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ABSTRACT

This monograph is devoted to an analytical and experimental
investigation of vibrations of non-conservative elastic systems
in which the sources of energy dissipation is irreversible cyclic
straining of the material.

Modern methods of analysis of non-linear vibrating systems
are extended to treat problems of the flexural vibrations of long
bars of constant and variable cross section, short bars and tur-
bine blades. Torsional vibrations of rods are also considered.

Considerable attention is given to the experimental investi-
gation of energy dissipation in the material., Several apparatuses
are described and some of the experimental results presented.
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PRESACE

At the present time there is no need to justify the
importance of the study of vibrations in almost @il fields of
contenporaryv technology. 1In particular, in machine design the
investigation of the influence of danping factors on the
develonrment of oscillation is a pressing problem.

p to now, however, only the influence of friction
nrororational to speed has been gtudied in a nroper manncr; the
wtudv of the real prohlem of oscillatory svstems with internal
friciion of a hvsteretic type still rewains in its most primitive
stape because of the ncnlirearitv of the equations obtezined,

we should welcome, therefore, the appearance of G. S.
iisarenknts work devoted vreciselv to the study ol this imnnortant
and nertinent nrohlem,

The nresent treatise consists of a theoretical investigation
and an eupcsition of the exrerimental part,

In the first nart the author, basing himself on contemporary
concenrtions concerning the character of the nrocesses of cis-
sination of energy in material and, in perticular, using the
hvnothesis of ¥, ¥. lLavidenikov, sets forth a theory of analysis
of oscillations of elastic svstems taking into account the dis-
sipatior. of enerygy in the material in a manner applicable to a
numher of engineering problems,

In view of the norlinearity of the differential equations
obtained in this connections, the author has used the ideas of
the theorv of asvmptotic expansion in nonlinear mechanics, and
has worked out an original method of calculation of resonance
corves, which has proved to be very effective,

Manuscrint released for publication August 1960 as a WADD Technical
weport.
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With the aid of this method a series of important and
nractical prohlems connected, in narticular, with the vibration
of turhine hlades was solved by the author, Cases of oscil-
1aticn of bhlades of constant and of variable cross-section with
due allowance for centrifugal forces are thereby considered, as
are also cases of oscillation of short blades.

In general, it should be remarked that some typical problems
are completely solved in this bood and are carried through to the
numerical computations. These rroblems demonstrate the effective-
ness of the method proposed by the author and show the suf ficiency
of the first aprroximation.

This circumstance permits us to recommend G, S, Pisarenko's
method for utilization in the anpronriate design offices.,

In connection with the fact that the proposed method
envisages the utilization of exnerimental constants, characterizing
the damning properties of materials, considerable attention is
given in the work to their determinaticn.

In the experimental part a series of original apparatuses
with a very ingenicus principle of operation is proposed byv the
author, which permits the investigation of the damping properties
of the materials themselves in a "pure state" under different
temnerature conditions.

Thus, G. 5, Pisarenko's book is a valuable contribution to
the i1ittle studied but important field of investigation of
vibrations (considering dissipation of energy) which are
characterized by nonlinear differential equations.

Academician N, N, Bogolyubov

WATD TR 60-582 2



INTRODUCTION

The present monograph is devoted to a relatively little
studied but important problem - the investigation of oscil=~
lations of elastic systems allowing for dissipation of
energy in material,

The development of high-speed machines in the Soviet
Union, and, in particular, of turbire and motor comrstruction,
demands higher standards in the calculation of the dynamic
strength of their components, 1In this connection the
problem of oscillations acquire particular urgency.

At the present time the theory of oscillations and its
application to different branches of technology have
undergone a very great development, thanks mainly to the
work of scientists of our own country, However, several
problems of the theory of oscillation which are important
for machine construction, in particular, gquestions connected
with the consideration of the dissipation of energy during
oscillation, despite their tremendous practical significance
for dynamical calculations, have been studied relatively
little up to now,

As is well known, during oscillation of actual
structures, which are non-conservative oscillatory svstems,
energy supnlied from outside the system is dissipated. The
causes of the dissipation of energy are usuvally divided
into external causes and internal causes., Among the
external factors are friction of the oscillating system in
the medium in which the oscillation occurs and the friction
in the connections of the separate elements of the oscil-
lating system., Among internal factors is the incomplete
elasticity of the material,

WADD TR 60-582
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The influence of the external and internal factors on
the dissipation of energy varies within wide limits depending
on the form of the oscillations, the design of the oscil-
lating system, the material of which this system is made, and
also the medium in which the oscillations take place.

Extensive investigations, conducted by a number of
authors in a study of damping in material in torsional oscil-
lations, showed that the loss of energy from air resistance
is insignificant by comparison with the loss in the material
itself, which constitutes not less than 2/3 of the entire
loss during oscillation,

Therefore, for rational design of structures, knowledge
of the abilityv of the material and the separate elements of
construction made from this material to damp the oscillation
is most essential., Sometimes special elements, so=-called
internal friction dampers, are included in elastic systems
in which harmful oscillations (such as torsional oscillation
of airplane engine crankshafts ) unaveidably occur during
use, These dampers, which are not load-carrying members,
are intended for the absorption of the energy of oscillation
of the elastic system in which they are included; they are,
therefore, made of material having great interral damping,
for example, rubber.

In several cases of combined oscillation of a group of
machine components (for example, shaft-airplane propeller,
shaft-disk-tlades of a steam turbine, and so forth) by
proper adaptation of the separate elements of the system, it
is possible to achieve such a degree of interaction that the
oscillation of some elements of the system will be damped by
the oscillation of the others.

Many investigators have concerned themselves with the
study of oscillation of elastic systems taking account of
dissipation of energy in material, but the methods of
theoretical calculation of internal damping used in many
cases led to results contradicting experimental data.

WADD TR 60-~582 4



The goal of the present work is — on the basis of
verv aseheral assumptions which are confirmed by experiment —-—
to provide a new method of theoretical sclution of the
problem of oscillation of elastic systems with allowance
for dissipation of energv in the material.

In the first part of the work a theory of analysis of
elastic ‘systems with allowance for hvsteretic losses in
material is set forth, 1In the boock there is a generalization
of the author's previously published works, [8-14] in which
the idea of a proposed new method of calculation is presented,
based on nonlinear treatment of problems of oscillation
which are accompanied tyv hvsteretic losses, 1In this book,
the relation proposecd by N. N. Davidenknv is taken as the
fundamental relation between stresses and deformations
which characterizes the departure from Hooke's Law. This
relation reflects the nature of the formation of the
hysteresis loop better than others do, as is well known [15]
In the monograph the asymptotic methods of nonlinear
mechanics proposed by academicians N. M. Krylov and K. N,
Bogolvubov, [2,8,4] , which are very effectively adaptable
to the solution of a number of important problems in physics
and technologyv, have undergone further development.

In spite of the somewhat complicated nature of the
proposed method of calculation, which is based upon direct
integration of a differential equation of oscillation of
the syvstem with the nonlinear law of internal dissipation
of energv in the material, one must admit that in some
important problems this method is, on theoretical grounds,
the only correct one,

The proposed method of analysis is at the same time
sufficiently universal to permit the solution of a problem
of oscillation and, in particular, for rods under comnlicated
states of stress, also with any law of nonlinear dependency
between stress and strain.

WADD TR 60-582



The book shows in a series of concrete problems the
effectiveness of the proposed asymptotic methods of non-
linear mechanics in the solution of problems of oscillation
with allowance for hysteresis, even in cases where the
basic nonlinear relationships are complicated, Here it
should be noted that in the investigation of certain kinds
of oscillation of rods allowing for dissipation of energy in
material, other methods based on additional assumptions were
applied by a number of authors([7,8,16,17].

Since we attribute great significance to experimental
investigations of dissipation of energy in material, without
which it is impossible to make theoretical calculations of
resonance curves, in the second part of the book we cite
material on the experimental study of this problem. The
method of investigation is presented and a description of
the new experimental apparatuses devised by the author at
the Institute of Structural Mechanics of the Academy of
Science of the Ukrainian SSR, in the Special Alloy Laboratory
of the Academy of Sciences of Ukrainian SSR, and in the
Kiev Polytechnical Institute is given. In addition, facts
obtained by the author in connection with the study of the
influence of various factors on the magnitude of dissipation
of energy in material are presented in this book.

The materials included in this treatise grow out of
the general conclusion of the investigations conducted by
the author in the past few vears in the field of vibrations.
A number of questions was considered under the influence of
Academician N, N. Bogolyvubov and Active Member of the
Academy of Sciences of the Ukrainian SSR, N, N, Davidenkov,
with whom over a period of ten yvears the author worked at
the Institute of Structural Mechanics of the Academy of
Science of the Ukrainian SSR., The author considers it his
duty to express his profound gratitude to Academician N. N.
Bogolyubov and to Active Member of the Academy of Sciences
of the Ukrainian SSR, N, N, Davidenkov for their valuable
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advice which alded in the writing of the present monograph,
I alsc wish to express my profound gratitude to Active
Member of the Academy of Sciences of the Ukrainian SSR,
G, N, Savin for the lmportant comments made by him, after
he had famliliarized himself with the manuscript.

In conclusion I consider 1t my duty to express my great
gratitude to the Director of Technical Seciences, D. V.
Weinberg, for his assistance in the editing of the book.
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Chapter I

Vibrations of a System with One Degree of Freedonm

1, Statement of the problem

Under alternating loads, which are accompanied by
oscillations, the majority of materials used in machine
construction deformation do not follow Hooke's Law when they
deform. Energy expended in the deformation of material during
each increase of load is not completely released upon removal
of the load. Eecause of this circumstance, if no energy is added
from outside the system, the oscillation of such a system
decreases with each cycle of oscillation, and when all the energy
is spent on the internal processes which take place in the
material of the system the oscillations will cease completely
(be damped). In the stress-strain diagram for materials possessing
the property of internal absorption of energy, the process of
dissipation of energy in one cycle of oscillation is pictured in
the form of a hysteresis loop. The area of a hysteresis loop
determines the quantity of energy dissipated per unit volume of
the material in one cycle of oscillation. This amount of energy,
which can be expressed as a function of stress, characterizes the
“"disgipation of energy in material during vibration" or the
"internal damping of the oscillations”, The dissipation of energy
in material per unit volume should be considered as a property of
the material, independent of the form and dimensions of the
specimen.

WADD TR 60-582 8



In connection with the studv of oscillation of
elastic systems, questions concerning dissipation of
energy in material have for some time now attracted the
attention of manv scientists = physicists and mechanicians,
We shall not occupy ocurselves at the present time with an
analysis of work which has been done, inasmuch as such an
analysis has been given by Professor N, N, Davidenkov [1].
We shall point out onlyv that all existing methods of invest-
igation of damping in material follow two fundamentally
different dirrections, One of these directions, originating,
apparently, in works of Voigt, is based on the hypothesis of
"yiscous friction", According to this hypothesis, damping
in the material during oscillation is proportional to the
rate of deformation or, what amovunts to the same thing - fto
the frequency of oscillation.

The second direction, represented by a considerably
smaller number of works, is based on a hypothesis according
to which material damping is proportional to the amplitude
of oscillation. Experiments must serve as a criterion of
the correctness of these hypotheses,

O0f all the exnerimental work devoted to the study of
energy dissipation in material, it is difficult to name
even one, wiich was carried out in a thorough manner, and
which would support the hypothesis of viscous friction. As
far as the second hypothesis is concerned, it is verified
by a great amount of painstakingly performed experimental
work, which deals both with torsional as well as flexural
vibrations,

We should note the fact that authors of many works
dating from an even later period adhere to the hypothesis
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of "viscous friction".” The fact of the matter is that

these works are primarily theoretical, and for theoretical
analysls of osclllation of elastic systems taking account

of energy dissipation in material, the hypothesis of
frequency dependent damping of vibrations greatly facilitates
the mathematical calculations - the differentizl equations

of oscillation turn out to be linear, which conslderably
simplifies their solution.

When chooslng the hypothesis, which one must use as a
bagis of investigation, one should start from the analysis
of factors influencing the size of the hysteresis loop,
as this quantity characterizes the damping in material.

From the experiments of Academician A. F., Yoffe with
monocrystals of quartz, 1t 1s well known that perfect
monocrystals possess complete elasticity. Apparently,
hysteresis in metals is due to thelr polycrystalline
structure.** The state of stress c¢f a material consisting
of many interconnected but differently oriented grains is
heterogeneous, due to anisotropy of the elastic properties.
The heterogenelty of the stress is so considerable that on
the boundarles of the individual grains, overstressing
occurs causing local plastic deformations which increase
with the size of the load. As a result of these deformations,
the metal changes somewhat its structure and passes into a
state of stress which is more homogeneous than the state of

*We exclude the work of Forster in which the study of
damping was carried out by an electro-acoustical method for
very small amplitudes without eliminating the loss due to
air resistance. (See pp. 48-51, WADC Tech. Report 56-180
by L. J. Demer for references.)

**The physical side of this questlon has been thoroughly
dealt with by N, N, Davidenkov [%].
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stress without plastic deformations; i.e., equalization of
stress on the grain boundaries takes place.

As a result of this anisotropy of material, when the
load is removed, local overstresses occur again, and, as a
consequence, local plastic deformations, but now in the
opposite direction. On a stress-strain diagram the process
of unloading appears as a curve, which is different from
the curve of the process of loading. During a steady state
of oscillation of the load, the usual closed hysteresis
loop is formed,

Withouf going into the details of the complicated
processes which originate in the polycrystalline anisotropic
medium of the material of the oscillating system, we must
consider it as proven that dissipation of energy in material
is caused by isolated plastic deformations and that the
magnitude of this dissipation increases with increase of
load or, what is the same thing, with increase in the
amplitude of oscillation.

This conception permits us to beginm from a2 functional
relationship between damping and amplitude of oscillation
established directly by experiments, when solving a problem
of oscillation of elastic system taking account of energy
dissipation in the material,¥®

In accordance with the hypothesis which has heen
accepted concerning the relation between energy dissipation
in the material and the magnitude of stress, the hysteresis
loop must be considered in the derivation of the equation of
vibration. As the experimental data show, the hysteresis
loop has a form which does not lend itself to description by
the equation of one smooth curve which describes the entire
contour, The hysteresis loop is limited by two smooth curves,

#A bibliography of work devoted to this problem can be
found in a survey article by N. N, Davidenkov, published in
Zhurn. Tektl- Fiz. V01. VIII, l'lO. 6, 1938.
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one of which corresponds to loading and the other to the
unloading of the sample, In the places where the branches
meet a sharp break in the curve is observed. Therefore, the
contour of the hysteresis loop must be represented by two
equations, one of which refers to the ascending branch and
the other to the descending one, Of course, some boundary
conditions must be satisfied in the places where the two
branches meet., Therefore, the process of oscillation of a
system possessing the ability to dissipate energy in the
material, is described not by one, but by twe differential
equations, of which one refers to the ascending movement,
the other to the descending one, The fact that for the
majority of materials used in machine construction, the
branches of the hvsteresis loop diverge very slightly from
the straight line which characterizes Hooke's Law has great
importance for what follows,

This circumstance has prompted us to apply in the
solution of the problem, which is the problem in the theory
of pseudo-harmonic oscillations, an approximate method which
would permit us to obtain reliable results on the basis of a
physically justified notion of the nature of damping in the
material, The method which it is natural to apply to our
case of a "slightly nonlinear" problem is the asymtotic
method devised by academicians N. M., Krylov and N. N,
Bogolyubov [4] which has proved to be effective in the
solution of important problems of technology and physics.
Thus, for the solution of nonlinear problems sufficiently
close to the linear, we shall use the methods of nonlinear
mechanics, based on an application of expansion by powers of
a small parameter.

The application of these expansions leads to approximate
solutions which does not contain secular terms and which
satisfies the given differential equations, uniformly in

WADD TR 60-582 12



time, up to a predetermined power of the small parameter,

In our thecoretical investigations we start from modern
physical conceptions of the mechanism of the dissipation of
energy in material during oscillations, and we depend on
data found by experiments. Such an approach to the problem,
naturally, causes the final formulas to contain physical
constants, characterizing the damping properties of material.
These constants should be obtained from experiments for each
specific material., Therefore, in this book probiems on
experimental investigation of dissipation of energy in
material are also considered,

We shall use the asymptotic method as a means of construc-
ting, in a very effective manner, resonance curves for
vibrations of the elastic systems,

In this treatise the general questions of the investi-
gation of the convergence of the series used, and so forth,
are not treated, all the more because those questions do
not always lend themselves to investigation in a general way.
As for general questions of the theory of nomnlinear mechanics
applied by us, based on asymptotic expansions by powers of a
small parameter, they are dealt with in the numerous works of
the authors of this theory, Academicians N, M. Krylov and N, N,
Bogolyvubov,

2. Derivation of the basic equations

It is expedient to begin the discussion of the theory
of vibration of elastic systems taking account of energy
dissipation 1n the material with the examination of the
simplest model in the form of a system with one degree of
freedom,

A weight is suspended from a spring (Figure 1). If

only vertical vibrations of the weight Q are possible and if
the mass of the spring is small in comparison with that of Q,

WADD TR 60-582 13



then it can be considered that such a system
has one degree of freedom.
We shall introduce the following notation:
X - vertical displacement of the mass, considered
positive in the downward direction.
C - stiffness of the spring, i.,e. the load which
is necessary to stretch the spring a unit

T length.
k_“l @)~ a functional, characterizing the energy
Fig. 1 dissipation in the material of the spring.
€ - a small parameter
t - time

# - acceleration of gravity
v and % - parameters, depending on the damping properties
) of the material.
The differential equation of the free vibration of this
system can be expressed as

da? 2
g —&g +ex+ eed(x)=0.
(2.1)
Letting
‘iq- = pﬂ
Q ]
we obtain the equation
1 2
gj-{-p’x-f"pseﬂ)(x):().
di?
(2.2)
In the equation (2,2) the term p%%(x) takes into account

the damping of vibrations in the material of the suspension,
which can be characterized as some sort of retarding force.
The value of this term during the upward movement of the load
differs from its value during downward movement, a fact
indicated by the two arrows in different directions over,ﬂf
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Thus, the process of vibration of this system, in which
there is a loss of energy of vibration by dissipation in

the material of the spring, is expressed by two differential
equations, The equation (2.2) can also take the form

o?x
at? (2.3)
Instead of multiplying x by p2 when there is no damping, the

term Xx+ed(x), is used which gives a nonlinear equation (2.3
Here the presence of the small parameter ¢ indicates that

"'pz[x"'-‘%(x)] = 0.

the nonlinearity of equation (2.3) is slight, because it is
caused by the deviation of the "stress-strain" curve from the
linear law of Hooke, and this deviation, as is known, is
small, In the case of the ideal elastic system (without
damping) the small parameter reduces to zero, and then the
term of the equation (2,3) containing the parameter ¢ dis-
appears, and the nonlinear differential equation reduces to
the usual linear differential equation of free harmonic
vibrations without damping,
2x

+ p X——“O.
dt® (2.4)

Vibrations, characterized by equation (2,3), will be transient,
damped vibrations. The rapidity of damping of the vibrations
will depend on the magnitude of the term p® ep(x)
The actionon the system of an external periodic exciting
force is required to maintain such vibrations. Since the
dissipation of energy in the material (hysteresis losses)
is slight, to maintain a steady-state vibration a small
external exciting force is obviously also needed, It is
expedient to indicate the latter circumstance by introducing
the factor ¢ in the periodic external force, Thus, if
the external exciting force is designated by €P sinwt, where
P is the amplitude, and w 1is the frequency of the
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external periodic load, then the differential equation of
the forced vibrations of the weight, Q, on the spring can be
represented by

O - Pt Lt e B(x) | = eg sin w,
t (2.5)
where qzng.
Q
Thus, we obtain the basic equation of the problem of
vibrations of a system with one degree of freedom accounting
for energy dissipation in the material (here in the spring).
The equation (2.5) contains a small parameter, the
magnitude of which is determined by the ratio of the magnitude
of the energy which is found from the area of the hysteresis
loop, to the potential energy stored per unit of volume of
the material of the elastic system at the extreme position
of the weight., It is then natural to seek a solution of
this equation in the form of expansion in a series with
respect to the small parameter:

¥ =Xy €08 {wf 4= ¢) 4 ety () - 2 () - . . L,
(2.6)

where 1f is the phase shift,

We note that the terms of the series u,(#), u (), uws(t) . ..
are not to contain the fundamental harmonic. Keeping in
mind the series (2.6), it is possible to represent the
functional ¢@(x) in the form of a Taylor series

& {x)=B[x, cos (wi+)+eu, () +u, (H+...]=
= @ [x, cos (wf+ )] +:0;[x, cos (wi+ )] u, () +
+ 220! [xy cos (wi+y)] uy (D + ;—1 @’ [x,cos(wt+y)Yat (@ +...
(2.7)
Substituting the series (2.6) into the differential equation
(2.5) and using the notation

o) = xo cos (wi -+ ),

(2.8)
WADD TR 60-582 16



we obtalin

d2u(t) . du, (D d2us (5
ap  tega tea— o pu (O pran (O F

TP+ . Fep*Plun (D ten, (D +etu, () .. ]=&g sin wl. (2.9)

We separate from equation (2.9) the terms containing the
fundamental harmonics
dfflo__(f)_

0+ by (O+ e [y ()], =2 sin .

(2,10)*
Because the term p:®[y ()], contalns only the
fundamental harmonic, it is found that the magnitude of
this term in the zeroth approximation is equal to the
magnitude of the right hand side, i.e,

pre@iu, (D], = #q sin wt.
(2,11)

The well-known equation for determination of the
natural frequency i1s obtained from equation (2.10)

d*u, (1)

it + ptu, (5=0.

(2.12)

This eqgquation in the zeroth approximation could also
have been obtained from (2.10) by setting & =0,
Introducing the substitution (2.8), we get

— w?xp €08 (wl - ¢} peo cos (wf + ¢)= 0,

whence

m!=p2=:6 dc'r’ (2.13)

*‘.L‘he Russian subscripts rr denote "principal harmonic";
%-r will mean "without principal harmonic". (Trans.)
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where £%==SCT , the static extension of the spring
under the influence of the weight, Q.

Returning to equation (2.9), we equate to zero the
expressions which multiply the different powers of the
swall parameter. From the remaining terms of the equation
(2.9), after separation of the main harmonics and considering
the expansion (2,7), these additional equations are obtained:

2
%}?@ + p?u, (t) + p* @x, cos (w1t )]y, =0, (2.14)
du, ()
g T s (t)+p20lx, cos (@t ), u, (=0, (2.15)
'
‘%;(—ﬂ + pruy (8)+ p* @2 xo cos (wt-+9)), e Ba ()}
P g
+75 9.l cos (@t o)y, 4} (=0,

(2.16)

We examine the equations of harmonic balance to determine
the actual frequency of vibrations of the weight, Q, and the
magnitude of the phase shift,

kﬁ{fd_’f + p*lx+e®(x,», n)]~egsin wt}cos wtdt=0,
: |
) (2.17)

@{% + P [x+eB (x, », n)]— 2q sinwt} gin wt dt=0.
(2,18)
What we have done by writing these equations is te
separate out the principal harmonics in sines and cosines,
occurring in the original differential equation (2.5).
After substituting the expression for X from (2.6) into

the equations (2,17) and (2.18), we get:
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(ﬁ{gg [ xocos (wf + ¢) ey (£) T2 () . . .1+

+ p?xocos (wf + ¢} st (#) 22 () + . . L]+
4P| xo cos (wf + ¢) et ()t (t) - . . 1

— 2 sin.mt} cos widt =10,

(2,19)
@{a‘% [ %008 (wt + ¢) Loy (£)-F-e2up (D)4 . . .14
+ p* [ x0 cos (wf + o) +eity (§)F-ea(t)+ . . . ]
+ @[ %0 08 (wf -+ 9) ety ()} e )+ . . . ]—
— £g sin wf } sin wi dt = 0.
(2.20)

Carrying out the integrations in equations (2.19) and
(2,20), and retaining the terms containing the small
parameter £ to various powers as a factor, equations are
obtained which determine the frequency & and phase shift

1V to different degrees of exactness. Thus, for example,
retainirig the terms containing the small parameter of zeroth
and first powers, formulas are obtained for determining &
and WP in the first approximation:

a{p® — w?) xq COS ¢+P9€$8(p[x0008 (wt - ¢)] cos wt df — 0, (2.21)

— 2{p® — w?) xgsin ¢ + p? @eai[xo cos (wf - )] sin wf df —
— eqa = 0).
(2.22)
The symbol ) as it is usually meant, indicates that the
integration must be carried out on an entire closed cycle,
Formulas to determine & and ]P in the second approx-
imation can be obtained, if in the integration of equations
(2.19) and (2.20), we retain the terms containing the small

WADD TR 60~582 19



parameter in the zeroth, first and second powers, namely:

a{p? — w?)xgcos ¢ pﬂéad){xg cos (wf + ¢)+
- ety ()] cos wi df =0, (2.23)
— 2(p? — @) xgsin y + p? fﬁ‘@ [ xocos (wf + ¢) +
+ eu (£)} sin wf dt — ega = (.

(2.24)
To determine the magnitudes of & and 'fl in the third
approXimation, it is necessary, when integrating equations
(2.19) and (2.20), to retain all terms containing as a
factor the small parameter from-:the zeroth to the third
power inclusively. As a result the equations obtained are:

2 (P? — w?) g c0S § - pfe@sm [0 c0s (wl + $) + et {t) +

+ 225 (Y] cos wi df = 0,
(2.25)

— (Pt — wf)xosin g+ p? e [0 cos (wh 4 y)-t cun (8)
- 2wz (¢) ] sin wi df — eqn = 0.
(2.26)

Proceeding in a similar way it is possible to obtain equa-
tions from the successive approximations. Before computing
the final formulas for determining the displacement & ,
frequency of vibration &} and the phase shift '{" with
accuracy up to the various powers of the small parameter,
the functional ﬁ(x) must be found. To do this, the
hysteresis loop of the material of the bar (spring) is
examined., A symmetrical hysteresis loop occurs during
vertical vibration of the load suspended from the spring,
plotted in coordinates: wunit strain§ — normal (or
tangential) stress ¢ (Figure 2),
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The presence of a hysteresis loop demonstrates the
variability of the true modulus of elasticity of the
material, which is geometrically expressed by the tangent
of the angle formed by the tangent to the curve depicting
the hysteresis loop and the strain axis, § . It is
assumed that the true modulus of o

elasticity of the material of the y
bar for the ascending and descending /
branches of the hysteresis loop during /’ / £
the symmetrical cycle (Figure 2) is /
represented in accordance with the 7
expressions: do P

T2 =k 1- 5], R

Fig. 2

do [

—=Kk{ I+ f ]

dE (8] (2.27)

where Kk is the average modulus of the elasticity of the
material,

The expressions+(2,27) should satisfy the following
conditions which follow from the symmetry of the hysteresis
loop:

do do
e lae]

do do

-t [75'}&—-50: rr ——¢,

Integrating the expressions (2.27) and determining the
constants of integration, by using the condition that when
E= &, o ="o, we obtain the equations of both
branches of the hvsteresis loop, which express the dependence

between stresses and strains.,

= k[E+F2(E)]. (2.28)
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From a comparison of eguation (2,28) with differential
equation (2.1) it is easy to notice that the product of
the functional by the small parameteréjﬂ%b is exactly a
quantity proportional to the second term in the square
brackets of formula (2,.28), namely:

B (5) = — F, (®),
D) = F (8),
(2.29)

X
where =l

is some length.

Formulas (2%29) confirm the supposition of two different
values of the nonlinear term Eﬂ?ﬁ) for the ascending and
descending motion. We shall not break up the differential
equation (2,5) into two equations to conform to the two
different branches of the hysteresis loop. When using the
single equation, which includes the functional é'f(‘l) , it
will be remembered that this term has two values im one
cycle of vibration, Thus, when integrating expressions
containing fjﬁﬁﬂ over the entire cycle, in particular,
when solving equations (2.,28) and (2.29) and similar ones,
it must be kept in mind that

x 2n
(f)eﬂi(x) = 885(1’) + Seatx).
) d ” (2.30)

An important argument in favor of the method described
is the fact that when deriving all the formulas connected
with the study of the vibrations of a system possessing
hysteresis losses, one has only to operate with integration
of the functional E_Efx) And so on the basis of (2.6) and
(2.29) the functional éﬁﬂﬁa for the ascending and descending
branches of the hysteresis loop in the first approximation
is expressed according to the formulas

sa(x) =0 (x0 cos @),

£®(x) = e@ (xo cos @), (2.31)

WADD TR 60-582 2



where

g =wl-+ 4.
(2.32)

For the second approximation the expressions for EI(?-')
will have the form

sf(x):eﬁ[xgcos¢+rul(t)],
e (x) = eB{ x4 £08 @ 4 gt ()}
(2,33)
In the third approximation f.f(“-) is expressed by
the formulas:

e@(x) = eB X c0s @ F-euy () -+ 2uta (1)),
@ (x) = ¢B[ xo cos @ t-euy () + 262 () .
(2.34)
We remark that in all approximations the limits of the
integration remain the same due to the absence of dis-
continuities in the configuration of the hysteresis loop
during a circuit of the latter for ore cycle of vibration,
For, if it is kept in mind that

Ttea
f@ P ag= [d)(cp)],,w €a,
v
then
Agrfy et ” N d .
S B dx + S B () dx= S{D(x)dx+Sd5(x)dx+
D4-ta g 0 "
+ (B (), — BB @), — 2 [FCNe +
n 2
+mﬁwh=8ﬁﬂ&+\ﬁﬂ&.
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3. Soclution of the problem in the first approximation

It 1s necessary to calculate the quantity u1(f) in
order to determine the displacement A in the first
approximation., The differential equation (2.14) is examined
in order to do this:

d;ut,z(ﬂ +pzu|(ﬂ =._p2{q> [xo cos (wt +¢’)]}

ag/rr .
(3.1)

Since, by convention, the function W{#) does not contain
the fundamental (first) harmonic, then this harmonic is
also absent from thé expression in the braces of equation

(3.1), which is indicated by the subscript beneath the
braces.

Let us consider the expansion
w0
®(x cos §)=Alx)+ kz_z{Ak(xo) cos ke + B, (x,) sin ke |

where, as we know

2.7

Ax)= 5‘; S & (x0 cos o) dop,

@ {xo 08 @) cos kp dp,

Q=

Ap(xe)=

B (x)= @ (xo0 cos ) sin ke de.

al=

4]
i
o

b3

]

(3.2)
On the basis of (2,32) we can write
(e8]
@[xocostwi +1P)] =Alxg) + 2 {Ak(xo) cos k (wt +y) +
k=2
+Bk(xol sin k (wt +4!)}
(3.3)
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Substituting (3.3) in (3.1) we obtain

cﬂ[:ilfgt) o+ Pl (t) = — pA (%) —

— p* T { An(x0) cos k(wf £ §)+ Bylxo) sin kot ¥}

k=1

(3.4)
From equation (3.4) we find
ur(t) = — A(x)-|-
- o Ax(x0) €08 £ (f + §)+ By (x0) sin k(wt 4 )
> Ropr—pr
k=2

(3.5)

NDenoting the right hand side of the latter equality by
qf(wt.;-‘ﬂr), we represent the expression for the displacement
X in the first approximation in the following form, in

accordance with (2.,6):

X = xpcos {wl | ¥)-F v (wf + ).
(3.6)

Formulas for determining the frequency & and phase
shift '? in the first approximation are obtained by
examining equations (2,21) and (2,22), which on the basis
of (3.2) can be represented as:

(p? — w?)xy cos ¢ + pe {A1{xo) cos ¢ -1 Bi(xo) siny } =0,
(3.7)

—A{p? —w?) xg siny + p% {Br(x) CoSa —~ Ay (xg) sin ¢ } — 2g == 0.
(3.8)

We rewrite (3.7) and (3.8) in the following form:

[(p? — w?)xo + P?edi {xa)]cos ¢ - p2eBr(xg) siny =0,
(3.9)

— [(p? — o) X0 -} preAi(xo)] sin ¢ + pPeBi(Xa) COS ¢ = &q.
(3.10)
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The following formulas are obtained from this system of
equations for determining in the first approximation the
square of the natural frequency and tangent of the phase
shift angle:

?

2 _ D2+ PleAtlxo) F v €?q*— €2p*a% (xo)
Xo (3.11)

Wy =

Ve'q'— *p'af(xa)
P €B1(xo) (3.12)

4, Solution of the problem in the second approximation

tgq"[:'l-'

To determine the correction to the displacement of the
weight %,(t) in the second approximation, we use the
equation (2,15) taking account of the expansion (2.7)

d2ua(1)

7 +;::c2 u2(1)=—p§ u.(1l¢>'x[xocos(wf+1p)]

“rre (%el)

Using the notation
Fix,d)=ult) cb;[xo cos{wt +tlf)] '

we consider the expansion

F{ )= Al S {a
x,b)l=A2 (xo)+n=Z'{Ak(xo)cos ke +Bi(xo)sin k¢} , 34.2)

where
i
Al (xo)=5 § Flx,$1d¢

Alxo)=— P Flx, ) coskd dep »

B (xo)= § Flx, ) sin keh 0.
(#.3)
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On the basis (4.2), the differential equation (4,1) takes
the form: d%u, (1)

dfz +pc2Ug(f)=

@© | (4.4)
I 2 2 I .
=—A (XO)PC— Pe kéz[Ak(XO) cos ke +B|I(( Xo) SiN k¢],
Solving this equation with respect to u,(t) and
substituting the value of ¢ according to (2,32), we get

© r
Ua(t)=—AY(xo)+p2 Y

1
I "
Ck=2 (kw)z-p: [Ak( )cos k(wt+ y) +

+Blm)sinkcm+w]= Wiwt+y), (4.5)

Thus the magnitude of the displacement in the second
approXximation will be determined in accordance with (2,6),
(3.6), and (4.5) by the formula

Xi1=Xo COS{ wt +ys) + eV ({wtry)+ e*w( wt +y).
(4.6)

We now go on to determine the frequency of vibration wpy
and phase shift V11 in the second approximation. To this
end we examine equations (2,23) and (2.24), which we
rewrite in the form:

2 2 2 . —
(P'—wIXecOSY + €p [AH(xo) COSY + Byy (Xo) sin llf]— 0, (4.7)
. 2 . —
—( pz-wz)x.o siny+€p [Bn(xo) COS'.I/'—AH(XO) Sln“’] = €q. (4.8)

where we have taken

Aqp (Xo) = %‘ﬁ@[xocos ¢+ GV(QS)] cos¢p do,

BII(XO)=-#—ﬁ¢[X°COS¢+EV(¢)]Sin¢J d¢ (4,9)
Solving equations (4.7) and (4.8) simultaneously for w

and V¥, proceeding here exactly as in the first approxi-
mation, we get the formulas:
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2 —_— 2 2 2 4. 2
2 2, €p ALx)) + € p-epBu(xo)

Wy =P %o )
(4.10)
_ €z qz_ 62945:1()( )
to4, = a
€p B (x
n % (4.11)

Thus, by their structures, the formulas of the second
approximation differ from the formulas of the first approx-
imation only by the values of the coefficients A and B.

On the basis of the expansion (2.7) the formulas (4,9)
are rewritten in the form

l ! 1
An (x,) = - é) D ix, cos (p) cos pdp + %gﬁ @x(xg cos 93)1) ((p) oS @ dip,

Bu(xe) = i—(ﬁ @ (x, cos p) 8in qadtp-]-;(js D’ (x, cos @) v (¢) sin g dep.

(4.12)
Since in accordance with (3.7)

Tir" g: D (x,cos P)Cosd dp=A, (x) ,

—111_ é)CP(xocosqfa)sinqb dp=8,(x) .

only the second integrals of formulas (4.12) remain to be
examined. Taking into account (2.29) and (6,2), and also
setting §= ¥ cos@ we can write:

2 é‘) @’ (x4 cos p)v{p) cos pdp =

[ 3

1 vt d " =—1 -
— .\ 22V 2 (l—cos ~Q () cos pd

18 - d(p[(l oS @) |v(¢) cos pdy

0

@

vx? d n n—1 =

L S?[(1+cos¢) —2"""{u(yp) cos pdy
q.)

m

(4.13)
cont,
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n
=% { S(l —co8 ¢)" " sin g v (y) cos @ dy +
9

T

t
+ S(l + cos )" sin pv(gp) cos :pdt,v}.

(4.13)
Changing the limits of integration in the second
integral by replacing ¢ by @+7T and, therefore,
(@) by ~V@) we get

:f—,.é)cb'x(xocossb) v (Pp) cos¢ de =
vxo {f{l-—cos 9‘5? smq‘;u(d,) cosd de —

_.ftl-cos 4>)n-| sin¢ v {p) cos ¢ qu} =

. (4.,14)
Therefore,

h

Ay(xo)=4,{x) = &’% S (1—cos )" cos pdp.

0

(4.15)
We determine further the coefficient

Butz)= = Bz, cos g)sing dp+ S 0L(x con )0 ) singpdy.

We now examine separately each of the integrals of the
latter equality

Dy
d) D (x, cos ) sin @ dp = l%[ S(l —cos )" sinpdp— 2"] =

0
2!11'1

Xe¥ N -
:;;IH(H"I’l)(I H) B[(xo)-

. é @ (xo c08 g) ¥ (g) sin @ dy = =

b g(l —cos ¢)" " 'v(p) sint g dp +
6 ~

2
+ % S(1+cosqv)v(cp)sin=q:d(p. (4.16)

frd

(4.18)
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Substituting the limits of integration in the last
integral, we have

Al (j) @’ (xo cOS ) ¥ (p) Sin & dg =
n

= { S(l —cos ¢)" v () sin’ g dp—
T
LU

— S(l — cos ¢)* ~'v{p) sin® tpd'lp} = Q.

L]

(4.17)
Thus

i (l—n)

Bl =Bx) =" nta Dy

(4.18)

Using the formulas (4.10) and (4.11) and substituting
in them the values of Ay (%) and By (x,) from (4.15)
and (4,18) it is possible to construct a resonance curve
for the second approximation, and to determine the phase
shift for this problem of vibration in a system with one
degree of freedom considering the dissipation of emergy in
material,

5. Solution of the problem in the third apnroximation

In the third approximation, the magnitude of the phase
shift vﬁm' and the frequency of vibration Wpgr can be
determined by starting from equation (2,25) and (2.26)., Ve
use the notation:

Ay(x= £ {0030 03+ () Fe80(5) eos 1 .

Brxg= 5§ {015 cos g 1 (e)+ w0 ()]} sing. do.

2

(5.1)
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Then equations (2.25) and (2,26) can take the form:

[p* — w?) xp cos ¢ + ep? [ Ay (xo) cos g+ By, (o) sin ¢ | =0,
(5.2)
—(p* —- )Xo 5in y - 2p? [ By (w0) cos ¢ — Ay (o) sin ¢ J==eq.
(5.3)
Solving simultaneously equations (5.2) and (5.3) for W
and Y by analogy with the equation for the second
approximation, we obtain the formulas

sp*Am (xo) T Vezqs —E’E@E@

“’;il=p’ + - X
(5.4)
_ Vet Bl (x.)
R T e A N
(5.5)

From a comparison of the formulas for the third approximation
(544) and (5.5) and the formulas for the second approximation
(4.10) and (4.11), it is noted that the only difference is
the value of the coefficients A(XD) and B(’Xo) The
determination of these coefficients is the basic content of
the successive computational operations when solving a
problem in different approximations.

The coefficients Am('xc) and Bar (9(0) in formulas
(5.2) and (5.3) will be determined for the third approx-
imation, using formulas (5.,1) taking account of the
expansion (2.7)

ygro)= ,‘;[ 30, cos g)cos g dy
+ e(‘;:) @' (xa, cos @) ¥ () cos p dyp |-
+ E’(f) @’ (xq, cos ) w () cos g dp -
+ §§) D’ (xq, cO5 @) V2 () cOS d(p] ;

(5.6)
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Bux)= | 0 (o cosgsing dp+
+ EEﬁ @ {xo, cos ) ¥ () sin o de -
+ Ev(ﬁ ®; (x0, c0s p)w () sin e dg +

|
+ fé(ﬁ di; {xo, cos @)V (@) sing dqa] .

(5.7)
The first two integrals on the right side of the equations

(5.6) and (5.7) are equal, respectively, to the coefficients
of the second approximation AJI (7‘0 ) in (4.15) and
Bn(&o) in (4.18).
Therefore, for a complete determination of A_m- (‘K,) and
f&n(ab) it is necessary to compute the integrals:

2
1= 8. (v cos Y p) cos g
Iz = ;_5 @ Q; (xﬂ cos tP) v? (.(p) cos d‘p’
1
2
I,= %@ B, (%0 c08 @) w () sine do,

z -
I, = ;—H (ﬁ P, (%0 cos )2 () sing dp.

In expanded form we have:
2 n
I, =%g)@; (xo cos )W (¢} cos ¢ dip =

n
- VX,

- { S (1—cos ¢)" ' sin @ cos pw(g)dp+

L

b2

+ S(H-cos @)" ' sin ¢ cos ¢ w (p)dy } =

T
4
"
srxt

== {S(l —cos )" sin ¢ cos pw (p) de +
]

(5.,8)
cont,
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+ S(l-cos g)Y 'sin ¢ cus gw (g dop } =
0
g (1—cos 9)"* sin ¢ cos g w (p) dp.

. 0 (5.8)
- é;;@ ;' (xo cos p)v* (¢) cospdp =

2£vx

&¥

n': { % {(a—1)(1— cos g)*2sin® ¢+ (1 —cos ¢)*cos ¢] X
o

b
X cos g (p) dg + ( [(r—1){(1+cos @)"2(—sin? ) +

b
24

222 1= (1 com g -tsintg +

0

+ {1+ cos ¢)*~cos o (¢) d?’} =

4 (1 —cos @) 'cos ¢] cos vy} de. (5.9)
*

2
== (ﬁ @, (%0 cos p)w () sin g dy =

Elxn{ S(l — CO8 q.)ll—l Sln’ ¢w((p)dq) +

n

+ S(l + cos (p)"‘lsinzqw(qa)dq:} =

T

= 2 { S (1—cos ¢)*~*sin® pw(g) dp+ S(l—cos o)t sin’pw (g)dp } =
0 L]

n

_ 2evay (1—cos ¢)*—* sin® g w(p) dy; (5.10)

Sy

le= 55 dD (X, €08 P} () singp dp =

_M{I[{n-l)(l—coscgb) sing +

n-
+(1-cos )" cos]sin ¢ v* ($) o +f[(n-nu+cos¢)"'2 (-sintd) +
m

n-i H
t{l+cosdp) cos ¢]sinq’> u2f¢>)d¢>} = G:,"(°f|:(n—l)(l—cosqf:)n—e sintp +

o (5.11)
+(l-cos o) cos¢]sinqbva(qb)d¢>
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Substituting the expressions obtained for the integrals
into the formulas (5.6) and (5.7), we obtain

€VX

n ™
A% = A9+ S22 { [(n =0{1= cos 91" 25in +
o

+{1-cos 1" cos qS] cos ¢ vi(¢) dep +

m
+2f(|—-cos<b)n'| sin¢ cos ¢ w () d¢>} ;
o

(5.12)
By, (x0)= By (xo) + er:;' {S [(n—1)(1—cos )" *sin’ p+
i ]
+ {(1—cos ¢)"* cos ¢] sin ¢ 2 (9) dp +
+2 S (1—cos g)"—1 sin? ¢ w (p) dop } .
(5.18)

Substituting the values of the coefficients Am('lo)
and By (%a) from (5.12) and (5.13) into formulas (5.4)
and (5,5), it is possible to determine the frequency “ni
and tangent of the phase shift angle Tan, 'ﬂfg in the third
approximation.

For a complete solution in the third approximation, it
is still necessary to determine the term £° & (t) which
enters according to (2,6) in the formula for the elongation
per unit length X ( taking ! =1 ) in the third approximation.
However, this will not be done, since in the second approx-
imation the magnitude of the relative displacement is
determined by formula (4.6 ) with sufficient accuracy.
Moreover, it must be remembered that the degree of accuracy
of determining the magnitude of frequency of vibration
should always be greater than the degree of accuracy for
determining the magnitude of displacement in vibration,
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6, Equations of the curves which form the hysteresis loop

For establishing the nonlinear relation (2,28) between
the stress and strain, leading to the forming of the
hysteresis loop, we begin with the expression (2.27) of
the true modulus of elasticity.

Remembering that the curves forming the hysteresis
loop always have a small curvature, it is possible to
represent the tangent of the angle between the tangent to
the contour of the loop and the strain axis sufficiently
correctly by a power relationship, Examining the hysteresis
loop in the coordinates: normal stress ¢ — elongation per
unit length ¢ , and using the suggestion of N. N. Davidenkov,
we can write the expression for the true modulus of
elasticity (2.27) in a symmetrical cycle for the ascending
and descending motions as:

—-r

do L %
ch=E“ r(§ot £,

do

d?;' = E[I + i (Eg=E)]

(6.1)
Integrating these equations taking account of the boundary
conditions of the branches of the hysteresis loop, we gbtain
the following final equations of the contour curves of the
hysteresis loop:

(I=E{ E— n [(En+ §) =2 g ll'x

s=Elgr (o=,
(6.2)
where E is the modulus of elasticity for extension
¥, 1s amplitude of the elongation per unit length
X is the elongation per unit length at an arbitrary
instant of time.

