define the association net designated by 4.
Unlike the sensory cortex, this net is to be initially
unstructured, and highly damped. Non vanishing coupling
coefficients k..

J
entire area 4. In our model, only the coupling coefficients

are seeded uniformly and randomly over the
in this areaare assumed to be subject to the rules of synapse

facilitation. All other areas in the matrix &ij have constant

elements. Thus memory is contained not in the sensory or
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motor areas of the cortex but in a nonspecific region, the
association area. Some evidence for this has been deduced by
Asratian (1961) from the so-called "switching" experiments.

The area S4 in the connectivity matrix (figure 14)
represents synaptic connections originating in the sensory
cortex and terminating in the association cortex. We make the
assumption that the neurons in § have their axonal endings
randomly distributed among the neurons in A. Thus S4 is also
intrinsically an area that is uniformly seeded with nonvanishing
coupling coefficients.

We shall now rearrange the order of the neurons in 4
as follows: 1let g, be the set of neurons in 4 which are
triggered whenever all of the neurons in s are firing.
Similarly a, is the set of neurons in 4 triggered by 8., etc.
The order of neurons in the association cortex may now be
changed in the diagram without any loss of generality.
Specifically, if a;, 4, etc are disjoint states3?*® the
reordering may be carried out in such a way as to lead to an

arrangement like the one shown in figure 14. Area S4 now

3This condition can always be satisfied in practice by
assuming the number of neurons in the association net to be
very large compared with the size of the states a;, a,, etc.

*The states &,, a,, etc are what we called in (I) fundamental
cortical states. We drop this nomenclature here as superfluous.
Nevertheless if s, sends inputs into an otherwise completely
qulescent a85001a%1on net and triggers @ the correspondence

a M g 1s invariant under our assumptlons even with learning
taklng place.
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appears as though it were structured, having blocks of dense
coupling superimposed on a background of more diffuse coupling.
It is important to realize that the re-labeling of neurons in
the association net will not change the uniform and random
distribution of coupling coefficients in area 4.

We try first a simple scheme, which may perhaps not be
very realistic. Assume that a coupling coefficient kij is
increased slightly whenever the f{-th and the j-th neuron fire
simultaneocusly®., It will be convenient to adopt also the
so-called adiabatic learning hypothesis (Caianiello, 1961)
according to which these changes are so slow that they may be
neglected if we compute the activity in the net resulting from
a single sensory input.

The following mode of operation of our compound net
model may now be contemplated: consider two stimuli for
which the neuron pocls g, and a, are the specific detectors.
If these two stimuli occur simultaneously for some time,
reinforcement will occur in the cross-hatched areas of the
association diagram (figure i4), We had previously shown
that the set of neurons £1L_Jgas after sufficient reinforce-
ment, may be considered as a net-within-a-net; it will be
relatively independent of the embedding net.2 if the latter
is highly damped. The association of s; and g;, thus

accomplished will have the effect that hereafter either one

® This assumption differs from the Hebbian hypothesis in that
here the presynaptic action potential, because of the synaptic
delay, does not contribute to the firing of the postsynaptic
neuron,
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of the stimuli will produce a neural activity in the association
net which suggests (according to our definition of this term)
the simultaneous presence of the other stimulus,

So far we have followed the static treatment, first
presented in (I). The system described above has thus all the
capabilities of carrying out the various cognitive tasks
described in (I).

We shall now go a step further., In figure 15 we show a
neural net which differs from the previous one in that the
neuron pools g,, 8,,8, each form a small interconnected net as
shown by the blocks in § (figure 15), The connections from
S to A are the same as before., We wish to reinvestigate
now the mechanisms that may lead to the reinforcement of
coupling ccefficients within a given domain, say «;, in the
association net. For this purpose we shall employ the
Hebbian reinforcement rule in its original form, which states
that a coupling coefficient kij between two neurons in the
association net increases in value whenever the firing of the
J=th neuron is, by itself or in conjunction with others,
responsible for triggering the i-th neuron. Detection of a
given cognitive element may now be pictured as activity in a
specific neuron pool g; in the sensory cortex. This activity
may be damped or sustained, depending on the parameter of the
net, the size of the initial excitation,and the question
whether or not the sensory input is sustained. A sustained
activity in s; clearly will trigger some sustained activity in

a; by virtue of the connections in 54 (figure 15). Since g,
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is assumed to be initially highly damped (as is the net 4 in
which it is embedded) ;the activity in g, will be just that due
to these inputs from g,. Let the fraction of neurons in a,,
that are activated in every successive interval, be a*. For
the neuron gas model the a*q neurons in g1 are chosen complete-
ly at random for every interval 1. The average firing
frequency of a neuron in g, will thus be <u>=a¥*/t. The
probability for a particular kij (Z,7ed) to become strengthened
in the (nT1)-th interval will be the probability that the i;th_
neuron fires in the (nt)-th interval, multiplied by the
probability that the j-th neuron has fired in the (n—l)f—th
interval, But that is just (a*)2?, This means, for instance,
that for a*®*=1/10 and t=10"° sec., each coupling coefficient

in g, will receive an average of 10 increments per second of
sustained activity. Clearly, in time the entire domain g,

will have become reinforced.

