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ABSTRACT

The results of a parametric, performance analysis of four crew escape
concepts are described. This analysis embodies investigation of eircraft
escape system and aerodynamic factors which influence the performance of
crew eacape concepts in the low altitude flight regime. A metrix of aircraft
performance and maneuver conditions at the instant of emergency was developed
from which representative ejection conditions were derived by allowing finite
times for man-machine reactions. An existing six~degree~of-freedom computer
progran was modified to meet the study requirements and to conform to the
Wright-Patterson Air Ferce Base computer and plotting system characteristics.
The computer matrix consisted of 3328 ejection variations for each of the
four escape concepts: A. Election Seat; B. Encapsulated Seat; C. Inset Cap-
sule; and D. Nose Capsule. Of the total of 13,312 besic conditions, 1920
were conducted in three degrees of freedom and the remainder were In six
degrees of freedom. The computer output consisted of both graphical and
numerical data tapes. The graphical tepes were converted by a Stromberg-
Carlson 4020 printer plotiter, and FULFLO equipment produced cross plots of
42 output parameters for each six-degree~of-freedom run and 24 for each
three~degree-of-freedom run. The numerical data tapes were analyzed by a
computer program which determined the safe emergency altitude for esach
ejection condition and analyzed the effect of the accelerations imposed upon
the crewman. A comprehensive investigation of the capabilities and linmi-
tations of the four escape concepts when subjected to the matrix ejection
condltions was conducted.

This abstract is subject to special export controls and each transmittal
to foreign govermments or foreign naticnals may be made only with the prior
approval of the AF Flight Dynamics Laboratory (FDFR), Wright-Patterson AFB,
Ohio.
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SECTION 1

INTRODUCTION

The most hazardous regime of aireraft performance envelopes has proved to
be that assocliated with low-level flight where velocities range from zero for
the VIOL types to high speed for the low-level dash types of alreraft. Escape
from an aircraft which encounters an emergency at low altitude becomes in-
ereasingly difficult as the attitude of the sircraft deviates from the upright
and as sink rates are introduced.

The cobJjective of this program was to determine the effects of adverse
flight conditions on the performance of four crew escape concepts during low
altitude escape: (A) the open ejection seat; (B) the encapsulated ejection
seat; (C) the inset cabin capsule; and (D) the separable nose capsule. Even
though the investigation was performed on escape concepts rather than specific
systems, the computer program input deta were derived from existing designs
vhich have undergone considerable develomment.

A competitive comparison of the four escape concepts was not a study
objective; in fact, & fair comparison is practicable only in the environment
of a specific parent asercospace system with given mission, performance, and
crevw number. Nevertheless, the understanding of certein escape concept
characteristics 1s enhanced by a concurrent knowledge of the relative atiri-
butes of dissimilar concepts. In order to present an equiteble analysis of
the performance of each of the escape configurations, the impulse of the
propulsion system of each was adjusted so that all would reach terminsl
velocity under the full perachute at the same height when ejected at zero
altitude « zero speed from en upright level alrcraft. 'Thus the concepts were
provided a significent common dencminator to assure maximal impartiality.

Although each computer run time duration was less than twice that of the
real time required for the ejection, economic considerations dictated that a
selective program be devised to yield a maximal amount of data from only 3328
eJection conditions. Consideration of the volume of output data and its
utilization in quantitative comparisons indicated the need for appliecation of
computerized enalysis procedures wherever possible. The output data from the
computer progrem therefore consisted of two IBM tapes, one to produce graph-
icel representations of each of the output parasmeters via the Stromberg-
Carlson L4020 printer plotter and FULFLO process, and the other to contain
selected numerical data. A computer program scanned thesge data to define the
safe emergency altitude for each escape concept for each matrix performance
point, and to determine whether human tolerance to acceleration was exceeded.
The computerized analysis and the graphlical cutput esteblished limitations of
the crew escape concepts, associated problems, and areas in which increases
in performance may be made.



SECTION II

PRELIMINARY INVESTIGATION

An investigation was conducted to determine the influences of various
aircraft factors upon the selection, design and effectiveness of crew escape
concepts; define the features of and derive serodynamic dats necessary for
the analysis of each concept; and determine the flight conditlons and escape
system varlables to be considered.

1. AIRCRAFT FACTORS

The selection of the crew escape configuration is dependent upon the
aircraft performance envelcope as well as the aircraft design features. The
extreme conditions of the envelope generally determine whether the system will
be an open or encapsulated escape device, based upon the envirommentel protec-
tion which the crew member must be provided during the escape. The extent of
personnel clothing which can be worn by the crew member without degrading
operational efficiency, will limit the open escape concept because of post-
ejection exposure to great aerodynamic pressure and to the rarefied atmosphere.