72/ and ﬂrk*i are geometrical parameters of the hysteresis loop.
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For the same amplitudes of strains, the various
materials have different damping, i.e., have a different
value of area of the hysteresis loop,’which, in turn,
depends on the parameters of %/ and 7. These parameters
for materials with different damping will be different and
must be determined by experiment.

Here it should be noted that from the point of view of
the accepted hvpothesis according to which the dissipation
of energyv in the material is determined by the value of the
area of the hvsteresis lcop, the character of the function
(6,1) has rio vital importance. For as far as determining
the parameters 9/ and 21 needed for calculation, we
begin with the magnitude of the area of the hysteresis
loop at a given amplitude of strain., Then the form of the
hysteresis loop, which is determined by the equation (6.2),
is of little interest. The second assumption which is
implied by the function (6.2}, stating that the form of the
hysteresis loop is independent of the magnitude of the
amplitude of strain, is likewise not essential. It is
obvicus that the dissipation in the material can be
expressed also as a function of the shearing stresses,

7. Construction of the resocnance curve

Formula (3.11) is used in this case to construct the
resonance curve

p2dy (xg) F Ve® — £ piBi (x)

o =p* xo
(7.1)
where .
2y [ € 1t )
Admﬁ=mn[50-ﬁm¢)mm¢d4,
0
_ 2"y (1)
Bl = “an+D)
(7.2)
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The parameters in the expressions for Ajp(X,) and
B; (X0} were determined by a bending test of a specimen
of St. 20. The values of these parameters are:

n=2; v=18,6-
Using these values, we find

f(f— COSqS)n cos¢pde =

m
=f( | - cos¢)’ cospdp=—m=—3 14|593;
o]
2

Arlxe)=—18,6 =%,

2
B, (xo)=—7,894088-¢2.
€ (7.8)

Substituting the quantities from (7.3) into formula
(3,11), we have

(2o —18,6 X0 F+/ 4°~ 62,316625 x
p 1
Xo (7.4)
where q’= ezqz.
| p4

We select the value qf= 62,316625- 10°% so that all
resonance the maximum relative deformation Xe in the rod
1 (spring) would not exceed Xo= 1073,

After substituting the qtfntity q, in formula (7.1)
and computing the value of /p as a function of the
magnitude of the strain Xo we obtain the results shown

in Table 1.

ol ]
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Table 1

5100 | (i)' (ﬂ)
i p l Ply

a

01 ! 0,919203 0,95875 1,077077 1,03782

|
62 | ogss41 | 09318 | 103719 100770
0,3 ; 0968213 | 09838 | 1,020627 i Iotos:
0.5 i 0975412 ; 0,08763 . 1005988 1,0029
0,7 L 09771490 1 008851 00%58U |  Co%acC
0.9 i 007816 | 098%0 | 0988404 | ogoa19
0.95 0,978751 098932 | 0985909 |  0,097923
1,0 ! 0981400 | 0,99066 f WIBI400 | 006065

In Table 1 the quantities ﬁﬁx‘ refer to the left
branch, and (%}} to the right branch of the resorance curve,.

The resonance curve shown on Figure 3 was constructed
accerding to the data of Table 1,

where X=7%,° 10° zf; H

To prove convergence of the 08 {
assumed expansion and to establish ’ ;R
the degree of approximation of the 0.8 TN ]
solution of practical problems by 04 f{?% -
the proposed method, the solutions Y, I AN .
for displacement, frequency of >

- . - (- B3
vibration and phase shift must be 0% 098 {17 407 %

found for the succeeding approxi- Fig, 3
mations,

As to the solving of the problem for the frequency and
magnitude of the phase shift in the second approximation,
the theoretical section shows that due to equality of the
coefficients AI(‘I,)=AH(‘xo) and BI(’IJ:B,I(I,) (formulas
(4,15) and (4.18)) the second approximation completely
coincides with the first approximation., and, therefore, it
is necessary to examine the next, i.,e., third, arproximation.
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The formulas in the third approximation have the form:

( @ )’ 14 m (x0) - ‘E’é”—}-:‘j_ E@f;{K}J )
" (7.5)
Before using the above formula it is necessary to
determine the value of €U, and €*d> the additional
terms of the series which approximate the displacement,
Examining the resonance condition (when (J= F)) we
obtain

2’x \ " .
T Z(zzﬂ)s {"05 Qit1)e S(l_ms‘p) cos (2i+ 1) pdy +
U

T

+ gin (2f+ l)tp[ S (1 —cos @)sin (2i+ DN gdy — Z%] } .

(7.6)
The magnitudes of the terms of the above expression
for different values of &, are given in Table 2,

Table 2
b T
2“—
S (1—cos g)" cos (2i4 S {1—cos @) sin (2i+ | (2if-1)*—1 pYIR|
i i +1} pdy ] +]) ¢ dy ‘ [+
1 0 1,6000 ' s | 133
1
2 0 0,8381 | 24 l 0,8000
0,5841 i . 0,5714
i

Substituting into formula (7.6) the values of the
integrals from Table 2, and also the values %/ and /L
we find

1y == 5,920566° (0,0333333 sin 3¢ - 0,0015873 sin 5¢
~+ 0,00026454 sin 7).

Examining the extreme position of the vibrating mass,
Q-0, we have

ety = (.

(7.7)
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To determine further the magnitude of € €1  the
formula (4,5) is examined, assuming that Wwrp ( in the
case of resonance)., We will have with these values

2ux] Q | r n-I
fi,= 228 T o [cos i [li-cos¢)sing cosi pu, d+
i=2,4,6"“ - fo]

A
+sin iqbf(l—cos gb)n—l sing sin i¢ u, d¢>]=
° (7.8)
=70,106204 x‘;[é—(—o,onassm) sin 2¢p + % (—0,0123509) sin 4¢ +

| . 4 )
+ g5+ 0,0056013 sin qu] = 70/06204 x,(—0,00418747 sin 2¢ —

— 0,000823393 sin 4 ¢ +0,000160037 sin6¢) .

For the extreme position of the mass 7t when @=0

we obtain
. 221 == 0.

(7.9)
We now proceed to determine the coefficients Am('»(o)
and By (%) in formula (7.5):

-

A (xo)= A, (x) + %ﬂ {S [(n—1) (1—cos @)™ ?sin? @+
¢
+ (1~ cos @) cos ¢} cos ¢ v () dp +

+ 9 S (1 —cos ¢)""1sin ¢ cos tpw(qo)d-p} ey

U

(7.10G)
where

2vxlt .
A“(xu)=Al(xl,) = Fn!:

S(lﬂcos )" cospdp = — 18,5’%‘.

o

The expression for vl(cp) has, according to (3.6) and
(7.6), the form: )
v} (g) = 535,053102.x; (111,111- 102 sin? 3p+

+4+2,51952- 10~ ¢ sin? 5¢+0,69914-10-" sin? 7 +
+92-52,9099- 10~ gin 3¢ sin S5p+2-88,1799-10 ¢ sin g sin T +
+ 2-0,419904 - 105 gin 5 sin 7¢)
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' -a
O 35,053102x2 (55685, 1+5332,98 cos2 ¢+

or Vi(¢)=
+881,799cos4¢ +55555,6cos6p—5290,99cos 8¢
—1007,78cos10$—41,9904 cosI2¢—3,49907cos!4¢). (7.11)

Analogously, we obtain the value w(¢) in accordance
with equation (4 5):
‘”(‘“— 370,106204x; (~0, 00418747sin2 ¢~

— 0,000823393sin4¢ +0,000I60037 sin6¢ ). (7.12)

Substituting in formula (5.12) the values of the
individual terms from (7.11) and (7.12), and recalling the
value An(x,) we finallv find the expression for Apy(x,)

when n=2.
2
Am (xo)=—18, 5_+o 181530 Xo._
€ (7.13)

Further,

n{ Xe) = Bn(xo)+ {f [n—l)(l—cosqb)n-as,inz¢+
+(1— cosqb)n'c':osqS] sing v(¢p)de+

+2€f1; cosg)  sin? () d
- $) sin"dw(g) 4’}' (7.14)
where, as is known

BII(XO)=BI(XQ)=?,894088‘%?—

Comruting the separate integrals in formula {(7,14) and
substituting their values in formula (5,13), we obtain

2 6

Bln(xo (7.15)
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Having the values of the coefficientsS }hn(&o) and
Bm__('xo) )according to formula (5.4) we obtain the frequency
of vibrations in the third approximation. Since the
magnitudes of the coefficients /‘(Xo) and B(ka) in
the third approximation differ little from their values in
the second and first_ approximations (when K= 2 and ‘x.=’0.i)
only by 1'10"1 % therefore, to determine the frequency
of vibration and phase shift it is sufficient to 1limit
ourselves to the first approximation,

In conclusion, we will examine what extra precision the
second and third approximations provide for the displacement.
On. the basis of (2,6) and (2.32) we have

X =Xpcosg 1 ey s -+ . ..
(7.16)

The maximum displacement in the extreme position (when
@=0 ) isgnthe zeroth approximation, equal to the amplitude
Y S

The displacement in the first approximation when (?'-'- 0
on the basis of (7.7) and (7.16) is expressed as:

x[ = Ao

from which it follows that when N=2 the first approx-
imation exactly coincides with the zeroth approximation,
However, it must be kept in mind that, as our calculations
indicate, exact agreement does not always occur, i.e.,, not
always when @:o does €Uz0 ana €'d2=0. Thus, for
example, for the value N=4Y.3 when X, ,=/C the
improvement of the values of the elongation per unit length
has a magnitude of the order of 10%.

On the basis of this calculation and other examples,
we conclude that when solving this "hysteresis" problem by
methods of nonlinear mechanics, it is possible to obtain
sufficiently exact results, if one solves the problem for
displacements in the zeroth approximation and frequency of
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vibration and magnitude of the phase shift in the first
approximation.

The fact that for construction of the resonance curve
the first approximation, which is based on the consideration
of the area of the hysteresis loop, is sufficient indicates
that the dissipation of energy in material of the elastic
system which affects the variation of amplitude of vibration
for a given frequency of forced vibration depends mainly on
the magnitude of the area of the hysteresis loop.
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Chanter II

Transverse Vibrations of a Bar
with Constant Cross-Section

8. Derivation of the basic differential equations

In this chapter, forced transverse vibrations of an
elastic bar will be examined, taking account of damping in
the material.

This problem is of great theoretical 8
interest, and its solution has consid- Aﬂrk
erable significance for machine design
practice,

Let the cantilevered bar of a con-
stant cross-section execute forced

transverse vibrations under the influ-
ence of pericdic rotation of the Fig., 4
clamped cross-section.

Turning to the derivation of the differential equation
of vibrations of the elastic system, we introduce the
following notation (Figure 4):

X - coordinate axis coinciding with the axis of the bar;

0 . angle of rotation of the clamped cross-section

U . deflection of the bar relative its own undeformed
axis;

W - total displacement of the cross-section of the bar
relative its original axis when 8 =0,

M - the mass of a unit of length of the bar;

f:- the area of the transverse cross-section of the bar;
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Wk - the natural frequency of vibration of the elastic
bar;

W - the actual frequency of vibrations;
Y - specific gravity of the material of the shaft;

Pq- the bending moment at the cross-section of the
shaft with an abscissa x;

I - moment of inertia of the cross=section of the shaft;
E - modulus of the elasticity of the material;

0 - stress at an arbitrary point of the shaft;

E - strain;

€ - a small parameter

We shall assume, that the vibrations take place in one
of the principal planes of bending of the shaft and that the
dimensions of the transverse cross-section of the shaft are
small in comparison to its length. 1In such a case, it is
possible to use the usual differential equation of the
deflection curve of a bent bar,

M=Er‘f_-‘f.
o (8.1)

For materials having internal damping, the formula (8.1)
is inappiicable.

According to equation (2.28), where the first terms of
the right side of both formulas are identical, it is
possible, in the general form, to use one formula when
considering the nonlinear relationship between normal stress
and normal strain,

o =g, +o, (€, v, M, (8.2)
where
d} is the stress, proportional to the elongation
per unit length, with a coefficient of
proportionality equal to the average modulus of
elasticity of the materialj;
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S, (5,1;; n) is that part of stress, which is a power
function of the strain and the strain amplitude;
here the fixed coefficients entering into this
relationship are parameters characterizing the
dissipation of energy in material.

The stress &Sy is independent of the direction of
strain (loading or unloading), whereas dg(§,257{) depends
on whether we are examining logding or unloading, i.e.
whether we take the point on the ascending or descending
branch of the hysteresis loop.

Using expression (8.2) for stress, one can represent the
differential equation for the flexural vibrations of the
vibrating rod in the form:

M=Er %}: e (g;‘;)
(8.3)
The first term of the right side of the equation (8.3)
expressed the magnitude of the moment of the stresses Gys
this moment, upon (subsequent) unloading, does not form a
hysteresis loop. The second term is the magnitude of the
bending moment, set up by the stresses o‘s(g,’u; R) ; this
moment completely accounts for the hysteresis loop. 1In
x2
bending moment characterizing the internal losses in the
material.
The presence of the small parameter E in the second
term of the right side indicates the small deviation of the

magni tude of the total bending moment M at a cross-section

other words, the term e<b(f§!) is the magnitude of the

u
dx?
due to the deviation of the stress-strain relationship from
Hooke's Law,

x from the magnitude of the elastic moment, equal to Er1
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Differentiating equations (8.3) twice, we obtain

s ( I —'—f) oy [ o (gj:;) ] 6‘:; M=q.

(8.4)
The equation (8.4) is the differential equation of the
deflection curve of a bar, subjected to the action of a
distributed load with an intensity 1y used for obtaining
the equation of transverse vibrations of this bar. The
assumption in this case of an exciting external load in the
form of a forced angle of rotation of the fixed cross-section
is equivalent to the loading of the vibrating bar with an
inertia force distributed along the bar in the following way:

(8,5)
Keeping in mind that % = %@ + W it is possible to
write
Y L R L)
G=mix g+ dt’}
(8.6)
Starting from (8.4) and considering (8.6) we obtain the
differential equation of the forced vibrations of the
cantilevered bar taking account of damping in the material
for forced rotation of the clamped cross-section

o 0%n a? o%n o* -
T —— fl 4 o
axﬁ[E axa‘, +(-ax3[w(£i)]+ ( 0t’+ t)[l:}
(8.7)

In forming the differential equation of the bar, we have
not considered the dissipation of energy of vibration due to
friction of the vibrating shaft with the external medium,
Moreover, we have disregarded the effects of shear deform-
ation and rotatory inertia; i.e, factors, which, in this
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problem, have secondary importance because the vibrations
of a slender bar in the fundamental frequency are under
consideration,

By assumption, the shaft has a constant cross-section,
consequently, I = constant, m =~ constant.

Further, we assume, and this is important in ocur
investigation, that the exciting forces, characterized in

this case by the change of angle 9, as well as the assumed

ARG .
force of damping of < @{aﬁﬁjs are quite small in

comparison to the inertia forces and the eldstic forces.

In this connection, it is relevant to mention that both
from a theoretical and from a practical point of view it is
exactly the cases of slightly damped vibrations caused by
small periodic forces which are of greatest interest., The
assumption of the smallness of the exciting force, which for
this case is equivalent to the smallness of the angle of
rotation of the fixed cross-section 6, can be reflected
in equation (8.7), by considering the angle of rotation also
proportional to the small parameter & . Taking a
harmonic variation of the forced angle of rotation

=238 cos wl="1, cos wi, (8.8)
we transform the equation (8.7) for the case of the bar with
constant cross-section to the form

at a° 2 2
EI axi‘i +m 2_ efmxo® cos wt-l-s‘—)q; [!D (d u) ] =0.

of? xt| o \Qxt
(8.9)
Introducing the dimensionless coordinates §==§ and
u*::%, we rewrite the differential equation (8,9) as
EI ‘1‘;* +mi ‘3';? ~ 8mll w* co8 wt+e% [w(‘%‘) ] I=0.
(8,10)
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We shall assume that the deflection u"(l,t), the

circular frequency of vibration w and the shift phase

'/ can be represented in the form of an expansion by
powers of the small parameter ¢

U (L, t)=P(L)a cos{wt+y) +eu (L, 1)+ e u (L, 1)+

(8,11)
2_ 2 2
=w, +eA +e D, 43 (8.12)
2
V= 1p°+e\p' +e l}rz'*' (8.13)
We introduce the new variable
t=wt+
v (8.14)
then the differential equation (8,10) takes the form
4, . 2 %
u d
EI— +ml*w® uz—eml‘szccos(r-\uH
at 9T

9° *u*
+ e o] =0
On the basis of (8.13) cos{t—Yy) can be expressed as a
series
2 + 4. 2
cos(r—xp)=cos(r—%)[|— <Y 624!’2 )+...]+
(Y ey, +--)°
+ sin(t—y,)| e(y ey +---)— ! 2 IR
[ ' : 3 ](8.16)

Using the change of variable (8.14) and also the expression
of cos{r—y) in the form of the series (8.16) we
substitute the expansions (8.11) and (8,12) in the dif-
ferential equation (8.10). Further, we group the terms
containing as factors the small parameter raised to like
powers, and equate to zero the expressions, which multiply
the different powers of the small parameter, We obtain
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dd-
EI°Y  ppeip=0,

dct (8.17)
dtu a?
Er a,f,': + mMtw? afl; — ml*d,ap cos T —
_ . N 02 a%
ml'fw¢ cos (v wo)-f-é:—,.g[dj(d—ga cos-r)]l=0; (8.18)
u , 0% a*

BI 522+ mibu 5:;” +mitd, 52— matpa cos o

— ML, 08 (r— o) — mPullio, sin (s—y) + gpp(; 911 =0. (8.19)

The differential equations (8.17), (8.18), and (8.,19)
form the basic system of equations with the aid of which it
is possible to examine, to any degree of approximation, the
forced transverse vibrations of a bar taking account of the
dissipation of energy in the material,

9., Determination of the deflections and frequencies of
vibrations in the zeroth approximation

To solve the present problem in the zeroth approximatiocn,
it is sufficient to consider the solution of equation (8.17),
which describes the transverse vibrations of a beam with a
constant cross-section. The solution of this unperturbed
equation, which we will consider as the zeroth approximation
for solving our problem can be written as

¢ =C,(cos kL +ch &)+ C; (cos ki—ch k) +
+ Cy (sin ki +sh kO)+C (sin kL—sh kD),

(9.1)

wimlt
4 — Wednl”
& B

(9.2)
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The constants of integration C;, C,, Cg, and 04 must be
determined from the end conditions, For a bar with one end
fixed and one free, these conditions are:

1) lg)_o=0; 2)

d
o] _
di)—o

d*p s
3 |F?| —o g [Fe] -
)[dﬁl=1 )[dﬁl-, 0.

(9.3)
On the basis of the first two conditions Cl - C3 ol §
and the solution of (9.1) has the form of

o= (3{cos k{—ch ki)-+C,(sin &{—sh &{).
(9.4)

The constants C2 and C4 are determined from the last two

equations of (9.3) and from the condition that the maximum
deflection at the end of the bar (when ’I.":-O) is equal to
the amplitude of vibration of the end of the shaft a, i.e,

(;, -“-1:a;
ey (9.3")
lf;] =k2[{—cosk—chR)Cy 4 (—sink—shk)Cy]=0;
=1
[3?":] k5 [(sin &~ sh k) C; —(— cos & — ch £)Cy 1o 0. (945)
=1

The ratio of the constants of integration is, on the basis
of the last equations,

C; _cosktcehk  sink+shk

¢, sink—shk  cosk+chk’

Introducing certain comstant multipliers A or Al’ we write

C, = A(cos k+ ch k)= — A, (sink - sh &),
Cy="A(sink — sh k}= Ay(cos k -~ ch ).
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Thus, the integral can now be expressed in the form

¢ = A[{cos &+ ch k) (cos & — ch k)
- (sink—shk) (sink—shk)l

(9.6)
The constant A, is determined from the condition (9.3')

fulf, #)._,—A[cos?k—ch?k +-sin?k —2sh ksink {-sh*kla—a,

=0

from which

1

A= gsinkshk’

(9.7)
Consequently

_ cosk+9_h_5
27 2ginkshk’

_sink=shk
Ci= 9gnkshk

The solution (9.1) of the differential equation (8.17) will
be
o= Eﬁ_%ﬁ}é [(cos &+ ch k) (ch kl—cos &S)+
+ (sin £—sh &) (sh k{—sin & )|

(9.8)
On the basis of (8.,11) and (9.8) the deflection function

of the bar in the zeroth approximation is

. acost . .
u*(s, = 2snhishE [tcos k-+ch &) (ch &—cos k) +

<+ (sin &—sh k) (sh kZ—sin k)]

(9.9)

The natural frequency of vibrations ¢</¢ is determined by

the equation:

coskchh=—1

(9.10)
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The successive roots of this equation, as is known, have the

values

Ky h Wk ool a

— 1 .
1,875 4604 785 | 10996 14137 | e

1 .,
}({"—‘5 (20 — )=, where >4,
The frequency of vibrations of any mode is, on the
basis of (9.2),

(9.11)
In particular, for the fundamental frequency of vibrations

we obtain

- _i(l,&?S‘f EI _ 3,515v31
o =g\ 7 ) Vi = 208 V ;-

10, Determination of the frequency and phase shift in
the first apnroximation

We now turn to equation (8.18) from which we shall find
the quantities 4, and Sin Yo, which are necessary for
the solution of the problem in the first approximation, in
accordance with the expansions (8.12) and (8,13).

The balance of energy of vibration of the shaft for one
cvele will be examined, To do this, we multiply the equation
(8,18) first by gsinzdidr, and a second time by

¢ CosT G dv’ Further, we equate to zero the integrals
of the products just formed taken over the entire length of

the har for one cycle,

$

L%

1
4 2
S{ EI %gf + mbw; aa;f; —abd,mlip cost —
1}
g? el® .
— mfwifd cos (v—yw,) + e [dj{aga cos fr) 11} @ sin s didi=0;
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1

@ S { EI d—:;il + mitw? a:i — adFme cos +—mpwi i cos (v—,) +

(10.2)
The integral of the first two terms both in equation (10.1),

and in equation (10.2) is equal to zero, i.e.

SS[EI% I‘mca ]tpsmtdé'dt
5% (10.3)
The correctness of equation (10.3) can easily be proven.
For, integrating the first term by parts with respect tog,
and the second with respect to 7 and considering the
conditions at the ends of the bar (9.3), we obtain the

relgtions

o, dip
d! — u, di,
an pdl= S an 1

Py

EI gy L

21

I 7 :

: ISmtd*rr—-Su, gin vdr.,
8

Then equation (10,2) can be rewritten as follows:

1
H

S [ ¥ ) + milta? Oau. fp] sin vdl ds =
1

0

Iy 4

1

S [EI — —ml‘-mctp] u; sin vdldr,
0

cwg

(10,4)
But the right part of the last equation is equal to zero
because of (8.17) amd, consequently, the left side is also
equal to zero, which proves the correctness of (10,3).
Thus, the differential equation (10.1) splits into two
equations: equation (10.3) and
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1

gﬁ S { —adiF'mp cos t— mBloll cos (z—y,)+
&

2
+ f%[@{dg;acosz}] }q;siurd‘gdr=0
(10.5)

Analogously to equation (10.1), equation (10.2) splits
into the following two equations:

2=

2
S {EI% + mltw! Q—E‘ } pcog 1 dide=0;

ot or?
(10.6)
1
(5)8 { —ad Fmy cos r— mAgwll cos (z—v,bu) +
{
* [ [d -
+ltf£[@ \d;‘*’“ cos:)] }(pCOS tdfdz=0,
(10,7)
Solving equation (10.7) for 4,, we obtain
a4,= ‘"”*—“l“"'—{q%g (?_ns[ﬁ(—?—q:acosz)}lrpcosvdgd's-
arrnl*j ordi 0 d
i
— mniligr ecs W, g {pdl |l .
i (10.8)

The first integral in the braces of the ahove equation
can, on the basis of (8.3) and (8.17), be transformed into
the following form:

“éf d a cosr)]¢> cost gl gr =

—Lﬁ’f [ d——o cosr)]¢cosrd§dr~

E&f ag EI dzd)a cosr]z;bcosrdg dr. (10.9)
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But because

1
o8 d? "
E{\, S @ [EI d:q: @ COS ':} i cossdldr =
b

27 1

\ SElgwpa cos?rdide =
i

1

= muwif g ag® cos?sdf div=amPoln
H

P,

00_/?5’
QL_/“._..

then

[t :
t’(‘@f)s QC_ [G’(gg—q;acos r”qocosrdr;dr=

1
a 2 i
=1g) S f_é [M [\%a cos 1)} o cos tdldr—ampPon S grdl.
[

0

Then from eguation (10.8) we find

1 1
-1 a% .
5411:' (aml‘n S q)zdé') {[(ﬁ S 55 [M(;i%a cos 'P)] I}JGOS‘Idé ds—
h 0

i

—mb i} g iy dn’,’} — we,
(10.,10)

-3

where

On the basis of (8.12) and (10,10} the square of the
frequency in the first approximation is equal to

2=(d¢’+!=dl:
=(uml‘:rS 'df. {(ﬁia?,[ (_acosr)](I?COS'dCdt"
1
— mb,fwir cos iy S L dg} .

" (10.11)
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If equation (10.5) is used, we will obtain the formula
for determining the phase shift in the first approximation.
Integrating (10.5) with respect to T and multiplying the
equation by the small parameter £, we obtain

1
ﬁﬂﬁ%wQSé@ﬁnqhdb=

o
1

=1l Sf)sg;[dj(i%’-:a cos r)

v (10.12)

¢ 8in v didr.

Since
271

gt d . .
S S [@C’ (E —f @ COS r)J psinedl di=0,

A

equation (10,9) can be transformed into

.1 ag &y
wéGOSgp sint,di = ”m#gc)g {a“ﬂ (EI} @acost )
0 U ®

a2 dip [ .,
-H' — [ P (t_i’:" @ COSs r)]] ¢ gin rdodr=

=]

1

d
— — e sin td{ dr.
:'r P S gl 2 GCOST) @ BN 14s ar

Integrating the right side of the last equation by parts,
we have

. . 1 ‘f { 3 3
Suwe sin vy S Copdi= —— Q)M d_tpa cos r) Z—?{[(cos 7) }a’{,

nm IS er
$H

whence

1

1
1~1 t3 2
sin v, = [Gonml’caé S b d;'J 9% SM{%& COos fr) %—@ sin z df dr.
4]

-

0

(10,13)
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In formulas (10.11) and (10,13) the magnitudes of
frequency of vibrations w and the sine of the phase
shift Surﬁb are expressed in the first approximation
by an integral of the bending moment at cross-sections
of the bar along its entire length for one cycle of
vibration, When integrating over the cycle from 0 to 71,
the expression of the moment corresponding to the descending
branch of the hysteresis loop is taken, and integrating
from J{ to 27X +the moment corresponding to ascending
branch FT is taken.

According to equations (6.2) and (8.3) the bending
moment at a cross-section for the ascending and descending
branches of the hysteresis loop can be represented by the

expressions:
Y, — 1 — K -| n__ O—ixg’ A
= % aoos s~ \ 7 (G pr -2y ar,
F
- ]
Mz%"I%%wwr+SE£wrff"T”ﬂhﬁi
F

(10.14)
For a bar of rectangular cross-section with width, b,
and height, h, the maximum amplitude of the strain will be

z l
_H..Jemoxr" €™ T (%)mox. % =a ZLI g%
€ J N Assuming a linear
Q*—"i-"#-——x distribution of strain through
the height of the cross-
section of the bar in bending,
"4§mn we write the expression for ;;
Fig., 5 and (Figure 5) at any

point at a distance z, from the neutral axis

—¢) 2z_o0zd%
€0_— 0 ' max. h - l dgz ’
2
529{—;%(:081‘
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If we substitute in (10.14) the values from (10.15),

we obtain the following expressions for the bending moments:
h

2

- 1 Py v [a dp
M= 7E ?{acosr—QSE—[?a—é;z+
o

% 2 [
+2 %zcos r] —gr {%dwz} }bde;

2
ii=Llg *rfi_-—:zcosr+23ﬂ1 ee?, -
! d® p n

dp " a d? "
*Emzcoqr] -—2“‘1[E d—;z] ]bzdz.

Lag (10.16)
After integrating, we obtain
- I dS{p bhﬂ'l’ﬂan EV (d (p " al.
M:?El'(fga COS £ — iy F 9) Rt n ) [2(1+ cos 7)" —2];
w1 d'g bH g Ev d (p) . ngn],
M= EEl’ E,é—_zacos T + Tt 2% n (dC [2{l-—cos 1)
(10.17)

Remembering that the moment of inertia of a rectangular
cross-section 1is

L b
12
we rewrite (10.17)
R 30" A"y . on (d'qJ "
M:;EI{ e acos T guory +2)[n_1[2(1+003'¥) "] dC’) ;

- _ 1 d@ 30 h n__on ( }
M= IE {dgacos +2—-———-—n (n+2)zﬂ_l[2(1 cog )" —2%) dC’) .

(10,18)
Since we have at our disposal the expressions for the
bending moments in the cross-sections of the vibrating bar
for the upward and downward motions, we can calculate the
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values of the integrals from the expressions containing the
moments in formulas (10.11) and (10.13) in order to deter-
mine ¢s and Sia 7}-

On the basis of (10.18) we have

1

@Rﬂ M(@a cosz)]cpcos¢d§dr=
Jod |- do?
13

1
dPp d*ep
= M(—# ) cos vdi dr=
(5)8 dg“’a cost o

0

T

)

T
3
+|
o
nakt 12K
u T Pamtyer

(4— a cos l') & cos cedidr +
di?

11? iacos gjcosrd{dr:

di dag?

IR Y :!./'5...

nt1
;EI[ (d’(p) (1—cost)*cogrdldc};

d?

(LW B}
[~ R R

(10.19)
1
g {
@S 0_.';’ [M(ﬁ:a co8 r)] psinvdids =
0
1

ds v
= @gﬂ(lacosc)? sin rdidr =
0

di: af1

dis

I
=Sgﬂ(‘—i’—‘p cosr)‘-ijsultdgdr-i-
" 0
\ a
a

1
gﬁ(d—@a COR r)g:—wsmzdid—r—
a0

_12(n— D) EIa" K e { [dg]™
aF ) (T2 P S L?;?] .

a

(10.20)
Substituting further the values of the integrals (10.19)

and (10.20), and also those of the qu', at ,qudg |f]( :Zﬁ )d{:

integrals in formulas (10.11) and (10.13), with consideration
of (9.2) we obtain
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VOt i Dk ™ (1—cos 1" cos sdtds —

__ 48,wi{cos k+ch k)

Rk*a sin ksh k

. ~12(rn—1)a"h" *vgin ksh k d’lp)"“"
S ¥s = n{n+1)(n+2) 8k 1z (cos k—ch &) S (dgs d

T
487" a" rwi S
¢

°!_/"h-

-CO8 Yy;

(10.21)
We determine the integral from the last equation and
substitute its value In the expression for the frequency;
further, we divide the right and left parts of this equation
bya) « As a result we obtain

L3

w\* 48, (cos &+ ch k)[(r + 1}siny, n [

(w—c) =1-— ;k’ Ak Fln—T1) °S(l—cos 7)"cosrdetcos P, .
0

(10,22)
Formulas (10.21) and (10.22) enable us to calculate in

the flrst approximation the frequency of vibrations and the

magnitude of the phase shift as functions of the amplitude

of vibration, and alsoc to construct the resonance curve,

The constants o and /L 1in the formulas, must be found by

experimentse.

lle Determination of the deflections of the bar in the
first approximation

We must begin the derivation of formulas for the
determination of deflection in the first approximation with
the determination of the second term in the series expansion
(8.11): 2¢(,t) , or 'u,(;, 1-)_ For this, we will use
equation (8.18) which we shall rewrite in the form

u oy
EI—I : — = }l )
o Tmel L =FG) (11.1)
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(&)

where

F(L, ©)=mAap cos s+ mifle; cos (v—yy)—

i dp
A I, ol & L
o [ﬂi 4 a cos r}
(11.2)

In accordance with equations (10.5), (10.6) the
function F(L,T) is subjected to the condition

F({, ) g sinvdl ds=0,

F(, 9)pcossdide=0.

LI P I Y

9
$

(-]

For the solution of the differential equations (11,1), we
substitute W, (gj 'r) and F(;, “T) in the form of the series

(& D=u )+ Y, {ur() sinfs-+us () cos ju);

- (11.3)
F{t, 9=F )+ ¥, {F(O)sinjs+FE(§) cos 2},
=1 (11.4)
where
2
F)= };dﬁ F(, )de= rlT{S [P mpa cos -+ mi‘Puil cos ()]
0
- @%ﬂ[ﬁ(%a cost)] !}df
(11.5)

We shall show that the right side of the last equation
goes to zero, As far as the first integral is concerned
(the expression in square brackets), that it vanishes is
evident, however, that the last integral is zero must be
proved. From (8,3), (10,9), and (11.2) it follows that
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2 o o= 3
—Sﬁdﬁ’[ (dpacos r):'dr=

1 4

=—SEIg—acoszdr+ lEIigaCOS‘Fd:‘I‘
{ i { dit

u 1]

- 3a R
" ¢
+EI{S Plar g 2mos 9= & [dC*J ds—
a

2q

. 3a"h" 1y n_om @ i dip"
S Fi{nFoyar 21 Heos?)"—2 1555“55) sz] =0,
Q

Since g0,

ﬁ;; [‘D (g—;a cos r)] dep=0

and therefore

Fo (5)=0.
(11.6)
To determine M,(g, 1:) from equation (11.1) it is
necessary to solve a system of differential equations which
is formed 1like (11.1) using of the corresponding terms of
expansions (11.3) and (11.4) and add the resulting values for
t&j(?) . Substituting the zeroth terms of expansions
(11.3) and (11.4) into equation (11.1), we find

diu,y (3)

ErI dﬁ:’ = Fu (C)‘

Keeping in mind (11.6), we obtain

diu, (0)
Er b

(11.7)
After integrating the last equation and determining the
constants of integration from the boundary conditions (9.3),
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we find that
i, (£)=0.
(11.8)
Substituting the jth term of the expansions of the series
(11.3) and (1l.4) into equation (1l1l.1), we obtain
diu;(C)

BI S

— mptwiu; (§)=Fi(0).
(11.9)
For generality, we drop the scripts S and ¢ on (;')
and Fj(@. ¢
We shall substitute the function uj(f,') in the form of
an expansion in the fundamental functions

w)=Y c:(2), (11.10)

where the function @ ()  which satisfies the boundary
conditions of the problem (9.,3) is an integral of the
differential equation
dt
dis

|27 T2 | - =0,
‘ (11.11)
and Ak are the characteristic values of the parameter,

It 15 easily seen that the fundamental function cp!(g)
is nothing else but the function cp( g ), determined by
formula (9.8) and representing the integral of the basic
equation (8,17), but differing from it by a constant
multiplier.

Substituting the serles (11.10) into equation (11.9) and

keeping in mind (11.11), we obtain

EI % — 2 EI CE' %"%(E)— = 2 C,:‘iml?’l (C)
k=1 1

Y e (O) — mPot Y] i) =F,(0).
= =t (11.12
We expand the function £ (£) in the fundamental
functions
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F.(0= ) aPq (),

;2 e (11.13)
Q) . . . . L

where a-,,_ is a Fourier series coefficient which is

determined hy the formula

1

ap=2\ FOP@
v (11,14}
Substituting the series (11,13) into equation (11.12) we
find ® -
Y V@) m—mbpat)= Y, afigs §)

k=1 k=1

or

Y g €) (. —mlfwl) — atga ($)=0.
k=1

Equating to zero the expressions which multiply the same
functions (Pk(g) , We obtain

el (s — mlj'wd)—a) =0,

whence "
c= Ae— mbPot )
() (11.15)
Replacing a.k" by its value from (11.14) we obtain

1
2SE@%@£

. 0
‘J) =
Cx Ay mptie;

By virtue of (11,10) it is possible to represent uJ(y)
in the following form:

EAYAGTNGL

_ 0
u.‘_gl (hﬁ'mj’mél‘) o (0).

(11.16)
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Then taking into account (11.8) and (11.16), we have

1

2\ Fi(S)yel$)dl
u (E T) E Z j 01 _,_mfa[; 3) ql(C) Blnjr-'_

k=1 j’=1

2 S FiD) g (L) diga(L) cos jr
+

(— Pmjtwl) J
(11.17)
In order to make use of equatlon (11. 172 it is necessary
to determine the functions F (;) and F (C) which are
the coefficients of the Four1er series expansions of the
function [(g, ¢ ), deternined by formula (11.2). The
coefficients of the sine expansion will be

FO= l; (j}F(@“, ) sin ¥ dr= mPlw: {sin v, —

12EIa*(n—1) "' (d"fv(;)) }
- P legn(n+ 1){n+2) dC’ \ di? !

Zx (11,18)
Fi©)=+ (‘ﬁ F(, %) sinjrds = ;1; S ad,fmy () cos t sin jrdr+
. 0
+%ShMMCmﬂr—%HMﬁdp_
1]
SEI™h"y _ d* [(@e())" o P2 i e s
—-‘-l"'"12“(n+2)nnE,[( ac? )]{5[2(1 cos 1)"—2" sinjzdr
2 0
- f[2(1+°05 W —2" sin fr dr}.
(11.19)

Having performed the integration on the right side of equation
(11.19) we find that for even j

Fiau(€)=0

= (11.20)
And for odd jJ
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s _ 12ETa™h" di [ dsg()\"
FruiO)= PG+ 29 @+ T g [(—&F ) ] %

X [1‘“ on j(lucos )" 8in (2i+ 1) rd: l,
0
(11.21)
where i=1,2 3,4, ...

We now give the coefficients of the development of
function F(T;) T) into a cosine Fourier series

Ff= %@F(C, vjeossdr=d,mlbg({)at

12EIa"h" "ty {( d’p () )] «

+ml*fwll cos ity — P=3enn+ Du gril did

T
X j' (1 —cos )" cos v ds;
0

n

Fi@) = ;ITC‘{;F@’ 7) cos ji dr = ?l—rjdlﬂmtp(f;)a cos reos jidi+ (11.22)
0]

x

1 ] ) €08 jrdi— < SEACHT [ C)
4 § mtguRt con (=) cos rdv— g Sy 2)::&@1[('&(:’ )
3

2

P { jl [2(1 —cos " —2") cos jrdr— 5[2 (1 +cos " — 27 cosjrdrl L(11.23)
u 4

/
(11.23)
Integrating the right side of equation (11,.23), we find
that for even j
Frau(@)=0 (11.24)
and for odd j
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oy _ _12BIa"A"v & E@E&Y
Ficop ()= en(nt2) "' w dp e [( di? } X
X 5(1 — 08 7)" cos (2i+1) vdr.,

o (11.25)
Thus, the expansion of the function F(g}r) into a

Fourier series will take the final form of

(o o oy 12BIa(a—D A"y @* K‘ﬂ’_(é))"”sin .+
P, 0= {Sm Yomlpucl #"n(nt+1)(n+2m die ]\ di*

12EIa" %
+ { A mitap (5)+ mlse:l cos vo~—~ Fenm ) in

X g; [(‘%‘%(,ﬁ))ﬁ] f(l —cos 1) cos rdi } cos 7 -

+2’° {__ 12BIa" 1 [ (d’tph(é'))”} %
S nnt2) @i+ ade |\ dg

T

[1 — %;ij(l“cos 7)" sin (27+1) ra’r]}sin(?i-i- 1)z—

0

B 2’” f 12EIa*h*~1v d* [(dﬁ«p(i) *] %
o le*tn(n+2ndi®|\ di® )

B

X j (1—cos v)" cos(2i+ l)m’z} cos (2i+ 1)
¢ (11.26)
The coefficients of the expansion of F(%) into a
Fourier series in the fundamental functions in accordance with
formula (11.14) are determined in the following form based on
(11,18) and (11.25):

1 1
al =2 j Fr (Do, (O)di=2 f sin yymiifeile; (Cydl—
0 1]

1
48EIa* (n—)h" ' 0 @ [ (9 (V'] 1 g
T (et 1) @t 2) % dgz[( de )]%@) ¢

0 (11.,27)

Keeping in mind that according to (10.5)

WADD TR 60-582 &8



1
mn j" G (2) sin odl =

U

jkﬁd”[ (f{%ﬁ a cos T) ]tp(f) sin rdv di,

we transform the expression (11.27) into the form

1
2 p p o2 d?
a‘]f’s:,«;é)J a:?[ ( ggﬁﬂws ) ]'I’(C)Sinrdidr~
0

_ 48BIa"(n—1) "ty b d* [ (g (C )" _
Fl"_ln(n+l)(n+2)nj‘d“’[( di? )Jtp(f)dé’—
V]

a1
_ 2 SBIRtat d® [ (digp(l) o
! ‘} Jgn“l"_"ﬂ (n-+2)dC? {( de ) J[Q(l cos r)*—2"]@({)sinrdde--

_ 3EIa"h"—: d g {{) n_on . N
fyﬁwh+mﬁJ(u ) |20 +eosey—21g @sinsasar| -

48EIa* (n—1) ™ = dar [(d"i“@)"}(p(;)dc:o;

{d""n(n-i-i)(n-’r?) diz|\ di?
(11.28)
= 2§ R @ o ds=2 | 2pmrQ)ads +
0 v
1
4BEI "t
484 : 'e A —
+ 2mitgu? cos v { Lp(O)al~ - Pnind D
0
dcz[ ( d:;;;: EE))n] O 5' (1—cos ©) cos rdr.
- 1] (11. 29)

On the bhasis of (10.8) and (10.20) we have

Aamit j @*(2) AT+ mituiB cos v, j' Lp(C) di=

___(j)j'a“[ (d’«p(s) acosn)]'l’@) cosrdl dv=

lew d? M " . 1— n td
anﬁ"'n(n-l-Q)n d{;s[( dc? )]?(C)dgaf( cos 7)" cos = dr.
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Substituting the last equation into (11.28) we finally
obtain

o =2 [ Fi 0)9, @) dt=o0.
’ (11.30)
For values of &k > | the coefficients of the first
harmonic will be

1 1
a = 2 S FE Q)P di=2 S sin s misgullp (§) di—
[ [1]
1
_ 48EIa"(n—L)A*'y ( ar [/do(§)\" 5
"' n(n+ 1) (n+ 2= S d{."[( ds )]q’*wd" (11.31)

1 1
ap), =2 S FEO)P)dL=2 S 4,mig () 9, () adL+
It 0
ASETa™ "
s 12%(n+2)n

1
+9mlfe? cos v, J" (9, (0} dE —
0

x

1
[ n
X J' :__C’ {(ﬂzé—fl) ]fpk(ﬁ)d; S {(1—cos 7)cos = dr.
[} ]

By virtue of the orthogonality of the functions ®,(¥)
the integral of the first term of the right side of the last
equation goes to zero, and as a result we obtain
48EIa™h" 'y
" n(n+2)n

ol =2mBBul cos v, S Egu(t) dE —
1]

1

dl d: n A
X [S e [(“ ggﬁ—é’) Jtpk(ﬁ dt S(l-—cos )" cos z dr,
0
(11.32)
On the basis of (11.20) and (11.24) the coefficients a&?

for even j, will be

1
opi=2 P @m) =0,

u

(11.33)

1
o2 =2 S Frai (§) qel($)dl=0. o |
i 11.34
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In accordan%e with (11,21), (11.30), and (11.14), the
coefficients aﬁ, for odd i will be

1
aﬁi;—l):Q S F2si+1 (‘:) tpk(g)da =

[

§(1—nosﬂ“mn(m+1)rd]s H[(dE;Q)J P 0) d&

48 BT a1y _2t1
"'n(n+ )2+ 1) n 2"

3
u

1

ﬁEIaﬂhN-_]],

@+ =9 \ F5 di = P TSP
a;’e S uClnt)d "2 (n+2)n

e S(l—cosz)"cos(2i+l)rdr S ;i_;[(g_’g;ﬁ)“] o (£) dL.

Using the notation

B 48EIa"h""y [1 21 S {1 —cos )" sin (2i+ 1)z dz],
W17 P in(n +2) 2+ 1) 2

1]

g = A8EIaH S(l—-{'os o) cos 7(2i+ 1) vds;
241 " 2%n(nt+2)n

0 . (11.35)
we rewrite expressions for aﬂg in an abbreviated form

d!;vtC) ] .
piti=pe ) di;
i **‘Scﬁ*[ a | |70 (11.36)
o [ A [{d2(D)
a(kz‘::rn-_B ‘Sd [( o )]tp(é')dC
‘ (11,37)

Now the coefficients of the expansion of the function
uj(G) in the fundamental functions, according to (11.10)
are determined by formula (11.13) on the basis of (11..8)

a(”
[ ol ]J % 14w = (.