The above argument is equally well applied to the
association of two or more stimuli, Thus again, all of the
associative functions which have been shown in (I) to be the
properties of highly damped nets apply to the present model.

We have merely added a mechanism, lacking there, for generating
the sustained stimulation necessary for producing the slow
changes in the coupling coefficients, This mechanism is
believed to be the existence of reverberating pools of neurons
in the sensory cortex which act of detectors of specific

cognitive elements. Also in the present treatment, a more

rigorous application of the Hebbian reinforcement rule
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(Hebb, 1949) has been possible,

An interesting possibility is the existence of fibers
returning activity from the regions a;, a;, a, to the sensory
pools 8:, 824 and gy respectively, shown in area AS in
figure 15. In this case reverberations may occur between the

two nets, particularly after reinforcements have taken place

in the association net. Evidence for this may be deduced from

the sensory-sensory cortical conditioning experiments of
Morrell (1957) mentioned above, Here, following the frequent
pairing of a visual and an auditory stimulus, the auditory
stimulus by itself would elicit in the visual cortex an
éctivity characteristic of the visual stimulus. We believe
that the study of the dynamics of coupled probabilistic nets
detailed in this section will contribute to a physical under-
standing of such neurolecgical processes in cortical
conditioning. Such processes are currently being studied by

us using computer simulation,
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SECTION VI

SUMMARY AND CONCLUSIONS

The existence of various neuronal structures in the
cerebral cortex is a well-known fact. These circuits and
their afferents are evidently genetically designed and fulfill
readily discernible functions. It was argued in Section II
that probabilistic elements should play an increasing role as
higher and higher cortical areas are being considered. We
have investigated a model of cortical functioning in which the
lower cortical structures interact with a large probabilistic
net, the association net. The latter is completely un-
structured initially. Synaptic learning of the type postulated
by Hebb, is assumed to be operative within the association
net only.

In a preliminary study the dynamic properties of simple
probabilistic nets was investigated (Section III). Curves
are presented that show the dependence-of net behavior on
various parameters.

In Section V, we discuss the coupling of the sensory
structures to the association net. In particular, cell
assemblies emerge in a natural way in the association net if
we assume the sensory structures to consist of pools of inter-
connected neurons that are miniature reverberating nets.

The information processing that takes place in the

association net is that discussed in some detail in a previocus
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paper. A brief resumé of this work is presented in Section IV,
The calculations on net dynamics carried out in Section
IIT apply to a specific set of assumptions concerning the
individual neurons. Among these are that the refractory period
of a neuron is greater than the synaptic delay but less than
twice the synaptic delay. At the end of the refractory
period the neuron reaches full sensitivity. We are now in the
process of extending these studies by means of computer
simulation techniques. This will allow us to consider a great
variety of assumptions on absolute and relative refractoriness
and. other neuronal parameters, The appropriate computer
programs, written for the most part in Fortran IV, will be
published in a forthcoming report. The same programs are also
capable of simulating the compound neuronal structures we

have discussed in Section V.
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APPENDIX
Derivation of Equation 2,

The expression for the activity <an+1> generated by the
preceding activity @, in our probabilistic net, Equation 2, is
obtained by adding the probabilities of all those combinations
of excitatory and inhibitory inputs to a neuron which give a
total PSP exceeding the threshold 0.

Let P, be the probability that a neuron will receive j§
excitatory inputs, and 4, the probability of receiving m
inhibitory inputs.,

Using the Poisson approximation, which will be reasonably

good especialiy for emall values of a,, we obtain
P =exp[-a (1-m)py] »[o (1-R)p ]2/2! (17)
L n + n +
qm=exp(-anhu_)-(anhu_)m/m! (18)

Let P(®) be the preobability of triggering a particular

neuron, We have

m %
P(p)= "Br Mg,
m=0 g=n”

29 (19)
Here n” is the minimum number of excitatory inputs

necessary to trigger a neuron, which has received m inhibitory

inputs. It is given by n”=u{(0-mk_)/k,]. The upper limits

2 and m in the double sum are the total number of active

max max

excitatory and inhibitory connections respectively, i.e.
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zmax=Aun(1-h)u+ (20

m =Aa_hu

max = n =
From (20) we see that gmam will always be very much larger
than the exponent in (17), hence we can write

2
0%, = 1 p =l-expl-a_(i-h)u ]
Rz=n~ % L=n" 4 n +]

A PRTRAR LYY,
.. o =nJu .
=0 "

Substitution into (19) now yields

Maaz m
p(e)= ¥ exp(-a_hu de(a hu ) /mt-
m=0 n - n -

n’-1

A
°{1-exp[-an(i-h)u+]-2 [an(l—h)u+] /1)

L
=0
According to our assumptions of refractoriness there are

exactly (1-an)A neurons which are not in a refractory state at

time (n+1)t. Hence the expectation value of a L4 is given by
n
'<an+1>=(1-an)P(@)

which is Equation 2,
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