The criteria for escape concept selection are established by reference
1 which states that the maximum limits of an open escape concept shall be a
velocity of 600 knots and an altitude of 50,000 feet, that high performance
aircraft must provide successful egress for the crew members over the entire
mission proflle of the airceraft, and that for medium performance aircraft,
ground level escape capabilities must be offered at the minimum stall speed
of the aircraft. No mention of the impact of mission profile on escape
design 1s made regarding essentially low performance alrcraft.

Particular emphasis should be applled to flight phases where emergencies
may rapidly reach disastrous proportion since the time available for escape,
the capability of the system and the size of the crew dictate the selection of
either single or multiple escape configurations regardless of the requirement
for envirommental protection. Unless ejection paths are mechanically diver-
gent, multiplace alrcraft are vulnerable because sufficient time must be
allowed between the ejections of single place escape units to avoid trajectory
convergency among the several Jettisoned or ejected components. o

Although the mission profile of VIOL aircraft is similar to that of con-
ventional tekeoff and landing aircraft, the selection of the escape concept
must not be based solely upon the upper limits of performance since the VTOL
mode places the aircraft for relatively long periods in an inherently hazard-
ous regime of flight at low speed, low altitude. Failure of the propulsion
and/or stability system during the VTOL mode can cause the rapid development
of high rates of sink, roll and pitch since the aircraft is dependent upon
propulsion units to provide controllable rates of vertical 1lift and sink.

It cannot be overlooked that even though landing and takeoff modes for
conventional aircraft are of considerably less time duration than those of
VIOL types, hazardous conditions nevertheless develop rapldly at low altitude.



The aircraft's physical characteristics significantly affect the selec-
tion, design and utilization of the escape system. On multiplace aireraft the
arrangement and numbers of crew stations are influentisl. Tendem posgitioning
of the crew requires special conslderation for sequencing of individual escape
units and provisions for protection from the temperatures, pressures and toxic
effluent from the escape propulsion devices. Muitiplace capsules are affected
by seating arrangement because the propulsion system must be loceted such that
the line of thrust passes in close proximity to the center of gravity of the
ejected mass. Thus a tandem seating arrangement may require additional air-
eraft depth to accommodate a rocket beneath the cabin, while a side-by-side
arrangement may lend itself to location of the propulsion unit between the
crew stations.

The separation direction for escape i1s dependent not only upon mlssion
profile but upon the location of external features of the alreraft which
present physical interference as well ss aerodynemic effects upon escape.

For VIOL and conventional alreraft, the takeoff and landing situations negate
the application of the downward directicn as a primary mode. On the other
hand the low-altitude low-speed maneuver, control and accldent potential
characteristics of VIOL aircraft could conceivably Jjustify provisions for
alternate separation directions, possibly automatically sensed and initiated.
High rates of attitude change during the separation phase of escape increase
the hazards presented by the location of aircraft extremities such as wing
tips, empennage and other external structure relative to the cockpit.

2., ESCAPE SYSTEM FACTORS

Escape system concepts chosen for this analysis are the open ejection
seat (System A), the encapsulated ejection seat (System B), the inset cabin
capsule (System C) and the separable nose capsule (System D). Optimized
exigting system configurations are studied in order to gain meximal advantage
of previously developed data. Varicus features include stability, static
and dynamic shifts of CG location, weight and inertia, variable thrust and
impulse magnitudes and thrust direction, including variastions during rocket
burning and the characteristics of the recovery parachute. Sinece aircraft
egeape systems in current service are dependent upon the humen for activation,
man-machine reaction times are also established.

a, System Descriptions

The open ejection seat (A) (figure 1) of this study is typical of super-
sonic seats which are automatic once the initiation mechanism is manually
sctivated. The configuration incorporates a stablilization parachute deployed
at (.12 seconds and & recovery parachute initiated at 2.0 seconds if below
15,000 feet. The stabilization chute incorporates & 4.k foot Guide Surface
canopy attached to the back of the seat, and the recovery parachute is a
standard 28-foot diameter, flat circular.

The encapsulated ejection seat (B) (figure 2) is a compact equivalent
of that developed for the XB-TOA. The system is fully automatic after
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initiation and for stabilization employs telescoping booms actuated 0.14 sec-
onds after ejection initiation and boom-attached chutes released 1.5 seconds
later. The 34.5-foot diameter, 10% Extended Skirt recovery parachute is
deployed at 2.25 seconds when below 15,000 feet.