(11.38)
Similarly, on the basis of (11,30), (11.31), and (11.32), we

have
agls

[ﬂ . L
[n = r
[« =1 T e mbat’

(11.39)
WADD TR 60-582 71



l1)
[m ]J_“1 lﬂ_ 3
e (11.40)
Keeping formulas {(11.33) and (11.34) in mind we obtain, for
even j

ag,
G me @iy
(11.41)
g
A= =m0
(11,42)

If j is odd, on the basis of formulas (11.36) and (11.37),

the coefficients CES and ijc will be expressed
2 2
by the formulas:
. ([ @)
By E},“W) ]%(C}di
2l _ 6o
ke T e— mit Qi+ 1) 0l ’
(11.43)
dp (E\"] -
IEWIXdP[( i )]¢“§ﬁt
C(ZL'-H) [ -
ke & e—mb(2i+1) ol
(11.44)

The expansion of the function «, (g, ) into the series
(11.17) can finally be presented in the form

_ﬂmtl %

A [C U PO Y
By { AMemB (21wl pe(§) X

i=1 k=1

w (§,5) = E L ) =——(a{l), sin r+af) cos r)}

X [Bip1 8in(2i+ 1) v+ By cos 2it 1) ] } ;

(11.45)
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Knowing the function “l(gr -c), the solution of the
problem can be found in the first approximation. On the
basis of (8.11) the value of deflection in the first
approximation will he

u{l, 7)=g({)acos e +eu, (& 7).

Substituting in the last equation, the expressions for Licg;t)
from (11.45) we obtain an expression for determining the
deflection of the bar in the first approximation:

u(l, )=ag {)cos r+=¢ 2 {hf% (e sinz + afl) cos r)] +

k=2

H 2 AN H

. .fﬁi[(gzggﬂ ]¢AC)d§

e {“'""_T;—mz*(ziﬂ)awg 73 ()X

i==1 k=1

X [Bha8in (2i+ 1)1 + B3y cos (2i+1) 7] } i
(11.46)

12, Determination of the frequency of vibrations and

the phase shift in the second approximation

To determine the frequency of vibrations and the phase
shift in the second approximation, it is necessary to find
the additional terms Eﬁdz and Elﬁp, , entering into the
series (8.,12) and (8.,13). For this purpose, we will analyze
equation (8.19), which was obtained as a result of equating

to zero, the expression which multiplies &t in the
equation (8.17). Ve shall multiply equation (8.19) first by
gp(g ) ces 'Cal‘t, and a second time by @ (;) stn T dt,

then we integrate the equations obtained along the length of
the bar for one cycle of vibrations and equate the result
zero. As a result, we will obtain a system of equations:

WADD TR 60-582 73



1 2
#S [ 212 e T8 4 g,
i az

0

a

2
Y midgp)acost —
or?

—m g, cos (r—,)— miwilPy, sin (r—¢) +

4—§%Uﬁ@,ﬂ] () cos rdL dr=0;

(12.1)

P o &

u . 0% u
Eﬁ\ { E1 ?4’ + miw? —{;{-’3 + mid, —m—; — mitd,p(5)a cos t—
]
— mipld, cos (r— ) —mEBLw?y, sin (i —) +
+ a%[""@- ] ] (&) sin v d dr=0.

(12,2)

Each of these equations can be split into two equations

1

ad. H

@ S [EI gu: + mitw? %] @ () cos rdb dr=0,
0

(12.3)
1
@S { mitd, AL mB A (L) a cos t—mi*fid, cos Gr—o)—
an
—de%ﬂMr%Hﬁ%W&ﬂ”mmmuﬁm=&
(12.4)
IJHgﬂ+an§¥PGHMHK&=Q
@S [ gt ‘At
[}
(12.5)
558 {li aal? — mitdyp () & cos r— mILd, cos (s—o) —
T
— mPww, sin (r— o)+ I b"% [#¢ 9]} ¢ @)sin s di dr=0.
(12.6)

The correctness of such a splitting of egquations (12.1)
and (12,2) can be shown in the same way it was done in
connection with equation (10.3).
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Turning to the solution of equatiocns (12.4) ard (12,6),
it is necessary to clarifv what the function épfgft)s
which is contained in these eguations, represents. From
equations (8.17) and (9.1), where the function gp@;;r)
was first introduced, it is easy to establish a dimensional
analysis that !P‘(th) represents the value of bending
moment of the forces of damping, which occur in a section of
the bar., This moment has a value of the second order of
smallness, which is indicated by the factor of the small
parameter to the second power, et . Having this in
mind, it is possible to represent in the second approximation
the bending moments for the upward and downward movements, in
the following way:

ﬁn = % EI d’;’g{)a co8 T+S%J +
+:® d":;f)a cos r] + 6"}"(:; )

i, = "li EI dz_ft)u cos &+ e%] +
+:0 [d:z_(f) @ cos r] + B (L, ).

(12.7)
Similarly, we represent expressions for the bending moments
(10J4) in the first approximation:

a1 dhel 52 ‘

M = 7EJ :;f)acos r+£di[—d?§r)—acos'rJ;
< 1 ds - |
M = 7EI¢;;§(’§')GCOS£+E¢[%’£)GCOS.‘].

(12,8)
From equations (12,7) and (12.8) we find

— _ 1 — - -3 1 .a'lul
qj(;l 1) - ;[MH M - '[—EI«‘:;{‘;];

E’(r. ‘-'.') = :—’ [ﬂn_ﬁ[ — %EI&%J .
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On the right side of the last formulas, all the
nuantities with the exception of the magnitude of the
hending moment in the second approximation ﬁfn:, are
known. To determine Pﬂn g We will express the strains

E by means of the derivatives of the expression

11(!)-3), determined by the function (11.46) in the same
way as we did in the calculation of bending moments in the
first anproximation

d'e(8)
E= { d;’;_ig) cos -} ¢ Z o —dril‘w’ (a 8in r+a£1')c cos i) +
ll—ml"‘ 2i+ i)’w: di
i=1 k=1

X [Bs, 1sm(2z+l)r+ 1005(2!"!"])1’]}2,

(12,10)
_ dp()  w W de®
§°_[§]‘=°={a dcs +E§21g“':nl‘=m§ dt? +
&9 (%) ]
ga{ D)l
4o 22 dc’{( di? ) " d’mc)}z_
sl ik —m @i+ 1PPe} 21 gra
(12.11)

On the basis of (12,10), (12,11), and (10.14) expressions
for the bending moments in a section of the bar, can be
presented in the following form:

+; dE‘P(C)

-3

- 2
Mu = SE[[G : qj-@-) cos rh¢ Z Ay — mi*w ( Sin t'+aL{':c05 0+
=2

Lt [0\
GJallE o,

- . . .
+EZ L T h—mBb it 1)pel —dL:;_‘ [Bzig1 sin (2i+ 1) r +

(12.12)
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g 0 G("—d—zi’kr
+Bgi+.cos(2i+l)]z——z-{ad¢(g)+ b d'&

n d;z

€
k=2 A—ml*wi

f'd [d‘f’(Cl ]qbk(g)dg Sy ()

d*x (L)
i +a cost+
| ae-m(2i+1) e T gL at®

a
+e)
i=I

®
)
k=

d*éx(t)
+ %) d i’ (0(') -

+ qit)
k=2 Ak~ mitw] kys™0 T Gk,c005r)+

R4Sl
2 2 ¢ d 2
28 LA 400t

I=1k=I

S .
— | By i+1)r+
Ag—mif(2it1) ol al [Bzms'"(z' e

n . © d¢(§) (|)
+B§;+.cos(2i+|)r]} 2"+ 2" g,

dgz kc
n[ dg kzz)\k mlw

a2P(EHNn
. (§ %J dez[( dgz ) ]¢k(§)d§ Bc- dsz(cl ]n
1=|k=1 )\k—m(2i+|)2|‘”§ o d;a

Zn} bzdz;
(12.12)

. C © aze(t)
Mn“’f { dqb c05r+ez )Lkdgml" = (0"

(1)
a s sin THay CCOST)

f'i;.[( ad*¢ (&)
odl® 2

© at )]¢(§)d€ a2$(L)
E; Xk_fn(2i+I) o z aLe [Bm+|SIn(2I+I)T-P

O
+ez

i=1k

(12.13)
cont.
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atl da* Q’k(f)

> w
+ Biuys cos (2i+1)1] 2 +%{a d*g (1) +6¥ - i

di? A—miwl

gl L

J”?:‘l ;11; MR P g “-{%QCOS’—
. d”tp(@)
_52 T— mt‘ g Sinf"‘aﬂ’ccosz)_
1
© o S%K%Q)"}%(é)dc
*EEI ?:Z=1 0 Am(2i+ 1) Mol d;q;‘fé') [Biprsin (2i+1) z 4

ae(L) )

n 2 ™ al,
+B§i+1 cos (2!’+ 1) r]} z"—gﬂ—lr_ ad (P(g) +s d;s 4
n di? = i mba]

. o | ][ e

L—mi 2+ 1P w? Biisa

M]nz”}bzdz.
drt (12,13)
In this way, using formulas (12,9) and substituting in
them the value of the moments from (10.4), (12.12) and (12.13)
it is possible to determine the values of functional W(C,T)
for the upward and downward motions.
Now we can go on to the determination of Ead_l and F_'h
from equations (12,4) and (12.6). Solving equation (12,4) for
A, and multiplying both sides of the equation by the square

of the small parameter, we obtain

2n 1 , ) - m agul
wae(sf o fomeaal] " § § e
u ] 0 q
o]

- S S méyL(ed) cos (v— ) p (£) cos vdidr —
0

U

p(l)costdidr—

WADD TR 60-582 78



m
— S S mfy et (st ) sin (z— o) @ (L) cos raldr +
o6

+ SFStp‘(c, dq)(g)cosxdé'dﬁ-g Slp(‘g ) dcz")""s d(dr}

i

After some transformations, this formula can be represented

in the form:

1

T

4 o, d@ (L
’da""m{ S Sm( ed) e ;‘ :é_(’)cosrdé‘dr—
0

[

i 1
— S mOy cos vy ety Tp () i+ S o2 sin o (W) ¢ ()l +
[} u

bod

— o r
B 997 cos rdé‘dr—i-s‘*g G0 E20) o5 aran 1}
& @l Iz

5

+e
{&

O n

T

(12,14)
In the last formula only the guantity g§;, is
unknown; it can be determined from equation (12,.6) and is
expressed by the formula:

—1

1
= S il in (6 90) 9(9) sin rdds| X

i

S mied,) s— o(8)sinrdldr —

m(s2,) p*({)acos rsin rdldr —

15
|

Sy

i
S mbyl () cos (v wo) g (5) sin rdldr +
0

!
Sty

1 b3 "
S{I_‘(C, r)d—z‘%‘)sinrd:;dr+ S e”S w( (p(C) snrd"dt]:d}
[i]

o
+[ng
0 &

[¥]
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After simplification of the right side of the last
-expression, we obtain

{S mbywint cos we (L) df] - hed

b
{S lsm(&dl)ﬁ‘—‘ip(';)sw drde—

- Sma.,siu%(sdgngqj(f;)du[ SS F 5) )smrdédr

¢ 2t 1 N X 1
+ S & S'—f’(é‘, r)ﬁ%l siurdﬂd;]ls}.
v (12.15)

In this way, having determined Ejh by formula (12.15)
and having substituted its value in (12.14), we obtain the
quantity Eadl « Then, the square of frequency in the
second approximation will equal

wl=wl+ed -+ g
(12.15)

and the phase shift,

Py = ot e, (12.17)

The expressions which have been obtained for the
bending moments (12.12), (12.13), and, consequently, also
formulas (12,14) and (12,15) for the determination of EiCL
and £7ﬁ are quite comvlicated, However, when the
exponent N is an even integer, these formulas are
considerably simplified,

From formulas (12.12) and (12.13) it follows that, for
even N,

— **-—acosr-i-sm -

— -— 2 £ u
My=Mn= £l oal, 0 = £l dq (D P uy
a0 aca

(12.18)
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Comparing (10,18) with (12.7) we conclude that in this case

AB(, 9= — @(d ;:(f)a cos r) =

3EIa"h™ 1y (d;tz-(":)) [2(1-Fcos D)*—2"];

T Fa(n+d)

(12.19)

B, )= — 0 (‘.’J’E‘PL{?G cos T) -

BRI (d’p(2) e
- _Q'filn fn :)) ( dc’ ) [2 (l €os "F) 2 ]
(12.20)

Eguation (12.14) can be represented in the form:

1
4
dy= aﬂ @g { l.d, ac: - m[’A,Cﬁcos(z‘—q;o\ —
b
— m[“_o.c?,!r sin (r* u,u) ay )q» lP(‘., L) ] } W(A)COS rdr d..
oy
(12.21)

Here
27

§§a4W(nwuam=§§Uﬁammmwmdmw
- 0 = -
+ g Sﬁ[-f(;, D@ (C) cos r di dr.

0

Integrating bv parts twice and taking account of the
boundary conditions, we obtain

i
\ -)2 if - H - .
2 Qg\ é:ﬁ,[‘f’(é, g (L)cosvdlde=
L5 ;f -
. S‘._'f{@ff’” v [ dqpig)]"

- 2(I+teos " —2%) cos rdidr —
Pln(at) | &t e 2 cos xdids

1
npt—y w oy TR
31_’7[(1 fl v [ d__lp_(ﬂl [2 (1 — 05 I)"‘ _, 2‘7&] cos 7 dl dv.
2"Pirin g ‘2}

i

Ll )

u

(12.22)
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After making the change of variable T =T, + X in the
first integral of the right side of equation (12,22), we have

i

@ @S 5;[%»(,, 91 ¢(Q) cos rd dr=
0

1

__ lemIetEw G POV
P (n+2) S(l cos t)" cos rdr S.( 0 ) ok

a Q

(12.23)
Substituting the values of the individual integrals into
equation (12.21) we obtain

R e Iy g

4 [ —mmb,(ed,) cos 4 smows (swe) 8in Wy
gt 10

12EIa" R ¢ L it (D)\e
~ T S (1—~cos 1)" cos rdr S (ﬁd_ﬂ—) dz;},
JL

0

(12,24)
From (12.15) we find
~ & mby (A,
1= nbolicos v, { ok, L sin ¢ +
{
+ e :ﬁg b‘,‘,[lp@s )] p({) sin rd.dr}
(12,25)

We compute the integral entering into the last equation
1

& (ﬁg G BG lo @) sinatdr=

o

Ny ey 1 7 n+1
= SHaH ! S- & ) [2(1+eos 7)" —2%]sin rdidr —
Pn(nt2) 4 d§2

=

-

- g S (%Q)'m[z(l_ms ryi— 2% sin zdl dz} _

1
im0 @)
22 p{n+2)I" n+l X

19810 B (n—1) § [ (D)) ™"
TN e s S( o )
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Then

k? { _ mb, ()=

£y = sin vy, +
¥ mbymlm cos ¥, k* o

12EIa" A"y (n—1) Pp(D)
A (e +2)F S( a? ) }
(12.26)
From equation (12,26) it follows that

(\’-U 1) e mﬁu

k’ sin 7]; =

_ { 12EIa™h" ' (n—1)¥ S l ey ( {:)T““ v i, (edy m
= il St L
1 - kE

sint %}.
(n+ 1)(n + Dt ;

(12.27)
Substituting the last equation into (12,21) we obtain

8d,= mar = ed)— —

4 N erﬁo CQE:M] j'Tﬂ?au sin® t1!’0( A, ) —
ki & cos g

1 1

L} X V. 2 fn+1

_. 12EIa"R" N g(l—cOSr)"coszdrg(Lq](,g) di+
Pn(n+ I+ | S\ az

nemb,
man k” COS 1y

(edy) +

12EIa™ A" '»(n—1) S [d’ PN b

r(nt+ 1)t 0T

12EIa™h"tvin—1)tg
n{n+1)(n+2)"T

& (p 12ETa
dte & o (n+2) 2n (n+2) "

1
2
(d:?i(f) “Hdg S (1 — cos 7)" cos Tdr}.

X
SO iy a

(12,28)
After substituting in the last equation the value of (e¢ﬂJ
we have

_4EI6, (n(a+1)sinwy C o ( 46,
e#d, = nmal‘*{ (n—1)2" g (1—cosr)cosrdr | ke + 7008 7, ) +
1]
A s
a COS ¥,

(12,29)
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On the basis of (12.16) we find

2 2
A
wz==|+ €§|4'E =
wg we we (12.30)

After substitution of the values of €A, and e€’A;
into (12.30) we will obtain a formula for the calculation of
frequency of vibrations in the second approximation

2 490 .2 o
Y =2 sy - 7o T L4
mak®(n+1)cosy,

i 2k

168, [ (n—1) "
K [Zn(n—l) fg‘l’o,g (I—COST)n cosT d'r+l] T (12.31)

+

The magnitude of the phase shift in the second approxi-
mation, is determined by formula (12.12) on the basis of
(12.21) and (12.26).

By analyzing the physical nature of the problem, it is
easy to convince oneself that the calculation of the frequency
of vibrations and the phase shift in the first approximation
is dependent on the consideration of the area of the
hysteresis loop; however, the calculation of these quantities
in the second approximation is based on the consideration
of the form of the hysteresis loop. It is evident that the
form of the hysteresis loop will not effect materially the
amount of dawping, even when the form of the loop differs
from the actual one. The only important condition is that
the area of the assumed loop be equal to the area of the
true loop. When solving real problems of vibrations in the
material by the proposed method, which is based on the theory
of nonlinear mechanics, there is no need to resort to second
approximation because, to solve technical problems, the first
approximation, as will be shown later, gives a precision
which is entirely adequate.
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13. _Construction of the resonance curve

In conclusion of the present chapter, we will give a
sample calculation of forced transverse vibrations of a
rod of constant cross-section and will show the application
of the formulas obtained for determination of frequency in
the first approximation,

(u_;l) e 40y(cos R+ ch k) [(n+1)sin ¢,
aktsin ksh k 2" (n—1)

o

X S (1—cos )" cos s dr -+ cos%].

(13.1)
We take the following basic data:

1) The material of the rod is St. 20, for which the
following parameters were found by experiment:

n=2»=1886.

2) We take the amplitude of the forced angle of
rotation of the fixed section of the rod, as

6, =0,0001,

3) Dimensions of the rod:

{ =40,b cu,
h= 1,5 ca,
b= 3,0 cu.

Applying these data, we find

S (1—cosz)*cog rdir = g (1—cos 7)? cos zdr = — 3,141593;
4 0

&=1,875.
(13.2)

After substitution of the known quantities into
formula (13.1) we obtain
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] -10—*
(£2) =1+ L7810 (356195 sin - cos ),
: (13.3)

In the construction of the resonance curve a :?f(ﬁf'

in addition to formula (13,3), we use formula (10.21) to
determine the value of the phase shift

v 12(n—1) a"k"" »sin k sh k §(@ m

S Vo™ " nn+1) (r+2) 6,k 'n(cos ktch k) ) \g z) '

’ 7 (13.4)
Further, we calculate the value of integral entering

in the right side of the last expression

1

'd'tp n¥+1 1 Jx:
b 4 _f_ B N
OS (dC‘) % OS {2 sin ksh k [(cos k+ch k) (ch kZ+cos kL) +

H(sin k—sh k)(sh k{-+sin k)] }Z{s:‘#? 13738

Substituting into formula (10.2) the known quantities,

we obtain i "
singo==1,15511 * 10 gq%*
m; (13,5)
N Using formulas (13.3) and
@ (13.5) and taking n=2 , we
% compile a table of values of
a4 \N amplitude of vibrations as a
e = < function of the ratio of
o TE QU8 10 102 i 106 & frequencies '%JE , which
FIG, 6 is required for the construction

of the resonance curve a—-={(—c"ﬁ‘).
The results of calculations are given in Table 2; here the
indices JT and 1 on the ratio of fregquencies, as in the
preceeding chapter, indicate, respectively, the left and
right branches of the resonance curve,
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The resonance curve of Fig, 6 is plotted in accordance
with the data of Table 3.

Then we determine the correction to the value of the
square frequency, by solving the problem in the second

approximation.
Table 3

. (i ' o LAY w

W ):: (mc )n (“’c)n (Ec—)n
0,001 0,883133 0,9397 1,110673 1,0539
0,002 0,936978 0,9680 1,050635 1,0250
0,003 0,952990 0,9762 1,028430 1,0141
0,004 0,959660 0,9796 1,015567 1,0077
0,005 0,962729 0,9812 1,006303 1,0032
0,006 0,964174 0,9819 0,9986658 0,9593
0,007 0,964924 0,9823 0,591723 0,9959
0,008 0,965650 0,982/ 0,984805 0,9524
0,009 0,967668 0,837 0,976592 0,9882
0,010 - — — -

let us examine the ratio of this correction to the
square of the natural frequency, which is determined by

formula
]

ody _ ﬂ{(n—'—l)ﬂn—% S (1—cos 7)"* cos rdz [};3 + —46"—] +

W Ke| 2%—1) @ cos ¥,

46, k'sinty, }
a cosy, |

(13.6)
Substituting in this formula the values taken previously

b= 10=% n=2; 1 =405 cm; k= 12875,

and having also the computed value

sin o = — 1,15511 + 10* a7,

WADD TR 60~-582 87




we find the various values of f%é&L and the corresponding
ratios of the square of the freqsbncy in the second
approximation to the magnitude of the natural frequency as
a function of the amplitude (Table 3a).,

Table 3a
, ) ] sy 2
N R O N T - A R 5
0,001 0016379 0,899512 0,015705 1,126378
0,002 0,009561 0,946639 0,009198 1,050833
0,003 0,016670 0,963560 0,010786 1,039216
0,004 0,012566 0972226 0,013826 1029393
2,005 0,014387 0977116 0,017149 1,023452
0,006 0,015721 0,975895 0,0166561 1,015227
0,007 0,016051 0,980957 0,027828 1,010551
0,008 0,013057 0,979607 0,035994 1,020799
0,009 0,002330 0965338 0,058359 1034981
0,010 — - - —
Table 4
R =
0,601 0,485 0,94 146613 0,70
0,002 0,9729 0,51 1,0205 0,44
0,003 0,9816 0,55 10194 0,52
0,004 0,9860 0,65 1,0146 0,68
0,005 0,985 0,74 | sons 0,85
0,006 0,9899 0,81 [ 1,007 0,83
0,007 0,9905 0,83 10007 1,38
0,008 09897 071 E 1,0104 1,81
0,009 0,9825 0,58 10173 2,04
0,010 - -~ ’ -~ -
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Values of 2 obtained for different

amplitudes and also the values of corrections, found in the
determination of frecuency in the second approximation, are
given 1n Table 4. For comparison with results of calcu-
lations in the first approximation, the values of

wgx—®Wr , 100 7. are also given. The table shows that
Wy

the greatest increase in accuracy of determination of the
magnitude of the actual frequency of vibrations (at a
certain amplitude) in the second approximation, consists of
about 37 of the frequency obtained in the first approxi-
mation, This confirms the supposition that the dissipation
of energy in the material is determined by the area of the
hysteresis loop and is accounted for by the solution in the
first approximation. The shape of the hysteresls loop
which is considered in the second approximation, affects
but slightly. the magnitude of the dissipation. Therefore,
when constructing the resonance curve to a sufficiently
high degree of accuracyv, one can confine oneself to the
first approximation.
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Chapter III

Transverse Vibrations of a Bar

with Variable Cross-Section

14. Derivation of the hasic equations

In the present chapter,
the previously developed theory
of analysis of vibrations of a

]
A~—»%4lg~;—% rod of constant cross-section,
__ﬂ_wﬁh‘Mbal¥$ﬁw taking account of damping in
e the material is applied to a rod

of variable cross-section, All

Fig. 7 the basic premises regarding the
character of excitation of vibrations and conditions at the
ends of the rod remain the same as in the case of vibrations
of rod of constant cross-section. Because the problem was
worked out in general form from the start in the last
chapter, differential equation (8.7) which was obtained is
equally valid in the case of variable cross-section (Fig.T7).
Keeping in mind that for a rod of variable cross-section

:I(JC), mzz-fa—(xf)y

we rewrite equation (8.,7) in the following form:

oo [P0 ) e 253+ oo+ -

(14,1)
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Taking, as in the case of vibrations of a bar of
constant cross-section, a harmonic variation of the forced
motion of the angle of rotation 8=€fces wt =6, cos wt
and designating the density of the material by e » ¥We
rewrite equation (14,1) in dimensionless coordinates:

a -x- 3:
G O

— ¢ 2 + ; @ 0%y =
08 A(L) i cos wits Qw .

(14.2)

Since this differential equation includes a small
parameter, it is natural to look for the magnitude of
deflection u‘(c’-(;) , the frequency of vibrations ¢
and the phase shift 1/’ in the form of an expansion in
powers of this small parameter:

u* (;', f):;p(C)acos (r_dt'+’lp‘)+£l11 (¢, t)+62Hg(§, N+, (14. 3)
wi=owlted teddyt . (14.4)

w=wu+$«¢,]—|—5‘lw!+.... (14.5)

Replacing ( wt + 1!' )} by a new variable t and
expanding cos (r—- 'f‘) in a series, then, substituting
the expressions (14.,3), (14.4), and (14.5) into (14.2),
we group the terms of the expression obtained which contain
the same power of the small parameter and equate them to
zero., As a result, we will have the following basic system
of differential equations:

2[1"}3[( )a’(p( ):‘GCOS —oltF(L)g({)wia cos 1=0;
% (14.6)
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0?

L ¢lPF({) dap(fyeoar —
or*

tﬂﬁu() ]—FQFF()wc

¥ ‘:

d _— 0
—oF(5)I%w: 3 cos {(t— ) + {Qj( g;g )) @ coS -z} {=0 )

a'BEH@)aw T orF()ad T8
e | or*
—olF (0) day (L) @ cos v— oIPF () fdy cos (r“t}lo) —
.. 7L
— pl5F (0) Bwily, sin (t—1y) 4 ;;—’-2 [F( 0]=0;
5

(14.8)

15, Solution of the problem in the zeroth
approximation ( free vibrations )

Let us rewrite (14.,6) after cancelling a eos T

=]

5| e 2 - ewtr g =0,
> a (15.1')

For the solution of this differential equation, which
represents the equation of free vibrations of the rod of
variable cross-section, we shall use an approximate method,
based on the theory of perturbations, If for the given
region and the given boundary conditions, the eigenvalues ;ln
are known; and the corresponding normalized and orthogonal
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eigenfunctions U of the linear self-adjoint* differential
equation

L[un] * Apup=0,

then, using a method based on the theory of perturbation, it
is possible to cal-«ulate the eigenvalues and the fundamental
functions of the eigenvalue problem of a ''mearby'" or "per-
turbed" differeni’al equation

L[Un] — efup+ Apu, =0.

Here, the boundary conditions and region remain the same.

The following notation is used above: r 1is a given func-
tion which is continuous in the basic region; € 1is a
parameter; up and A, are respectively the fundamental
functions and eigenvalues of the new problem, It is presumed
that both the new eigenvalues, and functions admit develop-
ment by powers of the perturbation parameter. 1In many cases,
where the problem does not include such a parameter, one

can be introduced, in which case it is necessary to trans-
form the differential equations in an appropriate way.

*If the differential expression M[v]=(cv'f+(bvf“cv-dv
is imiquely determined by the differential expression
Lful=(au'}—bu'+ (cu)'—du and vice versa, with the aid
of the requirement, that the integrals on the left side of the
the formula fxl{vl_[u]—uM[v]}dx= [atu'v=vu)+(c—b)w] |
Xo Xo
can be expressed by the values of the function and its de-

rivatives on the boundary alone, then two expressions are
called mutually adjoint. 1If L [ul=MI[ul identically, the
differential expression L[u] is cailed self-adjoint. (See
R, Courant and D. Hilbert, Methods of Mathematical Physics,
Vol. 1, Chapter V.)
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The boundary conditions of our problem are:

> _n (A2 @) _ . [ _ d*p (L)
=0 | —= =0; | —=| =0 |—/—>| =0
lg ks [ d¢ Jt=o { dc? L:; [ dcs Jc=1 0
(15.1)

Let us suppose thaz the deflection function q{t) and
the eigenvalues A= s can be expanded in series of
some parameter in the following way:

PCl =gt v+ SFw, - . (15,2)

i bttt (15.3)

where Pr,% » W, .. 4 are functions of g -

We shall also suppose that the variable moment of
inertia of the rod and the variable cross sectional area
are expressed, respectively, as:

BIC)=I vl (L) (15.4)

BF()=F,+dF(0). (15.5)

Here T, and fi denote, respectively, the averaged

values of the moment of inertia and the area of cross-
section of the rod, which can be determined for example, by
the formulas

I
I,= 1751(.\:) dx,
)]
(15.6)

I
F0= %SF(x)dx.
1]
(15.7)

Substituting expressions (15.2) == (15,7) into the
differential equation (14,6) we obtain the perturbed dif-
ferential equation
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ar s diq, da: a'v, 2
dgz![I. + I‘Ii(é')][(dg, +e e dC’ : ] }

— B, eyttt . DV Fo el (D] (g, + v, t e'w,+ .. .)=0 (15.8)

Grouping in equation (15.8) the terms containing
identical powers of the small parameter and equating to
zero the expressions which multiply the powers of the
parameter, we obtain a system of differential equations:

< [EI L7

d‘*—‘é_ﬂ dC] :l — lFoPn 0,

(15.9)

5|1, fi:’:-}-;’[ﬂ 1, () Lo "’"}} — 3, Fav, —

— Rl HnPn™ "ﬂl Fy (;')!pﬂ 0;
(15.10)

diw,  d*
E{ I, i + — ar [I‘I &) ———:[ } — AP Fw, —ultFop, —
- "nl Fopa—4,1'Fy (’:)vn it Ry (g) ?,=0;

(15.11)

Evidently, the basic, unperturbed differential equation
for the problem in question of vibrations of a rod of
variable cross-section, will be equation (15.9) which
corresponds to the equation of free vibrations of a rod of
constant cross-section, the solution of which is known.
Introducing the notation |

LIF,

ki ,
El, (15.12)

n

The equation (15.,9) can be represented as

d'g,

-
&zt — ko, =0.

(15,13)
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The solution of the last equation under the boundary
conditions (15.1) can be written as follows in accordance
with (9.1)

o= —Cu{(cos 2, +ch &,) (ch 2.5 —cos k )+
+(sin k,—sh &,) (sh &,{ —sin &,{)}.
(15.14)

The constant (C, , entering in equation (15,14) is
chosen from the normalizing condition cf the function

1

g db=1.
§ (15.15)

Omitting the intermediate computations, connected with
the determination of constant Ca from condition (15.15),
we write the final solution of the differential equation
(15.13), after determining C. , in the form:
. =ch k,i—cos k i+ PR T SRy ikt ch B,0).

k. tchk
608 fn T C0 K (15.16)

We find the characteristic numbers (i.e, frequencies of
vibrations) from the frequency equation, which, as is known,
has the form

cos k,ch k= — 1,
(15.,17)
where ~ =1, 2, 3, 4, . . .
The roots of equation (15.17) (see table on page 53 )
have values Ry == 1,875; ky=1-4,694; ky = 7,855 ete.

The natural frequencies of vibrations are determined by
the formula

()%
n I F‘n
(15.18)

To obtain the first approximztion, it is necessary to
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examine equation (15.10), Using the notation

_ M, Fol_*

b

" ElL (15.19)

m

equation (15,10) can be transformed into:

2 41’ d!
aze g : o 4 (15.20)

To determine VY. and 7+, , we will introduce, as an
unknown quantity, the coefficient of the expansion (Fourier
coefficient)

1
Ly = 5 v“(pJ dt
0

of the function ¥4 in the fundamental functions ®; « We
multiply equation (15.13) (changing the index ~ to 1 )
by V. and eguation (15,20) by @; and subtract the first
from the second equation. Then we have,

(15,21)

div, dip, Ry —
T e — s v, t o9, & — kY
BF d* [ BI (0 di,
=P P i+k4 1@)%@-—--——[ 2 -
F, dais I, dg

The equation obtained is integrated along the length of the
rod

1 1 1
rﬁv _ dt T, 1 n — =
(-5[ dcs # ars ”n]d5+(k —k )(Sv,‘@,dé‘—m.ag P di +

1 1
EF, () (@ [PLE) e
) S C M LACE e
A §cR* 1, az|”

(15.22)
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Integrating by parts, it is easy to prove, that

05 re Bd= Si?:'

Therefore, the first integral in equation (15.22) is
identically equal to zero. From examination of the
remaining integrals of this equation, it follows that

;= 1k, fori=n . Then from equation (15.22) we find

1
141,@)4%] deps CPRQ)
M= Sd@[ L oan )™ "S 7,
b (15.23)

We transform the first integral of equation (15.23) taking
account of the boundary conditions of (15,1)

(0] gprioen |
dae| 1, @ |7 &1, dé"]%l

_§dtp,. [M,(f) d@,,} dp, 11, (0) d’(pn +
d

Ve al T e o 1, do
1]
1 1
B () [dg, T K Q) [, 10
+ — s ) I = —r8| d
1= [d?]dg 1, [dc:'} -

]

Then the expression for 77, will take the form

BLO [, ., APFQ)
’"""QS I, [dci]dg kS F, gadt

(15.24)

(=

For —i,% n. we obtain from equation (15.22), having
in mind (15.21):

1

(W—~H)au =K,

0

PF(0) _ [ @ [BLE) dy,
F e (,Sdc*[ |

After this, the Fourier coefficient equals

1 (. AR _ (@B (D &, .
O = }?_"—k_:{kn 5 Fu 'P-‘pidg ‘}&E;[ i, dg:]@ld }
[']

(15.25)
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Now, the unknown function 15;0;) can be represented in an
infinite series

o

1
v, = Z' P {k,‘, S PE(L) Q@ dl —
j; 1]

J=1kj“k‘.. F,
1

_Laane ae)
SE&[ el Lt

(15.26)

The prime on the sum sign indicates that terms with index
7 = #- should be dropped.
From equation (15,19) we find

_ Elym,
ta™ BF, -

(15.27)

In the same way it is possible to obtain the second
approximation., To do this we examine equation (15.11)
which, in accordance with (15.8) can be rewritten as

E0s g, = L[ FLO 2]
dé_‘ nitin di:’ I“ dCS
2 L) PF ‘D
+ mp,tpapat ke %f-‘- v, +m, fI,’,U(‘ Pro
(15,28)
where
— xn Fﬂ
Pu™ .
£, (15.29)

We represent the function W,  in the form of a series
expansion in the fundamental functions,

W =

»

e

bl’l‘(ph
(15.29')

i

i

1
b= Sw,,qn, d¢.
b (15.30)
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We multiply the basic equation (15.13) by w,, flrst
replacing the index . hy 1 in it, and equation (15,28)
by @, , and, subtracting the first equation from the
second we obtain

4
4 d’e:
r qb — kp n‘ﬁ':_F' W k?‘#’iwn:
g
P U,
- qr [ I, dC° ]¢i+mn¢n"’r’+pn¢n ¢+

C

+k l [;l{g) U '. FI g) ¢n¢| .

0

(15,31)

We integrate equation (15.31) along the length of the
rod (from 0 to 1), then for z = 2~ , by virtue of (15.15),
we obtain

1
Sp.,qo: d;=p,
0

By integrating by parts taking account of the boundary
conditions, we find that

1

diw, dig_
e e
P {

i
S(k:wk;:) W15, AC=0.

1]

Because
ki = km

1
- ( [ (D) dw,
Pn {‘Sd?[ I, dg“ ]fp,,d, m, Sqoﬂv di—

PR
—’an 11?—* V@, ds— 11, SIFI() L
%

Integrating the first integral by parts, taking account
of the boundary conditions, we find, finally
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V@, di—

1 1
1, () d'v, dig, S
d
CS L, a ap
1

[+]

_anIFI(;A) .nd';- m SIFI() gd':
F
¢ (15.32)

nowing g, , we will determine %, . Integrating equation
(15.31) along the length of the rod for the case, when i;éw
in accordance with (15,16), we obtain

1 1
Ur (&Y dw, de. ..
k%%;(m dr=— {20 4% 0P gy
( )(; @y 1, are g 4

T ,v
ks SL%(Q ”ﬂwfd@'me"S 1@) Pap, AL
9 ¢

]

(15.33)

From (15,30) and (15.33) it follows that the Fourier
coefficient b,d can be calculated from the formula

Lo 5 I, (7) d'g i,

k=wl) o ardar®T

! r
s (PR drm, Si ]

J F i
i ’ (15-34)
The functions #a can be represented as an infinite series,
in accordance with (15.29'):

N9 oL ¢ dv, do
w"ﬂzkﬁ——k}{ S I, aar®”

1

L PRD
_ESMF

1 .
vp; di—my, S ~Fu~; Pup; 45 | -
o

v

(15.35)
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Here, as in" equation (15.25), in performing the summation,

the terms with index j:: n.  should be dropped. In a

similar way, we might find also the successive approximations,
However, for the solution of the basic problem, i.e., the
solution of equation (14.8) we will 1limit ourselves to the
second approximation.

The solution of the basic equation (14.6) in the zeroth
approximation, on the basis of (15.1'), (15.3), (15.8),
(15.17), (15.18), (15.19), (15.24), (15.26), (15.27), (15.29),
(15.,32), and (15.35), taking the parameter € equal to one,
can be written out as:

P(E) =@+ Va1 Wa
A=y pn 2,
(15.36)
Substituting for the right side in these formulas the
appropriate values from formulas (15.19), (15.26), (15.35),
(15.12), (15.17), and (15.29) we obtain the deflection
function:

1

o) = P — [{cos k,+ch &,) (cos k,2—ch &,L) +

+ (sin k,—sh &,)(sin k,{—ch &,)] —

_ 41F(€} #1,({) d'p,
% iy [ e (2[00 0]

— ?; BI({) d, d';
Z:k; k¢{5 aFT an &

J=1

2 1
l 1},0( C) anj dé._mw S I’FI':,.( g)

]

Pup; dh }

(15.387)

The square of frequency of vibrations is:
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2=
<

" I T Hr(r
k,‘EIQ_i__Eé_{ d_;[lI,(,) d!%] ?.dl—
BoF,  HoF, p di®| dif  di?

B Sl PO gra| + | - L) B oy

HgF, I, dfs dit
i 1 1
BF.({) EF (D)
+m, \vo.di+kt (E0)y o ar—m, m(p;d;}.
| by =

(15.38)

The magnitude of the deflection of the rod of variable
cross-section, determined in the zeroth approximation, in
accordance with (14.3), is equal to

a* (¢, =@ (L) a cos (wi+y), (15.39)

where @(g) is determined in accordance with (15.37).

16, Determination of the frequency of vibrations

and phase shift in the first approximation.

To solve the problem in the first approximation the
quantities <, and 'fr, , which enter into the expansions
(14.4) and (14.5), must be determined,

let us examine equation (14.7) which was obtained by
equating to zero the expression which multiplies the small
parameter raised to the first degree in equation (14.2).
In conformity with (15.4) and (15.5) to maintain the same
degree of precision in powers of the small parameter, the
variable I(g) and F(g) in equation (14,.7) should be
replaced by the constants Ia and f'; taken from the
expansions of (15.,4) and (15.,5). The guantities Io and
F, are the first terms of the expressions for I(;’) and
F(g) and represent the average values of the moment of
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inertia and the c¢ross-sectional area of the bar.
In this way equation (14.7) can be rewritten as:

4 2 '
pr, 4 +[9w:Fo %Ej — ¢4, Fyapcos 1 — puiFyfL cos (T"%)] B+
T

ot
0 &y =
-+ l%[@(dgzﬂ 14 ] f)] =0.

(16,1)

To determine 4, and ’%ﬁ we examine the equations
of harmonic balance, For this purpose we multiply
equation (16,1) first by @sin rci(;clr , and then by
P cos ‘L'ci‘; dt and to egquate to zero the integrals of
the resulting expressions along the whole length of the
bar for a single cyvcle. Then

i
3

a‘ ad
1) :f)S {Efn % [gwé}v‘o -;ul — ¢4, F, aqp cosz —
r

07t *

H

2
— qutFyfl cos (1~ wo)} pe1 2 [@{@a cos o) |psimrarar=o,  (16.2)
7t | N\

i

ad. M)
2 458 Bl ]i‘? + [QwéFo Tty _ o dyFyap cos —

o

o .
=i Fyfil cos (’f_‘!!’o)] #+ PE [(li (QEE; a cos r)]] o cos rdf de=0.
S ' (16.3)

Integrating these equations, considering the conditions
(15.1) at the ends of the bar and considering also that the
function does not contain the principal harmonic, we
solve the equations for <, and sin ¥, . We obtain

1 1
- 711 /dip dip
A [eFoa:rrnSqo’dg} {Egﬁg [@l.@acosw)]ﬁcosdedr-

— pwiF,3n cos %5 {p () dC};
o (16.4)
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1 -1
sin ¢, = [eﬂéFaﬂ“ S deé”] - X

L]

4
1 d2g dip
“p 958 [qj<f1—cﬂ“c°s’)]§5m“dgdt' (16.5)
1]
Keeping in mind, further, that
digp .
1) @J‘[ (dC’ . )}Egjsmrd@'dr=
d¢
= @S d—i_za(BOSr qr

]

2) ¢ @S [‘I’ ——acosr ]itpcos vdidr=

- $lafs

2
]d—qgcos:d?'dz-—~EI nagl "p) di,
dc? l ds

we express formulas (16.4) and (16.,5) as follows:

( ~1(1 pf T dip
wd = [QF:ﬂﬂ OS ¢? dg’] { F/ﬁg M[d” cos r] —;—gcos 1d{dr —
1]

1 1 o\ 2 ! (16.6)
— EEI,na S (diqi:) di—gwlFyfe™ €08 Yy S é’;ﬁdC}i
= Q
J -1
sin ¢, = [?ngo By S S dg} X

/]

1 oof o [ae d

g d.P‘ M[—‘Racosr]ismrdid'r
Is di? s (16.7)

0

The square of frequency of vibrations in the first
approximation, on the basis of (14,4), equals
)
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3 —1 1
w’=w§+sdl=w§+[gﬂ,ans,p:dg] {@S M(@acmt)l X
@ I d¢ £

X gcos rdi{dr — lEI@?’la 5 ( ) dl— gu2Fobym cos o S L dL.
(16.8)
In this way the final formulas for the determination
of the magnitude of the phase shift and the frequency in
the first approximation are obtained. These formulas
contain the bending moment, the calculation of which is
given below,
In accordance with equation (8.4)), for the solution of

the problem in the first approximation:

=y TP =, (2 .
M—EIO&—‘acosq M, Eﬁ(—gg—ﬁacosz).

M=M(%q:a cas 'z)
(16.9)

The elastic bending moment hﬂo, will evidently have
the same value for both branches of the hysteresis loop.
As for 1\45 , Which is due to the force of internal friction,
and, therefore, for the total bending moment also, their
values will be different for each of the branches of the
hysteresis loop. The symbols for of the respective moments
will he marked by superior arrows: directed to the right
for the ascending branch of the hysteresis loop, and to the
left for the descending branch.

In this way we can write down two expressions for the
bending moments of the two branches of the hvsteresis loop:

M=My+M; M=M,+ M, (16,10)

Because of equation (10.14), for a bar of the variable

section we have ?
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H=— (| B lGrer-oElzdzdy,
F
= S S EZ (& 2" gz dzdy,
¥
M,= S g EEzdzdy,

F

(16,11)

Where 2 and 1 are the coordinates of an element of
area of the variable section of the bar, the longitudinal
axis of which coincides with the x-axis (Fig. 8).

Fig., 8

The strains ¥, and €, which enter into the equation
(16,11) in the present case have the values:

L, du I d% _ 1 d% n
(go)qu — ln (a£2)mcx zmox - {n a d;a Zmox —a tn dcz 2 ?
21z ( dip
fo— (£o)max _h—- = _-l_ﬁ g dcz z H
_ 9%
'3 Lnu d;zz CoS T

(16,12)

Substituting the equations (16.12) into equations (16.11)
we obtain
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VI 1 » " dip d'p n__gu—n n @)n n] dzdy=
) = SS?"EH[(%; z+adcazcosr) o (dgﬂ 2% | zdzdy

~— {{zz g | G 10 con or -2 azdy

nm

or

—

M= -1 ~EXan g [(1+coso)*—2771] Z"tidz dy.
e ; "

Similarly we obtain

d'p
1~ n_. gr—1 n 1 .
Z ) [(1— cos r)*— 2"1] Sg 2"dzdy

ﬁ?,=Ell—ﬂ~ (
F (16.14)

Keeping equations (16.9), (16.10), (16.13) and (16.14)
in mind, we now find the integrals of the expressions
containing the bending moments in formulas (16.4) and (16.5),

I

d- s,
iy @08 M(E&a Ccos r) g—;psm rdide =

=E;z 27;(11(:“1)1)0 { )n+155 ”""ldzdy} (16.15)

d"(p : )\
@S ¥ dwacosr Ecos:d’“dr— gEanSjo(z ) dr+

0 ¢ ¢
v 2ot PF
; S (1 —cos )" coszdr S f (::f;) ' SS 2" gy dy} dl,
0 ¢}

° . (16.16)

Substituting (16,15) in (16.5), and (16.16) into (16,5),
we obtain the formulas for computation:

1
P8 n(n 1) s Py S tpdl

4]

1 ]
RN (] 9.\t ]
O =l SO
0

(16.17)
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C T (2B v ¢
. v
wi=g? - [gF{,an S qlﬂdg} { s n S (1—cos 2)" cos rdr X
]

il

X 5 [(g?i:)uw SS 2" dy] di— w2 Fyfy7 oS v, § deg} .
I it

(16,18)
On the basis of (16,17) the value of the integral
entering into equation (16.18) can be written

1
21 - @‘“cF Bore(n+1) nn sin v,
US [ dc_.“’) f | #ras dy] L= B =) rar i - 5 bpdt.,

F

Substituting the last expression into equation (16,18)
and performing the necessary reductions, we obtain

N n+l ¢
0= !+ wlt, S Gy dg[SI Ve onte (g — S (1—cos 1)"cos rdr —

— COSs ¥, L

a S e dl
¢ (16,19}
After dividing both sides of equation (16.19) by cn
the formula for the determination of the frequency of

vibrations in the first approximation will finally take
the form

1

b, E‘C'Pd; -
w? o |ntl (1—cos 7)" cos s drsin ¢, — cos ¢
m3—1+ ——1 e 2ﬂ+1 ¢ o
ajltp’di_.' v

(16,20)
We note that the structure of the formula for the
frequency of vibrations of a bar ef variable cross-section
has remained the same as for the bar of constant cross-section,

the only difference being in the different expressions for
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the function & .

17, Determimation of the deflection in the first
approximation

In order to determine the value of the deflection in
the first approximation in accordance with the series (14.3),
it is necessarv, first of all, to calculate Zb,(c,t) . For
this purpose let us examine equation (16,1), which, with the
help of the notation

L{$, ©)=[od,Foap cos 1+ owlF,p{ cos (r—y) | I\~

- %[@(%a cos'r)}l

(17.1)

can be expressed as:

61111 a’u
EI, it owiFy ‘aj =L, 9.

(17.2)

In accordance with (16.2) and (16.3) the function Liz;]t)
satisfies the following conditions:

1

g)s L (L, 1) @ sin rdidr=0,
b .

1
438 L@, D¢ cos rdl de=0,
0 (17. 3)

We represent u,(;,-c) and L(T, 1:) as Fourier series
expansions

m (G 9=u,() + Y, w€) sin kr + Y uf(¢) cos ks,
A=2

k=2

(17.4)
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LG =L@+ Y L) sin kv + Y} L3(L) cos r.

F=e2 k=2

(17.5)
Comparing the corresponding terms of series (17.4) and
(17,5) in equation (17.2) we obtain

dUQ

El, EE_ = Ly (8,

(17.6)
where

1 5 4
Lo@) = ;O 1 v dr=7 ewtFt S cos (s—wo) ds +

L]

+£ M’FWP Scosrd —%ﬁgg}{m(‘ig a’cos r)J =

dg?

1 & d*p d?
= Ea;’{ Iéﬂ(;acosr)dt—(ﬁfﬂoacosz Eg{dr}z
Il--—n ag

e agg{ S i ( ) [(l-l-cosr)ﬂ_zn—l][SS e dzdy] dr +

o

+ § E%a (a_& ) [(1 ~cos 1)*— 2'*—11“5 z"+1dzdy]dr}=0-

F

(17.7)
Thus Lo(g)=0 « Therefore, from (17.6) we have
diu
EIo‘dCi":O.

(17.8)

Integrating the last equation considering the boundary
conditions, we find

to=0. (17.9)

Substituting the kth terms of the series into equation (17.2)
we obtain

£1, P28 — pouFtn6) = 12 )
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We expand 19L(C) in the fundamental functions:

_T K
K(8) Z Cn ¢nll) (17.11)

where ¢k1€) - a function which satisfies the boundary
conditions of the problem is, as is known, a solution of
the differential equation (17,8).

Substituting (17,11) into (17.8) and having in mind
equation (15.,9) we obtain

du @ ]
SECATER SR AL SR

at® n= “n dC‘ n=|
o) e8]
(k) 4 2,2 (k)
Ch A — *sF,w?k® 2 ¢ =L, (),
nél n Mnea~ I*pFoug h=l n 0=k (17.12)
where
AnFo %=X -
Now let us expand Le(t) in the same fundamental functions
(D .
(k)
L ()=2a
K552 0 @n (17.13)
where the Fourier coefficient is:
I
a;k’=2j;Lk(c)¢ndg.
(17.14)

Substituting (17.13) into (17.12), we find
(K)o o s 2,22 (k) o)
Z Ch Ap $n ipFowckenélcn $n= E n b

or

):{c“"[x'n—l“ Fo w? k ]_a(k)}qb .

Equating to zero the coefficients of the same ¢, ’
we have
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ol [~ PoFywlk?]— ¥ =0;

alk)
ekl = T
A lé“gw?_Fak’l‘ (17 15)
Substituting the value of aﬂs from (17.14) we rewrite
formula (17.14) as:
1
2 S Li($) o, dt
L] .
Cs‘i]:‘. l;—gFﬁm:k’l‘ .
(17.16)

Then in accordance with (17.14) 1‘k(€) will be expressed
as follows:

n 2 ij(C)Q’ndC

- — 70__ e ———
HE(Q}_ Z -k;_gFowékala Py
a=1

(17.17)

and because of (17.4) and (17.9)'uqﬁtlt) will be represented
by the double series:

. L2l noea

L 0 3
nul(f,n= Z Z W;E}W P, 8in kv +

=1 k=1

25 Li® g, ds
0

Ry ey gﬁrpncoskr].
n e (17.18)

The functions l_i(g) and Li(?’) , entering into the
equation (17.18), represent the coefficients of the Fourier
series expansion of the function f_(g)T) » The coefficient
of sinT is determined by the formula:

Ly = %’@L(é} 7} sin v dr.
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Taking into account (17.1) and also keeping in mind that
in accordance with (16.9), (16,13), and (16,14),

= (% _ LY
@(Jucosz)= E—m(d'p

) [(1+cos o —271] SFS 2™ dedy,

“ onl” N (17.19)
<« {el? v n N
!ﬁ(d—;:a cos r) = % (%) [{1—cos +)*—2"1] S S 2" tidzdy,
¥ (17,.20)
s
we represent L,a:) in the form
(¢ c
Li@)= n{ S WoFy Ao cos T gin rde+ S I*gF,?,'wfﬁ coB (t—y,) sin rdr +
H b
1 Ewa® & [{dig\"] ¢ ,
i en EE’ (d_;:) ] S [(1+cos ©)*—2"1] SFS 2" dzdy sin rdr —
1]
LI LN “
— li—VTa i—; [(%) 5[(1 —cog )t —2"1] SFS 2"t dx dysin rdr] }
After integrating we obtain
$ 0y o wlar o (n—La"Ev  d&* (d’tp " n
Li(Q)=VFoF, w0 sint, + Sty 2\ 2) JSFSz Tdzdy. (17.21)

The coefficients of Sin T will be determined as
follows:

2n
. 1 .
Lﬁ)(§)=;§ﬁL(C, T) sint ke d =§{S oF, 4,0 cos r sin kr dr +
]

an

H ”n e
+ S oF,w2Bl cos (z— yy) 8in kr dr} + mi:?_l d%: [(%Z}’;) ] { S [(1+cos )"—

*
— 9™ 1] sin kr dr— S [(1—cos 2}*— 21 sin Iardr} S S 2+idzdy.
F
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Integrating the right side of the last ecuation we find that
for k_ :2":

(17.22)
and for
=2/ -1
i ooy Ergontep—n {3'_ @ " . _
Lo (5) = - an(Gitl) d;ﬂ[(d:g) ] SS‘ dzdy X
. s
x {1—— 2;:1 S (1 —cos r)"sin(ﬂi-i-l)r.ir},

0 (17023)

where i =1, 2, 3, 4 . . .
We now determine the coefficients of the cosines. The
coefficient of ces T is determined from the formula:

o
4
L-(f)(;) = %@L(f; 7)cos tdr = IT { S oF,aq cos® rdr+
o

= u
+ \ oF 0?8 cos (r — ¥,) cos rdrl. + Eva’ a@* ( ‘f‘f) X
| sna d2)\d.:

X g S 2" gz dy{ [(1 +cos 1.)nﬂ_zn...l] cosrdr—

F

ot Y

- ( [(1—cosr)"—2"1}cos rdr}.
) |

Integrating we find

: - 2Eva”™ ot [ {d®\"
L§¢)(§)=l4(9ﬂdlaq) + oFyL?f cos Y,) — o ‘-1:; [(d—;;) ] X

F
x " ES 2 dz dy S (1—cos A" cos zdr.
'F

]

(17,24)

The coefficient of ¢es £T is found by the formula
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|

Pi
< 1 - [4
LY@ = ;@L(g, ) CO8 khrdz = — J S oF,d apcosrcoskrdr 4
9

+ \ oF L3 cos (s~} cos kr dz} +
by

i d
— El‘aﬂ az d"? " ko3
oo () || 1o cos or—roucos hrar -

- S [(1—cos )" —2"!] cos krdr} SSz"“dzdy.
[

F

(17.25)
By integrating we find that for k=2
LMo =0
and for k=2i+1
© oy _ | 2Eva" o (d=gu "
Lia @) = { o d:e[ @) }x
X S(l—cos )" cos (2;‘+1)rd'z} SS 2Tidzdy.
n F
(17.26)

On the basis of the formulas obtained, the series
expansion of the function L(C) 1:) is finally represented
as the series

PN 287 o (n—1) Ea"v d@* (@)N}T}Sin +
L{,7) lA‘g!."‘omc.lfi’ sin v, + o (T_ D a | \ac? T

2Eva® d dsqo)“ o
+ {f‘ ({’Fnd1a?7+9Fo§mzﬁ cos ) — o d_é_i [(E;“_; I S (1 COS'Z) x
¢

S [ Bt & [(de\"] [, 20+l
XCOSTdT}COS 1‘+‘Z {en(2f+T)&E;[(EC_l) ]I[l on X

i=]
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X
S R

(1—cos r)"sin(2i+l)zdr”sm (Qi+1)r— S‘ lm‘“" Lo

ni d 1
i=1

e LAY b i
x['\d 7) ]I S (1—cos )" cos (2i+1) tdr}cos @i+1)s,
o

dz? (17.27)
where
I=p* KSZ"‘”dzdy.
F
. (k) .
The coefficients ap of the expansion of the

function L(Z)} in the fundamental functions @h(@) are
determined from the following expression, in accordance
with formula (17,20):

H 1
=2 S (D¢ (G)ds=2 S BoFyw?35 sin yopr d+
-]

f(n—l)Ea v @ I:(d’ )"]f%d;

en{n+1)= d;‘*

From (16,8} it follows that

) c diyp d'p
2
BoFyw?3 sin ¥, S p(C)= i 4 (a’;’ ) di

[(3)*?} .

sinvdids=

(%

Then

1
o f DB @ (T
s : en{n+ e d3|\dl?

.5 (::z_(nl_ E% :_ ’, [(j—;” Ig:dl=0;

(17.28)
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1 1
o2=2 { L) pdt=2 { | #oFedap+eFitatf cos vo) -
]

)1

9Bwa® dt [(\"]+ € . 1
g d?’[(d;") ] .S (1 — cos 7)*cos rd‘rj(pld‘:
On the basis of (16.9) it follows that

1
I (oF, ful x CO8 Yo S tpditeF,adn S P )=
0 0
1 H
d
=I@ § (F(%a cosr)fcos rdl dr =

1

ra"S
L

Substituting the last expression into the preceding

| PN & S
(1— cos r)" d 'pj I cos rdidr.
dt,’

1y B

formula, we obtain

alt, =2 iS L) 9, (2) d=2 5‘1 254" S (1~cos )" (22)' Tacds —
, € p : ENnn dé‘s)

Idi=0.

1 =

2Eqa"

—2S m: S(l—cos )
° o

d?[d” ] " (17.29}

For the values of n > 1 the coefficient of the first
harmonic is

1 1
a2, =2 { LiQ)gadt=2 | toFwip! sin vup, ds +
0

']
1
(n—1)Ea" & [(d¢\")+ .

J et )a dé”[(dﬁ’) ]I"”‘dc’

1 1
a.=2 { Zi@)g.az=2 {t* (eFodl ap+@F fwh o8 ¥) —
1] ]

2Eva™ d? [ rd'e\"]~ - _ .
" enn EE:[(EE}) ]I S {1 —cos )" cos rdr}.pdg,
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By virtue of the orthogonality of the functions ¢, ]
the first integral of the last expression becomes zero and
we obtain

1

QE‘(I" d’ d’ ny_
al) =2 S {PoFomgﬁé‘cos We — _5?’_7__ d_i’[(d%:) ]I >
v = >

X S (1—cos 1)" cos rdr} ¢, d=.
’ ' (17.31)

In accordance with equations (17.22) and (17,27), we have

1
ai? =2 S LY () . ds=0,
L
=2 S L () g, dl=0,
5 (17.32)

and on the basis of (17.23) and {17.26)

! f‘n v []
ﬂ:‘:i"” 25 Evaonts g2 I—(d"T) ]I [1_ 7371'{‘1 N
: en(2i+1) d. o

5 (I—cos#)"sin (2i+1) r dr] P,

N v 2Fat dt [ d’p ¢

(2i41} = — "

al¥i QS P [ Lz ) ] R(l cos )" X
1]

><cos(2ﬁ+1)rdrfim_d§

(17,33)

The coefficients of the expansion of the function 2.({)
in fundamental functions (in accordance with formula (17.11))
equals:
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(L
[c(n = ,—ah;_ =0
s i:} )'l. — tigFowg 1

D
[er = 5 —at =0
e B &7 T
1)
clx ] = 7 al.ﬂ o
M=l = PoFyo}
a)
[e®] = _,;'Lf_*,n
TS A leFr
(17.34)
From (17.32) and (17,38) we have
fe = _ﬂﬁ_ =0
mal=gi T AL — PoFy (2i)w? ’
(2i)
[c(m = __‘_’__f‘ﬁg_— =1 0,
M=t Aok, (20)? w? ’
a2+
L. A
Molemridy C Ag— PoFy (204 1)t w?’
alz+n
[CLM ] = mc _ -,
=i A — BoFy Qi+ 1)1 w? (17.35)
From (17.9), (17.34), and (17.5) it follows that
w(£)=0; uf (£)=0; uf,(5)=0,
“:(es,)zi ©)=0; Hﬁ,’f’u £)=0
) Cy=cllg; o, ©)=cloy
2, )= en ulil,y, () =iy,
(17,36)
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From these equations it is possible to form the ex-

pression for u {{ ,r) mnamely:
*r
=V q“k.’} — ot osi r o 3y -
w1 _! i.,i,—l*QF.-,tvg o slnr moal Cos
BENAY e (ysin(i—Dr+
= = | leFwi(zi—1)

2L a
Ca o -¢n ‘(-_- )

i eI+ 1)t

¢n(:)cos(zf%—1)r]_

(17.37)

Based on (14.3) the value of the deflections in the
first approximation can be represented by

u(rn)=ag(Zycos r—u (I, 0.
(17.38)

In using the formula (17.38) the expression for ¢ ({)
st be taken from formula (15,37) and y ({,r} £from for-
mula (17.37). The small parameter, € , which multiplies u,
will cancel because it enters in the denominators of all the
terms of the expression for u (l,T).

As a result of the investigation of the forced trans-
verse vibrations of a cantilevered bar of variable cross-
section considering energy dissipation in the material by
using the methods of the theory of perturbations, we have
approximate formulas which permits us to determine the
magnitude of the deflection of the bar, the frequency of
vibrations and the magnitude of the phase shift of the
vibrations. Based on formula (17.7) and (17.10) it is
possible to construct a resonance curve for a bar of
variable section made from any material. The wvalue of the
constants 7 and yp entering into the formulas must be
determined by experiment.
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Knowing the function 1L.(§,t) s the problem can be
solved in the second approximation., For that it would be
necessarv to consider equation (14.8) obtained by setting
equal to zero the coefficient of the small parameter to the
second degree in equation (14.2) after substituting (14,.3)
and (14.5) into it. Here, the terms containing T
left from equation (14.7) after separating out the terms
containing cllCi)for solving the rroblem at the first
approximation must be considered.

In the present instance we shall confine ourselves to
solving the problem in the first approximation, keeping in
mind that the precision obtained is entirely sufficient, as
was shown in the previous chapters.

18, The construction of the resonance curve

let us construct a resonance curve for a bar with the
following data (Fig. 9, 10):

{ =40 cm,
x
F(x}=3 (1,5 40),
_ (60—x)*
="

E=208.10° xa/cm?.

In the sample calculation we shall use the coordinates
X, . First of all we shall determine the frequency of the
free vibrations of the bar of variable cross~section in the
zeroth approximation, According to the formulas (14.13) and
(14.14) the averaged values of the moment of inertia and the
area of the cross-section will have the following values:
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x

0,05 ( \

0,04
| 0,03 .
‘ 0.02 f/

Iy

0 :
L2
04 0,6 0,8 10 1,2 L4 5.

Fig, 9 Fig. 10
40
Io=410§i(1,5 :G)idx*i%c 4;
0
. 40
F,= 4_168 (1,5— :—0) dx =3 cu?
5]

The roots of equation (15.17), using a coordinate X
instead of & , equals

kyl = 1,8751; kol = 4,6941; kil— 7,8548; k.= 10,9955,
Then for =40 cm we have
by = 0,0468775; ko = 0,1173525; k; = 0,19637; k4= 0,274888

and correspondingly

Bt =4,82001.10~6; k!= 189,66.10—%; &%= 1486,97 - 10-S;
k¢ = 5709,83 . 10-.

In accordance with (15,17)

_ ELk;
" Fn
and, therefore, from
n Fo
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we obtain
A= 1,0465; 1, = 41,093; 2, = 322,184; i, — 1237,166°

The circular frequency will be determined hy the
expression

where

_ Yy _ 785107
P= g 98|

-6

=810

Kg sec®/ cu*.

In the zeroth approximation the square of the circular
frequency equals

ot = 59‘%-‘“": 130 800.

We now determine the natural frequency of vibrations of
the bar of variable cross-section in the first approximation.
To do this it is necessary to find the second term of the
series (14.12}); that is, the first correction term, £ M.

The determination of this quantity, in accordance with
formula (15.19), is connected with the preliminary calculation
of the value of #»t, , determined by the formula

1 4

- (L [de]? __4§£$9 2
m, S A [dx*] dx k.. F qan(x)dx._
1]

(18.1)

In accordance with (14.13) and (14,14), we make the
following substitution:

el (%) = I ()~ I,
e\ (£)= F(x)— Fo.

(18.2)

We transform (18,1) to
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z i
om, = S 45 [Eii‘?fr Lo kS S F) 2
I, |dx* F, (18.3)
Ynowing the value of &2, , on the basis of (15.19),
we obtain

El,sm,
se= - —",

Fy

where n=1, 2, 3 . . .
Keeping in mind the expression for @.(x) , the
deflection function of the bar (normalized in our case),

1
Fulx)=— ﬁ (cos k. x—chk,x)—

T YT Cos ko< ch g S1 Anxm sl

and carrving out the.calculations we obtain the final
results for &pn , glven in Table 5.

We now turn to the determination of the correction Ctk
required for the calculation in the second approximation of
the eigenvalue A in accordance with (15.3).

For this, it is essential to determine beforehand the
first correction tern f:?r(z.) for the deflection functicn
of the bar obtained in the first approximation,

Table 5
! z . |
I(x) /dp\? P (x)
B4 -10 A et 7 ; 108
n " : j‘ I \dx') x% Jl 7. Pl dy b em, - 10 3 Elby,
| | o !
l L — e |
1] 483 8866 | 0693345 105 | 56174 | 1,21710
2| 18966 | 229,933 ‘ 0,905815 4,09 | 581351 | 1259318
|
31 148697 | 1506,574 0,968417 322,84 | 156,5785 | 33,92507
4 570083 | 5933878 0.982220 | 237,17 | 325,569 | 7053906
l : [

WADD TR 60-582 125



According to formula (15,26) we have

v, (x}=

0 o SFI )
}zf; — k4" F,
]

_% [I(x)d(p,,
Jdx¥| I, a'”]
0

()d}

Pn (x) ®; (x) dx—

Substituting in the last formula in place of I,(x)

and A (x)

their values in accordance with formulas (18.2

and effecting the necessary transformations, we obtain

v (x)= 2

Jeml

r 9 (x}

F(x)

k4

n

1
)
Calculating the various gquantities entering into the

right side of the equation we obtain for different n and
J' the values of the integrals given in Table 6,

I
k4
‘ki{ S F,

I, dx dif

I(x) d'¢, 99; }

(18.4)

Table 6
1 (x) : d

; Fx I{x)d'p, *°%;

-108 e i s Py 77

A ka-10 RA—k} j F, Tt j AT

0 0

2 | 1 186,66 5410,35 15,35298 1,66941
3 | o 1486,97 770,82 18,82911 29,44116
¢ | 3 | 570983 236,806 92,27678 155,63820
1| 4 483 | — 175285 0,79574 0,93414
2 | 4 — — 181,154 | — 1,78092 17,28453
3 | 1 - 674700 | — 2,00226 1,31172

The values of g-'lf(’:a:,)
(values ¢ are shown as indices on 27 )
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¢v1 (x)= 0,0863097q:2 (x) + 0,0089183¢p5 (x)-+0,00163067¢4 (x);
£v3(x) = 0,0672201 1 (x) -+ 0,199413¢5 (x) + 0,0319235¢», (x)
203 (x) = 0,01214056p; (x) — 0,0111217¢s (x) -+ 0,2901 194 ()
¢4 (¥) = 0,00632876p, (x)— 0,0497327¢; (x) — 0,067351 45 (x).

Having the expressions for £Uw  at our disposal, we
can go on to determining the corrections €X for the
second approximation. Starting from formula (15,32) and
having in mind formula (18,2) we will form expressions to
determine Pn

z ]
__(I(») d, d,
#p= S I—o e d—x; dx+k,‘;g

F(x) _
7 VP, dx

0
4

—m S Fix) Prdx+m,.
Fy

(18.5)

The results of calculations of the guantities entering
in the last formula are listed in Table 7.

Table 7
JIREy " “TI"'—(“) IF()

I(xy d'o, dv X _ 0, T

n J"T € dx:—dx_'dx F, ep v dx |1 Fy @2 dx eip_-10
0 0 ¢

1 | - 1,731 0,13078 0,30655 0,211
2 —65,4262 0,48266 0,94185 —50,7966
3 3,66334 D,54582 0,03158 —235,7257
4 112,8811 -011813 0,01778 —51,2200

Using the value of g';p,.b , on the basis of formula
F 3
(15.29), we shall find the quantity & X |, As we are
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interested only in the first frequency, we give in Table 8

the first eigenvalue, X, calculated in the second approxi-
mation.

Table 8
| ( ' )
n } An | Elly l e’x A
| I .:. - PR
11 10485 I 1,271y 0460 ' 22096

On the basis of Table 8 the square of the frequency of
the free vibrations of the bar of variable cross-section is:

A 2,299558
e 8-10—°

= 2874485.

wi=
(18.6)
Therefore,
w = 536.
The frequency is equal to

— o .
w_2f~%jm.

For constructing the resonance curve it is necessary
also to determine in the second approximation the values of
the deflection function of the rod in question. For this
purpose we calculate the third term of the expansion (14.11)
of the deflection function 2/, , which is expressed by the
formula:

. = E’ 2 {S 1{x) dwﬂ ok dx —

ky—ki| )T, dx® dx?
IF( ) !
— k ad v, g, dx—am Flx) d
nDS 7, Py 0 7 Pupydx ;.

3 .
The value of the frequency determined experimentally
amounted to 88 cycles/sec,
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Using this formula we present the values of ¢ &, ,
calculated for various = , (the values of ”n are

indicated as indices on Z ):

e2y (x) = — 0,116349g3 (%) — 0,284610p3(x) — 0,0067476454(x):
e2wa (1) == — 0,0729895¢, (x) — 0,0247867 @ (¥) — 0,0882455¢, (x);
60 (%) = —.0,00990945, (x) — 0,005997T 55 (x) — 0,272287 904 (X);

g1, (%) = 0,00158542( (x) -+ 0,05363255 (x) |- 0,055768s (x).

Knowing the quantities @.{x), V(%) and & wlx)
we represent the deflection function ot the bar of variable
cross-section in the second approximation (without taking
account of the dissipation of energy in the material) by
the series:

@ (x)= g, (x)+ ev, (1) + 2w, (x).
(18,7)

Knowing the magnitude of the free frequency of
vibration from (18.6) and the deflection function @(X) ,
we make a resonance curve starting from formula (16.,20) which
can be represented in the form:

G S xp(x)dx

b [(n + Dsinw,
d 2+i(n—1)

o {9 (e
0

X

=,

{l—cos 1)" cos z dr—cos %] )

(18.8)

where

P () =@nt eV (x) 4 2w (¥)== @1 (x) -+ vy (%)} 2, (x).

Keeping in mind the equations
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ev; (x)= — 0,0863097 g2 () — 0,00891834¢5 (x) — 0,00163067¢4 (x};
£y (x) — — 0,116340gs (x) — 0,2846 1¢ps (x) — 0,00674764p4 (x),

for the deflection of a cross-section of the bar @(z) we

obtain the following expression:

@ (%)= g1 (x) — 0,20659s (x) — 0,0373793ps (x)— 0,0083783 14 (x).

Taking as in the case of vibrations of a bar of constant
cross-section
y—= 186, n=2 and 8y = 0,000216

and the length of the bar I = 40om, we {ind the values of
integrals entering into formula (18,8), We obtain on
calculation:

- S (1—cos )t cosrdr=mn;
o

I3
quo (x) dx
0

i

5?7’ (x) dx

= 124,3063.

Substituting the values of the integrals obtained and
the magnitude of the amplitude of the angle of rotation of
the fixed section &, into the equation (18.8) we shall
finally have

3
(ﬂ) =14 0268502 4 76007 sin wo—cos v,).

w a-2,694379

c

(18.9)

For the construction of the resonance curve it is
necessary to consider, in addition to formula (18,9}, the
formula for the determination of the sine of the phase shift
angle
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i

et PP ((dip(n)\tt o
Bip Y= n(n+1)JS {( dxt ) SFS 2 +1dzdy}dx,
0

(18.10)
where

1
J=sgatopn § Lpd.
D

For the dimensions of the bar of variahle cross-section
which have been chosen,

h,— ——, =3 em u Fy=—=45 cmu?

the expression of the double integral entering in formula
(18,10) becomes

28 (60-x)n+= _ 6(60 — x)*

§) rdedy= niz\ 80 4804

F

The value of the outer integral in equation (18.10) is
calculated approximately by using Simpson's formula, As a

result of these calculations we find

! 40

pR— . _( [digp\s _

S (L5 60— xrrdx = S (29)° 60— x)t s = —2-2,533964.
o

Substituting now all the known quantities into formula
F)

(18,10) and keeping in mind that Jg::@@&ﬂﬁngxydL

i ]
we shall obtain the expression for Sin 1h as a function of

amplitude a .

sinl fo = — 52,451025 a" — — 52,451025 g2,
Yo ¢ (18.11)

The function @(X) , contained in the expression for
5"*'*3 s consists of the normalized functions and does not
satisfy the condition at the end of the bar with regard to
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deflection. Therefore, when determining the true magnitudes
of the amplitudes of vibrations a. as functions of the
frequency of excitation, it is necessary to introduce in the
expression for Sin 7Y a coefficient found from equating
the magnitude of maximum deflection at the end of the bar to
the magnitude of the amplitude & , that is:

= (18.12)
As is known,

u(x, 7) = p(xjacos

and for the function @CZ) , consisting of a certain series
of the normalized functions @ , we have

nx, 7,4, = 0371142 .
=0
Therefore, the constant coefficient by which the

deflection function should be multiplied to satisfy conditions
(18.12) at the end of the bar is

a= -~-—17ﬂ = 2,694379,
0,371143
.. " n
Multiplying the coefficient <« by =< = 7,2597
(for m = 2) we will obtain an expression for Sin WV
corresponding in structure to formula (18.10), namely:

5in 0 = — 380,777552 a?.

To construct the resonance curve we use formulas {(18.,9)
and (18,13). As a result of calculations we find the values
of the relative amplitudes of vibration @ of the bar of
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variable cross=-section as a function of the ratio of the

frequency of the external disturbing force to the frequency
. R ) .

of free vibrations, 75 . These values are given in

Table 8.
Tahle 9

AN o) CAY o

¢ (mc a e )n B¢ Jn e )n
0,01 ' — - 5 1951165 1,397
0,02 0,418608 0,647 ‘ 1,402578 1,184
0,03 0,552829 0,744 1,177951 1,085
0,04 0623629 0,789 ’ 1018742 1,009
0,045 0,660041 0,812 : 0,037625 0,988
0,048 0,685791 0,828 0,385055 0,941
0,05 0,714774 0,845 0,538192 0,915
0,05125 0,770926 0,578 0,770926 0,378

The curve of the resonance is plotted in Fig, 10 in
accordance with the tabular data. The charucter of the
curve indicates the substantial nonlinearity of the present
vibrating system in the analysis of which energy dissipation
was taken into account,
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Chapter TV

Transverse Vibrations of Turbine Blades of Constant

Cross-Section in a Fleld of Centrifugal Forces

Derivation of the e tion of brations

We shall examine the forced transverse vibrations of a
prismatic bar of length { attached by one end to the
periphery of an absolutely rigid rotating disc of radius r,
We shall assume that the disc rotates at a constant number
of revolutions ” per minute. Further, we shall assume that
the bar under consideration carries at its free end a
concentrated mass »t and 1s subjected to the action of a
bending moment P1¢ proportional to the angle of rotation of
the end of the bar,

Let the external exciting force have the form of a
uniformiy distributed transverse load, varying sinuscidally,

g = g CO5 wi,
where is the amplitude of the load, ¢« is the frequency
and €t is time,

The vibrating system in question is shown schematically
in Fig. 11.

WADD TR 60-582 134



Fig., 11
The following forces are denoted by vectors: }3 is the

centrifugal force due to the concentrated mass »n P is
that due to the mass ¢ of a unit length of the rod; AJO,
Oo , and N] ’ Q. are respectively, the horizontal
(parallel to the x axis) and vertical forces, which make up
the centrifugal forces F?, and P .

Let us examine the expressions for these components. The
force directed parallel to the x axis, caused by the action on
the bar of the centrifugal force [, , which is due to the
concentrated mass m. |,
nt i

¥

No =P cos oy = P,

where f{ is the distance between the axis of rotation OO
and mass o,

Due to the smallness of the deformations it can be
presumed that

R= rO‘[—ZMro—l—‘l].

Then with sufficient accuracv it can be supposed that
ND ~ Pu.

Similariy we find the expression for the vertical
component of the force
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Qo=FPysinas= Py Lt
Keeping in mind that

ro+[ '

—

_— an
where W = 305

obtain

i

Py = mw?R = mw?(ro+ 1),
is the angular velocity of the disc, we

ND:mEE(fu—i—l); Q0=m52ule.

(19.1)
The centrifugal force on the mass of the part of the bar
of length {—x , acting at a section of the bar at a
distance x (from the root) will be

!

_ _ ll xt
P =t S u(ro+ L) df = w?u (I‘,,H' 5~ fpx — ‘2—) .
We now introduce the notations:

.P‘:-,ua’(rl-{-f)' P.= EI( +£2)
1 ) 2 h = ex 2 .
The force acting on the cross-section in the direction

parallel to the x-axis caused by the centrifugal forces on
the mass of the har itself is
N1:PCOS(11%JP=P1WP.::
and the component of centrifugal force directed perpendicularly
to the x-axis equals

@, =Psine, = Py

= P] ——P"
et x  rtx

Thus, the force acting on any section of the bar at a
distance of 4

from the origin of coordinates in the
direction parallel to the coordinate axis of <L
equal to:

, Will be
Nx‘zNu‘f"P::—Nﬂ‘i_Pl_‘Px-

We shall call this force the horizontal force,
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The expression for the vertical force, acting on the
same cross-section of the bar, will take the form

P —P,
]'o+x

Qr=Quu + Q= Q1+

In forming of differential equation of vibrations of
the bar in question we shall assume that the vibrations take
place in one of the principal planes of flexure and that the
dimensions of transverse cross-=section of the bar are small
in comparison to its length. <Therefore, the influence of the
shear forces can be disregarded.

Neither will we account for the vertical forces Q@
because of their smallness., Further, we will presume that
the following nonlinear relaticn between the stresses and
deformations for loading and unloading of material holds:

—

E[E4-1(8)]

—

vﬁEE+f£
(19.2)

where E?(g) and E?(g) are certain stress increments
which characterize the deviation of the curve of the ascending
and descending branches of the hysteresis loop from the

linear law expressed by the term £§".

In conformity with formulas (19.2), the bending moment
acting on a crossesection of the bar at any instant of
vibration can be expressed by the second derivative of
deflection in the following way:

aMﬁﬂ.m@+£@g
dx?, dx2 detl’

(19.3)
where Eﬁ( T is a functional which characterizes the

incomplete elasticity of the material, The wvalues of the
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latter for the ascending and descending motions corresponding
to the different branches of the hysteresis loop will be
different.

The equation of equilibrium of the moments of the forces
acting on the element of the bar will have the form

Differentiating the last equation with respect to =&,
we obtain
dﬂ!de, dN du d*u

dx* dx dxdx “dxt

(19,4)

(19,5)

and also keeping in mind that in our case u'—‘—f(“-)f),
on the basis of equations (19.3), (19.4), and (19.5), one
can write

ot [ o] o[ 2({am\] dN, ou otu
I NEr2E 4+ Z b= ) | — =T 5= =
o [E ax’] [& \ )] N, g;-

(19.6)
This diffetential equation of the bhar subjected to the
action of uniformly distributed load of intensity ﬁk, is
used to obtain the equation of transverse vibrations of the

bar,

Considering that the intensities of the forces of inertia
and of the external exciting forces are expressed, respectively,
byv the formulas

oty
g, —Hu EE;' ¢, rq cos wi,
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Disregarding the rotatory inertia and also not considering
the transverse force Qn because of its smallness, we
obtain from (19,6) the differential ecuation of transverse
vibrations of the bar in question:

- g 1 H - 3 T F
o [Ef (_}_,"} 4L 7 [e;b k?“”)J _ N ou
axt

ax? ax: axt dx J0x
—‘N" tizu 72E — t: 0
xdx_z e o £ COS R

(19.7)

In the 1light of the fact that the dissipation of energy
in the material is relatively small we shall assume that the
external periodic force necessary to maintain the vibrations
is also small. This latter circumstance is taken into account
in equation (19,7) by the introduction of a small parameter &
as a factor, both in the term which accounts for the losses in
the material and in the term characterizing the magnitude of
the external exciting force,

It should also be remembered that the presence in equation

»? 2,
(19.7) of the term P > EQ( ('L“) , which characterizes

the dissipation of energy in the material and which has a
different expression for the ascending and descending motions
{(for loading and unloading) indicates that the vibrations of
the bar are expressed not bv one but by two differential
equations,

For convenience in handling equation (19,7) we introduce
a dimensionless coordinate {="7 and a dimensionless

. ®_ L . .
deflection & = " , Where L is the length of the bar in
question, Then equation (19.7) can be rewritten, as follows,
in dimensionless quantities:
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ou*

og

*u” e az[g(a*u*)]+ *

at® TEL ot L@ Uzl gr(aretall)

2
|

3% pl* 9%y eql?
2 — =
£ ) ag2+EI FYE: = coswt Ov(19.8)

where the following notations are introduced:

j a
~E7 (Pomarell—

a=pw?

-— —_ 2
Po=N°+P|=mw2(ro+|)+p-wz(rel+-2|—) : (19.9)

20, Methods of approximate solution of the equation of

vibrations in this problem

To solve the differential equation (19.8) the non-
linearity of which is caused by the imperfect elasticity of
material, we shall use, as in previocus chapters, the method
of nonlinear mechanics based on the expansion by powers of a
small parameter, We will represent the deflection u*(g,f)
the frequency of vibrations w , and the magnitude of the
phase shift betweer the stress and strain 4 in the forn
of the following expansions in series of powers of the small

parameter ¢ .
Wt (5, 1) =d(L)acos(wt +y)+eu (L, t)+ fu,(L 1)+ -
(20,1)
“’z=w§+€A,‘?'eAz+---; 20.2)
W=y, tey Fety (20.3)

where @ 1is the dimensionless amplitude of the deflection of
the free end of the bar, w., 1is the frequency of free
vibrations of the bar,
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We now introduce the new variahble

T=wt+y (20.4)

and transform coswt= cos(t—y), using the expression for V¥

as the series (20,3),

cos(t—y)=cos(t =y — ey -524,2__... ) =

= - +ey + )+ s +ey +-

cos(r—y ) cose (¢ +ey, )+ sin(r=y)sine(y +ey, (20).)

Further,coSe (Y, + ey, * " )and sine(y, + et!fz*""') are
expressed as the series

cose(y, Topp+ .. =1— . Fergt .0
2! '
sie {0, — oyt .. -)z-"(ﬂ’l‘*’f:’-f‘z*? cel)— ( + % )

3!

Substituting the values of the latter into formula (20,5)
and drorring terms containing the small parametereto higher
than the second power, we obhtain

cos (r—w)=cos (v - vy) e (e= ) -+

1y sin (=) — % cos (- m] .

(20.6)
After having substituted the series (20,1) -~ (20,.3)
into the differential equation (19.8) and taking account of
the change of variable (20.4) and of equation (20.6), we
obtain
a* 0%y
—-—fio cost+e—g

at

d*u le 9% r== /9%
2 0 Y2 4. 4=
3L + e ot +-- -+ El agz[CD( czacosz-+

3

+E|1 (ar,+ alg)[—gﬁo cost+

azu 2 a U2
+e aga' +e % + - )]
(20.7)

cont.
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ou o P a )
’ — (Pt —Z ) x
tegtee T ] EH( PTHERE T

d4 2() ila l
X[Eacﬂsr'i‘&“a:"l' é_z‘f"--J'i‘

plt — ouy | 40
+ ﬁ(m§+sﬁl+s%ﬂ,+ o) ( pa CcoSt+s fre + &2 o S

R

_tq { cos (z— )=, sin{z—Y) +
EI

+E’[wzsin(r-*w—%COS(T_“’»)“=0‘ (20.7)

We group the terms of the last equation in such a way
that each of its terms contains as a factor the small parameter
to the zeroth, first, second etc., power, After that,
inasmuch as C.;E?O, we can equate to zero the factors of
the various powers of the small parameter. After carrving
this out, instead of equation (20,7) we will obtain the
following svstem of differential equations:

dﬁ — + -—“-((I + l' ) - (PD E"roltm_ o dé" EI weg 0’
(20,.8)
My I ..o z . off J\3u
R N O e
pl pdt a1 A *(EW' 1 *
_ _E'_—I A1¢a cos T -4 E wf —Iz' -+ EI 5;2 D dé‘i @ COS8 f“l
- fgI cos (z— ) =0;
(20.9)
o du B . ul* 3%
15 S L35 l 0?
a i 2 it 1 —_
EI d,r,ua cost+ o w ot 6*2 W, )
—1, sin (r—‘-‘f =0
(20.10)
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Here fPTz;,T) is a functional which defines more
accurately the magnitude of energy dissipation in the
material to the second approximation. The equations obtained
(20,8) — (20.10), are the basic ones for the investigation,
in the various approximations, of the influence of energy
dissipation in the material on the vibrations of the bar,

21, Solution of the problem in the zeroth approximation

To determine the deflection function and frequency of
vibrations in the zeroth approximation, i.e. without
accounting for the energv dissipation in the material, it
is necessary to solve equation (20.8).

We rewrite this equation in the form

4 R 2 . d
Lo _ (o op+ 1) L8 — (c+g0) 2 —ry=0
act de? - (21.1)
where
P, £roo e
d: r— == e e * _ — e ;
BT T Er T um
U . R & N
/4 FI , r= EI w?,
(21.2)

The solution of the homogeneous differential equation of
the fourth order (21,1) with variable coefficients can be
found in the form of a series:

P T AL AL AL A (21,3)

where A,, A, , A, - ..,A,---are certain constants,
Substituting (21.3) into the differential equaticn (21.1)

and grouping the terms containing the same powers of ’

it is possible then to equate to zero each of the expressions
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multiplving the various powers of ¢ . Having carried this
out, we obtain a system of equations

4.3.2. A4*—2dA2—CA]-*‘fAﬂ:0
5.4.3.2. /‘15-“3 2. dA’;ﬂQCA" ----- QCAJ__QAI T’A[--O
6:5.4.3. Ag——4 udA.; —3 90{43 ~-*2JFA17—._JCA; ~~2g/ig——rA2—0
7-6-5-4-4;, - 5.4dA; — 4.3cA; —3-2fA; —4cAs— 3gds —rd, = 0,
L (21.4)
(n+4)(nt3n+2)n+1)An,,—(n+2)n+1dAp,—
—nin+)cAn, —nin—1)fAp—(n+1)cA,,,—
—ngAp —2An=0"-
From this svstem of equations (21.4) we obtain
21
A= Ta
4 4ldA2+ A 4[ 0y
3! 2-21 {g+n
A= ;dﬁa 51 cd; + **5*[“* An
4! 3-31 2[(2f+2q+:)
As 6|dA4+ 6 A + 6‘ ll
5! 441
A= dA., " e A4+3[(3 2f7':~3q+r)A3,
6! 5-51 .
Aszé*'dAu“i-?cAb 14'!*({;-—%—}-!__49@ .
.................... (21.5)
Lo T
a,=" --,—) dd,_y+ BTETN
n n!

+ (n— ) [(n—4) (n~—5)f+(n—*4)g+r]A

n!

n—qr
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From equations (21.5) it follows that all the constants
beginning with Aq and above can be expressed in terms of
Ay Al, Ay, and AS.

In this way the solution of equation (21.1) represented
by the series (21.3) can be reduced to a solution containing
a number of constants corresponding to the order of the

differential equation.
We now prove this, Substituting in the expressions for

Ags A7, Ag and so forth, in place of 4, and A5 their
expressions 1n Ao, Al, Ay, and A3, we find

)
A= 33 —CcA,+ (d +2.3f+r)A, +_ch+3dAo;

A7=_%..[d2+(3.4f+ r)]A3+o?!'—(2cd+4cd)A2+
4rc
+2-[et+nract| A+ T A

|
A= (3cd+500)a,t 5[ P23t +rId +5.2 67+
+(a-5F+r)d At [cd®+5e(2f+r)+c(a-5f+r)]A,+

+-8—,[rd2+(4-5f+r)r]A

Further, substituting Ay A5, Ags A?, Ag o o oy
expressed in terms of A ot A1y Ao and A3 in equation (21.3)
and designating the expressions multiplying A o? Al, Az, and
Ay, Tespectively by ¢, (L), ¢ (L), 08, and ¢,(L)  in
place of series (21.3), the solution of (21.1) can be represented

as

P (5)= Ao (L) +A ¢ (L) +ABL)+A (L)
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In this way the solution of differential equation (21.1)
represented by the series (21,3) constitutes the general
solution and contains four constants of integrations: Ao ’
Al ’ A2 and A3 .

The boundary conditicors of this problem from which the
constants of lntegrations must be determined are:

I
=0 s Jet

[L(L) _ s [i{i(t-:}} _ P@:
(==l

02 o EI' ap EI
b=t
(21.6)
vhere GQ%F, is the shear force at the end of the bar,
the magnitude of which, in the present case is
N LI (78, I B o (0 Y
i) - [2E2]
(] =]
(21,7)

qu' is the elastic bending moment acting on the end of the
bar; its value depends on the deflection and can be expressed
by the formula

du¥ (S, 1)
a: Jr:ﬂ,

=t

MG:K[

where K is a constant coefficient,

In conformity with equation (20.1) the conditions (21.6)
at the ends which apply to the solution (21.3) should be
rewritten as:
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db

f_fiw_(f_)] =P[d¢(c)] , [dscp(C)] =d[@(5_j
di? L= LI Py ai* ., | 4 .

[P Ol =0 [@@L; 0;

(21.8)
Here

Kl B
P==. = i
g ET

In accordance with the first two conditions (21.8), from
the solution (21.3), we have

d
[ Q)= A0=0; [——mfii‘:) ] — 4,=0.
H] 5=0
Then, on the basis of formulas (21.5), the solution
(21.,3) can be presented in a genersl form as follows:

o N
$(L) =A2£2+A3C3+Z%{(n——2)! dAnpt{n—=3Hn-3)1cA 3+
n=4 "
+(n—4}![(n—4)(n—-5)f t{n-4)g+ r]An_4} ,
(21.9)
The unknown constants in the last expression are just
A, and A3, by which, according to equations (21.5) all the
constants A for any value n , will be expressed. Besldes
the constants of integration A, and Ay, the solution (21,9)

contains a third, as yet unknown, constant quantity

q
rs é—f‘— w:_’ containing the frequency of the free vibrations

of the bar w, 1in the lowest mode, which we are looking for.
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To determine constants A2,A and r , we use the
remaining two boundary conditions (21,8) as well as the
conditions that the value of the function at the end of the
bar equals unity i.e. these three conditions:

Pp(l) ] _plde@}] | [4eD] _ . [del) | .
{ ac: ]Emi lD[ ot Jrzl’ [ dzs ];=1 dh[ a, Jc-l'

fe (Cﬁrzl =1.

Vi

"

(21.10)

If we now represent equation (21,9) in the most general
form

g =Y AL"
n=2

(21,11)

the conditions (21,10) for determination of the constants A5 ,

A3 and r can be expressed as follows:

) Y a(e—1)4,=PY n4,

=2 n==2

2) Y nla—1)(n—2)4,=4d, ¥ nd,,

n==2 n=2

3) Y An=1.

n=2

(21.12)

Using these equations and also formulas (21.4. and (21,.5)
it is possible to determine the constants of integration A2
and A3 as well as the magnitude Ofﬁ.r , and from it the
lowest frequency of free vibrations.