The inset cabin capsule (C) (figure 3) provides simultaneous escape for
8ll four of the crew members. The automatic sequence after manual initiation
deploys two drag stabllizatlon parachutes at 0.15 seconds and 1.5 seconds
respectively, and main recovery parachutes are automatically deployed at 3.0
seconds below 15,000 feet., The drag parachutes are deployed in sequence to
both reduce the velocity of the capsule under high speed ejection and to main-
tain stability. The first drag chute is a 8.7 foot dismeter FIST Ribbon and
the second is a 11.6 foot diameter Ribbed Guide Surface. The large weight of
this capsule requires a recovery parachute drag area precluding application of
& single parachute because of excessive openlng time, requiring that = cluster
of three 55-foot dlameter Ringsail parachutes be incorporated.

The separable nose capsule {D) (figure 4) is similar to the single place
F-104 ejectable nose concept. This system is also automatic after initiation,
employs & three-vene stabilization feature and deploys the mein yecovery
varachute at 2.2 seconds below 15,000 feet. The parachute is a Tl.5-foot
diameter Ringslot design.

b. Parachute Factors

Figures 5 through 9 show drag, stabilization and recovery parachute drag
aresa versus distance curves used in the program. The drag characteristics of
all parachutes are considered proportional to distance traveled., This rela-
tionship was reported in reference 2, and is based upon the theory that "a
given parachute inflates in a fixed distance regardless of the velocity or
altitude at which i1t is deployed and regardless of the weight that it carries.”
Certain assumptions are made, the flrst being that four f{imes the chute diame-
ter is sllowed for line stretch and the second that the fixed distance allowed
for a particular type parachute to open is derived from test date. The values
applied are 4.5 Dy for solid cloth canopies and 6.5 Dp for Ringslot and Ring-
sail canopies.

c. Mags Properties

The data input to the computer program includes four conditions of CG
thrust offset, shown pictorially in figures 10 through 14,

The determination of the dynsemic (G shift during ejection (slump) is
based upon the experimental work reported in references 3 and 4. These ex-
periments are limited to seven test subjects varying in weight from 1Ll to
217 pounds. Based upon this work, it is determined that the average shift due
to the CG change of the slumping crew member was 0.0336 inches per "G" in the
horizontal direction and ©.02508 inches per "G" in the vertical direction.
Relating the CG of the crew member(s) to the CG shift of the total ejected
weight resulis in combined shifts which are quite small, especially for the
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heavier systems. The relationship between the system-weight-to-crew-weight
ratio versus the CG movement at 10 "G" is presented by figure 15.

Moment of inertia changes due to CG movements caused by slump were deter-
mined to be 80 minute in relation to the original moments that they were
ignored.

The mass properties of the four escape concepts were developed for crews
of both 5th and 95th percentile Air Force personnel, Where possible, the data
were obtained from measurements of hardware. System A values are representa-
tive of current high-performance ejection seats, Systems B and C are bazged
upon NAR/LAD in-house studies and System D figures are for the F-10L Ejectable
Nose Capsule obtained from references 5 and 6. Summaries of the mass proper-
ties of all four systems are listed in Tables I and II.

d. Propulsion

Two types of escape system propulsion units are used, System A and B
utilizing rocket-catapults and Systems C and D, pure rocket., The range of
rocket nozzle angles is 13° to 55° forward of vertical, System A being 27%;
System B, 130; System C, 20°; and System D, 55°, The optimum angle for System
A, B, and C is based on North American Rockwell Corporation work on similar
systems. System D utilizes the angle (55°) applied during sled testing of the
F-104k nose capsule. As the basis for reconciling the systems for comparison,
the impulse of each 1s varied so that all systems attain terminal velocity
under the full parachute at 100 feet altitude when ejected at zero velocity-
zero altitude.

Table III lists the maximum values of impulse, thrust and "G" for the
systems, and figures 16 through 19 show the curves for the individual propul-
sion systems after reconciliation.

3. MAN-MACHINE REACTICN INTERVALS

The fact that current alircraft escape concepts are dependent upon the
human for initistion prompts the input of meximum and minimum man-machine
reaction times as variables in the program matrix., The ejection initiation
time or time differential between the cccurrence of a recognizable dire emer-
gency and actuation of the escape device is input as 2.4 seconds minimum and
3.2 seconds maximum. This differential is based upon studies presented in
reference 7 and is comprised of human response time and machine lag time.