*Here the value of r is found from the partial
determinant formed from the first two conditions, (21.10)
or (21,12).
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w. = J-LEL |
C f"‘f4

The series (21.,9) or (21.,11) are convergent in the

interval from 0 to 1 which can be easily demonstrated on

the basis of the d'Alembert test, At the end of the bar

( L= ) the sum of the series equals 1, which corresponds
to the boundary conditions of the present problem. In this
way, having determined the required number of coefficients A
(usually their number does not exceed 10 to 12) and sub-
stituting their values into formula (21.9), we will obtain
the final expression for the deflection which is then the
solution of the differential equation (19.8) in the zeroth

(21,13)

approximation,

22, Tetermination of the frequency of vibrations and
the phase shift in the first approximation

In accordance with equatiors (20,.2) and (20.3), the
given problem in the first approximation is associated with
the solution of equation (20,9), from which we find A, and
siny, . These values can be found from equation (20.8) if
we examine the balance of energy of the vibrating bar
(potential and kinetic) for one cycle of vibration,

Multiplyving equation (20,9) first by ¢ sint df dr,
and a second time by pcosTdlor and equating to zero
the integrals in both cases taken along the whole length of
the bar for one cycle of vibration, we obtain

a‘-ul I da " o 33
O (aryta J——p—az ) —
ég{ayTEr s Hell) 5p ~ g e 37
[}
el plt L ofuy 1 dp i\
~E dgacosr+ Wt p( =8 -~
rr O Yo Tk o (dfza o8]

’q cos(r—1 )‘ sin rdf dr=0
- = - T ¥ —
F[ (1] }@ [

-

(22.1)
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dHuy ritzt n TR 7 LR )
@\{ 6}4-}-*'( aryt+al; } —l‘;'—lr(j."‘J uloig—(.)*-
0

l" L0 ! d*p
- ———A @ cos R & -
Rl 1¥ r + EI ar’ ET 9¢ [ ( ft COS z)]

I’q |
— W) pcostdid
ICOS(T l#)’ r = (22.2)

Integration of these equations by parts with respect to
and T taking account of the conditions at the ends of
the har (21.10) also considering that u,(g,'r) does not
contain the principal harmonic, one can. show:

1
i, e .\ 0 -
1) é.)% [EI —-6—!:-; —p (P uryll— ‘2_;) 64_214,15(“,.0_[_“1 ) +

-
t

+ y{"{.ug

3 o
a;‘]cpmn rd;dv=0; (22,3)

d 2 !
2) @)S [Efﬂ-zz(po—aroi*—?)%§+z=(uru+uzg)%?
+ pl*‘m2 . ]qo cos td{dr=0,
2
(22.4)

In this way the two equations of balance (22,1) and
(22.2) can be replaced by four; viz., by equations (22,3) and
(22.4) and in addition, by the following equations:

1
4) S { —auPepd, cost— ¢ cos (s—wy) +
]

3 )
=+ *a—- [dﬁ (dja cos r;)] }!}3 sin rd;dr=0;

oL e (22.5)
(ﬁs {— aulbpd, cos 1— Pq cos (v— i) +
[/}
gt = dz‘p
| B dr=0,
6:9!7 (dazacos-z)”rpcosrdg 0
(22,6)
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Solving the last equation for &, , we find

1 —1 1 P = dzfp .
A= [apl'f‘n go’dt] { o | — [ ] (~ a cos r)] pcos rag—
§ | 5 gl \dr

1
— ql*n cos Wy S P dc} .
1

The first integral in the brackets of the last equation,
can be expressed in terms of the bending moment acting on the
cross-section on the basis of (19,3) as follows:

s@lg ;—; [é(f—:&;a cos rJJ g cos rdlde=

] 2
L [M(C;—; a cos z)] gpcos vdldr —

1 a2
[ o [EI —‘%a caos '1] p cos rdfdr.

Then the square of frequency in the first aporoximation
can be expressed as:

s,

wi=a?ted,=w? + |apin S}?zd‘: { @1‘ 2z -M(——‘Eacos T). X
< C ; ) ar? dre
a

XQCOSngdI_—Ean’E[S E’:‘(pdb gl cosy, S(pdC}.
(22,7)
The sine of the phase shift angle in the first approxi-

mation, as in the previous case, is found from equation (22,3)

H

—U ol 3 [, (0 .y
sin y, = [q[ln S (pdc] ! @S %[M(-dga cos :)]tpsm 1 df; dr.
° ’ (22,8)

Using formulas (22.7) and (22,.8) we can construct a
resonance curve of vibrations of the bar in question accounting
for the energv of dissipation in the material, In order to
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use these formulas it is necessary to find an expression for
C(Z
the bending moment M(l—‘)% a ¢o57T] , Taking the expressions

for the stresses (19,2) in the form (6.2) it is possible to
transform formulas (22,7) and (22.8) similarly to the way it
was accormplished in chapter 2 and finally to embody the
resuits in the form:

1 . 1
W=+ {aul'n S(pzdg] {QE;;—nS (1—cos 7" X
I} . ¢

1 1
dr g dion\® [

A cos rdrS . ( 9’\ SS ntlda dp | dC —qlfz cos v S at !,
; [dc2 apps P IETE o] o S AG

(22.9)
! - L —_
sin thy = [q[’n S :pdf;] IE:: a® g(—na?% x
C [ @ [dp\" |
% HTE n g b b,
4 S {dé‘”(dg‘i’) P S"S z iHdZd:]} =
Y (22,10)

Using these formulas, it is possible to construct a
resonance curve of the vibrations of a blade of constant
cross~section with one restraining shroud.

On the basis of equation (20,1) the magnitude of the
deflection of the blade can be found by the formula

u* (G, ) = g€ cos (wi+vy).

In this case also we shall confine ourselves to the
solution of the problem in the first approximation.

As far as the precision of the first approximation for
the solution of technical problems is concerned, as was
shown in the previous chapters devoted to questions of
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vibrations accounting for energy dissipation in the material,
it is entirely sufficient, The extra precision in the

second approximation amounts to less than 3% for the frequency
and less than 0,2% for the displacement.

23. Sample calculation

To illustrate the application of the formulas obtained
in the previous paragraphs we shall construct the resonance
curve for an actual blade of a steam turbine; a sketch of
the blade is shown in Figure 12, The basic data for the

26, 21~1
=z

s

Fig, 12

‘calculations are as f‘ollt}ws.'rf The length of the blade
{ =42 cm, the outer radius of the disc # = 88 cm; rpm of
the turbine 1400, area for the cross-section of the blade

*Data for sample calculation are taken from the book of

Prof. M, I. Yanovskiy, Design and Calculation of the Strength
of Steam Turbine Parts, 1947, p. 81.
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F = 1.861 cm®, the moment of inertia of the blade in the
plane of minimum rigidity, L = 0,2268 cm4, the mass e
of one segment of the shroud of length € = 2,621 cm
amounts to 0.29363,10™°
hysteresis loop for the chosen steel, based on experimental
data are taken as n =2 and UV = 3.1; the modulus of
elasticity in temsion £ = 2.2 X 10° kg/cmz.

On the basis of a calculation the natural frequency of
vibrations of the blade (without considering the centrifugal
forces of the mass on the blade and on a shroud) was found as
W, <3648 sec'l. The natural frequency of vibration of
the blade calculated taking account of centrifugal force on
mass of the blade and the shroud according to formula (21.13)
equaled  “ = 4585 sec”l,

On the basis of formula (21,9)=——(21.12) the function
(21,9) for the example in question can be expressed as:

kg secz/bm; the parameters of the

e (£)=1,79322702— 1,260747503--0,8174 1604 — 0,594793¢5+0,348279L¢ —
= 0,15390857 +0,070834755—0,026986455+0,00902047( 10—
—~0,003020128*+0,0008156978 12 - 0,000238485L 19+
+0,0001147190'+—0,0000103836515+ . . .

(23.1)

The following values for the integrals entering into the
final formula are found using the assumed data:

1
S o {0)dC=0,383214,
[
*(C) d=0,236730,

(1—cos )" cos vdr = —~=,

L™ 3R Oy

S 5 2" dzdy=0,35652,
¥ (23.2)
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Formulas (£22.9) and (22,10) for the construction of the
resonance curve will take the following form after substi~-
tution in the known values:

iy 12,3115¢

fw
_— =1"‘ 5 3 I . 2
ch) [2,356204 sin w,+ cos ¥, PRTIRE (23.3)
i = o . L_lj
sin 1, =0,272618 1o=g. (23.4)
. A .
where, as is known, V¥, is the phase shift,. Q=" is

the dimensionless magnitude of the amplitude of vibrations,
q is the amplitude of the external exciting force, w

and w, are, respectively, the forced and natural frequencies

of vibrations.

a16® 1 Using formulas (23.,3) and
24 {22,4) and knowing the magnitude
20 of the disturbing force g ’
'e it is possible to construct a
'z HH resonance curve for transverse
g vibrations of the blade. For
o . w a value of alternating exciting
%*?q#”|9044m8 ZE force of amplitude per unit
Fig. 13 length of blade q = 0.004 kg/cm,
formulas (23.,3) and (23.4) can be represented as
(—:':':)2 = | —%—9;2—1(2,3562 sin §, + cosy },

sin §, =1,62275 - 10° o®,

Using these formulas we obtain the results shown in
Table 10.
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Table 10

R . m \? o \® A [ 0

vl | e (@) (0] ()

2 00065 | 099998 - 097500 % Lot | os7e 02
o060 | 000568 098594 | 10115 r 0,9934 | 1,057
5 0103 059459 090237 | 1,00462 | 0,9962 E 1,0024
12| 02287 | 087237 ‘ 099375 | 100173 | 09969 | 10008
16 | 04154 | 090966 ' 090419 . 099979 | 0971 09999
20 0,6491 [ 076072 0,99437 ‘ 09911 | 09971 | 09990

’ :

24,824 i 1 0 | 099533 | 0,09533 | 09977 | 09977

The resonance curve constructed on the basis of data in
Table 10 is given in Figure 13, At maximum amplitude of
vibrations, the magritude of stress (at the root of the blade)
for the given amplitude of load fb = 0,004 kg/cm amounts to
about 3400 kg/cmz. The resonance curve permits us to
conclude that the displacement of the maximum to the left is

e

negligible, though the amplitude of the vibrations at w, = 1
d

is 407 less than the maximum amnlitude at we = 0.9077. The
shape of the resonance curve is characteristic of slightly
nonlinear vibrations of systems, the characteristic example

of which is the present problem of vibrations accounting for
dissipation of energy in the material.
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Chanpter Vv

Transverse Vibrations

of a Turbine Blade in the

Case of Slowly Changing Frequency of Excitation

24, Basjic differential eguatiors and nethods of

solution

The problem of blade vibrations for a non-steadv-state

regime is of great interest
the behavior of a blade for
frequencies of vibration to

The theoryv of analysis

in connection with the study of
slow transition* from subresonant
super~resonant frequencies,

of vibrations of elastic systems

with slowly changing parameters in a manner applicable to
some problems was worked out by Yu, A, Mitropolsky (5). We

shall not dwell upon the general results, instead we shall

examine the theory of construction of a resonance curve for

one particular, practically

important, case of blade

vibrations, in the case of a change in time of only one

*By "slow" we mean a rate of change of frequency such
that the frequency changes 1 to 2% of its magnitude per

second,
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parameter, for example, the external frequency of excitation,
We shall assume that the amplitude of the exciting force, as
well as the other parameters (mass, stiffness) remain
constant.

In this case of non-steady-state vibration, the dif-
ferential equation can be obtained from the previously
derived equation (19,8) by replacement of the term which
characterizes the external excitation, namely:

Hu* o, wli, o 0fut af® ou®  uf+ JpE
. __,,_.;P_,_'.“___,,‘:;_A,; [ ey T PSS
ae g T T T g T (e ) o TR e
4
e @ [2/ut\]  eq,b
+ 5 b *) _ w“msing B dt=0
EI a-:z[ (a-:ﬁ.] £l _,,‘D(‘E)

o (24,1)

We seek the solution of (24,1), following the methods of
nonlinear mechanics, in the form of the following asymptotic
series:

ut (G H=@(l)acos (0+v)+eu (S, o, 0,0, 6+y) +
+euy (S, o a,0,0+v)+ ...,
(24.2)
in which gﬂg) is the solution of the "undisturbed" homo~
geneous equation

otu* . el? 5 Pu¥ al? ou*  ult giu*
e —— P — »__ T " . o p AN 2%
are  pr e T s ,J an TR T e S0

and %, and %, represent neriodic functions of the angles

<
9=5P&t) £{ and 9*‘# with period 27U . The

t
magﬁitudes of amplitude, @ , and the phase shift yb are
found from the following system of differential equations:

fg = Ay (st 2, 9) + 2Aalot, a, $)+ . .

(24.2)
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‘g’ = p —p(t)teB, (&, ¢, p)+ B (et @, )+ . . -, (24.4)
where p. is the natural frequency of vibrations of the
blade found from (21.13).

The further solution of this problem is reduced to the
determination of functions %, , %, and also of A, , 4,
so that the series (24,2) satisfies equation (24,1) for
values of a. and ]{f determined from (24,3) and (24.4).
In principle, the finding of u,,u_,,'A,,AJ--—and B,, Ba_- --
does not present theoretical difficulties, but in practice,
in view of the rapid complication of the formulas, only a
few terms of the series (24.2) can be determined.

As was shown in the works of Yu, I. Mitropolsky, the
results of the solution of the problems with slow. changing
parameters in the first approximation give, for all practical
purposes, quite satisfactory results. The increase in
accuracy of the natural frequency in the second approximation
amounts to only hundredths of a percent (0.02%) of the natural
frequency of the undisturbed system, In the light of this,
in solving a rather complicated problem it is advisable to
limit oneself to the examination of the first appnroximation
for which only the functions A,(E.t,a—,w) and ﬁ(g‘t,a_,w
will be required, which is easiest to accomplish, proceeding
from the examination of equations of harmonic balance,

1 &

’d‘u*‘—f_(l’ o — e P
SS oct EI\TY NS 5’)‘6;?+

a o
ald our  plt Ot le a* [ =/3%u*
SRl (R S B S I I T |
gt e e T 6‘;2[ \ o .f']
F.qo[a

— ~ . 8in 8 } @(L) cos (0+y)d (b +y) ds=0;

Bt (24,.5)
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'3

@(%?5)] -

- —;}{sm 9}9’-’(5) sin{6+yw)d(6+y)dl=0.

pl* a2u* o '
EI ot EI act|

(24,6)

Substituting in the last equation, for'uf(glf) the
values, represented as the series (24.2) we obtain

1 on
l Q’J(C) 9_'_ + }uj 26"&3
S g | o -a cos () 0C4+ o7 o+

¢ ¢

+ (Pe-—arniC—%'Q’) [d?zém a cos (fty)+e 661; + ’da? + 1

+'I_P(o+[(;)[ tp(g)acos(ﬁ—i—w)-l Ec:}u, +”¢?;’+ ]

k] »

+ EE{(p(C)a[—-(pc-!-eBl +erBy+ .. ) cos (Atw) —

—2(edy +e A+ .. ) (p +eB,F By + .. ) sin (B4 )
— (eB,+ 8By .. Yasin (+w)+(d, +erd, +

+

T 2 2
a"’f+...}+ €9 m[d"’macos(ﬂ+w)+

a EI o oLt
o, c_}_'ag ]

et

o 6&‘2 + 1% Ging } pcos(8+y) X

EI

Sl ™

dq)(a) G+ w)+ e ﬁul +e ’a 253
S{ e a cos (6+v) are a¢4+"‘+
1]

+ (Po'{‘arolg_ﬁca)[ (0 acos’(0+ g+ 20

a2 ot

+e'%;%+.. ——(0+1c)[ "’g;)a cos () +
ou ou t

R o Al S B e —(p,+eB,+
foL TS ] Er{w@a[ (e + e, (24.8)
cont.
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+ 2Byt )% cos (OFy) —2 (A et 4yt ) (p HeBy HatBa ) sin(6-Hy) —
-ﬁB+9E+ Jasin (0+y)+edted,+ ) cos ()] +

aug #d 0 STdp(0) oty
a:z op +---}+ ff[ d(~~—acos(9+w)+ 5C2+

EI 352
LA ] — 9 in 6 psin 0+ y)d(8+w)yd=0.
ac? EI J

(24.8)

Here

_04dida  dAdy | 94,
" ow ot 0w of ot

9B, da , 0B, 9y , 0B,
ox ogf o 4. ‘ af

B]z

Keeping in mind equations (24.3) and (24.4),the
expressions for A- and B, can be presented in the first
approximation, that is, up to terms in the small parameter
raised to the first power, in the following way:

¢ o4
A1=[pc—p({-t)]—’; (24.9)

B
e —_— E't P

(24,10)

The equations of the first approximation for the deter-
mination of the frequency of vibrations © and the phase
shift angle ¥ are obtained, if in the equations (24.7) and
(24.8) we equate to zero the expressions which multiply the

small parameter to the first power, and consider also (24,9)
and (24.10).
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2
Qult
S {"‘ éf?ﬂ(C){aptBl cos (0-+y)+p_4, sin (0-+y)+

u

a‘j [p.—pEHlasin (9y) — %

Dy

| Q

0A
a—w—‘ [p.—p (:0)] cos (6+ w)} +

I 3 2(&%;({) o
+— - | ¢ === ) gm
Fl op [ o acos(f + li)):l + 974

12

EI

+

bD |-

@l2_\ oty ult din
P —undl — 2 s)_-._i ult o'y
( [} ul'olc 9 C 6{2 + EL of
+ ol n o, ,5in 8
%I (ry+15) ER —gol EE—}@(C) cos (9 4+ d (0+yydE=0;

S { T2 ‘P(C){GPCB, cos (8-+y)+p 4, sin (6+v) +
[

1
2“ Ti-tp“ . —pled) a sin (6-+y) — é- % [p,—p(e)] cos (8+y) }

L 3 15(%e ) V] 4 o
-I—EI a_:[ﬂi( o acos(&—i-r,u))] + f

l’( alt N oy pit oy
B (g = ) P et 0
gr\P el 5t o TEr s T

) 5~ 0 22 L @) sin (04+w) d(o-+e) dg=o
Carrying out the integration in the last equations with
respect to (O + ‘* ) and substituting for Sin 8 in the _
last term in the curly brackets Sin (@+ g)cos '(""Cf’s(a"'ws‘-n'{é'
and taking account of the fact that %, does not contain the
fundamental harmonic, we obtain

; 1 944
S { - 2ultg* (L) [apcﬂBl ) (p.—pe)n o ] +
1]
N q%{j—g 5[3%;{_’ a cos (6+tp)] cos () d(0-+9) +
+ goltn sin w} tP(C)}d’FO;
(24.11)

WADD TR 60582 162



1
S{—auwﬁokﬁm+ﬁwm~pwpmaﬁ]+
b 2 dy

- (36{ s i [d2:€( ) & cos (H-i-rp)} sin (8+y) d {6+ ) —

age
= qoi?n cos w}'P (CJ} az=0. (24.12)
We denote
I
=) 2nPett)ag, (24.13)
1
B = / $(l)ae . (24,14)

'8 1 _a%$lb)
Bla)=§ oagz 3 d?*ga cos(8+y)] ¢ () cos(8+9)F(B+¢1TL; 5 1)

|
2
® (a)=§> Cz ¢ [%—?—ig-)a cos(8 + \j/)]q’b(C) sin(8+y) d(6+y) a (24,16)

Equations (24,11) and (24,12) can then be written in an
abhbreviated form:

1 04 .
alpcﬂa’Bl - é‘ &y [pcﬁ-p ("‘t)] ._1 + dic (a) +ﬁ%[""- 5N !-"’:0’ ( 24 . 17 )
A + 5 %@ [p.— p(ff)] —¢- + @, (a)—figol*n cos w=0.
(24.18)

The svstem ohbtained of two dif ferential equations should be
solved simultaneously for A, and B, . From equation (24,18)
we have

t4, a B, ﬁ%lz s
a = QPCIPC p(e )] iy ——pcal sin w,

Substituting this expression for the derivative into equation
(24.17) we obtain

rlﬁa

R
a,paB + o —[p.—p P E}J_;

C

4 fal’z
2p,—p(:0 siny+ & {(a)=0.
g (24.19)
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Nividing the entire equation bv coefficient of the second
derivative of é?, s We obtain

025, v _ dn b (a)

+ —TE ——— L IO
o (o= 01 B =7 aialp ) B
L 2q g siny

wa] ;3:— plef) ]a [Bp.— p(:D.

(24,20}
The solution of this differential equation is-
&
B, =Csinv— (@ ,
.-Ialf.lpt (24.21)

where C is some constant, which we find if, after substi-
tution of equation (24,21) in equation (24,20), we equate in
its right and left sides, the coefficients of Si?u‘&} that is:

cl. - 4’95 - ]  2q.8%8 [Bp,—p (8]
hpg—P(ﬁH’ [p,—pGhiua

Whence

_2g.°8
walp tpQh]

In this wav we finallv obtain

L QQDFIB . _ Qc (a)
wa(p+p )™ wnap,

812"_
(24,22)

Taking the derivative of éﬁ with respect to ¥ , according

*Due to the fact that the complete solution must not
contain secular terms, the complementary solution is discarded.
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to formula (24,22) and substituting the expression for it
into equation (24,18) we obtain an equation from which we
determine the function /4, .

op =l U]

ug B3 [ p,~pled)]
u,panl*" [pc+p (‘t”

cos t+ @, () — gyt cosw -0,

from which

_ 2q0fcosy @)

1w p A pled) anp,
(24.23)

On the basis of (24.3) and (24.,23) in the first apporoximation
we can write

da _ 2gylpcosy _ £0.4a)

dr alp, FpEn] amp
(24,231)

Using (24,4) and (24.22) we find in the first approximation

- 24,823 sin v D (a)

S ﬁ;’.(ﬂp)_ , aoal —

a7 «a{p.—pt))  waap, (24,24)
where <, 6, &;(a) and & (a) are defined by formulas

(24,13) ~— (24,16),

25. Construction of the resonance curve for vibrations
of a blade

For the construction of the resonance curve it is
necessaryv to solve equations (24,23') and (24.24) simul-
taneously. This requires the exnression of the frequency
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P(gf) as a function of time,

where it is assumed that ﬁ: < PP

Examining the length of time of vibration of the system ,
during which the frequency varies from 0.84 to 130
equation (25.1) can be rewritten thus:

plety=08p -«
Then evidently it is possible to write:
et =04p.
Taking the time ¢ = 1 sec, during which for the passage
through the resonance the frequency changes from 0.87% to

1.2 p. , the small parameter &€ , can be determined, which

represents the speed of passage through the resonance, i.e.
_0!410: 0'4Pc

£ =T = 0,4p..

In accordance with the data given in section 23 the
construction of the resonance curve is carried out for the
following values of the quantities entering into the formulas
(24.23) and (24.24):

rgg == 4103 Kafcm,
1=42 cm,
p. = 458,5 Yeex,

1
s= [o@ar=03832;
1
ty=— S Qul'p¥L) dl=—0,5224;

¢
n=2v=231,

L\ 2 dz dy — 0,3565,
F

E=22.10% ga/em®,
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Moreover, according to (24.15) and (24.16) we have

1 aj ,
€@, (a) =56S *02;{ F f}a" d:{";ﬁf)) X
[V ]

X(1£cos (0+ )" ~2-ﬁ1]} ¢ ) sin (0+y)d(o+y) S S dzd,
£

oim el = e (25

X [(1 tcos (8 +¢)"—-2“"]} p(Lcosfgty)d(@+y) S S Yz dy;

£

S ST s =30

. - 2
o, (a) =—Z 0'35;52 308 55135 10
]

2
B0, 351?52—@& —12,99-10~4a?,

@, (a)

After substitution of the values obtained into formulas
(24,23) and (24,24), for the problem in question these
formulas will finally take the following form:

de 10,3526 cos v

—0,73276- 10%;
dt 8253+ ¢t “ (25.2)

i 10,3526 sin y

—=91,7 — ¢ + — 172,65a.
df (825,3+:f)a

(25.3)

For the solution of the system of the differential
equation (25.2) and (25,3) which we have just obtained,
under the initial conditions

F
di =0

(Eii”) =
dtfro

WADD TR 60-582 147



it is expedient to use a numerical method according to
which amplitude a. and phase shift 9 can be represented
by the following series:

gy [42) L (da) o
=t ( dt) At (dtu) Ay + ¢ (dt3) (1’
- "d_i") li"@) 1(‘?"‘*”‘\ ;
Y %+(dt ar+ € o) @aore (0 Uy

The results of calculations for At = 0.1 sec, for
the chosen interval of time of passage through resonance
€ = 1 sec. are shown in Table 11.

Table 11
? @ | | |
R . oy da dé da dy 1 da o dY
! ! i i it dt di o ar ar
O N N N i
t S
|

0 1,231-10™4 4,647 0 0 —2,453-1077 —160,8 2,011 ~10,1

05 | 085 | 163210t L3 — — - - -~ -
01 [ 005 | 4581-107 3972 0,827-107% | 53,53 --0,581 - 180,3 27,92 an,3

| ‘

42 01 1173167 9,941 0.945- 104 59,79 —0,356 L —684,0 15,55 81865
03 1 01  2,928-107} 13,855 0,258 162 50,02 0,574 | —184,5 6,493 —860,0
04 | O 71351073 17,799 0,535-'0"% ' 9848 0,278 2084 —6,870 —9,633
05 | 0,1 ? 7,018 107% 19.623 | —1,285.10—% 9,61 g,110-107% ~ —169,9 —0,704 —10,565
05 | Ot | 6972107 19712 |-0,723.10% 8,33 —5,118:107* —182,4 1,168 —3,700
07 | 0! ' 5,748-1078 17,566 0,931.1072 29,10 ¥5,33.16% ; —~174,8 7,183 77,30
08 | o0t | 7,270- 107" 14,169 0,453-10—2 44,78 |--47,20-162 f - 180,3 --2,378 81,86

09 | 01 | 4161-10~3 8,903 - - . - ~

|

The resonance curve of Fig. 14 was constructed in
accordance with data of Table 11, Comparing the resulting
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L ‘ curve of change in amplitude versus

time for the transition through

oW w8
i

resonance from 0.8, to 1.2

during 1 sec. with the resonance curve

£

3 J , for steady-state vibrations (Fig. 13),
2 ; it can be concluded that in the former
! , case, for rapid passaye through

0 a?£4aﬁaﬁt resonance a shift of maximum amplitude
Fig, 14 to the right can be observed and also,

a substantial decrease {(about four times) of maximum value of
the amplitude takes place in comparison with its resonance
value for a steadv-state regime of vibrations.

The marked decrease of amplitude in the present case
should be explained by the fact that for a rapnid transition
throuzh resonance the amplitude does not have time to grow
to values corresnonding to a steadyv-state regime of vibrations.
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Chapter VI

Transverse Vibhrations of Short Bars

Applied to Design of Turbine Blades

26, Derivation of the basic differential equation

The problem of transverse vibrations of short bars,
taking account of energy dissipation in the materials is
of great practical interest. We shall solve this problem
approximately using the methods of structural mechanics.
For preater accuracy the rotatory inertia of the elements
of mass of the bar and also the shear deformation will be

taken inte account.

Fig. 15
o
w1 TN
( H ) /MF n’:f
——— ————— C;FJ\(.
2 0‘0 -~
dx 0’;\0‘?
Fig. 16
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We now turn to the derivation of the differential
equation of transverse vibrations of a short bar, We
take the system of coordinates in such a way that at rest,
the longitudinal axis of the rod coincides with the x-axis
(Fig., 15). The forces acting on an element of the bar
wﬂich we have isolzated are shown in Fig, 186.

First we examine the forces affecting the translational

motion, They are the shear forces + &— (Q-f- d.z)
and also the inertia forces -Qf;ta . Projecting

these forces on a vertical axis we obtain

where @ is the density of the material, A is the crosse-
sectional area of the rod, & is the translational
displacement of the element. Besides the translational
motion, the element in question also rotates in the

plane under the action of the normal and shear stresses,

In order to form the equation of motion taking account
of the inertia of rotation of the element of the rod, it is
necessary to express the angle between the axis of an
element and the x-axis; this angle depends not only on the
rotation of the cross-section of the rod but alsc on its
shear, Denoting by € the angle of inclination of the
tangent to the deflection curve, without taking account
of the shear forces and by 7y the angle of shear at the
neutral axis in the same cross-section we obtain the
total angle between the axis of the element and the x-axis:

du =87,
tlx
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Well known relations hold between the bending moment
and the shear force, on one hand, and the angles @  and
Y on the other:

do . ;
M=—EIY | Q=pyFo =4 (-df‘ mﬁ) FG,
dx tdx

(26,2)
where & is a coefficient depending on the form of the cross-
section, G is the shear modulus of elasticity.

The moment of inertia for rotation of the mass of the
element of the bar equals

oM g% 020
™ o

utdm= - 7 fu”g dFdx=yl, (:}Z dx.

¥ F

Thus, the equation of the dynamic equilibrium of the
moments of the forces assumes the form

oM

;
kQ“ 5)“() dx=gl,

8%
= dx,

o (26,.3)
Using the relation (26.2) we obtain the differential

equations of the rotation and of translatorv motion of the

element:
a 20 2
k(—”~9)FG+ B2 -, %2 g
o at e (26.4)
3 H
—or %t :—k(a—” - ﬁ)) Fa,
o2 dx¥ Jx

(26,5)

Eliminating the angle &, from equations (26,4) and
(26.5), we obtain a differential equation of vibrations of
a short bar taking account of the rotatory inertia of the
mass of the rod and the shearing deformation,

ou 0% [ EIN dta 2l du
BT 4 B = (ol --J) AN e T
o T o T VT e ) i ke o (26.6)
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In the case of forced, steadyv-state vihrations in the
presence of damning forces the differential equation (26,5)
must be supplemented by a term characterizing the dissipation
of energyv in vibrations and also by a term depending on the
external exciting force which maintains the vibration at
one amplitude in the steady state. )

If we adhere to the hypothesis on the dependence of the
dissipation of energyv in the material in vibrations on the
value of normal and shear stresses, the equation of the
steadv-state forced transverse vibrations of the short rod,
accounting for dissipation, can be expressed,as folleows,in
3 general form:

atu d'u
£1,%2 Fﬁ—(ef +
Yot T8 gp '

ﬂﬁ’) du o, d'u
dx*

RG /oxia2 kG ot
+ & df & (u)+e 9 ‘}}(u)Zeq Cos wl.
ax® dx
(26,7)

2 = -—_
Here € _B_E D (u) and € —Q—\P(U) account for
ox ox

the dissipation of energy in the material due to the normal
and shear stresses respectively, The term eqcos wt
depends on the external periodical disturbing force; &€ is
a small parameter,

Before turning to the sclution of the differential

equation (26,7) we examine the functionals &)-(u) and W(u),
As before, we proceed from the nonlinear dependence between
normal stress and strain during loading and unloading of the

material

o=0, (&),

T=o 7O, (26.8)
where oy is the "elastic" stress, the value of which is

not altered for loading or unloading; f(§) is the stress
arising from the losses in the material; its values differ

1
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for loading and unloading.
In conformity with equations (26,8) the bending moment
in the cross-section of the rod at any time during loading

and unloading can be expressed thus:

M =My + Mg, (26,9)
where /!5 is the moment of the elastic forces, and Mg
is the moment of the dissipative forces, which is just
& ﬁ(u) « Considering that

an 2 1]
My:M:EIyﬁ_:EIy(E__g‘ i)_ﬂ)'
ox ax®  RG 0P

0? 2
o, = (‘E o9 H)E'z,

ox? kG O
(26,10)
we replace (26,8) by the relation
b -1 _
o=ElEF < [(8 £ H—2 18],
{ * } (26,11)

where M and X are the parameters of the hystersis loop,
which must be determined for each material from experiment,
Then

(a*u o &u
E=l—-—=, =) =z
ox? kG atﬂ),ﬁ
(26,12)

where & 1is the coordinate of the point of cross-section,
The equations for the hending moment in expanded form can be
expressed as:
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T FPu o w . W *u g o
M=E Jﬂ (ax* kG Fté) 2dF—= 3 j { [(ax? kG at’) *
: .

{V_Hmi@) - X—l(au ¢ a? ) ®
+ <(}x” kG of* ] “F o T ke ) }ZJF‘
- Pu @ dfu) nkE & u o'
M= ( Th_ &

Ej' 3x1 7 kG o) H[(aﬁ kG a:s) »

» F

(P e P\l g (Pu_ e *”)
(axn &G 0!’)] (e @}z dF. (26,13)

It follows from (26,13) that

oy ME &n ¢ ou
o = [{| (G~ 5,
e

4
du ¢ du i (07 0 &u
* (Bx’ kG E’):I —2 l(dx kG o )r—{) o }ZdF;
s&i(u)=ﬂ?j{ Pu_ o &u
# ox* &G o,
F
f)_!___ 9_ aﬁu £ . f'aﬂu O a!u X
(e a}'-')] T ok T e "a‘ia) z}zar.
(26,14)

To determine the form of the functional 'ﬂ?Tﬁ;) s We
write the expression for the shear force which appears at a
section of the short bar during its transverse vibration:

<©T @l

=Q, 1.,
=0,

+Q, (26.15)

where G?y is the shear force, which represents a resultant
of shear stresses; here

Q=k<@{mﬂﬁﬂ.

dx
(26.16)

Considering that

a8  d ¢ O

dx Ox* kG OB’
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we ohtain

1
,0%u
lox®  dxt + kié _dF) FGdx = S o0 -y,

!
0, Sk!a‘u du ¢ c*n d

@, 1is the shear force brought about by the losses in
material due to the shear stresses, which, by virtue of
(26.7), is W)

We obtain the expression e?;“i@) for the descending
and ascending motions if we assume a certain nonlinear
relation between the shear strain 7y and the shear stresses

T . Following the accepted hypothesis, we assume

T:G{FF%Whtrr—?“Wﬂt

where (& is the shear modulus, and »» and 3 are the
parameters of the hvstersis loop, ohtained in the coordinates
Y—7T and which are determined from experiment,
Further,

Wil

£ e ]
o

2z

!

o %@ _ Sz 0% _
= ny = ny SQF&# d.l*-—G}’,

z

Fig, 17

where {p is the shear force; S, is the first moment of
part of the cross-section of the bar (Fig, 17), Y is
the width of rod at a distance Z from the Y principal
axis of inertia of the cross-~section. The shear strain
equals

7
i
Yo = G;I; [ a[x de:".o,
T
= SweF o
? Gyl, ) off X

. Slz]QF

(26,17)
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Then the expanded expressions (26.15) for the shear

force at any time during ascending and descending motions
take the following form:

I
= Sin QFS 0u S eF { { ou
= | 2 R CI il il
¢ j' yl, o dx df = 5.{[ 91,6\ S oft dx) =0 *
Foo. a L]

1
SioF ¢ w7 SaoeF  (u P
+ =) v . —aR—1 IZ‘Q __{l 3.
yl,G S dt?“’*} [ ol,c | Sa:zdx']r } }“7]”

x

[4 {
5. [ Smel (o rG ([ SiyoF dtu
Q J" o, SdtﬂdxdF*!— [[qu( S-d—f-:,dx)

=0
x
!

2 ](‘ a!u n
—mdx] —271. "’?-—-( S S ) ] } dF.
p y1,G ot x’ =0

=
X

(26.18)

The first terms of equations (26.18) represent just the

shear force (Q’ , determined by the integral (26.16), and

the expressions containing the factor %%L , represent the

functionals which have bheen examined:

1
Sz 0F S u ]" Sz 0F
+ TER dv | —on () §F 1 .
yI,6 ) or [JI a wdx) A

s _vG ([ SmeF [ € Py
1 — le _j{ l:)@ ( i _
(0)=¢ " [ G dt’dx),:ﬂ
ry

/
— S‘i‘?ﬁi A e S(;)@f’ d%n 7
yl,G S af? (EXJ 2 l l}I,,G ( g o d.k) =UJ }d_[f.

— b(zyQF 9%
W)=, =~ [yfﬁ(sdt,dx] +
9%n
AF

L]

£

(26.19)
For convenience in using the differential equation (26,7)
we introduce the dimensionless coordinates g:-?‘— and the
dimensionless deflections ™= %ﬁ , where L is the

length of the vibrating rod. Equation (26,7) in dimensionless
gquantities can be rewritten as:
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Ot eFB Out el el owt @ o'
ars EI, o (E RG! 020 ' RGE ot
e ot = &0 & eqt

+
(26,20)

To simplify the writing we introduce the following
notations:

_QFI* —_— ’{l+_1.,,\. —_Q_gl_‘. ,[J
«= g w=elig kG T RGES ™7 EI, (26,21)

Then

dlu* 0%u* ou* Hur a 5 (1
oes e gm  apaat s ap Tt pp 20T
+ % % ;I—J(u*)—uisq cos wf=0.
LS (26,22)

To solve the nonlinear differential equations obtained,
(26,22), with a "slight" nonlinearity, we shall apply, as in
the previous chapters of this book, the methods of nonlinear
mechanics based on developments by powers of a small parameter & .
We represent the value of the dimensionless deflection as a
power series in the small parameter &£

u*(§, =9 (Q)a cos (wt+w)+au, €, H+e2us €, D+ ... (26,23)

We also represent in series the square of the frequency
of vibrations of the rod, w? , and the magnitude of the
phase shift QV :

wi=weted T dytedda .,
LrEARTE (26.24)

W=y tey ety et L,
CooTe T (26,25)

where @ is the amplitude of deflection at the free end of
the rod, «) is the natural frequency of vibrations of the
bar. We introduce the new variable

ety (26426)
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and transform aes wl=ces (‘C—ﬁ,using the expression (26.25)
for the phase shift Yr :

cos (r—y)=cos(r—y—ey— L)y=

== cos (t—p) cos e (i, etpe + . . ) tsin{r—y,)sine (z;;,+s¢-3+ o)
(26,27)

Further, we also represent cos (¥, +<¥y+...) and
sin c:(‘#, +c}(§ --.}in the form of series

cos s{y, e+ .. )=1— £ (w1+“‘;’;_t.f\_’ ;

3 1]
sin e (@ +ap, .. )= (ot )— s(w1+sg;+..,}s‘

Substituting the values of the latter into formula
(26.27) and neglecting the terms containing the small parameter
to a power higher than the first, we obtain

cos (z—)=cos (t—,) -+ &y sin (r— ) +
+[pine g eostev]. (26.28)
We introduce the series (26,23)-=(26,25) into the

differential equation (26.22), Considering, moreover, the
change of variable (26,26) we obtain

l. 4
PP cosrtst B a g (@t ed e L) X

act oLt il
l p(L)ecos r+£——+ ’d—a~:—’+ ] — @y [(m§+sdl+e’d2+ e X
d*p Oty g O'a
- - -5 o ok + ..
><( dé_zacos i 6(:2 dr + 3¢t ons )
+a, (@2 ted, +2dy + )’(qacosﬁ—e‘—jul-l- aau’+...“ +
€ ort dit )
-+ FS b{'ﬂ [qj(q)a cos I+£H1 +8luy+ .. .)] +

+ f‘; %:c ['i‘(rpa co8 r4eu, +efu+ .. .)} - u@.q{cos {e—1y) -

+ sy sin (T ) + & [wg sin (s ry) — E‘ cos (r~ ‘po)" } =0.
(26,29)
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We group together the terms of the last equation
contzining as a factor the small parameter in the zeroth,
first, second powers and so on; that, inasmuch as € #0
one can equate to zero, the terms multiplying the various
powers of the small parameter,

After having carried this out, instead of equation (26.29)
we obtain the following system of differential equations:

T ! — +““%¢‘ﬂﬁﬁf 0; (26.230)

o, o'n, atn
v 1
654 azm’__ 6‘4‘2 ﬂL -+ lﬁ)c _d-_z.'z ——-uldlrpa Cos8 1 4

d2q
+ uyd, ,?;2 acostta, w4 1 + 20,07 4.0 cos v+

, 07 © z
+ —'! gy B(rpa COS 7} _|-ﬂ ‘2 ﬂ?((p(l, CO8 r)—qu cos (t—y,)=0;
o L , (26.31)

o'y o Ouy 0%, %u
acr — uu? ap ar=+ a,w? Pl w, ot €OS T + oy A, E;' +

1]

do'p oty
+C€A25§__acosf'"'ad e R éf’flaCOSf+2ﬂsw2415—+

3

+ 2o302 4,00 COS 71 g, w" F(:a ) +

Jd=
+ oy &,f(‘g, T)—a,qyn sin {z—y)=0.
...... (26.32)

In equation (26,32) ??(g ,T) and f(; T ) are funct1onals
which define more accurately in the second approximation the
magnitude of the dissipation of energy in the material under
the influence of normal and shear stresses,

Equations (26,30) to (26.,32) are the basic ones, with the
help of which it is possible to examine the influence of the
dissipation of energy on the transverse vibrations of the
short rod in question to various degrees of accuracy.
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27. Solution of the problem in the zeroth approximation

To determine the deflection function and the frequency
of vibrations of the rod in the zeroth approximation it is
necessary to solve equation (26,30).

Penoting
—o,0f tayei=1,
(27.1)
we write equation (26,20) in the form
4 2
i—:ﬁ-}-az UEE;’EL; + =0
: : (27.2)
The corresponding characteristic equation is:
K: 2R 2 A=),
+ ez K ( (27.3)
Solving this equation we find
o wwl | fqel ez_ﬂ%m/@%
K, 24]/4 i K. ; ]4_1.
(27.4)

The general integral of the equation (27.2) is
g = C,e%¢ + Che 58 + Quefet + Oe—t,

It is convenient to represent the expression for @ in the
form of a combination of hvperbolic and trigonometric
functions

@=Cy sh K,J+C; ch K, L+ Gy sin Ky + Cyeos K,7,

(27.5)
where Cl, 02, G3, 04 are constants of integrations which
can be determined from the conditions at the ends of the
vibrating bar,

Before turning to the determination of the constants of
integration, we shall write expressions for the angle of
rotation, bending moment, and the shear force:
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Ef(q:a cos7) = &' +y'%,

Q _ e S
r— = — cos 1) dG,
Y= ke = kG Yar PO Y

{ 9 i ] kG Yo

Ela [ My 4 ool

M=- —1_ a2 RG

MZ_EI‘)B }2{61 aco +d?‘(gl SA(!W €04 r)d&)}

cp] COS .
(27,6)

The expression for the shear force acting in an
arbitrary section is found by using the equation of equi-
1ibrium (26.3),

oM a2’
=—— 4+gof
¢ ox ¢ o

*

1
. P of!
8 = aga cos T+ S— S o (pa cos v} d§,

k@

1
_ ‘E_Iff ¢ olta? Op l’cu._, dp  pMrot
e=-" (c‘:v:8 kG 0T E O rGF S"’dg) cosr.
(27.7)
After substitution of values of the function and

its derivatives into the formulas for 8’ , M , and q .
we ohtain

= {a (K,C, ch K[+ KCs sh K,L+ KyCs cos Kyt — EyC, sin K,L) +

olowia

+
kG

C C,
[}ll(ch K, —ch Kl'g)-!-i,!(sh E,—sh K, [)—

1

~G (cos Ky, —cos Ky0) + % (sin K, —sin K,g)J }cos 5
2 H

(27.8)

*The primes indicate that the expansion ZL( ,'t)
limited to the first term,
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Ela
M=-— 7 [{K,’C', shE{LHE " Cy ch K, — K} Oy sin Ky~ K,'C, cos KOy

Pt ) - 5- i -
ekG (Cish Kil+ G, ch Ki{+ O sin Kal+C, cos Kaf) cos (27.9)

+

Era o a - 2
o=-", {(K,“Clch Ko+ K1Cysh KL—K: C, cos K[+

x g .1
+EZC, sin ByD) + ( ‘fgm +¢ "’) (K,C, ch B.C+ K,Cash Ko+
+ HyCy 08 Kof— HyCl sin KoL) — Lo lc' (ch K,—ch K:0) +

, _ elte! [ G
’ v O RS T er LB 1

+ G (sh Ky —ch K.[)— L% (cos Ky —cos Ksi() +
K Ky

1

+ I%(sin K;—sin K,Z)J }cos L,
(27.10)

To determine the constants of integration Cl, 02, f‘3and G,
we use the following conditions at the ends of the rod:

(u%)g=0; (8)_,=0; (M)._,=0; _,=0.
(=0 t=0 (x| (Q);_l (2 7. 11 )

On the basis of (27.11) and (27.8) — (27.10) we have:

C: 4+ Cy=0,
“ sh K,
c, [x,+ E(ChK‘—l)] + Cya X, P+
Sinxga=0'

+C, [K,- é (cos K,—l)} +C, X,

C, (R} +«)sh K +Co(K: +a) ch K,—
—C3 (K —o) sin Ky C4 (K2 —a) cos K,=0,
C (X} +8K,)ch K, +C, (K} +8K,) sh K, —

- Cs(K:_'ﬁKs) Ccos K2+C§ (K;—-ﬂKg) 8in K,-‘=O,

(27.12)
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where
ofw; i 1
= ; A=l - 4 — .
=g PO °(kG E

From conditions (27.12) we obtain

C,=—C,
C,[K,+—I:T(ch K,~1)]+Ce [

shK, _ sinKL] +
K, K,

i-(cous-—t)]= 0,

K
C,(K**a)shK +C, [(KZ+alchK, +( Ki-a)cos K] -

— C,(K2—a)sinK,= 0,
C,{ K2 +BK,) chK, + C[(K? +BK,) sh K-

+C,[ K,

"(K:—BKz)sinKz]--C,(Ki‘—ﬁKz)cos Ke= 0. (27.13)
By equating the determinant of this system to zero, we get
the frequency equation:

[ o _ shK, _sin Kg a
K+ K,(ChK' lﬂ; a "RT' Ko }; [Kz—'-R:(cosKi—iﬂ

:(Kf+a)shKl]; [(Kf+a)chKI+('K:—a)cous]; —[(K:—a)sinKz] =
(348K, chK, J; [(K3+BK,)shK,— { K2=BKsink, |5 —[(K2-BI,)cosk,]

We write this determinant in expanded form and make the
necessary transformations; as a result we obtain the frequency
equation:

QK K, (K{ K+ a?)—~ K K; (K{+ K3 —2%) ch K, cos K, +
+ [(KTK7 + o) (K — K+ (Bl + K2)Y] sh K, sin K,=0,
(27.14)

Turning to the determination of values of the constants
of integration, we shall proceed as follows. From equation
(27,13) we find
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Oy _ K, tK: o)+ Ey(K{+ ) ch K, cos Ko— K. (K- a)sh K, sin &,

Cs K, (K2+a)+]; (Ki—w)ch K, cos Ky+ K, (K7+ «) sh K, sin Ky

Or

= A|K, (K{ —a)+ K, (K} +a)ch K, cos K, —
~ Ky (K7 —a) sh A sin K|,
Cy=A[K; (K; —a) ch K, sin K, — K, (K +a) sh K, cos K],
Cy=A K, (K{ +)+ K, (Ki—a)ch K, cos K, -+
+ Ky (Ki+e)sh K, sin K],
C,=A[X, (K +a) sh K, cos Ky— Ky (K7 —a) ch K, sin K,

(27.15)
where /q is a constant, which can be determined from the
condition that the maximum deflection at the end of the
vibrating rod is equal to the amplitude of vibrations,

(1%, D)), =a.

=0 (27.16)
Examining the zeroth approximation we find on the basis
of (26.23)’ (26.3), (27.15) and (27.16)

{H* (;s T)kf‘% = [(]3' (C) & COS "‘]Cf(l) =
= A Ki+ K;) (K, sh K, F K, sin K))ja=a,
from which

1

A= K2V RD (K, sh K+ K, sin Ky)

Knowing the expressions for the coefficient A , on the
basis of (27.15) we can derive the formulas for the constants
of integration :

K (K. (:]-I-I{(Kl +e)ch K, cor K, K,,(K ~—u} sh lesng
(K7 + K7) (&, sb Ky + K sin i)

Ky (Kf— o)k Ky sin K, — K, (Ki{+a sh K, cos K,

. of K, sin K. K\ (Kl +aish K, cos K, 27.17)
(Kt K3) (K, sh K, + K, sin K.) (cont-

C, =
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_ K, (K{+o)+ K, (83 —o)ch K, cos Ky + X, (K{+a) sh K, sin K, _

c ;
s (K + K7) (K, sh K+ K; sin K,)
_ K, (K{ta)sh &, cos K,— K, (K3~ ch K, sin K,
‘ (K{+Ki) (K, sh K, + K, sin K)) (27.17)

Substituting the expressions for the constants of
integration into (27.8) we obtain in final form a formula
for the determination of the deflection function (P(g)

1
(KL + K2) (i, sh K, + Ka sin K,) X

X{ (K3 — o)+ Ky(Ki+a) ch K, cos K; — K, (K7 —u) sh K, sin K] sh £,§ +
+ [Ky (B3 —«) ch K, sin K,— K, (K. +«) sh B, cos K;] cos K5+
+ 1K, (KB +a)+ Ky (K3 —e) ch K, cos K, -+
+ K, (K+«)sh K, sin K.] sin K;{+ [, (Ki +a)sh K, cos K, —
- K. {K3—a) ch K, sin K] cos K,{}.

pl)=

(27.18)

On the basis of the expansion (26.23) the formula for
the determination of deflections of the rod in the zeroth
approximation can he written in the abbreviated form;

w* (L, 1) =a¢ ) cos 7. (27.19)

28, Determination of the frequency of vibrations in

the first approximation

For the solution of the problem in the first approximation,
we shall examine equation (26,31) in accordance with the
expansions (26,23) = (26,25). We multiply the former once
by @@)gin U‘-; dr , and a second time by q?(g)cos tdC oLt
and integrate the two equations cbtained along the whole
length of the rod for one cycle of vibrations.

We obtain
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:
, du, &, du,
‘:ﬁg { e — ac—ﬁ ar + o 5-“ « g cog T+

cd pacosr+

+Fbigdi(r,racos r)+%f§:"i'(¢aﬂosr)“‘

= Oy, Cos (v— Uf'u)}ff' sin 7 dldr=0;

1

oty Fu P
@S{aé“ﬁf—41+%*4—wmmcmr+
[ ]

azzar® Jrt
d%

+ ﬂgdl d

o
. @ co8 r+ay d:i‘ + 20,0 A pa cos 1 +

o, o a 02
+ F{j/; Q'P(ﬂ COB T)'{“‘liaT: ‘P((P“cos r)d

— o, CO8 (f—w‘:)}tp cos 1 di dr=0.

(26.1)

(23,2)

Integrating by parts with respect to { and T , taking
account of the boundary conditions of the bar and remembering
also that functionlhﬁg,f) does not contain the fundamental

harmonic, we can show that

1

% ad.Hl () H1 a"u .

@S {0{'4 “ a;sa,:_*" ac +“35;f}tpsm'cd'§d-z=0_
0

1
d'u, duy o'u, o'n, _
§)% { ar —aoy ag_’arg-ktzl?t;-l-a, aﬁ}q)cosxdﬁdz-—a

In accordance with (28.1) and (28.2) we obtain

4 25
(ﬁg {[ %i?_ (2, — 2a,00 )(p:l I(ICOSI-l"*a‘P@(WCOSf)*'

* Eff_)af i}(% COS T)—augy CO8 (1 %) g ¢ sin rdf de=0;
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1
& : s
(gys { [uz d—fz — (11— 2a;0%) ry-] dymecosz+ f;‘; (%Cb (ya cos 1} +
) i .

482 lD‘(rpa COS 7) — iy, COS (T ) } gpcos rdf de=0,

za\ (28,6)
From the last equations we find
—1
_1®S [ 2 a_z — {ay— 2“;&’3)(}’] qe COS’Idgdr} h'd
X (g)g [-—E—a—?—gdﬁ(q’acos z}—--ja_clﬂ'(rpacost+
+ «q, cos(r—wo)] p cos ¥ d dr; (28.7)
1 9z
@S [F cdi(cpa cos 7))+ ——!ﬂ'(rpacos ;)]wsm rdi dr =
= @\ 2,9, 8in wop sin® rdt dr;
1 .
sin g, = [41” Sqn dt] @S p[arﬁ & (pacost) +
(1}
+ Lo &} pa cos r)] gsin 7 d dr
187 | (28.8)

The square of frequencies in the first approximation can
be found by the following formula using (26.,24) and (28,7):

)
—1

2
ru%zang'Jr'Edl"—:wg'"{ S [ 2d“d_? - (ul 2“;‘”5)@] angodg} had
0

1
X [aiqln cos ¢, S tpdC—- -2 @S a—cnr@(q)a €08 7) ¢ cos 7 df dr —

1
—-a—“ S X ET(QJCLCOS T) ¢ CO8 rdCdtJ

(28,9)
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Multiplving the numerator and the denominator of the right
side of the formula (28,8) by ¢ , we obtain

} —1 p | .t
Sinwoz[an(pdC:l [;@S ggs@macosf)@sinrdgdw
v °

1
+ % @S %f%(gﬂ €08 7) g sin Tdrd';].
0 (28,10)
From formulas (28.9) and (28,10) it is possible to
construct a resonance curve for transverse vibrations of a
short rod taking account of dissipation of energy in the
material, Let us recall that the function qp(i_;) in the
last formulas is determined by igyation (27.1) and the
expressions for the functionals &(q, cesT ) and

5;(¢M_C°5 t) are written out according to formulas
(26,14) and (26,19); in the latter the value of the deflection
should be taken from the zeroth approximation, according
to the formula (27.10),
Substituting in formula (26,14) the value of the
deflection function in the zercth anpproximation expressed
in the dimensionless coordinates by formula (27.10), we
obtain
(3((;acos r) ="_.Qi‘§.

2z

{73 2 “
+ (— Ly + w? alg fp) cos r\ =

¢ d?p  ola
{0 & i)+

— [44 dEQS ﬂ:[? * F
2= (Gt kg ) = feen

& En [ o d2p | ola
wamcr = ([0 Gt )

T1n

zk___

— mftp) cos 7
I di* kG

-d2 al * % h
(G ) e
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Substituting the expressions (27.10} into formula (26.19) we
find

nym nnFu
W@awSQ“iilew (jwﬁ)
nG\In

X [(14+cos#)"—2"1] J‘ S‘fd .3

— Ry, A IR
H(gacost) = < T éni;' F (5'?’ C)

X [(1—cos 7)*—2%1] 15 W gF.
(28,12)

If we now introduce the expressions (28,11) and (28,12)
into formulas (28.9) and (28.10) and also take account of the
notations (26,21) and (26.23), the formulas for determining
the square of frequency a%? in the first approximation and
the sine of the angle of the phase shift sin ¥, will take
the form: ’

1 r'f’ﬂ 1’9 d?m 129 Fie 29!'&)3'\ - -1
et o [ 8 - 1 e
I [lE wlas mly T ke (70

1
g’z cos v, In 9 ja di algwc )“
T 4+ = X
X{ EI S dc+fjw§ (ldC 7) &

[(1—cos r)*—2*~1] cos rdr —

X
pr—m,
L I

2z

— j. [(1 +cost)*—2* "] cos rdr}jz““dﬁ’—
x Ia
_va zﬁnﬂ-!e"w!ﬂp

ﬂGﬂ 1 Irz+l

in
{f [(1+cos oy —2 1 cossdr—

= S (1= cos "2~} cos rar ) X
1]

1

1 n
X 5"%(;‘”@‘1(5%’?”}; (28.13)
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R,

1 1
=1 :
in 4= [ En( 9 (ady
Sim o [qn qu dCf Ve )7 a2 (1 dy; *
U] ¢

alow? \*
+ %0 ~tp) dg{j. f(1+cos £)*~2«sin v dz +

+ S (1 --cos i — 2] sinrdr}jlz"-“dF-}-

v
"a F"“ o winpm

nG*? {J (1 -cos 7)"—2"""] sin rdr —

- [(1 —cos 1)*—2"1] sin rdr} X

XS 3(fra) e [
’ ; i (28.14)

Formulas (28,13) and (28,14) serve for the construction
of the resonance curve for the vibrations of a short rod
accounting for energy dissipation in the material,

:’1."::
H-,—'

29. Sample calculation

Let us construct resonance curves for a2 short cantilevered
bar of rectangular cross-section, the dimensions of which are:

b=12 cu,
h=009 cu,
=27 cu,

the modulus elasticity in tension is & = 2.1 * 10° kg/cmz;

the shear modulus G = 8,07 * 10° kg/cmg; the specific

gravity ¥ = 7.85 ° 103 kg/cma, the moment of inertia of

the rod Z = %29 * 1074 cm?, the cross-sectional area

F =1,08 cm®, the section modulus in bending W = 0.162 cm®
The natural frequencv of vibrations of the rod ohtained

from equation (27.14) equals

== 7,105 10* lpex.
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According to (27.19) the deflection function is expressed

nurnerically in the form
#(£1=0,558 (—0,783 sh 1,884 +ch 1,884, +
+0,5371 sin 2,05843% — cos 2,0584L).
On the basis of experimental data for Steel., 45, the
parameters of the hysteresis loop are

in hending v =14, 9 =164,

in torsion ne=24, »— 188

For the integrals in formulas (28,13) and (28,14) we

find the following values:

1

pl® ol ) d2p ol (FP 200}
H( kG! ap E(I T hG )'P}q’dg

. dr

1 ) d2,(p
- S (1,36-1070 2% ~30,3'10_1°<p)(pdC=4,54'lO“1";
]

1
Sqodczo,am;
1]

1 |
P (Lo ot vy
S i qp) d5=5,97;
1]

g[(l tcos 7} —2* Y cos rde =
L

2* gin? 21 (2 cos? % —1) dr=

m

2

cog?*Hll gz gy — D+t j‘ cosPzdz=

L—-—hmlu S8

= 23‘+5

U 0
=2u+’ F(O:E’) r(x + 115) _ 2,(+1 T(O,S) F(u+0,5)
20(x+2) 2reet+1)
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Thus

[(1—cos r)*—2*= cos relr— \ {(1+cos o — 27 cos rdr~=4,2252;

Ole™ 1y

2*+1dF=0,0467;

WL—-; AL—-—}lg

a4
j' [(14cos )"—2"1] cos  de—

24

[(1—cos e)"— 27 cos rdr= 8,0985;

I )

L

o

{
The formulas for the construction of resonance curves,

1
£
— p ﬂg [1C=—00455
GC

dF 2,2084-1073,

after substitution in them of all the known quantities, take
the form

W

() =1-195- 10—53 cos ¥, —1,63a%4—17,96a1+,

o, (29.,1)
sin ¥, =— 12‘1(0,1267(:1»4—!— 1,337a%%),
7 (29.2)
Table 12
l a 2 . 2
w10 | sinp, | oosvo | (M) (_) (i)n (—\
f i : )
0,2 i 0,1051 0,991 0,170 i 1,720 0,410 1,316
0,3 0,1813 0,983 0,417 1,453 0,645 1,205
0,4 0,2767 0,961 0,551 1,301 0,742 1,145
0,5 0,3812 0,924 0,630 1,206 0,794 1,100
0,6 0.4920 0,871 0,684 1,136 0,827 1,065
0,7 0,2976 0,802 0,724 1,084 0,850 1,040
0,8 0,7276 0,686 0,764 1,032 0,874 1,015
09 0,8558 0517 0,802 0,942 0,395 0,991
0,95 0,9280 0,371 0,828 0,950 0,909 0,975
0,98 0,9830 ‘ 0,176 0,859 04915 0,926 0,556
0,997 | 09999 | 0 0,886 | 0,886 0,941 0,941
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The results of calculations from formulas {(29.1) and
(29.2) for various values of amplitude of the bar for the
given exciting force 1& are shown on Table 12. Starting
from a value of maximum stress at the rlace where the rod
is clamped of & = 4000 kg/cmz, we obtain @, x> /O-b},

which corresponds to the value g. = 8,2 kg/em”,

%Y s s Bt G
o8 N
0.6 b |
04 T
Y e N
o T ]
0% 0508 07 0803 10 41 12 &
Fig, 18
For = 8 kg/cm2 equations (29.1) and (29,2) take the

fornm

2
(g] =1 —1,56-10—4 S92 ) 63404~17 9600
e o

sin ¢, = 102-1,25(0,1267a%4+ 1,337 g%4),

The resonance curve of Fig. 18 is plotted in accordance

with data in Table 12 where @ = /0 a, ...
¥
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Chanter VIT

Transverse Vibrations of Turbine Blades of

Variable Cross-Section in a Centrifugal Force Field

30, Derivation of the differential equation of vibrations

In the present chapter we examine transverse vibrations
of turbine blades considering the tensile centrifugal forces
and the dissination of energv in the material.

In deriving the basic differential equation we shall
examine a blade of arbitrary cross-section (Fig. 19),
isolated from a group of vanes which are connected by a shroud,

F—rg—=t

We denote:
X = coordinate axis, coinciding with the blade axis;
{ — length of the working section of the blade
(effective length of the bhlade);
=7 -« dimensionless coordinate; _
I( ) - moment of inertia of area of a transverse cross-
section of the blade;
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/73;) — ¢ross~-sectional area of the blade;
A - length of one segment of the shroud;
M. —. mass of one segment of the shroud;
£ — nodulus of elasticity of the material of the blade;
f& — modulus of elasticity of the material of the shroud;
Ly — moment of inertia of area of a transverse cross-
section of the shroud;
€ — density of the material of the blade;
¢ — constant angular velocity of the turbine rotor;
Yo — outer radius of the disc;
U — dimensionless magni tude of the deflection of
vibrating vane at a distance é; from the origin
of coordinates,
The point at which the vane is fixed to the periphery of
the disc is taken as the origin of our coordinates.
The boundary conditions for the vane, considering the
latter to be rigidly clamped at the rim of the disc, are the
following:

for &=0
af, H=0; u' (&, H=0;
for ¢=1 o o
" £ = 7_£ . " — _6*.
u” (€, ) o v € 0 ZI

(30.1)
Here /M, and @5 are the bending moment and shear force
at the end of the blade, respectively; their values depend on
the magnitude of deflection of the blade zc(g,t) and on the
stiffness of the shroud é;JZr « In view of the complexity
of the boundaryv conditions at the end of the vane, for =1
we shall avail ourselves of the most general principle of

# . .
For conciseness, we shall use the notations:

W ()T t) . (L t)= éfg,‘,f)
<&
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dvnamics in setting up the fundamental equations—the
variational principle of Ostrogradsky-Hamilton,

As is well knecwn, for a conservative svstem the variation
of the action integral of the conservative system upon going
over from the actual trajectory to a neighboring one which
has the same terminal points is zero, 1In other words, according
to the principle of Ostrogradsky-Hamilton, the function uflf,t)
which corresponds to the actual motion of the blade, must
provide an extremum for the integral

ty
H=[(T-via,
o (30.2)
where T and V are the kinetic and potential energies of
the svstem respectively.

The extremal value of the integral (30.2), which
corresponds to the true motion may be ohtained by equating
the first variation of the integral (30.2) to zero; i.e.

1,
aH:aJ"(T—V)df=o.
4 (30.3)

We shall obtain the differential equation of vibration
of the bhlade and the boundarv conditions at its end from
equation (30,3)., Let us now determine the kinetic and
potential energyv of this elastic system.

1) The kinetic energyv of the vane and shroud is:

T=% l”pfI Fofuten] ag+ 4 mefue, 0] (30.4)
0 .

Z) The potential energy (strain energy} due to bending
of the blade is equal to

‘Mfdg E!3 | 2
V.= === [1ofui,n] gt
P -I;ZEi I(C‘) 2 o ' ] (30.5)
3) The strain energy due to bending of the shroud is

i , 6EbIb 2
Vb_ o Mbu (I,"’):—---——-—A [U {',f)] , (3(}06)
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where /ﬂ? is the bending moment, exerted by the shroud on
the blade, which may be calculated from the formula

Ms= llE'I(l)u"(I, f) = 12}?—]6 u' (1, 8.

(30.7)
4) The potential of the load resulting from the

centrifuzal force P on the shroud may be determined as the
sum of the potential enerpies of its two components P and
Pﬁ) which act parallel to the coordinate axes, In accordance
with Fig., 19, these components are equal to

Fr=Pcosa, P,=Psinag,

w
here P =mlLo.
Since the viktrations are quite small, we can assume
_ o, t)1
sing=—""—""—"=Q

P§=me2, Pu=mu(|,f)|w’.

The component FE performs work through the displacement
1 1
! S Vi’ @ opdi—i= © ZS [e (C, £))2 dL.
¢ 2 )
The corresponding magnitude of potential erergy is then
equal to

3
Ve, = % miLw S [ (€, H]* @k,
u

The component of the centrifugal force Pu , parallel to

the axis of deflection u , decreases the potential energy
of the svstem by an amount

Vp, = (1) Pu(l, i = %ml’m’u'(l, f).

Thus, the potential energv, caused by the cenirifugal
force on the shroud amounts to

1
Vo=V ~Vr, = ;,,,u,,.,z S [ (1. Hldl— %ml’w"ua(l, .
L]

(30.%)
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5) The potential energyv, brought about by the centri-
fugal forces on the blade itself is expressed as follows
by analogy to the potential energy of the centrifugal force
of the shroud:

wr

1
Vaum 5 wilie \{rocro é [/ (&, O] ds} at —
1

—gurre | FOwE 0

]

(30,9)

Substituting in equation (30.,3) the expressions for the
kinetic and potential energies of the elastic system and
taking into account that

we obtain V=V, +Vs+VatVy,

8 ({>ro 5 FOG, O +L Pmlat, op-

_L 3 ” 2 _LEGIG ! :—
- Bl SI_QC)[H @ ol s — 2= (1, 9)

1
—émmmShMLQWK+%mmﬁﬂLﬂ—
[}
1 \ ]
- 5 gt S[FGHm%JQfWT&ﬂP%]@%—
hy i}
1 1
+ 5 Fewr { FOw €, nag}ae=o,
o
where_g is a dummy variable,
Performing the variation of the expression we have
obtained and removing derivatives from the expressions with

the aid of integration by parts, remembering the conditions
(30,1) at the fixed end of the blade, we find
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1

j S { —BeFQ)ull, D—EP 1) u" (&, H)" +

4 v

+ miLotu” (C, )+ Fpw?

. 1
u’ €, 8 SF(&) (o i5) d& +
4

+ F(§) (ot ) u' (T, t)] + Bew*F(Cu(k, t)}du &, Hdtde+

1,

+ j{ —mela(l, H—EEI(Du" (1, H—T(Du" {1, 1] —

— miLotet (1, ) - 22EAS ok mBeng, f)}du(l, £)dt=0.
A
(30.10)

Differentiating equation (30,10) with respect to g' and
t and dividing by 5u(§;t), we obtain the differential eguation
for the transverse vibration of the blade

BRI Q" €, O] —miLotu” & )—Hew?[u” (&, 1) J (ro+ 1) F(£) di—
4

=’ &, B (T Q) FE)]— Pew* F O u(E, )+ FeF ) u(l, §=0. (30.11)

Considering that the expression under the first integral
sign in equation (30,10) is equal to zero, we obtain on the
basis of (30.11), that the equality (30.10) is fulfilled if
the function Ic(g)f) satisfies the condition

ERTI(D) " (1, )7 = BRI (1, )+
—l—mchuzu’(l,t)f—l»z—fﬁ—I—ﬁ- w (1,8

— mla?u(l, )+ miu(l, 1).
for §=1 ., Taking into account condition (30,7), we obtain

—EB[I(Du" (1, )} = mlLa¥/ (1, t)—
— mPwtu(l, 1)+ miu(l, ). (30,12)
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Thus, the problem of free vibrations of a blade of
variable cross-section without consideration of internal
damping reduces to the integration of the differential
equation (30,11) subject to the boundary conditions (30.1),
(30.7), and (30,12).

In the case of forced vibrations with a disturbing force
uniformly distributed along the blade, and varying harmonically

q = gy cOs wi,
and also taking into account the dissipation of energyv in the
material, the differential equation of vibration (30.11) must
be supnlemented by the appropriate terms., After this, we
obtain the following equation of steadv-state forced vihrations:

EST&u” &, 0" — miLwa” &, 6~

— Pow? [u" 0 5 (r+18) F(E) dE ~
L

(G, (TR F (C)] —Few*F D u @, H+LeF ) u (s, N+
+e@"[u” (G, t)]|=eqol® cos el

(30.13)

Here EETuTg,t)] is a functional, which takes account
of energv dissipati n in the material on the basis of the
hypothesis of dependence of energy dissipation on the siress
amplitude, The magnitude of this term for steady-state
vibrations of the system must be of the same order of smallness
as the magnitude of the exciting force, which fact is indicated
by the presence of the parameter & as a factor in both cases.

Seclving the obtained nonlinear differential equation
(30.13), we can find the actual vibratory frequency of the
elastic svstem in question and thereby construct a resconance

curve,
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In view of the impossibility of solving equation (30.13)
exactly, we now use an approximate method of nonlinear
mechanics for its solution; this method is bases on the
asymptotic expansions in nowers of the small parameter.

Utilizing this method, we can solve egquation (30,13) to
any degree of accuracy, However, in the "weakly nonlinear!
problem in question; as shown in the first twe chapters, the
first approximation is sufficiently accurate for practical
purposes,

31, Solution of the equation of vibrations in the
zeroth and first anproximation

We shall consider the solution of the following
auxiliary equation as the solution in the zeroth approximation
of equation (30,13):

" 1 ¢ o u(a_,, )] _mle* Fulll)
'acz { } Er a2
_Eﬁf[dﬁﬂgi} o+ 15 P as — 240, **QF“Q]
E 6?2 ) a‘:

£y

U

w F () oule,t)
J—‘Lr(o & o+ 000 G
(21.1)
It is obtained from (30.13), by we setting €= C . In the
future, we shall call equation (31.1) the differential
equation of undisturbed motion, or, more concisely, the
"undisturlbed" equation,
With the aid of the usual methods we can obtain the

solution of equation (31.1), corresponding to normal vibrations,

a (&, )=q@ua cos (Puf + ¥u), (31.2)

with & =1, 2,3 .., ., where @ and f'& are the
normal functions and natural freguencies respectively, In
what follows we will find only the first frequency.
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We begin construction of the approximate asvmptotic
formulas for the solution of the "disturbed" equatien (30.13),
by seeking the expression for the deflection function
i.,e. the solution of equation (31.13), in the form of the
asymptotic series

ull,t)=¢acos{pt+yl+eulf ,t)+e®ull,t)+ -
(31.3)
It is assumed that u {{,t), u (L,t) are some
periodic functions of t which have a period of 2 7, and
which do6 not cortain the principle harmonics. The frequency
of vihration p and the magnitude of the phase shift angle ¥
are expressed in the following asvmptotic series:

2 2 2
= pZtel, FePAy
P Pe ' 2 (21,4)

Vo= tey tefyto (31.8)
where Pe is the natural frequency of vibrations determined
from the undisturbed equation (31,1). Thus, the solution of
equation (30,13) in the various approximations, reduces to
the determination for the first approximation of u,({,1), 4,
and V,, for the second approximation of wug({,t), A, and

¥, etc,

In order to determine the ahove guantities, let us
substitute the series (31.3)--(31,5) into the perturbed
differential equation (30.13) Equating coefficients of the
same power to zero, in the equation obtained after substitution,
we shall obtain the following system of differential equations:

[ ()dqu(c)]* mLot dp(?)
dg?

drt EPf EE—E_

ol
= [dt!‘f(mﬂs)F(E)d‘ c(r°+l§)F(C)]—~

_ ol 1% F(C)

FRo®) +-=5 "l (0=
(31.6)
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2] mler e, )
acﬂ[ art El At

1
_ el [du(C, o) ey peeyae — 24l 9 o+ ) F(C ]
2 [ L oty P at — 218D (0 P )

¢

F
lgcn FQ )+_9”(CJPC Fuy (L, ¢ )

or
laF(C) 1 0* 2id% _
+ 5 dg)a cos v -+ B0 /4 E{* ¢Os T

Fa _
— 22 cos (r—y,)=0.
I, (r—vy)

(31.7)

......................

Above we have iniroduced the new variable

F=ptTy (31.8)

In order to solve the problem in the zeroth approximastion,
it is necessary to examine equation (31.6 ) which represents
the undisturbed equation of the form (31,1).

Considering the comsplexity of the differential equation
(31.6), and the impossibility of firding its exact solution,
it is expedient to apply an approximation which uses the
series introduced in Chapter 4 in solving equation (21.1),
We shall seek a solution of (81.6) in the form of the series

PO)=A, AL+ AL+ AL+ AL (31.9)

where Ao, Al, A23A ...An'are constants, determined from the
following boundarv conditions of equation (30.1):

[P (o =0, [f‘?‘-?;f)];zo -0,

and alse from (30,7) and (20.,12)
dz@(_-fl‘ _ 12B51s de(l),
daz |-, Er(L)f, df
P_’Eﬁﬂ -1
- db BRI
_ () @)
dar dat

1
[mle2 ﬂq;:;} —mPop(1)}—

mepp (1] .
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Without going into further detalls, in this sclution
in the zeroth approximation, which in principle does not
differ from the solution of equation (21,1), let us examine
the problem in the first approximation. With this in mind,
and proceeding in a way analogous to that set forth in the
previous chapters, we multiply equation (31.7) first by
C;DS“‘!T dc 4€ and a second time by ¢ co5 T dt aﬁg.

The integrals along the whole length of the blade of both
products we have obtained are equated to zero.

i . FPui(f, V] mLe® Fus(l, 7)
& S{dfi"[ () a,,o EE 652

L)
1

glm“ aﬂg, T) g( LIS FE)aE+ au‘ (“’ E) ( 0+IC)F(§)] -
E| o, a

o2

l 9’ d%p
9&1 F(C) &, D+ — Eld aﬂ — @ (}:a Ccos I) -

_ leF (%) Adall)acos o+
Elcos {(r — ) + i 3 (5)

tzgg(c) aﬂul}(f r)} (€)sin rdf dr=0. (31 o10)
2

1

SS J
=il

)2 Pui(Z, 1) mLo® Fu(l, 7

¢ afz EP a2

[

E 052
f.ﬂ@_ )

[ (w? 2
3_:1 FiC)  (E, 1)+E 6'“2@\ o acosz)

9y JQF © dyp(Cra cosz -+

— cosc W) -

Ei

. {“_ezf;&ﬁ ) Qf"-‘ﬂa({-’——’) } /0y cos rdL de=0. (31.11)
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Since the function 14(2;,f) does not contain the
principle harmonic, each of the last differential equations
can be split into two equations of the following form:

¢ roful r)] | mle* Pu(l, 1)
S a ar Er o

o._./‘a§

Qlw" [621;1((', 7) du1 (C, L‘)( "‘EC)F{CH i

et g( 1) F(S)dE +-
iw?

— 5 FOul 9+ e L Q) Punll, )

in tdfd=0;
7 Y } (&) sin zdf ;

n
1 o* & A e
S S {l’ BC'*’@(EE’“COSI) - —I“COS(“‘ ) +
0

+lBQF(CJ ‘4199 (C)a Cost }tp (C) gingdtd,!-:()’

(31.12)
“‘S { [ 1o S r)] mLo® Pu(l, 1)
ac ors Er o
H_"_ki’ '?i‘f_‘(‘:’_’) + & 5”1(§ T) +
- [ e S( pFEa+as zc)F(c)]
_ Pow? 4 p2 EOF ) fl’til,(ij)
@+ T e
XeG)cosrdlde=0;
(31,13)
il
i 429:’((:)
g ~ Lgcost ] 2 con (r—1,) +
) S [1’6 de? z
+{oF(0) 4,0 (C) a cos r}(P(C) cos rdf de=0.
(31,14)

Solving the last equation for ., , we find

4, = [agl’ ,,S F(C)tpz(g)d’é] ..1{ (ﬁS 11560;2 @(fggf—lacos ‘t) X

Xop(Cycostdidr - 7 7 CO8 Y, S (L) dC}.
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The first integral in the curly brackets of the last
equatior may on the hasis of (8,3), be expressed by the
bending moment acting in the cross-section, i.e.

1
62 = dg@(‘:’:) _
Egss oz Q(“iiﬁ“‘“COSf)@(C)COSrder

__ég '(#ﬂQ“UN% @ () cos rdldr=

s oC 2 d*p(£)
=] Eﬁs a_gﬂ[m{g)ma—cﬂ_ a cos z]w(?;)coszdcdt-

Then the square of the fregquency in the first approximation
will be

! -1
pr=pted, =pi+ (agi‘ S F(C)QJ'K)dC) X
0

1

. (358 %’a—y—m(fgé—éams f)'P(C)cos rd di—

1
_ g (&) d
anE'S ac2[“m & ]sv(C) g
—-q—;fcos tp.S fP(C)dC}-
’ (31.15)

The sine of the phase shift angle in the first approxi-
mation, as ir the preceding case, is found from equation
(31011)’ i.el

1 —~1 . 2
. =G ¢ _nval | AL 9 d?’(c) e
sin ¢, [l Sw(t)dCl [@08062114( pre acos:)
XK p(E)sin rdCdz]’—L (31.16)

Employing formulas (31.,15) and (31,16}, we can construct
a resonance curve for vibrations of the bar (blade) in
gquestion taking into account the dissipation of energv in the

WADD TR 60-582 207



material, For this purpose it is necessary to calculate the
douhle integral of expressions containing the bending moments,
Proceeding analogously to our previous computations, i.e. as
with equations (16.11)«—(16.18), we can write

1
£ (e
Tﬁs agé’M(’_agT @ cos r) 7 (§) cos 1df dr=

= Ban i Jl(g@)

ac?

d;?) o (C)de +2E[-,-; a"g(l—cos 0" cogrdr X
1]

h XS [acz (d;pf)) 76 SFS z"*’dzdy] g

(31.17)
1
o idiell) ) sin s -
Eﬁs ai;?M( e acosr)tp(t..)sm ol dr
v L2 (n—1) ¢ 8 [ d (0" n \
= L Egn B A L) 1 dzdgl at.
n lll(n+1) 5{6@'2( dr? ) ‘P(C)SPSZ 2’(!}] -
(31.18)

Substituting expressions (31.,17) and (31.18) in the
formula (31,15) and (31,16), we obtain

1 n
-1 -
p=p:+ [aol‘S F@Q) p20) dt] {%?:g S (1—cos )" cos rdr X

Sl o fyerscafas

1
— qoml COS Vs S q:(C)dC};

(31.19)
oo [en ¢ ac| ! 2 Ear ()
sin v, [l §m(C) C] w1
1
d? (c,
x S{ H;( ¥ tp() Sz"“dzdyldg
dc?
’ ’ (31.20)
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The magnitude of the deflection of the bar may be determined
by the following formula, on the basis of equation (31,3)

u(C, )=o) a cos (pt+,). (31.21)

As before, we limit our consideration to the first approxi-
mation, which for technical purposes gives sufficlent accuracy.
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Chapter Y1I1

Torsional Vibrations of Bars

32. Derivation of basic equations

In the present chapter, formulas for the construction of
a resonance curve of the torsional vibrations for circular
shafts, with an allowance for the dissipation of energy in
the material, are derived. As above, we base owr approach
on an experimentally established dependence of the energy
dissimation on the magnitude of the stress in the material,
and on the utilization of the method of the small parameter.

Let us examine steady-state vibrations, which are
maintained by a periodic external exciting force.

Let us assume, following N, N.
Davidenkov, that the true modulus of
elasticity in shear of the material
for the rising and falling branches
of the hvsteresis loop, (Fig. 20)
may be expressed by the following

formulas:
_ ég—-G[[-—v( Fy)]
Fig. 20 dy T
i
== Gl 4y m—n)*), (32.1)
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where ? and fc* are shearing stresses determined for the
rising and falling branches of the hysteresis loop respec-
tively;

Gr — modulus of elasticity in shear;

¥a, — amplitude of shear at a given point;

¥ — magnitude of shear at any aribtrary time;
¥ and R —~ constants of the material, experimentally

determined.
The expressions (32.1) satisfy the following conditions

arising from the symmetry of the hysteresis loop:

—> -— — -
A W R R =
dy r=v, d)‘ e ’ ay =tm dy ="t

Integrating expressions (32.1) and determining the
constants of integration from the condition that 2 =% for
Y= Y.. » we obtain the dependence between the shear stresses
and the shear strains for both branches of the hysteresis loop

;= G l T ;i[(ym + Y)H— 2’1—19’:,] } 3

=0yt L= — ), (32.2)

wherc 7+ =4k +1.

On the basis of the above statements, to determine the
torsional moment we should proceed not from Hooke's law, but
rather from the relation (32.2),

The shear strain of an element of the bar, located at a
distance ¥ from the axis, is determined by the formulas

__de
Y=o =r¢
and
— (dPy . 4
"m r(dx )max "Pm

Substituting the expression for ¥ and Y_M' in the
relation (32.2), we obtain
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-
r=

’G{'(P ~ T gt ) — 2 ’“l},

e { m
' i‘P + ’—[(fﬁ — ¢\ = 2" g, ]}‘
(32.3)

The value of the moment of the shear stresses acting in

the cross-section of the bar, about its axis, is determined

in the following manner:

rm

= JlrrdF= jrr?nrdr':

2ard 4yt _
— m — e _2n HY
Taly T e — )
or
— 4ppm1
M=ar !¢ + @) Ol
p{fp (+3)[(Pm ¢) ‘pm]})
+~ 4yt
M=Glig + = L — ) — g |,
”{"’ e ot %1} (32.4)
where
- oary,
h=="

Setting U=z ( , we obtain the uwsual relationship.
M=M-=M=Gly.

On the basis of relation (32.4), we can form the
differential equation of the torsiocnal vibrations of the
bar (Fig. 21). Applying d'Alembert's principle and
examining the conditions of equilibrium of an element of

the rod of length ox , we find

a?
—M+M+ ﬂddx— j'pr? aF=¥ ar=o0,
dx ] of

whence

oM Fp(x,t)
ax —QIP 6t’ * (32.5)
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Substituting in equation (32,5) the expression (32.,4)
for the torsional moment, we find

2 gy, (Opt6) 1 [(dnan)  dnte.0}
ax " ox n dx ax
_Qﬂ_l(gw))"] A7) g ol
dx n+3 oo
9 Gp(x, 1) v [{dpn(x) do(x )"
N I e - LI L2 N A A J—
axGP{ ax +“[( dx ox )
. pr—1 (E‘Eﬂ} (X) )“] 14,‘_:.} = of ?i(p(x,il
- dx n+3| T
(32.6)
d
where ——f%iflﬁ) is the maximum value (amplitude) of the
relative angle of twist;
dp(x +) is the value of the relative angle of
L twist at time t .

For a bar of uniform cross-section, equations (32.6), may
be transformed in the following manner:

Fplal) _ A a{( Bale) | DY

Jx? n(n-+3) ox dx ax
— d‘Pm (x) " 52'95 (xr t)
_2 L fTFEm AT —_—pe X L
( dx ) k ol 0,
Poll) , 47 0 [(dpals) _ dpls Dy
ox*? a{n+3) ox dx dx )
- d‘Pm (X" az‘P (x, {)
. Ost=—1 — BTN
> (d\»)] p2eED

(32,7)

where k= £ sec /e m?®

G

If we dencte the secand terms of the two equations by

9 =, o [/dp,(x)  Oplx, £)\"
° -2 —
fax T ax[( dx | dx )
— 9n—1 (_@mi{_)}“:l 41
dx n(n+3)’ (32,8)

cont,
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0 50 0oa_ ., O [(Bpalx) _ dplxf)\"
5‘0;@(113»‘)-—“‘ [( )

ox dx dx
— gr—1 (d?’m (x))n b »
dx nin+ 3)

(32.8)

then equation (82,7) may be rewritten in the following form:

P (x, £} = Fo(x, H
0 E e LGy, -k TR g,
dx? +£0x @1 d
Fo(x,t) | 0 <, P (x, 1)
T L Loy, ) — TR
w0 or

(32,9)

In order to maintain the steady-state vibrations of a
non-conservative system, we require the action of an external
disturbing force. Since the dissipation of energy in the
material is small, the disturbing force must also be small,
This "smallness" can be characterized by the introduction of
a small parameter as a factor of the term expressing the
exciting force, i.e. |

59':‘]0;‘1‘;’

Then the differential equations of forced vibrations
may be written in the form

P (x, t) f) 9 = Fp(x, 1)
@ ke = L
P @ (¢ o £g COS wi;
d2qo(x,t) 9 !F( i k’aq’(x 5 = £q COS Wi,
Ox? d

(32.10)

We look for the solution of equation (32,10) in the form
of series expansion in powers of the small parameter. We
shall represent in series form the function of the angle of
rotation ¢(1,)-t) s frequency of the vibrations of the bar
and the magnitude of the phase shift
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P (5 =y (XIgocos (wf+a)-hepils, O+ fm(n O+ ..., (32.11)
w::wc+.un4;édi+- . (32,12)
“a0+8al+€‘a?‘l ] (32.13)

where @, is the amplitude of the angle of twist,
@W¢ is the natural frequency of vibrations of the bar,
Let us now introduce a new variable

6=l -} a (32.14)
and transform cCas wf= cos(e-«:), utilizing the expression
(32,13) for

cos (6--a)=cos (#— ag)cos £ (a1 + eaz + . . )+
+ gin{6— ao) sin (o) + ea; + . . ).

(32,15)
Then, let us also express
cosefar+eaz4 ...) and sine(ar 4 sas 4 . . )
by the series

cos e{ar + eay - . . )—1 gﬂ(axj—s;z + .. ,
!
sine{ai+eaz+ . . J=ef{ar+eart .. . )— 53(a1+£§?+ Co)

and substitute their values in formdila (32.15), Neglecting
the terms containing the small parameter &£ , to a power
higher than the second we obtain approximately

€08 (#—a)=c08 (#—ag)+ £, sin (§—ap) +

+ & [a sin (6—ay) — a—:cos @— ]
’ 2 “) (32.16)

Substituting the expansions (32,11)=—(32,13) in
equation (32.10), and also taking into account the change of
variable (32.14) and the expression (32,15), we obtain
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B cos 6+ TPE Y | 2 Tplx, 0)

dx? ox? Oxt

+E'éd_ 5('/‘"(1)% COS&‘*'H[)’! (X, t)'*‘Eg‘P': (xl 6)+ " ].....
X

—p [(m3+ dy oyt ) (g () cos o+ LI

Fepa(x, 0)

T e

+ .. )] — tq [co8 (60— ap)-+ ey 5in (6— )]+
4 &t [Gg sin (f—a,) — %:cos {(6— ua)} =0
(32.17)

Grouping the terms of the last equation, containing the
small parameter terms & of the same power, and equating to
zero the expressions which multiply the various powers of €.,
we obtain the following system of differential equations:

ds
t;'(x) g9 CO8 0+ Rale,p(x) cos 6=0, (32.18)

3 (x, 6 d' =
--%i, ) 4 !E[w(x)% c08 6]+ K1, (x) gy COS H—

—kio? Q%;f’—ﬁ—) — g cos (f—uy)= 0,
(32,19)

o & 02
‘p;f; )+_!F( )+ k*w (x) Ay, cos G—

— k4, d_ﬂ(fi) ko 26‘7’2(3‘: 6)
062 a6?
. (32,20)
After cancelling @,ces e in equation (32,18) and introducing
the rew notation F"_—.}t‘w? equation (32,18) takes on the
following form:
d*w(x) —
o + pH(x)=0.
(32,21)
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Integrating the system of equations (32,18)=-(32,20), we
shall obtain the solution of the problem of the torsional
vibrations of the bar taking account of the dissipation of
energy in the material, in the zercoth, first and second
aprroximations.

33. The solution of the problem in the zeroth approximation

To solve the problem in the zeroth approximation (with
an accuracy to the zeroth power of the small parameter), it
is necessarv to solve the differential equation (32.21) which
is a homogeneous, ordinary, linear equation of the second
order, We write the general solution of this equation as

¢ (x)= A cos px + B sin px, (38.1)

where A anda B are constants, which must be determined from
the boundary conditions. For a bar having both its ends free,
and in the absence of concentrated masses, the boundary
conditions are

H0)=0, ¢(1)=0. (33,25

Then from (383.1) we will obtain the frequency equation

ol —

sin pf =0, (33, 3)
whence

p[ =i

Considering that
pz = k22,
‘ (33.4)

we obtain

sin kwe { =0,

ELS
These are the conditions for fixed ends, not free
ends. (Trans.)
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hence

ko = ix,

(33.5)

where 1 1s an integer. Assuming T =1, 2, 3 4 + « ,
we obtain the frequencies of the different modes of
vibrations. The frequency of the gravest mode of vibrations
is equal to

or

“’c%l/% (336)

The formula for this mode of vibrations is of the form

¢{x)== B sin px = sin % x.

(33.7)
The function of the angle of twist in the zeroth
approximation 1is
@ (x, 6)=g@ow (x) cos 8= By, sin ? x cos o,
(33.8)
Denoting
Bpy = C,
we rewrite the last equation
plx, O)=Csin Zxcosé.
d (33.9)
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The constant (: is determined from the co:ditions that
the center of the rod (a.: -%) at the initial lnstant, with

8=0 , the angle of twist will have the maximum value @, , i.e.

{ 74
f— = in— 0: .
@(2, B) CsmeCOS P

(33.10)

Hence
CIBQ}O._.—._(PD, B:].

The angle of twist at any cross~section of the rod is
determined from the expression

F(x, 9)=<PoSin%xcos6. (33.11)

34, Determination of frequencies of vibration and of
the phase shift in the first aporoximation

To solve the problem in the first approximation in
accordance with expansions (32,11} and (32,12) we turn to
equation (32.19), from which we shall find 4, and §in «<_,
To examine the balance of vibrational energy of the rod
let us multiply equation (32.19) first by Plx)sin 8 dz o8,
and again by ¥()ces 8 dx a6 and equate to zero the
integrals of both products along the whole length for one
cycle. We obtain

i

62(,‘0 (JC, 9) a = ’ -_
1 @S :"ﬁ?ﬁ + 5o 0w (x) po cos O]+ R34, (x) P cOB 8

[

o ‘3@?3—%"3 — g cos (6—ay) } w (¥) sin 8 dx d5=0;

(3%.1)
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)
(5)8 { Perlxd + gﬁlw’ (x) g cos 8]+ k24,4 (x) o cOB 8 —

ox®

— B zatpl(x ) qcos(a._ao)}w(x)cosﬂdxdﬂ =0,

° gt
(34.2)
Here it turns out that
o !
S S{gi%({_'@ k,wiaz‘Plg: 6)}1,0(:()51!1 Bdxdd=0,
oo * (3""‘03)

We can justify thils equality by integrating by parts,
the first term with respect to x and the second with respect
to @ , taking into account here the conditions at the ends
of the bar (33.2).