It is sgsumed that the machine lag time or mechanical separation period
is affected to only a minor degree by acceleration loads and is established
as a constant 0.2 seconds. The humen response time (1.l seconds ), composed of
the human reaction and movement intervals and assumed to be unaffected by the
acceleration range (0 to 8 Gp), consists of awareness, perception and decision.
The awareness time (0.3 seconds) is the period required for the crewman to
detect an unusuel situation and focus on the object, instrument or advisory
light. Perception time (0.6 seconds) is that consumed by the crewman in
identifying and assessing the situation. Decision time (0.5 seconds) is the
interval required to select a course of action.

19
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TABLE 1

SUMMARY OF MASS PROPERTIES
OF ESCAPE SYSTEMS A AND B

SYSTEMS
A * B
BOOMS STOWED | BOOMS EXTENDED|
PERCENTILE CREWMFMBER 5 95 5 95 5 95
CG LOCATION (FEET)
x (PERPENDICULAR TO
RATL AXIS) .975 1.05 {1.075 1.137] 1.142] 1.192) 1.030|1.033
¥y (PERPENDICULAR TO
SYSTEM @) 0 0 0 0 0 0 0 0
z (PARALLEI, TO RAIL
AXIS) 1.287 1.191|1.35 1.25 | 1.792| 1.767| 1.822 |1.807
MOMENTS OF INERTIA J
(SLUG~FT2) |
I { 14.8 15.0. 18.2 18.3 4o 43 ho 51
Iy 22.6 23.5:i 26.9 27.8 L7 50 62 65
I, 121 124 1.5 1.8 18 | 20| 33 | 3
Ixz -2.3 -e.hi ~4.1 kb2 -5 -8 -10 -7

REFERENCE POINT

SEE FIGURES 1 AND 2

* For System A, Values Represent Messured Extremes for
an Existing Seat.
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TABLE II

SUMMARY OF MASS PROPERTIES
OF ESCAFE SYSTEMS C AND D

SETEMG
PERCENTILE CRENMEMBER(S) 5 95 5 95
CG LOCATION (INCHES)
x (FUSELAGE STATION) 106.3 105 228.6 226.8
y (PERPENDICULAR TO SYSTEM G ) 0 0 0 0
z (FROM WATER LINE OF FWD EYE)Y -2k.1 -23.9
2z (WATER LINE) 103.1 103
ﬁuﬁ'fsmeo? INERTIA :
Ik 1230 | 1258 2ho 243
Iy 3954 | ho3o | 1062 1065
Iy woho | 1137 | 200k 1015
Ixz 11k 11 |- 3 - &
e




TABLE III

MAXIMM VALUES OF IMPULSE,
THRUST AND "G" FOR THE FOUR
ESCAPE SYSTEM CONCEPTS

§ SYSTEM

E A B c D
IMPULSE/WEIGHT * 6.8 5.9 8.5 10.3
MAX IMPULSE 2,812 3,659 4,000 22,942

E (LB~SEC)

; (MAXLB)THRUST 9,000 13,100 111,600 54,000

2 MAX "G" PRODUCED 21.7 21.0 21.5 24,1
BY THRUST

w | IMPULSE/WEIGHT * 6.3 5.5 8.0 9.8

B

2 | MAX IMPULSE 2,597 3,447 11,650 21,712

E (LB-SEC)

= | MAX THRUST 6,500 9,500 100, 400 48,000

g | (zB)
MAX "G" PRODUCED 15.6 15.2 19.3 21.5
BY THRUST

* MAXIMUM WEIGHT OF ESCAPE BODY
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The total human movement time is affected by acceleration (0.8 seconds
for O to 1 G, and 1.6 seconds for an 8 G, environment) and 1s composed of
response and control agctustion. It 1s assumed that the crewman must reach
12 to 15 inches at right angle to the acceleration in order to position his
hands on the ejection control. The response time 1z estimated at 0.5 seconds
for O to 1 G, and 1.3 seconds for 8 G;. The control movement is in a direc-
tion parallel to the acceleration and i1g input as a constant 0.3 seconds. A
graphical representation of the man-machine reaction times 1s conveyed by
figure 20.