I
j‘ag‘p 1 (% )w( x) dx=v )@‘Pt(;f, 5)
']

0. (x, 6) Ow(x) , _
dx? .[ dx

Ox Ox

a

* [‘Pl(x, 6)(31,’)(1') ‘Y‘P; (x, 3)23%;—)5.\:—1
1] Q
j' 1(x' &) dx;
0 (3k1)

272 aw o
f—a—sﬁa(—-:—'ﬂsinada = 9 a'(ex’e) l f ad ;x ) cosBdE =
0

_[¢|(x,9)c059 IZW—J;Z;:(x,Q)(—sinB)dG] =

27

=—[ $(x,8)5n806.
o ! (34.5)

Substituting (3%.3) and (3%.4) in (34.2), we obtain

2

IT{ 3 \P(x) +K2WZ Y(x)} b lx,8) sinBdxdB=0 .
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For, according to (32.21), the expression in the curly
brackets is equal to zero, which proves the correctness of
the equation {(34%.3).

Thus, the differential equation (3%.1) splits into two
equations, equation (34.3) and the following:

i

@S {k’dlw(x)qae cos —qcos (6—ua,) +

1]
+ Ed_ & (x) g COS 6) } yw{x) sin 6dx do= Q.
X

(34.6)
Analogously, equatlon (3%#.2) splits into the two
following equations:
27 2 2
0 g(x,e)_kzwz 0 $(x,6)
,{ ,/; o o Joixcos8 axd6 =0, , oy
i
¢£{szlq](x Jp,cos8 —gcos(B—a) +
o =T .
t>— P | Yyix)lpcosh {x)cosf8dxd 8 =0.
o o I}e (34.8)

Solving equation (34%,8) for A, , we obtain
| - 1
— 2 2
AI_['{wk q!;lp (x)dx] {q-n' cosau’f;w(x)dx_

4 2 vigmelvirmoson)

Keeping in mind, that

kL

np(x)=sin| X,
! I
2 = [ st T gy = L
’/;',!J(x)dx—‘/;sm I dX—E.?
' I
= . X 21
j;w(x)dx—'[;smfl—-dx =
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we obtain the following expression for A,

4

2 b
nk g, {‘(ﬁ% kN @[tp (x} gy cos 6] (x) cos Adx db+2g! cos %}

Ad,=

(3%.9)

From equation (34.6) we determine the sine of the phase
shift angle

i

l
~2gsines + 3 @ (' (x) 9, €08 §) y(x) sin 6dx d6=0,
2

sing, = Ly S 5% El_i(zp’ (x} 95 cos 6) w(x) 8in 8 dx do.

g
(34%.10)
To calculate &4, and Sim«, it is necessary to
calculate the double integrals
! iz
1) §)§ o B (v’ (x) 9, cOS 6) y(x) cos 6 dx db;
1
d = .
2} gsg o @ (' (x) @, cos 6) yw{x) sin Hdx df.
«. X
LI (34.11)

The expression for the functional (32.7) has the following
form in the first approximation:

!';‘(tx))n"*?“—‘q)ﬁ ( du;ix) )"] .

A T WL "
ss;di(tp,t)~ " x[(1+cosﬁ) (ﬂo(
4!"_1 x) n—1 d2 x) 4 H—y

Xn+3—’%
d s, , . ¥ _ - w(x)) onmyn [ G (N
ng as(wyt)_ia[(l COs 6) @n( dxt 2 ;!;0\ dx ) ]

N G Nt L YV
A } 01— cosay— 2 2
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K
Substituting in the last equation the value %(’1’.): (143 7 x,

we find

& 9 ¢ (' (x) g0 cos B) =
dx

— 4y Rl Ty 2x)
= P [( o8 00— 27 cos™ 1 0 | — sin ZF),
(r+3) /1 ( ) i ( sin g)’

< By’ (g o 6) =
X

Jr

1)'

_ A gy
(nF 3y

[(1—cos 8*—27"1] cos™ 3 ?—F (— sin

Bearing in mind the last expression, we transform the
Integrals (34,11) into the form

I

-

d =,
I} gﬁ,g & i @ [ (x) o cos w(x) cos 8 dx d8 =

0
= !

- S S 4ynﬂ+1~——ru_1¢‘n_' [ gy —an ax X
B . —co8 8)*— 2" 1] cogm—1 7K o 47X
(nt3) 41 s 6) | cos ; sin? ; cos fdxds +

a1
47[’1‘1'1,.”—1 n
A\ = T Fo (1 4 cos ) — 271 cogn1 T gipa X =
S S (nt3) [( s ) lcos -l—sm’ 7 costdy do=
4 "
_ Svf“ln“""qp" X . X
= ? j cos"™ ! n sin? de S [(1- cos 6)"—~2""1] cos o df;
0

(n+3) 1t
43

i
d <
2) Sﬁg,sacﬁ(w’(x)tpa cos8 8) w(x) sin 8dxds =

")

—————— 1—cos#)"— 21] cog"~1 *¥ gin ™ g
(a1 8) P [(1—cos8)*~ 2% 1]cos llsm7 sin 6 dx d6 —

L]

!
N Sﬁiml—"‘"‘“w:
(n+3) 7+

[{1+cos 8)"—2"1] cog"—1 ’—‘lf sin? "-;5 sin 0dx do=

=]

[

4 =
. Svfn“lﬂMIQJg —y X 7
T (n+3) 7+ jcos" lﬁsmsz;dx S[(I_COB 8)*—2"~1] gin 6 d#,
0 0

(34,12)
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The increment to the square of the frequency, on the
basis of (3%#.9) and (3%,12), 1s determined by the formula

1
2 Byt atigr o LTEX X
N o n—-1" " gin? —dx X
iy, { (n+3) 7+ 5 R !

£A1

kg

X 5[(1 —cos#)*— 2| cos 0d 6 2q.1 cos au} =
0

16w 2gn—t
K (n+3) 43
I x
< [ co=r st ™ [ (1 cos == com .,
]

1]

and the square of the frequency in the first approximation is,
according to (32.11),

7® 16vm™ it
A=t = e T eaen
ki s

Z
X j.COSn"I X gin? X dx f [(1— cos 6)"—* 2"t cos #df + 26)01 COS op,
l 1 o
¢

0

(34.13)
whence we obtain a more convenient formula for the purposes of
calculation

I

w? 1697”2 PP~ 1pn—1 X X
— =1+ : nel — gin? —
w2 mt+ar  J e
¢
2
x j [(1—cog®)*—2")cos @d6 + 440! COB oy,
iy
1

(34o14)
The phase shift angle in the first approximation, on the
basis of (34,10) and (3%.12), is determined by the formula

1 —Brn”lvn"‘l‘ltpg
Age  (nt3)I+H

gin e, =

I
X j‘ cog"?! zr—f sin? ﬂ_; j [(1—cos 8)*—2""] sin 6 d6.
0 ']

After several transformations we obtain
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x

4!‘”"“111""‘11'% :
qo(nt+3) 1+

0

x

F£ 5 S
cos™ 1 —3gin?- T %

X fulmcosmm—zmﬂ]mnod&

0

(34.15)

wWe can now construct a resonance curve of forced
torsional vibrations of an elastic bar, considering the
dissipation of energy in the material from formulas (34.14)

and (34%,15).

35, Sample calculation

Let us apply the formulas (3W.14%) and (3%,15) which have
been derived to construct resonance curves.
Let a bar with diameter &
execute forced torsional vibrations.

with parameters 7

= 20 mm and length ¢ = 200 mm
The bar is made of brass
= 3 and ¥ = 143 found experimentally.

We shall take an amplitude of the disturbing force which
ensures a maximum shearing stress in the bar during torsional

6,4

vibrations of the order of 1000 kg/cm2 fo = 0.,12458 * 10°r'c
The maximum angle of twist of the bar, assuming that the
disturbing force acts at the central transverse cross-section,

will be  (@o)mayx = 0.8 ° 10
Intreducing the notation

-2

-

Po =

a * 10724

in what

follows for an arbitrary amplitude of the maximum angle of

twist and taking values of A = 0.,2; O35 0.5; 0.6; 0,73 and
0.8 we shall calculate by means of formulas (34%.1%) and (34%.15)
the values of frequency for the case in question., The results
are recorded in tables 13 and 1k,

Table 13
Pa - Y 2 1 1
7 sin q, 8in® a, cos? a, cos @, 0,09006 —, 0,031312;—
0 0 0 1 +1,000 0 0

02-1072 0,25 0,053 |0,9375 10,968 0,00360 0,15656
0.4-10—1 0,50 0250 (0,75 -+ 0,866 0,01441 | 007828
0,5-1072 0,63 0.391 0,609375 +0,781 0,02252 0,06262
06-107* 0,75 0,563 |0,4473 - 0,661 003242 0,05219
0,7-1072 0,88 0,766 | 0,234375 + 0,484 0,04413 0,04473
0,8-102 1,00 1,000 0 10,000 0,05764 0,03914
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Table 14

3\ 2 Y2 ;
q:?, 0,031312I- cos o, (9— @ E) | .
@ Wefup | @efa Uefno | D fu
- r 1
0 i { - — + -
0,2-10 3 £0,15159 | 1,14799 0,84481 107144 0,91913
41072 003779 |  1.05338 0,91780 1,02634 0,95802
0,5-1072 +0,0:889 \ 1,02637 052360 1,01310 0,96364
0610 3 +0,03452 | 1,00210 0,93306 1.00105 0,96595
0,7-1077 =0,02166 | 097753 093422 0,98870 0,96650
08107 0,00000 | 0,94236 0,91236 0,47075 0,97075
? i
O.B s 1
0,7 A\
0.6 A\
0.5 \\ ‘
0,4
0,3 e
0,2 \\ﬁ
a,! 1
j

692 0.9 1,00 I,Dd-‘.“'J

Fig. 22
Fig. 22 shows a resonance curve constructed from the
s
data in Table 1% (here we take Q= —ﬁngp }o In examining
1 o

the curve it is seen that the allowance made for dissipation
of energy in the material in the investigated case of
torsional vibrations, involves a considerable nonlinearity.

36, Torslional vibrations of bars with concentrated masses

The method presented above may be applied also to the
investigation of vibrations of an elastic cylindrical bar with
concentrated masses. Let us examine the torsional vibrations
of a shaft with discs on its ends (Fig., 23), On the basis of
formulas (32.2), (32,10) and (32,13), we start from the
expression

@ (x, 8)=g,w(x) cos # =(A cos px + B sin px)cos #.
(36.1)
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We determine integration constants from the conditions at
the ends., Taking into account the presence of discs at the
ends of the shaft which possess rotational inertia, we obtain

I, [rhqo (x, 6)]’=0 =GI, P_‘E(_x’_?l] r

064 Ox
Fp (x, 6) op (x, 3)]
|20 g |
2[ 042 ]x=l Gl [ ax =1

(3642)

where L and I_z are the moments of inertia of the discs, [
is the length of the shaft. OSubstituting (36.1) in equation
(35.2) we obtain

P
L 1 A cos 8= GI, Bp cos 8,
|— - _p . — I3{A cos pl 4 B sin plycus 6=
L = — GI,(— Ap sin pl | Bp cos pl)cos 8,

i —
Flg. 23

After division by cos 8 and some transformations, the
last equation may be rewritten in the following form:
Al + BGLp — 0,
A(GLp sin pl — I cos pl) -+ B(-— Gl,p cos pl +- I sin pl). (36.3)

This system has a solution for A and B8 , different
from zero, if the determinant of this system reduces to zerc, i.e.

Iy Gl,p —
| GIp sinpl — Iycospl; (-~ Gi,pcos pl - [, sin pl)

whence, writing the obtalned determinant in expanded form, we
obtain the following equation for the frequency:

— 1GI,p cos pl 4 111, sin pl — G 2p? sin pl +
or -+ Gl apcos pl =0
G2 ,p? sin pl 4+ () — 1) Gl p cos pl — [\, sin pl = 0.

(36.4)
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Introducing the additional notations

— 11—{?
o= G]P -
LI

ﬁ" sz,z,

and dividing equation (36.4) by sinpl, we obtain the final
frequency equation in the form

p?+apctgpl—-8 =0.
(36.5)

The solution of this transcendental equation, for the
natural frequency p may be obtalned by a graphical method.
After the determination of the natural frequency of vibration
from equation (36.5), and after the solution of the system
(36.3)y it is possible to find the values of the constants of
integration A and B , and hence the function of the angle
of twist in the zeroth approximation. From the determined
function of the angle of twist and the natural freguency of
vibration, we can calculate the frequency of vibration of the
system and the magnitude of the phase shift in the first and
the successive approximations by adhering to the accepted
scheme of calculations.

In conclusion we should point out that in the present
investigation only the frequencies of the first order were
examined,

We should also note that the derived formulas in the
first approximation of the investigated class d nonlinear
vibrations, where nonlinearity is determined by the hysteretic
losses in the material, allow us to obtain the solution with
high degree of accuracy, guite acceptable for practical
purposes. Therefore, in the present investigation, we have
restricted ourselves to the examinztion of the first approxi-
mation only, although to obtain the formulas of the second
approximation does not pose any difficulties in principle;
it is only necessary to further develop these investigations
based on equation (8.18),.
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The results cited in the present work refer only to the
influence of the hystersis type of dissipation on the
vibrations, without consideration of external losses,
However, as shown in the investigations of Guye, Rowett, and
Geiger*, the magnitude of energy dissipated in the material
during torsional vibration, for instance of crankshafts of
interns1 combustion engines, very often comprised not less
than 2/3 of the total loss of energy. In the light of this
fact the proposed method of analyzing torsicnal vibrations,
with an allowance for the dissipation of energy in the
material, may be of some theoretical interest and has
practical significance.

*For references, see Bibliography of the Material Damping
Field, WADC 56-180 (Trans.)
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Chapter IX

Experimental Methods of Determining the Dissipation of
Energy in the Material During Forced Vibrations

37: The object of the experimental investigations

The theoretical investigations set forth above were
based on hypotheses according to which the dissipation of
energy in the materlal during vibrations depends on the
stress amplitude. The amount of energy dissipated per
unit volume per cycle of vibration is given by the area
of the hysteresis loop.

Taking expressions for the true modulus of elasticity
at any instant for the ascending and descending motions
according to formulas proposed by i, N, Davidenkov and then
integrating these expressions, we have obtained formulas
relating the stress 6 and strain g » These relations
could have been replaced by othersj; the particular form is
of no real significance, as has been repeatedly pointed out
by us and by other authors tooc. It is well known that for
the same stress amplitudes hysteresls loops of different
materigls will differ from each other both in area and in
shape., Hence, if we try to express analytically the
equations of curves which form the hysteresis loop, it is
necessary to introduce several constants which we have to
deternine experlmentally into the functional relation.d;jfg)
In the relation we have cited (6.2), these constants are -
and . , which subequently entered all the formulas. The
above-mentioned parameters for different materials may be
obtained directly from the hysteresis loop, determined on
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the basis of appropriate experiments. However, the suggested
method entails considerable difficulties connected with the
high precision of measurements. DBesides, the investigations
of hysteresis loops, which have been performed up to the
present time, dealt only with statlc tests of the materials.*
It 1s doubtful whether parameters found on the basis of static
experiments can be utilized in the dynamic calculations of
vibrations of elastic systems. It is apparent that it is
more correct to determine these parameters from experiments
conducted under dynamic conditions, corresponding to the
working conditions of the elastic vibrational systems in
question,

Since we do not have any reliable experimental data at
our dispeosal on the investigation of the hysteresis loop even
for static experiments — to say nothing of data in dynanmic
experiments = we consider it very important to glive our
attention to experimental determination of the parameters of
the hysteresls loop and to the study of other fantors which
characterize energy dissipation in material in vibrations of
rods.

A description of experimental arrangements and apparatuses
developed by the author is presented in this chapter, together
with an account of the method of experimental investigations
of energy dissipation in the material, and several results
that were obtained from these Investigations.

We shall examine several methods of determining the
logarithmic decrement of damping and of the hysteresis loop
parameters in steady-state as well as free vibrations. In
the last case, we will examine transverse, torsional and
longitudinal vibrations.

——

*one case is known to us, when, with the help of a special
optical device on the Schenk machine used for a fatigue test
in twisting, 1t was possible to obtain an image of the hysteresis
loop on a ground-glass screen during the dynamic operation.
However, the results of the tests were not published.
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38, Set-up for the imental investigation of energy
dissipation in the materigl in steady-state transverse
vibrations of bars

In the experimental investigation of energy dissipation
in the material, we have employed a specially designed assembly,
for the purpose of investigating energy dissipation in the
material during steady-state transverse vibrations of canti-
levered samples, excited by forced periocdic rotation of the
fixed end. The general view of the vibrational assemblyl is
shown in Fig. 242, and the schematic drawing in Fig. 25; the
apparatus is composed of the following basic parts:s l-—sample
belng tested, 2=—case, 3~-mirror, 4=-vibrator, S5—flexible
shaft, 6-~packing, 7--small gear, 8——electric motor, 9—Ilarge
gear, lO0=—flywheel, lle~maln shaft, 12-——strain gauge,

The shaft of the vibrational assembly, which is the most
important part rests on two bearings placed in the frame, in
such a manner that one of its ends with special thickening,
in which the sample is clamped, overhangs like a cantilever,
In the central part between the bearings, the shaft has two
symmetrically placed extensions on each slde., Mechanical
vibrators are placed in ball bearings at the ends of each
palr of these extensions, These vibrators are eccentrically
placed masses, fastened to the axes which are rotated by
means of a gear by a d.c. electric motor. The unbalanced
vibrator masses are placed at an angle of 180°, relative to
each other, and, due to thls, the inertia forces of these
masses which arise during synchronous action of the vibrators,
provide an alternating couple, which generates the periodic
turning of the shaft of the vibrational assembly, first in one
direction, then in the other; i.e. they transmit torsional
vibraticns to the shaft. The reactions of the unbalanced

lEngineer F. S. Semko took an active part in the deslign
of the apparatus,

Refer to rear of book for Fig. 24.
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Flige 25

masses of both vibrators balance each other, and are not
transmitted to the bearings of the main shaft of the apparatus.
During periodic forced turning of the shaft through a small
angle (1 — 2°%) back and forth, each of the two cantilevered
samples, clamped at the grip which is at the end of the
cantilevered part of the main shaft, will execute forced
transverse vibrations, Placing the grip for the sample beyond
the bearing frame, on the end of the cantllevered portion of
the shaft allows the cantilevered part of the shaft between
the bearing and the clamp to be utilized as a dynomometer, In
this way, we also eliminate the effect on the twlsting action
of the latter by the friction forces of the bearings and of
the other connections between the bearings. If we neglect

the resistance of the air, then during the steady-state motion
of the vibrational asseanbly, the angle of twist of the
dynamometer is determined by the work of the inertis forces of
the sample and claup, which is associated wlth reversible
processes, and also by the work reguired for the dissipation
of energy in the material, which goes toward the irreversible
processes and which must be continually supplied from outside.
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The bars used as samples for the investigation of damping
in the material with the help of the above described vibrational
assembly were chosen of prismatic form with transverse cross-
section 15 x 30 mm and 400 mm length.

The vibrational assembly provides for simultaneous invest-
igation of two samples. In order to assure rigid clamping,
both samples are prepared from the same plece of material
(Fig. 26)*. Such a palr of samples connected by thickened
ends, or one sample with two working sections, is attached with
the help of speclal conical wedges and bolts to the clamping
head of the shaft of the vibrational assembly. Special
measures were taken to guarantee a sufficliently rigid clamping
of the samples, so that during vibrations, additional losses
would not take place on gccount of friction In the connection
of the sample to the clamping arrangement of the shaft. These
measures consisted of making the flexural stiffness of the
section of the specimen at the clamp 13 times as large as that
of the sample itself.

The motion of the vibrators is accomplished by a d.c.
electric motor, which, with the help of a rheostat, permits
variation of the number of revolutions per minute within wide
limits, and hence also of the frequency cof forced vibrations
of the shaft, The rotating speed of the vibrator, because of
the gear with a gear ratio of 50:14% can attain 10,000 revolutions/
min, (166 cycles/sec).

The exciting alternating moment which generates the
periodic turning of the vibro-assembly shaft may be regulated
both by the variation of number of revolutions and by the
variation of the amount of unbalance of the masses of the
vibrator. The latter is accomplished by turning the eccentric
masses through some angle.

*Refer to rear of book for Fig, 26.
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The free rotatiocn of the shaft of the assexnbly either
to one side or the other through an angle up to 30 is
achieved, because the small vibrator shafts running from
the gear, and having lengths of Y0C mm and rmade of flexible
steel wire 2,5 mm in diameter, do not disturb the above
mentioned vibrations of the shaft of the assembly. lhe
stability of rotational vibrations of the vibro-assembly
shaft 1s ensured by supporting the shaft at the points
where the bearings of the vitrator are placed by two spiral
springs which are set against the upper 1id of the welded
body of the vibrational assembly. A uniform and steady
running of the assembly is achieved because the electric
motor 1s equipped with a massive flywheel,

39, Method of experimental deternmination of energy

dissipation in the material, based on direct measurenent
of power of the electric motor of the vibrational assenbly

The energy dissipation in the material curing vibrations
is characterized by the loop of elastic hysteresis formed as
a result of change in direction of loading of the material,
The equations of the loop contain the parameters V¥ and v ,

The magnitude of the power input, whfch goes into energy
dissipation in the material, allows us tc determine the
geometric parameters v and 2, of the hysteresis loop,
and also the logarithmic decrement of damping or the relative
energy dissipation in the material during vibrations.

The power that is consumed by the internal losses in
the material comprises only a part of the easily neasured total
power. The rest of the power is consumed by the external
losses, wrtich accompany the working of the vitrational
assenbly, In order to separate from the totdl power of the
motor that part which is consumed by energy dissipation in
the material, we proceed as follcws. We measure the power
of the electric motor, which sets the vibrators in motion,
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during the testing of specimens made of "ideally" elastic
materialy i.e, of material, that practically does not
dissipate any energy. 1In this way, we determine the power
that is consumed by the external losses and also that part

of it which goes intc overcoming the inertia of the wihole
vibrating system. As such an "ideal" material we have

chosen a ball-bearing steel Shkh 15, in which, according

to data from literature, and in particular according tc the
experiments of F%ppl—Buseman* (curve 7 on Fig. 27) and

Foppl -Pertz” (curve 6 on Fig. 28), which were conducted
during the investigation of materlal damping as a function

of shear stresses, the energy disslipation is so insignificant
that we can neglect it for practical nurposes. The curves
ty:jE(Tb) of Fig. 27 are given for the following materials:

of At T
KaLm/om? i < : i
0‘3‘“4_ J_/ _J_ ’ V .
l l 5 ! 4,
[
a2——r———L——— SR 60 47
I | i 2 3,44 S 1P T8 2
| 5/jﬁi “\V/// v
o, - = . _/ . /
LJ ::if/y N VAZ Al
o 2 0 - 4 i
0 10g0 2000 3000 g 0000 0,002 0003 0.004 Y4
K2/ cne?
Fig. 27 Fig. 28

1 — copper, 2 = soft steel, 3 — aluminum bronze, 4 —
tempered steely 5 = high strength structural steel, 6 ~
steel for crankshafts, 7 — ball-bearing steel. The curves
in Fig., 28 9, = -F;_(To) are given for the following
materials: 1 -~ glass, 2 - copper, 3 — treolit, 4 -— steel,
5 = porcelain, 6 = ball-bearing steel, 7 — pine wood, 8 —
beech wood, 9§ -~ trolon. Then we chocse a steel specimen
whose damping we wish to investigate. The steel taken for

*See WADC Technical Report 56-180 (Trans.)
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° this purpose is St 20, i.e. soft
; steel, in which, according to the
fZ same data, the energy dissipation
is immeasurably greater than in

Jﬂ:

1

N

P

1
o

HH

- the ball-bearing steel,
If we let W, stand for the
magnitude of power of the electric
— £, — motor at the motor terminals
ﬁig. 29 during the investigation of the

samples made from ideally elastic material, and if W the
corresponding power supplied to the motor during the testing
of the samples made of steel which possess damping, then the
energy consumed by the dissipation in the material, is eqgual to
W,=W— W,
(39.1)
On the other hand, we measure the elongation of the outer
fibers of the specimen., The magnitude of the energy dissipated
per unit volume, as was pointed out, is determined by the area
of the hysteresis loop, and on the basis of (6.2), the energy
dissipation can be determined as a function ¢of the maximum
amplitude of strain in the following manner (Fig. 29).

+% 450 Qu.}.] - I}VEE'H'I
a= [ dag- | pas = 2O DR
3

) n{n+1)
B (39.2)
The quantity § represents the amplitude of strain of any
fiver in the cross-section of the bar. Now by measuring the
strain along the length of the bar, we obtaln the maximum value
of these amplitudes for a given cross-section, &omagx « Hence
1f we take a linear distribution of strain with height through
the cross-section of a rectangular bar, then the expression for
the strain of any fiber with height in this cross~section, in

terms of the measured deformation on the surface (Fig. 5) will be

2 (fomux Zz

0 h ' (3943)
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By representing, on the basis of experiments, the curve
of the distribution of strain of the outer fibers along the
length of the specimen (Fig. 30) as a function of the co-
ordinate

£o = &olx) ,
max
(39.4)
o , [
2010 N }
1 |
ra-ro5§\——r 4
16107 I\\ i !
145 J?— ’:"7
12-105\. <t \‘\1 ' !
o~ ,
I e I b, \ :
10-10° ~
CINL I e N

8105 i ! "~ < ]
6105 \ﬂggkﬂ B AN =~
4009 T —_ 1 —

[
2:10% P ; B '

) , L |

% '8 2 ;! 20 24 28 L 32 Lom
2 12 % ‘5
Fig. 30

we can obtain an expression for the amount of energy for a
prismatic bar of width & and height A by using (39.1) -
(3G.4), and taking into account here the two specimens which
are investigated at the same tine:

h
12 _
=46j"j'2 +l(n:l)yE[zg"(x)z]ngdzdx,
sy nerh LA | (39.5)
- g X s
where ld=-55- 1s the excitation frequency.

Bquation (39.5) may be transformed intc the following
form:

242 (n— 1) vEbh -, .
W.= j u(n+1)(n+2) B0l dx.
(39.6)

B
LS|
e}
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Znuation (39.6) contains the unlmown quantities v
ant. 2. , which are sought,

We optain the second equation which is needed, if we
measure the nmctor power and plot the curve of stralin of the
sanple ED('L) for a different angular speed of the
electric anotor,

40, oxperimental method of determining energy
dissipation in the material, based on the measuremnsnt of
the angle of twist of the shaft of the apparatus

In order to check the method of experimental investi-
gations set forth in the previous paragraph, and also to
verify the results obtained, we propose another nethoed,
based on the measurenent of the tcrsiocnal deformation of the
shaft of the apparatus. In thls instance also we perfornm
comparative tests of samples of the steel under investi-
gation, and also of a steel in which the damping can be
neglected,

For the case of a uniformly rotating shaft, the power
transmitted by the shaft is equal to

W= Mo, (40,1)
where /WM, is the twisting monent,
¢’ 1s the angular speed of the shaft.

In the present case of alternzating rotation, the
twisting moment transmitted by the shaft at any instant is
determined by the formula

K = :: t!
M p p COS w (}+O.2
and the corresponding angle of twist of the shaft is equal to

@ == @ oS wl, (40.3)
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where /‘1: and Py are the amplitudes of the torgue and
of the angle eof twist of the shaft.

The increment of potential energy, stored in the shaft
between the cross-section adjacent to the specimen clamp and
the cross-section at the point of action of the mechanical
vibrators (i.e. in the whole length of the dynamometer), wmay
be determined by analogy to equation (40.1)

dy
aw=M., < .
P dt

The potentlal energy stored by the shaft during a
quarter period is egual to

.
w

M., ('g at=— M@ j'Sin wt CO8 widf = —

i

Mg,
2

S Sy F|n

W, =
4
ant for an entire period
W= 2Mp,. (40.14)
However, it is necessary to keep in mind that the energy
stored by the shaft during the first quarter of the cycle is
released during the subseguent guarter of the cycle,
Due to this reversibility, the work done for one cycle
of vibrations reduces to zero, But, as is well known, the
energy consumed in one cycle by the electric moter, which
generates these vibrations of the shaft is determined by
formula (40.4).
Let us suppose that tests are
M c performed on an ideally elastic sanple
A which does not dissipate energy in the
material. Let the twisting of the
§ shaft (amplitude of the angle) measured
g& in the dynamic operation, be equal to
¢ 9 ®o , and let the torque determined

by means of static calibrations be

N o
Fig. 31 equal to Mﬁl, . We plot in the
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coordinates Mys—¢, the dlagram shown in Fig. 3l. On this
diagram the area of the triangle CA% expresses the magnitude
of the potential energy stored by the shaft during a gquarter
period of the vibraticn of the specimen., It is evident then,
that the resistznce brousht about by the inertia of the
specimen,the clamping device, and also other losses, will
necessitate the application of this torsional mowment by the
vibrators, which will twist the shaft through an angle Po -

Now let us supvose that we are testing a sample pos-
sessing internal danmping. We measure the magnitude of the
amplitude of the angle of twist%% end_corresponding to this
angle we neasure the torsional noment /"KP « Then plotting
the obtained results on the sane diagram (Fig. 31) we obtain
the triangle CCD, whose area differs from the area of the
first triangle by the size of the loop ACDE (shaded part of
the figure),

Since the dimensiociis and shzapes of the sannles in both
instances are exactly the same, and since the elastic
properties of steel Shith 15 and 3t 20 are also the saue,
the source of the zdaitional resistance of the vibrating
specinens (resuliing in an increased twisting moment for the
tests of 5t 20 specinens) is the energy dissipstion in the
saterial,

Trg agaltuae of the dissizsztion of enerzy cf the two

roles for cne cycle, 1s deteruined by four times the area
of tre travezeoid ~CD3 in Fig. 21, i.e.

Wo= 4'(M*§% - "MK;(PO) = 2 (Mg~ Mopi,).
‘ (40.5)
Trus the nmetiod of determining tne zognitude of energy
Gissipaticn in the zaterial of a sample, made of a certain

steel, 1s the fcllewing., The angle of twist of the shaft

?’ ig umessured in 2 test of specinmens of the steel under
study. .iext, Zcr the same vibration frecuency, the zngle of
twist of identical saunles zade from en "ideal" steel free
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from internal friction is measured. Then, on the basis of
data for static calibration data of the shaft, from the
measured angles of twlst, we can determine the corresponding
magnitudes of the torsion moments M xp 8nd M"‘P . Finally,
by formula (40,5) we calculate the magnitude of the dis-
silpation of energy in the material of the two samples of

the steel under investigation for one cycle of vibrations.
Multiplying hép by the frequency of vibrations, we can
obtain the magnitude of energy dissipation in the materisasl
of the two samples in one second, l.e.

W, =wWp =20 (Mig, — MdoE,).
(40,.6)

Having obtained the magnitude of the power hg s We
perform further operations to determine the coefficients VUV
and m , according to a scheme analogous to the one described
in the previous paragraph. For this purpose, 1t 1s necessary
to use equation (39.6), since the single equation (40.6) is
not sufficient to determine ¥ and 7« j 1t is necessary, as
it was pointed out above, to have two different values of
h@ and correspondingly - two equations for the strain
curves g6£), obtained from the experiments under different
loading, and in our case == for different forced vibration
frequenclies of the bar under study. To obtaln reliable
results it 1ls convenlent to have several such systems of
equations, whose solutions, with respect to U and N ,
would enable us to take the averaged values of the parameter.

41, Experimental method of determining the angle of
twist of the shaft of the vibro-assembly

In determining experimentally the amplitude of the angle
of twist, we apply the following two methods., The first,
optical, method is the following: the twisting of the shaft
is measured using mirrors (Fig. 32), mounted at the end
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crogss-sections of the part of the shaft which is the
dynamometer (one mirror at the vibrators, the other at

the specimen clamp), and special light sources. The

light sources used for this purpose are "Filmosto!" pro-
Jection apparatuses., The ray of light from the source is
directed at the mirror which is fixed in such a way, that
after reflecticn from the mirror, the ray falls on a screen,
giving a bright "“point", or more correctly a bright spot.
During the experiments, these bright spots from the two
mirrors mounted on the dynamometer psrt of the shaft at a
certain distance from ecch other, due to the turning of the
shaft (dynamometer), and hence, also of the mirrors attached
on it, will give a bright strip on the screen representing
the double amplitude of the vibrations of the reflected ray.
If the distance from the mirrors to the screen is considerable
{(in our experizents it was about 5.2 wmeters), and the angle
of rotation cf the section cof the shaft together with the
mirrors that are connected with it, is small, then we can
determine the angle from the formula

a
p=tg o
L (41.1)
where & 1is the half-amplitude of the vibration measured on

the screen, L is the base,

21.

22

20
18
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The relative angle of turning of secticns 1 and 2 is
equal to the angle of twist of the part of the shaft 1—2.

Po == 4p1 - P (41.2)

For a large bhase this method is the simplest and the
most reliable, Therefore, we apply it not only to dynamic
measurencnts, bubt also to the measurements of the angle of
twist irn static calibration.

The second method of determlning the angle of twist of
the shaft consists of measuring the strazins of the outer
fibers of the shaft at an anzle of 45° to the shaft using
resistance strain gauges. The readings of the strain gauges
are recorded by - bifilar oscillograph in the form of
oscillograms which characterize the variation of strain of
the shaft with time. These measurements are performed in
tests of samples made of different steels (5t 20 and ShKh 15)
at different frequencles of vibration. Cnce we have the
strain oscillograms of the shaft in twisting recorded during
the dynamic operation, and zlso the data of a calibration
cf the strain gauges from the measured results of the angle
of twist of the shaft by the optical method it is possible
to determine the magnitude of this angle for different
vibration frequencies, The application of this method,
in conjunction with the optical method, is convenient inas-
much as it permits us to follow the process of the variation
of deformation of the shaft with time.

42, The determination of the parameters 2 and 7t
of the hysteresis loop based on the phase shift between the
load and the strains of the bar

In spite of the accuracy and the simplicity of the
method of determining the parameters 7 and 2#¢ based on
the measurement of energy dlssipation, this method cannot be
applied in the investigation of energy dissipation in all
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materials. Tor, in order to measure directly the vibration
energy dissipated in the material of the system, in addition
to the prepared sample of the investigated material, it is
also necessary to test an exactly similar sample prepared
from analogous material (similar in elastic properties and
specific gravity), but having a negligible amount of damping.

Therefore, the above method may bhe applied to the
investigation of energy dissipation in those materials for
which, by suitable choice of chemical conmposition and heat
treatment, we can obtaln specimens possessing practically
the same specific gravity and elastic properties, but
which have great difference in damping capacity in vibration.
We can obtain such "ideal" steels, for instance: ball-
bearing steel, spring steel, etc., which dissipate in the
material so little energy, that for practical purposes we
can neglect it.

We now describe another method. Since the magnitude
of the phase shift between the stresses and the strazins is
a rather sensitive measure of energy dissipation in the
material, it is natural then to utilize the measurement of
this phase shift for the experimental determination of the
damping characteristics of the material.

Cur vibro-assembly allows us to obtain the experimental
data necessary for the measurement of the magnitude of the
phase shift without difficulty. This is most convenlently
acconplished by means of a direct phase shift on the
oscillogram., With the help of the oscillograph, we can
obtain such oscillograms by simultaneously recording on
sensitized film the torsional strain of the shaft which
corresponds to the external loading, and the flexural
strain of the sanple under investigation. In this case it
is expedient to measure the strain in the specimen at the
places where it attains its maximum value, i.e. at those
points, where according to our assumptions, we will have
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the maximum energy dissipation in the material.

Thus, we measure on the osclllogram the magnitude of the
phase shift between the normal sirain of the shaft during
twist, measured at an angle of 45° to its axis, and the
normal strain of the bar due to bending at freguencies close
to resonance, Under such conditions there is a noticeable
displacement of phases between the above strains. The
required parameters v and 7z which characterize the
energy dissipation in the material, are then determined by
the formulas

!
—12(n—1)a"h" W J» (gﬁg)ﬂ-ld:;;

dx?

n(n+1) (n+2)6{,k*n0 (42.1)

siny=

H e

(Q“l)’ 1 A [(n+ Deiny S (1-cos )" cos zdz-+cos f!f]

@, ali*| 2"(n—1)

(42,2)

In order to determine 2 and 2« by formulas (42.1)
and (42.2) it is necessary to have the measured amplitude of
the angle of rotation of the fixed cross-section of the
specimen 8, . This can be done by the optical method
described above., Moreover, it is also necessary to measure
the amplitude of vibration at the end of the sample. It is
most convenient to measure this amplitude on an oscillogram,
recorded on the film which is moved by the cleck mechanism
of the Geiger oscillograph by a special writing device fixed
to the vibrating sample.

43, Measurement of the strains of the vibrating specimen

The strain of outer fibers along the bar were measured
with the ald of wire resistance gauges. <Lthe principle of
operation of these strain gauges, as is well known, is based
on the variation of the ohmlc resistance of a metallic wire
or metallic tape due to strain.
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Denoting the strain by §= ‘%} and the corresponding

change of ohmic resistance r=4R8 s we obtain the
R

coefficient of proportionality % =-— , also called

the sensitivity of the strain gauge, which is determined by
the conductivity of the given material. In our experiments
we have utilized gauges made of constantan wires, the
working length of which were 20-30 mm. According to the
experimental data of the Structural Mechanies Institute of
the Academy of Science of the Ukr. SSR, for constantan the
coefficient 7 =48 + 2.Q,

The wire resistance gauge, which 1s a constantan wire
0.02-0,05 mm in diameter, is pasted on paper in the form
of locps. Two leads made of copper wire 0.1-0.2 mm in
diameter, which connect the resistance strain gauge to the
measuring circuit, are soldered to the ends of the constantan
wire, The protective paper is glued on top. Carbinol, bake-
lite or some other glue is used to glue the strain gauge to
the surface of the specimen, the strain of which is to be
megsured. During the loading of the sample, a strain gauge
attached in this manner will experience strains (tensile or
compressive), which are identical to the strains of the
outer fibers of the deformable surface of the specimen.
Using the fact that the gauge responds to strain by changing
its ohmic resistance, we can record these changes electrically
in the form of an coscillogram. The scale of these oscil~
lograms may be established by sultable calibration. Owing
to thelir negligible weight, these wire strain gauge resistors
have no inertiaj therefore, their utilization in the measure-
ment of the deformation of samples in the dynamic regime has
been found to be convenient.
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Certain difficulties are connected with the calibration
of resistance strain gauges. Usually when we enploy wire
strain gauges for dynamic measurements we use the data of a
static calibration., However, as our investigations have
shown, the characteristics of resistance strain gauges
obtalned on the basis of static calibration de not coincide
with the data obtained in dynawmic operation, Therefore, in
our measurements we did not restrict ourselves only to static
calibration of the strain gauges but we inftroduced corrections,
characterized by a certain dynamic coefficient, which was
determined on the hasis of the measurement of amplitude of
vibration of the bar by the method described above.

potentiometer e,

‘amp%}fier
/ palance
oscillograph ad justment
l—~—4~&——— external -
bridge
Fig. 33 Flg. 34

During static calibration of the resistance strain gauges,
the latter were connected to an a.c. electric circuit, (Fig. 33).
In order to measure the variable component of stress for
the frequencies of 50~-100 cycles per sec. the resistance strain
gauges were connected in the electric network shown in Fig. 3.
In this case a d.c. current source was used and the gauges
were connected to the amplifier in parallel with a condenser.
The oscillograms of strain at the outer fibers at different
points along the length of the sample were recorded with the
help of a bifilar oscillographe.
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We can determine the magnification factor of the
resistance strain gauge on the basis of the relation:

le (43.1)

where @ is the stress
£ is the modulus of elasticity of the material
{ is the length of gauge
€ is the magnification factor of the gauge
2 is the number of subdivisions on the dial.

Let ! denote the bending moment acting at some parti-
cular cross-section, and let W denote the section modulus of
the bar. Then the maximum stress in bending at a given cross-
section is

M
a= -,
w
(4342)
From (43.1) and (43.2) the magnification factor of the pauge is
_ EWd4,,
T (43.3)

Utilizing formula (43.3) and average values of the
readings on the oscillograph scale ( ‘5cp ) obtained on
the basis of data

p ] =" [
1T 2 3
1500 1500 e
AL
1000 100
500 500
03 W 1B 20 25 A O3¢5 20 25 A
Fig. 35

of static experiments, we determined the magnification
factor @ of the strain gauges in terms of Aﬂﬁr . The
graph of magnification factors as a function of deformation
is shown in Fig. 35
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Hh, The characteristics of the materiszls and samples
utilized in the exreriments

Before giving an account of the results of experimental
data we obtalned in the investigation of energy dissipation
in the material of bars with constant cross-section for
transverse vibrations, we shall first describe the character-
istics of the materizl and the shapes of the specimens. The
samples which were tested were made of St 20, whose chemical
composition is given in Table 15 and vhose basic mechanical
characteristics are given in Table 16,

Table 15

C } Mn r Si ' Ni ‘ Cr ' P ' 8 !S—}—P

0,17-.0,37{ 0,30 ‘ 030 | <0045 | <0045 | <008

q:5-035'035—055

Table 16
¢ Unit Coefficient Nominal Yield Actual PMetitious
elongation of Strength  Limit failure failure
i Plasticity 5 5 stregs strength
A kg/mm kg /mm kg/mm~ kg /rm:'l§
29.0 6"".0 43.5 25.3 7003 25.3

The Brinell hardness number of 5t 20 under a 3000 kgs load,
and employing a hardened steel ball bearing 10 mm in diameter
is My =121, The fatigue limit is d-, = 19.7 kg/mm=.

The sample with 1.5 x 3 cm cross-secbion and length

4O em is shown in Fig. 26.

45, Results of strain measurement for the sample in

dynamic tests

By the method described in #+3 we obtained oscillograms
of the strain of outer fibers of the sample. The oscillograns
of each strain gzuge resistor were recorded on separate strips
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of film., Sections of senarbte oscillozraiis are shown in

the photograph in Fig. 36 The oscillograms show the
variation of the strains of the outer fibers of the sample

as functions of the loading, which in our case was determined
by the frequency of the vibraticns, At rescnance cf the
elzstic systen, which cccurred at a frequency of 75 cycles/sec,
the strains of the bar sharply increased, which can be

clearly seen on the oscillograiis.

Utilizing the oscillograms obtained, with the help of a
tool-making microscope (magnification = 30) we obtained the
values of double amplitudes of the strain of external fivers
of the sample on the oseclllograms. From the necsured
double amplitudes on the oscillogram which we obtalned for
different vibration frequencies of the sanple and the jause
fzctors obtained on the bhasis of static calibration and
represented gravhically ia Fig. 35, we determined the Lagnitades
of the average strains of the outer fibers of the specinmen at
the gauge locations. The results of the experimenis are
shewn in Table 17.

Table 17
Ho. of Base length  Freguency of
Gauge of gauge V1D§atlpns 64 67 75 80 | 84 82
mm cycies/sec :
' !
0 1640 | 1650 1700 | 1660 | 1570 | 1690
I 31 %0t 96 13,2 214 1 155 1 188 | 199
£10° 9,44 12,95 20,30 | 1505 | 18,15] 19,00
o 1420 1420 1420 | 1420 | 1420 | 1420
; 0 olt 56 8,0 132 1100 1112 | 12,85
£-10° 6,56 9,40 1495 | 11,85 | 127 { 14,55
0 950 960 980 | 970 | 980 | 950
a 32 20t 2,8 4,2 73 53 6,2 6,8
108 4,60 6,85 11,60 | 852 9.90| 10,82
o 1200 1200 1200 ¢ 1210 | 1220 | 1220
4 31 QplE 1,84 25 26 29 | 36 48
£10% 2,48 335 | 350 | 385! 475| 565
o 110 1100 1100 | 1100 | 1100 { 1100
5 a1 2olE 1] 0 1] 0 0 [H]
E-10° o | 0 0 0 . 0 0

- - ——— i y—— e —— a1 dr——

* e .
Refer to rear of bock for Fig. 26.
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According to the data in Table 17, graphs characterlzing
the change of the strains along the length of the bar, for
different frequencies of forced vibrations of the bar yere
constructed, Fig. 30, Due to the fact that the strains were
obtained on the basis of static calibration, they will not
correspend to the actual values of strain occurring in the
vibrating bar. 1n order to obtain the true strain values it
is necessary to introduce a correcting dynamic coefficient,
which can be obtzined on the basis of the results of anpli-
tude of the vibrations at the end of the bar, which vas
also measured.

L6, The results of measurcnment of energy dissipetion
in the materigl

The magnitude of energy dissipation in the material may
be cbtained by separating 1t from the total measured energy
consuried by the vibrations of the sample during the steady-~
state, PFor this purpose it is necessary to subtract the
mechanical losses in the bearings of the gears and vibrators,
the losses in the connections of the mechanical system, aero-
dynamic losses, ete. from the electric motor power, which is
consued in the vibrations of the specimens prepared from
the steel under study. Besides, it is also necessary to
subtract from the total power, the power reguired for the
vibrations of masses of the specimens themselves, and also
of the masses of the vibro-assembly parts which take part in
the vibrations,

Instead of using a specimen made of steel, 5t 20, under
study we might place in the vibro-asgsembly a sample which
possesses all the properties of St 20, with the exception
of the property of dissipating energy in the material. Then,
measuring the power of the motor during the testing of such
an "ideal" sample at the same freguency we can obtain that
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nower which must he subtracted from the total power measured
during the testing of the sanple of 3t 20 in crder to
obtain the magnitude of the dissipation of energy in the
latter,

A5 has been ezlready pointed out, ball-bearing steel
of the type Shkh 1%, from which we prepared an exactly
similar ssgaple as the sanmple of the investigated 5t 20 may
ve considered to be such an Yideal" steel.

The chenical conposition of steel Shkh 15 is given in
Table 18.

Table 1&

|
I
I ,
0,95—1,10 , 0,20—0,40 | 0,15—0,35 ‘ 1,30—~1.65 | 0,20 0,020 ! 0,027

C ‘ Mn Si Cr l M S5 ‘ P

I |

- st 20 Ai
/‘--.
320 L \4\ /.C
1 !
24 ,/”::::-——' N steel Shkh i5 =%
T |
160
80
0
64 66 68 70 72 74 7 78 80 82 84 SBuw

The specimen prepared from steel Skkh 15, was hect
reated (quenched fromz a temperature of 800°C and then
tempered up to 200°C), after which its Rockwell hardness
turned out to be 60 units., The amperzge and the voltage
vere neasured during the experiment at the terminals of the
dece motor, whicn brings about the forced vibr-mtions of the
shaft by driving the mechanical vibrators. From the results
of these measuremnents we determined the rower consumed by
the electric motor.
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The magnitude of energy dissipation in the material of
the specimens made of St 20, obtained as the pewer difference
during the testing of the sample made of St 20 and of steel
Shkh 15, is given in Table 19,

The graphs of W = f(w') are shown in Fig. 37.

Table 19 o
o ? 64 67 ’ 75 80 8¢ | 88
W I !

St 20 | wer | s | s | s 106 | 4
Ysnin 15 0 | 181 | 29 | o7 ! o33 | a7
Ws1 (Mg 20-Wgpnxn 15 ) 7 12 ‘[ 119 33 68 | o8
W1 kgem/sec 1,4 122 | 1215 336 694 | 100
gf, kgem/cycle 1,12 | 182 !1qm 4,20 826 (11,3

47, _The determinagtion of energy dissipation in the
specimens made of St 20 on the basis of the angles of twist
of the shaft

On the basis of the method described in #4+0, we obtained
the angles of twist of the vibro-assembly shaft. The scheme
for measuring the angles of twist of the shaft with the help
of mirrors 1s shown in Fig. 32. From the results of measure-
ments, we constructed graphs in rig. 32 of the dependence
of the double saplitudes of rotation of the cross-section of
the shaft (at the points of mounting of the mirrorz) as a
function of freqguency of vibrations. FKnowing the ordinate
values of the obtained curves and knowing the base, we were
able to determine the relative angles of rotation of the end
sections of the shaft.
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For the base we chose (distance from the mirror to the
screen) £ = 520 cm, the angles of twist of the shaft may
be determined by the formula

paeigp=

bl

4+7.1)

where a. 1is the half-amplitude of the motion of the ray on
the screen (Fig. 32).

Accoring to the graphs shown in Fig. 32, the appropriate
angles of twist of the shaft during the testing of the
samples, made of St 20, are given in Table 20, and of steel
Shkh 15 =~ in Table 21.

Table 20
I _
o ‘ 6% | 64 ’ 66 R { 84 , 8
a ! 0,50 ' 1,35 ' 1.10 2,40 2,60 ’ 3,05 ’ 3,64
@10 ‘ 0962 | 269 | 212 461 500 | 58 | 7,00
Table 21
w 46 64 68 ‘ 75 80 ‘ 84 l 88
a 0,045 1,30 1,00 ] 1,85 1,45 2.85 3,40
@ 10° 0,365 2,50 L9 | 356 471 | 548 | 6,54

Static calibration was performed in order tc determine
the magnitudes of twisting moments corresponding to the
angles of twist. In this connection, the measurement of
the twist of the shaft was performed by the same optical
method and with the same base as in the case of the dynamic
investigations.

On the basis of experimental data, the difference between
the maximum half-amplitude of deviation of the rays on the
screen, reflected from the mirrors 1 and 2 (Fig. 32), during
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maximm loading M:; = 2955 ke cm amounted to Am“ S el e
2.7 = 1.6 cm, Then, the relative angle of twist of the part
of shaft bhetween the cross-section at the points of instal-
lation of the mirrors is

1,6
. 2igp = et 0,00308 4.4,

The magnitude of the coefficient of proportionality
between the twistling moment and the corresponding angle of
twist 1s equal to

MG 255 g
R= = Goos 0 kg om/rad
The magnitudes of the twisting moments corresponding

to the different angles of twlst are determined by the formula

M=o (47.2)
On the basis of (47.2) and the data in Table 20 and 21,
the magnitudes of the twisting moments for different
vibration frequencies of the samples (Table 22) are calcu-
lated for different experiments on the samples.

Table 22
Freguency ' @ | 46 | 64 | 68 l 78 ‘ 80 81 l 88
i — - .
st 20 @010°) 0962 | 2,60 | 212 | 461 i 500 | 00038 | 000700

M, | 923 | 2105 | 2035 | 4425 ; 4800 | 5520 | 6710
%-10°| 0865 | 250 [ 192 | 327 471 | 000548 | 0,00654
Shkh 15 M. | 830 | 2400 | 1845 | 3140 | 4520 | 5250 | o280

On the basls of the reasons set forth in #40, the
magnitude of the potential energy, stored by the shaft during
the complete vibrational period of the investigated shafts
can be determined by the formula

W= 2Mops, (47.3)
where /'70 and @, are corresponding amplitudes of vibration
of the twisting moment and the angle of twist of the shaft.
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Utilizing formula (47.3) and the magnitudes of the
measured angles of twist and their corresponding twisting
moments during the testing of the samples made of St 20 and
Syikh 15 (Table 22), we determine the amount of energy which
is consumed in the testing of the above mentioned steels
during different vibration frequencies of the samples. Then,
the difference in energy consumed in the vibrations of the
specimens made of St 20 and of ShkKh 15 at the same frequencies
will give us the magnitude of energy dissipaticn in the
material of the investigated samples made of St 20 at the
given frequency. We recall that two samples are tested
simultaneously.

The values of power calculated by the above method are
given in Table 233 the last line of this table gives the
magnitude of the energy dissipation in the material of the
two samples made of St 20, found for different frequencies,

Table 23
w 46 63 | 68 75 80 ! 84 -
W kg cm/sec | P é“*_i'
st 207 € 172 | 1290 | 854 | 4080 | 48,00 | 65,90} 94,00
1"‘lSI'ﬂ(h 15? kg cm/sec 1,38 | 1200 | 708 | 243 wﬁolsnm! 82,20
= A 0341 090 | 1,55 | 165 | 54 | 83 | 118
W =Wst 20 = Yanin 15° a P

To conclude this paragraph we give some data on the
measurement of strains with the help of resistance strain
gauges, Utilizing the method, desecribed in #39 and #+3, we
photographed oscillograms characterizing the strains in
torsion of the shaft during the testing of the samples made
of St 20 and ShkKh 15 at different vibration frequencies.

Comparing the data of static calibration of the strain
gauge from the oscillogram with the static calibration
results of the optical method of measuring the twist of the
shaft, it is established that an angle of twist of the shaft

@ = 0,001015
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corresponds to<! = 1 mm on the oscillogram, recorded
according to the readings of the resistance strain gauge.
In this way, from the measurements of the oscillograms we
found the value of the power transmitted by the shaft at
different frequencies of vibrations of the samples made of
8t 20 and Shkh 15. The data relating to St 20 is given
in Table 24, and to steel ShKh 15 in Table 25.

Neglecting the energy dissipation of steel ShKh 15 we
found the magnitude of energy dissipation in St 20 by
subtracting the corresponding values shown in the last
colums of Tables 24 and 25, The results are shown in
Table 26.

Table 24
w, cycles/sec. 64 68 75 80 84
A, mm 2,11 2,67 4,35 4,15 455
¢, rad. 0,00212 [0,00271 |0,00442 | 0,00421 |0,00462
M, kg.cm. 2040 2600 4240 4040 4440
W=2¢M, 8,7 14,1 37.5 34, 41,
kg.cm/cycle
Table 25
w , cycles/ sec. 64 68 75 80 84
A, mm 2,05 2,50 3,27 3,84 4,07
¢, rod 0,00208 | 0,00254 |0,00332 | 0,00390 {0,004I(3
M, kg cm 1995 2440 3160 3740 3960
W=2¢M, 8,30 12,4 21,5 29,1 32,7
kg.cm/cycle
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)
w, cycles/sec \ 64 ! 68 ‘ 75 I 80 ’ 84

hﬂ kg cm/cycle

1200

0,4 17 160
400

50 ‘ 8.4

NzwW kg cm/sec

48, Determination of the parameters V. and M
characterizing the dissipation of energy in the material

Before we turn to the determination of the hysteresis
loop constants ¥~ and 7t in terms of the magnitude of energy
dissipation during transverse vibrations of samples made of
St 20,4 we present a tabular summary of values of energy
dissipation found experimentally by the different methods of
investigation. The data shown in Table 27 corresponds to a
pair of samples made of St 20 , of rectangular cross-sections
1.5 x 3 em and 40 cm length.

Comparing the magnitudes of energy dissipation during
vibrations for one cycle, obtained experimentally for the
different methods of measvrement, we come to the conclusion
that all three methods give quite close values. These
values coincide especially well at higher frequencies of
vibration, including the critical frequency (75 cycles/sec)
i,e. in the instances, which are of greatest practical
interest. The basic characteristics of the vibrational
process should be determined from precisely these data which
correspond to such frequencies.
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Table 27
Frequency of
vibrations 63 64 67 68 75 80 84 88
cycles/sec
From direct
measureusnt of - l.12 1.82 - 16|20 4,20 8.26 11.35
the power to the
motor
From the angle
of twist of the 0,90 - - 1.55 16.5 5,01" 8.3 11.8
shaft measured
optically
From the angle
of twist of the
shaft measured by - Ol - 1.70 | 1640 | 8,0 | 8otk | =
resistance straln
gauges
In order to determine the quantities v and 7t we shall
utilize formula (39.6), Examining the magnitude of the
energy dissipated by the two samples durling one cycle of
vivrations, we rewrite (39.6) in the following form:
H
' 2"+’Evbh(n-1) 53 il
W j‘ n(a+1)(n+2) (B (™
* (4841)
As has been already pointed out above, it is necessary
to set up an equation of the type (48.1) for the two values
of }\/5 and the corresponding strains. In this way we
obtain a system of two equations,
4
Evbh(n—1)2m o
L= [& () [T dx,
n(n+1){(n+2) J
i
_ Erbh(n—n 2™ e o mrt gy,
W= St D) ;flﬁs(x)] x (48.2)
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Eliminating v , we find

H

- j [E, (O dx
LA

1 _ Wy :

[ o ax

° (48.3)

Let us determine the coefficients ¢ and ¥V for the

case of forced vibrations at frequencies “’r = 80 cycles/sec
and Wy = 88 cycles/sec, The magnitudes of energy
dissipation at these frequencies, found on the basis of
measurement of the power input to the electric motor are
shown in Table 27 (first line) and are equal to

W,=4.2 W, = 11,35

Substituting the values of W, and W, into formula
(48.3), we obtain

i
J‘ [, (x) "+ dx

1135
=2~

{
(& @+
0 (+8.4)
The functions £(%) and ¥,(y) characterize the

variation of the strain along the specimen during the
vibration. The equatiocns of these experimental curves
(Fig. 30) may be expressed approximately in the following
form:

& (x)=10—5(20—0,613 x) a,,

£ (x)==10-5(16,5—0,523 x)a ,

(48.5)

where =, 1is a certain coefficient.

Substituting the last expression in formula (48.4) and
taking the limits of integration in accordance with the
actual length of the stressed portion of the sample l_ 30 cm,

we obtain 0
j (20 — 0,613x)"* 1 dx

W =27.
J' (16,5—0,523 )™ dx
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Solving equation (48.6), we find the value of the
constant

=3

If we introduce into the calculation two experimental
curves from the family, shown in Fig. 30, then the value of
the parameter . turns out to be close to 3. Taking
7 = 3 and utilizing equation (48.1) we find

n{n+tD (n+2)w,
1

wﬂm—nMEjmanm

(48.7)

In determining the value of ¥ by formula (48,7)
the value of the energy lv; and the equations of the curve
of strain are taken for a frequency of vibration of the
specimen of & = 88 cycles/sec,

In selecting the equgtion for the curve of strain we
shall proceed from the experimental curves of Fig. 30,
introducing here a dynamic coefficient. In determining the
latter we shall utilize formula (9.9) which contains the
vibration amplitude a., determined in the experiment.

On the basis of the equation (9.9) obtained in
Chapter 2 for the deflection curve of the axis of the
vibrating bar and the relationships (10.15), the equation
of the curve of strain of the outer fibers ?,(1&) ‘may be
written in the followlng form:

ahk?
S0 = i k7 oh k2

+- cos kx) - (sin k! — sh ki) (sh kx 4 sin &x)].

[(cos kI+ch ki) (ch kx +

(4+8,8)
With the length of the bar" l_ = 40.5 em according to the
data in #9.

*The actual length of the samples was equal to 40,5 cm.
The part of the sample which experienced a change in
longitudinal strain of the fibers had a length of { = 30 cm.

WADD TR 60-582 262



11,8751

¥

— 0,0462988.
We rewrite equation (48.8) in the form

£o(x) = 0,0003528 [ 2,23 (sh kx — sin kx)+}

ah
-+ 3,0375(ch £x 4 cos kx) —.
2 (48.9)
Comparing the value of the maximum strain of the fibers
at the root of the sample according to formula (48.8) for
the vibration amplitude at the end of the bar 4 = 0,8 cn,
corresponding to the vibration frequency of 88 cycles, with
the value of strain, found experimentally (second curve from
the top in Fig. 30), we find
é.o‘_ -3 g -4 -3 5 -4
- =1,62-107, a 20107, § =0,8:1462:10°, & = ay 2107,
but since £ = E

8-1,62
ul.': —*—‘E“_ = 6,48-

Then according to (48.5) the equation of the curve E?(x)
which must be substituted in the formula (48.7) in order to
determine the parameter v, will take on the final form

E(x)=10—(1,3 — 0,0397 x). (48.10)
48,10

We first calculate the value of the integral

1 n+| - 30
f [E(x)] dx=10"] (1,3—0,0397x)%dx=0,188-107°"
4] 4]

-

Substituting all the known quantities into the formula
(48.7) for a magnitude of energy dissipation in the material,
corresponding to the values w = 88 cycles/sec, Wg = 11.35
kg cm we obtain the value of the parameter of the hysteresis
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loop

nén+1) (n+2)W,
1

942 (py — 1) bRE 5 E(x) ]+ dx
]

_ 3-4.5-11,35
32-2.3.15-2,0810°.0,188 . 100

= 6 - 104,

Thus the values of the geometric parameters of the
hysteresis loop for St 20 were found to be equal {o

n=3;, »=26.10%
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Chapter X

Experimental Methods of Investigating the Dissipation of
Energy in the Materlal During Free Vibrations

49, Logarithmic decrement of damping

The logarithmic decrement of damping is the wvalue of
the natural logarithm of the ratic of two consecutive
(adjacent) ampliitudes of vibration

d=In-"_
1 Gty (49-1)

If we assume that the logarithmic decrement of damping
does not depend on the absolute magnitude of amplitudes, then
formula (49.1) may be expressed in the form

1 o
e (49,2)
where @ and e.,,, Aare the amplitudes of vibration at the
beginning and at the end of the interval, Z 1s the number
of vibrations in the interval.

It 1s well-known that the ratio of the energy dissipated
in one period of vibration to the stored energy at the
beginning of the given perlod, is equal to twice the loga~

rithmic decrement
AW | g 08,

(49.3)

Therefore, the magnitude of the logarithmic decrement
of damping of vibrations may be calculated from the magnitude
of energy dissipation in the material, For, from the known
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magnitude of the area of the hysteresis loop A, which gives
the dissipation of energy in the material per unit volume,
and also knowing the magnitude of the potential energy W,
stored in the same unlt volume of the materlal for the same
amplitude of strain, we determine on the basis of (49.3) the
magnitude of the logarithmlic decrement by the formula

4

ow (49 .4)

After substituting the wvalues of A and W in formula
(49.4) we have

A= 20+ (n - 1) Exytt , u5,5)
nin-41)
B,
et

W=

Hence,

_ oty (n— 1)t

n(a 1)

The final form of formula (49.6) for the determination
of the true logarithmic decrement of St 20, with the parameters
n =3,0and V =6 + 107 wnich have been found, is

5— 16. 1042, (49.7)

Thus if we know the magnitude of the strain Eo at a
given point of the vibrational system, then by formula (49.7)
we can calculate the magnitude of the logarithmic decrement
determined by the dissipation of energy in the material,

In practice we usually work with the average magnltude
of the logarithmic decrement, which depends on the dissipation
of energy in the material and on the other losses which '
accompahy the vibrations of the elastic system, This magnl-
tude 1s determined from experiments on cantilevered speclmens
by the measurement of consecutive free vibrations.
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Sometimes by the elimination of the external losses we
determine the magnitude of a logarithmic decrement which
depends only on the dissipation of energy in the material.
Then we reduce the average magnltude of the logarithmic
decrement to its true magnitude by expressing it as a function
of the stresses which arise at the extreme fibers., We shall
compare the decrement of damping obtained on the basis of the
hysteresis loop parameters v and 7w,which we have
determined from the experiments of steady-state forced
vibrations of samples with the decrement of damping for the
same material (St 20), found from the experiments on free
vibrations generally accepted in engineering practice.

An osclllogram of straln during free vibrations was
recorded with the help of an osclllograph and a wire resist-
ance strain gauge placed at the critlical cross-section of the
sample, This allowed us to obtain the damping curve of the
amplitude of oscillation of the strain at the outer fibers of
the specimen. Moreover, we recorded oscillograms of amplitude
of deflection of the sample durlng damped vidrations. To
accomplish this we used a Gelger osclllograph. The initial
impulse of loading of the cantilever specimen which was
gripped at one end was accomplished by the sudden removal of
a load suspended at the free end of the specimen, Here the
magnitude of the load was quite well-defined; therefore, the
initial amplitude on the oscillogram gave the scale of stress
deflection of the specimen,

In order to eliminate the influence of external losses
(air friction, losses due to operating the recording mechanism
of the Geliger oscillograph, etc.) we proceeded as follows.
Along with the recording of the osclllogram of the amplitude
of the free vibrations of the investigated sample made of
St 20 we also recorded the oscillogram of amplitude of vibrations
of a sample made of ShKh 15. In both instances the experimental
conditions were ldentical. It turned out that the initial
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amplitudes of the oscillogram obtained for the sample made
of steel ShkKh 15, for an initial stress of 1100 kg/cmzat

the critical cross-section were greater than the correspond-
ing amplitudes for the sample made of St 20 by about 30%.

Photographs of oscillographs corresponding to the two

steels are shown in Fig. 38.* In order to determine the
magnitude of the logarithmic decrement of the sample made of
St 20 we measured the amplitudes on the part of the oscil-
lograms having the maximum values, starting with the first

amplitude, The results of these measurements for the first
16 double amplitudes are given in Table 28.
L Table 28 _
Amplitude 1 2 3 b 5 6 7 8
2a 19.3 [18.4  (17.3 16,3 |15.7 |15 e |13.8
3
254, 1,050 1.063| 1,060} 1.040 | 1.047 1.041 | 1,042 1,038
Amplitude 9 10 11 12 13 14 15 16
L a. 13.3 [12.8 J12.4 [12.0 11.6 11.1 10,7 [10.3
az
Ayt 1.040] 1,032 1,033 1.034 1,045 1,038 | 1.039 -

On the basis of the data in Table 28 the average value

of the ratios of the preceding amplitude to the followling one
for the first seven amplitudes at the beginning of the

oscillogram, where considerable stresses occur,

a,
[L75N]

) = 1,050.
p

is equal to
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The average logarithmic decrement of damping is,
according to (49,1):

We now determine the average logarithmic decremenﬁ of

d::p =1

a.

o[

2z41 cp

= 0,0484.

(49,8)

damping of the vibrations of a specimen made of steel Shkh 15,
On the osclillogram which refers to this steel we measure the
amplitudes on the parts corresponding to the maximum values
of the amplitudes on the oscillogram for the sample made of

St 20.

The results of these measurements are given in Table 29,

The magnitude of the average logarithmic decrement of damping
of free vibrations of the sample made of steel ShkKh 15 on the
basis of the date given in Table 29 is equal to

(dcp)lﬂx 15— In (&a'z*) =|n 1,035 = 0,0345.

41 cp (“*‘909)
Table 29
Amplitude 5 6 7 8 9 10 11 12
-2 a. 19.8 19.2 18.5 17.9 17.3 16.7 1601 15.6
a
4,2:, 14031 1.038]| 1.034%| 1.034| 1.,036| 1.037| 1.031| 1.040
Amplitude| 13 4 15 16 17 18 19 20
A a 15,0 |14.5 |14.0 (1345 [13.1 [{12.7 |18.3 |11.9
2. z : .
- 1.03%| 1.035| 1.036| 1.030| 1,031 1.032| 1,033 =~
&=

If we neglect the dissipation of energy in the steel
Shkh 15, then the magnitude of the logarithmlc decrement will
be determined only by the external losses.
magnitude of the logarithmic decrement bc_
the experiments on the sample made of steel St 20, 1s
determined both by the internal dissipation of energy in this
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steel and by all the external losses of energy. The
problem now consists in determining the mapgnitude of the
dissipation of energy in St 20 by utillzing the wvalues of
the decrements b"r and (b‘l')sam. e

Let us, first of all, determine the amount of energy in
the sample at the iInitlal moment of free vibrations. For this
purpose we find the total magnitude of the potential energy in
the sample at its maximum deviation from the average position.
This magnitude, expressed per unit volume, 1s equal to

£
W= =22,
2

The magnitude of the potential energy in the te¢tal volume of

the sample when the law of the variation of deformation, both
with respect to the height of the cross-section and along the
length of the sample 1s known, will be

h
i 2 I
= %P J“(Q-—E-“—(x)-f) pdrdz= 22 [ corrax,
0 4} ¢

(49.,10)

where

h d?u (x, | O) ak d*p

fof)= dxt 2 dxt

(49.11)

Earlier we had

d'p
dx?

from which, with

= 3,629 - 10—4[2,23(sh kx — sin kx)+ 3,038 (ch &£x 4 cos kx)],

Kkl 18751

I 40,5

= 0,0463

we have

i

@Eﬁm=awmm4mﬂ
dx?/

t]
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Hence

1
W — 3894 . [0— E°b2

Substituting the values of £ and 4 and carrying out
the cslculations, we obtain

— . a2
W=336-2"kg ¢cm, (49.12)
where a@. Iis the amplitude of the vibration of the end of
the bar, cm.

According to the oscillogram recorded with a magnifi-
cation of three times at the initial instant, the amplitude
of vibrations of the section of the specimen at a distance of
8 em from its end amounted to 0.32 c¢m, The amplitude of the
end of the specimen was equal to 0,378 cm. Substituting this
amnplitude in formula (49.12) we obtain

W = 336.0,378% == 48 kg cm.

The total amount of energy dissipation resulting from
the external and internal resistances during the vibrations
of the sample made of St 20, on the basis of formulas (49,3)
and (49.8), 1s equal to

AW, =20, W =2.0,0484 - 48 = 4,62 kg cm.

In an analogous way we determine the energy required for
the external resistance by using the logarithmic decrement
obtalned for the damping of the vibrations of the specimen
made of Shkh 15.

According to (49,3) and (49.9) we obtain

JWB=2 (d‘-p)mx ]5‘[/V = 2. 0,0345 - 48 == 3,31 k g cm.

WADD TR 60-582 271



The energy dissipation in the materlial of one specimen
for one cycle of vibrations is egual to

AW= AW, ~ W= 462 — 331 = 131 kg cm, (49.13)
[ ]

Then the average logarithmic decrement of damping of the
sample made of St 20 caused by the internal losses in the
material is

4w, 1,31
=AW 22 014
d¢r.20 oW 2-48

or

dir0=1,4 o/n-

70, Energy dissipation for the vibratiops of groups of
bars

In the present paragraph we give experimental data on a
study of energy dissipation in a group of prismatic bars, the
conditions of support and interconnection of which is analogous
to that which actually occurs in real groups of the turbine
blades.

It is very important to know energy dissipation in the
vibrations of such machines as gas and steam turbines, where
the strerngth of the blades, for instance, are mostly determined
by their ability to absorb energy during the vibrations which
inevitably arise in the operation of the turbines.

The dlssipation of energy in the vibrations of assembllies
conslists of the energy dissipation in the material of the
system resulting from the lmperfect elasticity of the material,

*In the present case we obtained the value of the
average logarithmic decrement of the bar in question made of
St 203 on the other hand, formula (49.7) allows us to
determine the value of the true decrement, corresponding to
the dissipation of energy of the stressed material at a given
point.
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and the dissipation of energy resulting from the external
resistance., Included in the latter are the energy dissipation
due to friction with the external medium and to friction in
the connections of the elements of the vibrating system
(points of attachment to a support, points of connection of
the parts of the system, etc.).

Taking into account our meager knowledge of the capacity
to dissipate energy in individual bars, to say nothing of
systems of bars connected as a group, we made an attempt to
investigate the damping of vibrations in groups of prismatic
bars. The problem which is posed consists of the following:

1) to determine the magnitude of the decrements of
damping as a function of the magnitude of the stress for a
single bar rigidly fixed at one end, and also to determine
the decrement of damping of vibrations of a group, composed
of similar bars with the same fixity at one end and connected
on the opposite end by a band (shroud, lashing) with a rivet;

2) to investigate the damping of vibrations of the same
groups of bars for the case, when, besides being riveted the
band is also welded onj;

3) to compare the damping characteristics obtained for
bars under the different conditions of support indicated above,
and to analyze their influence in the magnitude of decrement;

4) to establish the relationship of the magnitudes of
energy losses resulting from energy dissipation in the material
and the dissipation in the connection of the group bars,

To solve these problems we designed and constructed a
special experimental set-up, which provides for the possibility
of rigid c¢lamping of the separate bars and of a group composed
of six bars. The apparatus alsoc provided for excitation of
both forced and free vibrations of the bars. A photograph of
the over-all view of the set-up is shown in Fig. 39.*

*At end of bhook.
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The base of the vibration assembly is a massive body,
made up of a block with a lengthwise groove milled out and
with two heavy bars connected to the sides of the block.

The opposite endsof the heavy bars are comnected by a stiff
cross plece which serves as a support for the tightening jack.

The base of the apparatus 1s attached to the foundation
with the help of welded pedestals with openings for bolts.

The pedestals also brace the stand on which we mount electro-
magnets for exciting the vibrations of the bars.

The samples used for testing were prismatic bars made of
St 5 with a rectangular cross-section 30 x 10 mm for a
designed length of 300 mm.

The cross-section of the steel band (shroud) was
30 x 4 mm,

The ends of the bars under investigation were fitted into
the groove of the block (in a holder) up to a depth of 30 mm
and were tightened by the jack in the self-strained scheme,
as shown in Fig. 39, The distance between adjacent bars was
taken to be 30 mm, '

The excitation of vibrations of the separate bars was
accomplished with the help of electromagnets (Fig. 39), as
well as by stretching and the subsequent sudden breaking of a
wire which is connected to the upper part of the group of bars
and which carries a weight on its other end and passes over a
pulley (Fig. 40),*

The measurement of the amplitudes of vibration was carried
out with the help of the osclllograms which were recorded by a
trifilar oscillograph, with the utilization of wire reslstance
strain gauges connected by the speclal bridge scheme shown in
Fig. 33. The strain gauges 30 mm long were pasted at the
most highly stressed parts of the bery i.e. near the holger,

*At the end of the book.
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A sample oscillogram of free vibrations of the
individually fixed cantilevered bars, for the exclitation
of vibrations with the help of the electromagnets with an
initial amplitude corresponding to the rescnant state is
shown in Fig. 41,"

The maximum amplitude of the deflection at the end of
the bar was equal to a,..x = 6 mm, and the stress d;"tx= 3000
kgcmz.

The magnitude of stresses was determined with the help
of an extensometer of the Hugenberger type mounted at the
base of the bar (Fig. 39).*

A sample of the recorded oscillograms of free vibrations
of groups of bars is shown in Fig. 42.*

From the data of the oscillogram for damped vibrations
and initial amplitudes of maximum deflection of the bars, it
was possible to determine the magnitude of the average logaw
rithmic decrement of damped vibrations for different amplitudes,
both for separate bars, and also for a system of bars
connected as a group by a shroud.

The average logarithmic decrement of vibrations dampings,
for the period of time during which the sample executed
vibrations, while the anmplitude of the vibrations changed from
the value «, to the value a, . s 1s determined by the
well-known formula

Oep= %ln a(:,'

The amplitudes 4, and a,,, were determined directly
from the recorded oscillograms. The results of the reduction
of data of the oscillograms of the separate bars and groups of
them for wvarious end cenditions are graphically illustrated in
Figs. 43, 44, and 45,

*At the end of the book.
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Fig. 43 shows the curve of the variation of the magnitude
of logarithmic decrement of damping with the amplitude of a
single bar. Fig. 44 shows the variation of the logarithmic
decrement of damping of groups of bars for the case of rigidly
fixed ends of the shafts and with a riveted shroud for the
electromagnetic excitation of vibraticns from an amplitude of

0.8 mm,
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Fig. 45 shows the graph of the variation of logarithmic
decrement for the same group composed of six bars, with
insufficiently rigid clamping in the rigid holder, for the
case of the excitation of vibration of the group by means of
bending it with an initial amplitude of 1.6 mm at the end.

Fig. 46 shows an analogous graph of dep= fla)
plotted on the basis of reduction of oscillograms of the free
vibrations of a group of bars rigidly fixed in the holder and
having the belt (shroud) rigidly attached by electric welding.

The bars and the groups of bars had the following
natural frequencies:

a) rigidly fixed bar, 81 cycle/sec

)
ace™ W4 b) group made up of six specimens
999 4 for the case of a riveted belt.
aes - 107 cycles/sec
00— ¢) the same block not gquite rigidly

SR fixed in the holder, 105 cycles/

sec
Fig. 46 d) the same block, rigidly fixed

in the holder, but with a welded belt, 130 cycles/sec.

For comparison of the values of the average logarithmic
decrements of damping obtained for individual bars and for
groups of the same bars for the given three cases of inter-
connection for the same initial displacements at the end of
the bars a tabular summary is glven 1n Table 30,

- —aable 30
Deflection at __Boundary Conditions
the end of thelSingle bar, G )
bar fixed at one|Rigidly | Non-rigidly | Rigidly
8oy, Ml end in an fixed in
) arbor, free an arbor,
at the othe riveted with &
end shroud welded
| shroud
0,2 0,0030 0.0214 0.050 0,0280
0."!' 000031 0.02 0 0.061*' bt
0.6 0,0032 0,0236 0.072 -
0.8 0.0033 0.0316 0.077 -
1.0 0,0034 0,0362 0.107 -
6.0 0.,0100 - - -
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Comparing the magnitude of energy dissipation in the
vibration of a group of bars with the magnitude of energy
dissipation of vibration of a single bar for the same
deflection at the end of the shaft equal to 1 mm, which
corresponds to stresses of about 500 kg/cmz, at the base,
we find that energy dissipation in the single shaft, in

particular
BepYbar  __ 0,0362

0,0034

=10,6

(Scp) single shaft

Thus, we confirm the results of investligations of
damping in vibrations of groups of blades of steam turbines,
obtained at the Institute of Structural Mechanics Academy of
Science Ukr. SSR by A. D, Kovalenko.  Regarding the dis-
sipation of energy in the groups of bars with insufficiently
rigid clamping of the ends of the bars in the holder, we
found that this depends on the degree of the rigidity of
gripping. For our assumed case of clamping, for which the
frequency of vibration was lowered by 2 cycles/sec (from 107
to 105), we found that the logarithmic decrement of damping
more than doubled in comparison with the decrement of damplng
of the same group, but with the rigid clamping of the group
of bars in the holder. |

We should call attention to the paradoxical phenomenon
of the increase of logarithmic decrement of damping of the
group of bars with a welded band in comparison with the
logarithmlc decrement of damping of the group with a riveted
band. This phenomenon may be explained in the following
manner., JIn our experlments the ratio of the moments of
inertia of the bars and the band for the case of rigid con-
nection of the belt with the bars by electric welding makes
the group of bars and the band a monolithic structure, a

fA. D. Kovalenko, Investigation of damping in the
vibration of groups of blades of steam turbines, published
by Academy of Sclence Ukr. SSR, Collection of reports on
the dynamic strength of machine parts, M,=—L., 1946,
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rigld frame with rigid joints at the band. In the
vibrations of the group, even for the case of small initial
amplitudes (of the order of 0.2 mm) high stresses arise in
the band which lead to a great amount of energy dissipation
in the material of the band.

51, Apparatus for the investigation of energy dis-
sivation in the material during torsional vibrations of bars

Lately there has been noticed an increasing interest of
investigators in the questions of energy dissipation for
various types of vibrations of elastic systems., As a result,
there have appeared a serles of interesting theoretical ,and
experimental works on the problems of damping. However, we do
not know of any works which deals with the guestion of the
dependence of energy dissipation in the material on the
character of the stress distribution in sections of different
structural form.

The investigation of this question appears to us quite
important both from the point of view of establishing optimum
structural forms of those vibrating parts of machines in
which the damping due to energy dissipation in the material
1s of decisive slgnificance, as well as from the point of
view of establishing a method of theoretical consideration of
energy dissipation in the material of the bars of different
cross-secticnal forms. S

The problem of studying the energy dissipation in the
material in torsional vibrations is particularly urgent.

Members of the department of strength of materials at
the Kiev Polytechnic Institute designed and constructed a
speclal apparatus intended for studying energy dissipation
in the material during torsional vibrations.* The base of

*N. E. Solomentsev, lecturer in the department of strength

of materials, K.P.Il., was engaged in the construction of the
apparatus under our supervision.
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the apparatus, a sketch of which is shown in Fig. 47, 1s the
rigid frame 1 with dimensions 580 x 530 mm, suspended from
the ceiling by a relatively thin steel wire of 2,5 mm
diameter. In order to increase
the mass of the frame, two

r__J%Lm_j welghts of 30 kg each are

- symmetrically and rigidly con-
. -///ifg nected to the lower part of the
/jéé frame. A special clamp was
?;g constructed in the upper part
1 of the frame and rigidly

connected with the frame by

/ 7% bolts. This clamp serves to
s %/ tighten the tested vertical
sample 2 by its thickened,

Fig, 47 eylindrically shaped upper end.
A massive steel disc 4, 270 mm in dlameter and 75 mm in
thickness, 1s rigidly connected to the lower part of thg
sample which is in the form of a conlcal head 50 mm in length.
If necessary, the size of the disc¢ may be varled.

The working length of the sample is 300 mm., 7The cross-
section may be of different dimensions and shapes. ithe
maximum diameter of the tested circular sample is equal to
20 mm,

The initial twisting of the tested elastic sample up to
the required amplitude, 1s accomplished by turning the disc 4,
with the help of the rod 9, whose rectangular end 7 enters
simultaneously into the sleeve 6 which is rigidly connected
with the lower cross frame by the nut 8, %The disc is secured
in this position.

For such a "loading", the lower part of the frame of the
apparatus is set on stationary supports with the help of a
holst so that the supporting wire is completely unloaded. In
order to prevent bending of the specimen at the time of lnitial
twisting, the sample is positioned in the vertical direction
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with the help of a special movable sleeve 5, held by the
threaded projection of the upper part of the lower cross
frame and by 1ts upper part which grips cylindriezl pro-
Jection of the disc. Then the supports are removed, and

the frame with the twisted sample is suspended by the long
thin (2.5 mm diameter) wire. 7o excite the disc's vibrations,
the piston rod holding the sample in the twisted state, 1is
instantaneously released and thrown back by the electro-
magnetic device 10-12 which is connected to the frame.

The oscillograph recording of the torsional vibrations
of the specimen is accomplished by an optical method with the
help of a light ray 195, reflected from the mirror 3, which is
mounted on the lower end of the sample (next to the disc), and
rotating drum 13 with the light sensitive paper, which is
rotated by the motor 14, The scheme of the above optical
assembly is analogous to the one described in #52., A
photograph of the general view of the apparatus is shown in
Fig., 48."

A number of investigations were conducted on the above
mentioned assembly. We will glve only the results of the
experiments in the investigation of torsional vibrations of
solid and hollow bars. Experiments were performed on two
bars made of brass, one solid bar with circular cross-section
7 mm in diameter and the other with a hollow circular cross-
section of outside diameter 8 mm and 6 mm internal diameter.
The moments of resistance** the torsion of the two bars are
almost identical, for the solid bar Wie = 0,074 cm> and for
the hollow bar W,, = 0,0685 cms.

*At the end of the book.

**By "moment of reslstance” is meant the pclar moment of
inertia divided by the radius. This quantity is exactly
analogous to the section modulus of a beam, in that stress,
here maxinum -shear stress = torgue/moment of resistance. (Trans.)
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Attached to the bar, is the massive disc, guaranteeing
a natural frequency of torsional vibrations of & cycleg/sec
for the case of a solid bar and 5 cycles/sec for the case
of a hollow bhar,

The magnitude of the logarithmic decrement of damping
in both instances was determined by the measurement of
anplitudes directly on the osclllograms of free torsional
vibrations of the system.

On the basis of reduced data of the oscillograms, graphs
are constructed of the dependence of the average logarithmiec
decrement of damping on the magnitude of the maximum shear
stresses which arise in the bar during torsional vibrations.
These graphs are shown in Flg. 49,

From the comparison of the curves obtained for the
above two cases, it follows that for the same maximum stress
on the periphery, the energy dissipation in the material of
the sample with the hollow cross-sectlon, in which the
dlstribution of tangential stresses 1s

2
__Tmax_kg/mm
a8 & 7 & 8 16 11 2

Fig. 49

almost uvniform and close to the maximum exceeds, on the
average, l.5 times the magnitude of energy dissipation in the
material of the sample with sollid cross-section in which the
dlistribution of stresses varles linearly from a maximum on
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the periphery of the cross-section to zero at the center.
These results also point out that the hollow cross-sectlions
are more efficient from the point of view of total utili-
zation of damping properties of the material.

The results obtained also justify the hypothesis that
energy dissipation in the material depends on the magnitude
of the stresses.

2 Vacuum a ratus for stud eney dissipation
in the teri

In the present paragraph we present a description of
the construction and the principle of operation of a new
type of vibration apparatus devised for the investigation
of energy dissipation in the material in transverse vibratlons
of two-dimensicnal specimens under the conditions of pure
bending, and which permits conducting investigations in a
vacuum at both normal and high temperatures.

In the light of the necessity of obtaining experimental
data characterizing the damping properties of the material,
particularly of those utilized in the turbine blades, it is
very important to obtaln these data under conditions which
are close to the actual working conditions of the parts in
question.

For this purpose, we developed
and constructed a special apparatus

Fig. 50
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which has a number of advantages and additional possibilities
in comparison with the existing apparatuses.,

In striving to obtaln the necessary data which would be
of practical usefulness in the analysis of the blade vibrations
of turbines, the operation of our experimental assembly was
based on the method of the determination of energy dissipation
in the material of free transverse vibrations of the investi-
gated sample,

The second requirement demanded of the apparatus is the
guarantee of the possibility of conducting experiments under
high stresses, i.e. under stresses which we encounter in the
actual turblne blades.,

The next important requirement of the assembly is to
reduce to a minimum the external losses during the vibrations
of the tested sample. With this goal in mind, in order to
eliminate alr resistance during the vibrations, the tested
specimen was placed in a speclal chamber from which the alr
was removed by a displacement vacuum pump, In order to
minimize the losses in the connections of the specimen ( at
the points where it is clamped ) with the immovable elements
of the assembly (the base), relative to which vibrational
motions take place, the sample 1s suspended by thin wires.

The last requirement which had to be fulfilled in the
construction of the assembly was to enable us to test the
specimens at high temperatures. For this purpose, the sample
was inserted in a special heating oven, placed in the
interior of the evacuated chamber of the apparatus.

The deslgned and constructed vacuum apparatus,
satisfying all the above mentioned requirements (schematically
shown in Figs. 50 and 51, and by photographs in Figs. 52* and
53*) is composed of the following basic parts:

#At the end of the book.
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l—steel case (chamber) in the form of a two-piece
eylindrlecal vessel designed to hold the specimen wilth the
test oven;

2—=pipes soldered to the frame and lntended to surround
the supporting wlires;

3-—-base, made of soldered pipes, on which the case is
placed (Fig. 52);

Y—wplane sample to be tested, with two weights connected
to it by speclal grips;

S—thin steel wires, on which the sample with the
weights is suspended;

6—tubular heating oven placed in the interior of the
evacuated chamber for the purpose of heating the tested samplej

7==dlsplacement vacuum pump;

8~=electric motor connected to the pump;

S9-—alectromagnets placed in the interlor of the frame and
used to excite the vibrations of the speclmen by the formation
of an initial pure bending by a palr of magnetic forces, which
act on the welpghts, placed at the ends of the sample;

10~—electrical control board (Fig. 52), with electrical
connections to the electric motor of the vacuum pump, to the
electromagnets, to the heating oven, and to the wire leads of
the thermostat placed in the oven. Several measuring devices
are also installed on the electrical board; vacuum-meter,
ammeter, voltmeter, galvanometer for controlling the tempera-
ture of the test oven with the help of a thermocouple, and
also a special electrical contact device which are elastic
contacts placed in the interior of a pipe made of insulating
material and a solld metallic sphere falling in the interior
of the plpe which switches on momentarily the electromaghets
which excite vibrations of the specimen,
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In order to record the vibrations of the tested samples,
the apparatus 1s provided with an optical device, a sketch
of which is also shown in Fig. 50, This device consgists of
the following parts:

ll—nirror placed at one of the points ¢of connection of
the sample to a wire;

12—=light source;

1l3--a system of converging lenses by which the ray of
light 1is made to fall on the mirror;

14w=drum with attached photo senslitive paper or photo
film, on which the oscllliogram is recorded by the ray of
light reflected from the mirror and projected on the drum
as & polnt,

15«—electric motor rotating the drum during the recording
of the oscillograms,

Since the mirror 1s positioned inside the frame, while
the source of light is outside the frame, a small glass
window 1s installed in the 1id of the frame through which the
ray of light passes which falls on the mirror and is then
reflected back from it.

From the description of the construction of the vacuum
vibro-assembly it follows that the suspension of the sample
with weights in the vacuum frame by thin steel wires
guarantees practically the total elimination of loss of
energy in the support of the sample, as well as losses due
to the resistance of the medium, For, we can neglect the
energy dissipation in the material which is twisted through
an angle of 5==10°, for wires 0,2--O,4 mm in dismeter and of
450 mm length, in comparison with the losses in the material
of the investigated sample of 300 x 30 x 3 mm dimenslons, with
an initial maximum amplitude of normal stresses of 2000
3000 kg/cm. We can also neglect energy dissipation resulting
from losses connected with the resistance of the medium, since
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the experiment with the sample is carried out at wvacuunm
conditions at a pressure of the order of 10"1 mm of mercury.

It should be noted that in order to eliminate the
absorption of energy at the connection points of the welghts
and the samples, the ends of the latter are considerably
thickened (Fig. 54). Therefore, the ends of the samples
entering into the tightening grips of the welghts (Fig. 5%),
are made quite rigid, and have very little stress in compar-
ison with the highly stressed section of the sample in
which energy dissipation is investigated.
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One of the oscillograms which was obtained from this
vacuum vibration apparatus in an investigation of energy
dissipation in 2 material used in manufacture of turbine
blades is shown in Fig. 56.* The initial stress amplitude
was 25 kg/mm2; the temperature was 20°C. In Fig. 57 curves
are shown of the logarithmic decrement of samples of one of
the types of steel used for turbine blades as a function of
stress, These were obtained on the apparatus described.**

Curve 1 was obtained for experiments in vacua and
curve 2 for experiments in the atmosphere. The experiments
were carried out at room temperature. It follows from
examination of the curves given that at the frequencies at
which the experiments were carried out (7 cycles/sec), the
effect of energy loss due to alr is not significant and
amounts to about 5% of the loss due to energy dissipation
in the steel,

*At the end of the bock,

**The experimental work was done by V. V, Khilchevsky,
graduate student, under our supervision,
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