L.,  AERODYNAMIC FACTORS

Aerodynemic data were generated from existing system designs. Deta for
system A, the open ejection seat, are based upon the X-15 seat plus pilot (no
fins or booms); system B, encapsulated ejection seat, upon a compact equiva-
lent of the XB-TOA capsule {with and without booms and stabilizing chutes);
system C, the inset cabin capsule, upon an NAR in-house design study; end
system D, the Lockheed-studied F-104 nose capsule with vanes.

The aercdynamic perameters, including rotary derivatives, were developed
as dimensionless coefficients in the stability axes system for Mach numbers of
0.2 and 1.2 and were plotted versus angle of attack o, for three side slip
angles B of 0°, 15° and 45°. The merodynamic coefficient curves developed
consisted of: (1) 1lift coefficient (CL); (2) drag coefficient (Cp); pitching
moment coefficlent (Cp); rolling moment coefficient (C1); yawing moments (Cp);
side force coefficient (Cy); damping in pitch (cmq); damping in roll (Clp);
damping in yaw (Cpnyp); rolling moment due to yawing velocity (C1.); and yewing
moment due to rolling velocity (Cyn). The data developed for M = .20 are
consldered applicable for M = .10 to .80 and the M = 1.2 data applicable for
M= 1.05 to 1.k, Side slip data for B's between 0° and 15° and 15° and 45°
were obtained by linear interpolation between data for S = 0° and 150 and
B = 15° and 459, respectively.

The serodynasmic coefficient curves are recorded in reference 8 and were
estimated fram references 6 and 9 through 22. '

5. PROGRAM PARAMETERS

A matrix of flight and escape conditions (figure 21) ylelds maximal
informetion regarding the four escape concepts. A total of 3328 case-condi-
tions were selected, composed of 208 aireraft flight cases for each of 16
escape system features.

The aircraft flight cases are combinations of piteh (aircraft angle of
attack) angles of 0°, 15°, 90°, -15°, and -90%; roll angles of 0°, 30°, 60°,
90°, and 180°; yaw angles of 06, 159 and 45°; pitch rates of 0%/sec, 30°/sec,
and 90°/sec; roll rates of O°/sec, 60°/sec, and 180°/sec and yaw rates of
0°/sec and -90°/sec. Flight path angles of 0°, 10%, -10°, -30° and -90° are
considered sufficlent, when combined by interpolation with the other varia-
bles, to support a comprehensive analysls of escape limitations. 8Sink rate
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EJECTION MATRIX FOR EACH ESCAPE SYSTEM

1 11 21 11 41 51 61 71 81. 91 101 111 121 131 141 151 161 i 171 181 191 201
AIRCRAFT FLIGHT CONDITIONS
PITCH E—- ----*F
(AIRCRAFT ANGLE OF ATTACK) 0 CEG w7 o [ Foe e T o [ o Do Tox e [ Fo ok o o o Joc [ o T e xxxxxxxxﬁEx —'ﬂ’_ )
15 DEG X x x x M X X x ] XX [xix|% X
X X X
90 DEG X X X X X X X X X M
|
:;::g L N A I L R O ST I T O A N N I PSR I I O P O PO O X X X
X X X X X X X X X X X X X X X X X X X X X X X
ROLL 0 DEG X XXX [KAK X IR R IR X [RR R XX RX[R[R[XIX|%]X = Z
T X x|x|x x]x] x X[ X|x x| x| x X {xIx X X |
> e X X[ x| x X x| % x|x}x x| xix i x|x xx!x X X
%0 tec X x| x| [|x x[x|x X x!x x| x|x x[x]x X|%ix x[x1x|% X
180 DEC xj {x| |x x| %] {X XIX|X XXX b ARALS xixx X
YAN 0 DEG K| X| %] KLR| X[ X]X[X[ X[ X[X|X[X]X X X ] X X X XXX XX dxx e xpx]Rpx] x] o xx ] s [x e T T e o o oo o] e Dot e o T oo T T XXX 1% X X
15 DEG X[ |x X X IX X X X
X [x
45 DEG XX X LIMINES S L] I I E L X xxx * X xxxx xxxx
PITCH RATE 0 DEC/SE [P ] X Pe o o] X ] [ i [ e [ X fx ] ) X | X x X % X X x X X X X % X b4 X X [x]x XIxix X (X [x X% |x|% XXX [ XX {x (X%} x X
30 DEG/SEC ! X X X x X X X x X X X X X X LI LS i
90 DEG/SEC X X X X X X X X X X X X X X ] X
ROLL RATE O DEG/SEC 3 XX X[ XTX X [P P X Tk [ x i T X [x]x X{x[x X1x|x xIx]x[x XiX [x{x[x]xxpx]x X
60 DEG/SEC XX XiX XX xX|x XX XX XX X|X XX X|X XX X|X X% Xix %[ X|x x[x XX E
180 DEG/SEC X X|x|x x X X X X X X X X X X X X X X X X ! X
YAW RATE 0 DEG/SEC x| %) % ] e x T e e x [ x I x| % X[x|x B x|xix Xk el ] aya P I P T P P T R T T o T o e o o T o P o T o P e [ ' '
XEXIX XX X{X X XX i .
-90 DEG/SEC xlx ahxlx xdxlx xlx|x X ] xdx[x]x X xIx[x xIixfx XXX x| x P x T X
FLIGHT PATH ANGLE 0 oEG X[ X% X XXX [% XXX X [X ] [X [ f — i ‘
0 e : XiXiX XX X xix .xxjxxx
_i DEC XX [x|xjx]x X xdx x| xq |x % [x |xix ]
-;gig P xxxxxxxxxxx I”““”Hxxxxxx PP P ! XX X i
- x|x{x ‘ i
TR RATE X% 1% X x| X% 1 Ix X X X|X|x X
VELOCITY T ROT: X WX ;
100 KNDTS X [x X[x x| peixfx X X x|x X X [%{x XX x el o e o] o (e e e o Jod o oo o o o D o B [ o o gox | (o oo o 1 o (3¢ o e (e e o[ e o e e e Do oo o o o oo o e e e B e e o Do e e e e e Do e e o e e o o e e o e [t e ¢ XX (% X|x|x X |xIxix XIx|xix
BOD ¥NOTS i : ;
ATLTE 2390 FT X X X x % Ix [ 3 1x *;l( X i X X X XX X[X X XXX b TR [ X X X XX X X PR TR X XX xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx;mi‘iixxx X[ X (X TX X X X XXX xxxx::::: ;
MIN INIT TIME - ZERC THRUST MISALIGN. -7 e ¢ ’ '
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is treated as a combination of velocity and flight path angle. Aircraft
velocities of O, 100 and 800 knots are applied. Safe emergency altitudes

are derived as explained in Sectlon V after initleting the emergency in
each case at 2500 ft.

Minimum and maximum values of four escape concept physical parameters
are combined to define the sixteen condltions describing each system for each
aircraft maneuver case. A maximm (3.2 seconds) and & minimum (2.4 seconds)
value of the initiation time (man-machine reaction time) are applied. Rocket
thrust and rocket burning time are input as maximm and minimum impulse curves,
the maximum thrust-versus-time curve having the total impulse equivalent to a
200°F firing and the minimum thrust-versus-time curve equivalent to a -65°F
firing. The CG - thrust vector statle misaligmment is introduced as both zero
and maximum, the latter as tri-planar. While the offset is assumed to remain
constant for the high mass inset cabin and nose capsules during the ejection
process, except for rocket nozzle erosion, the offset for the individual ejec-
tion seat and encapsulated seat shifts ss the oceupant's body slumps and is
displaced relative to the seat and rocket thrust vector. The vector shift
(3°§ caused by erosion of the rocket nozzle during firing is also accounted
for. The welghts of each escape concept are input as minima and maxims, which
are sufficient to generate a comprehensive view of the differences in recovery
paremeters due to weight change.
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SECTION III
PARAMETRIC COMFUTER PROGRAM

1. COMPUTER PROGRAM

NAR-PACEC 1s a six-degree-of-freedom computer program, written in FORTRAN
IV language, that calculates the attitude and position-time history of a rigid
body moving through three-dimensional space in accordance with the physical
laws of motion. (Refer to figures 22 and 23). The program, reference 23,
conslders the forces produced by propulsive thrust, friction, aerodynamic
characteristics, gravity and retardation devices, and is divided into five
phases to facllitate calculation and to pemit, wlith relative ease, modifica-
tion to incorporate new ideas or concepts.

The program accommodates four different escape concepts and related aerc-
dynamic tables, impulse curves and parachute data and is a sueccessor to an
older NAR maechine language six-degree-of-freedom program. The present program
allows the second escape concept a second set of asrodynamic tables for an
escape body with stabllization devices erected following ejection. Input data
for the program are listed in Table IV.

The Phase 0 condition encompasses aircraft motions prior to initiation of
the ejection system. The time period extends fram the instant of emergency
until ejection initimtion. The aircraft is assumed in steady-state, non-accel-
erative motion.

For structurally guided escape bodies only, Phese I commences at the ini-
tiation of escepe and terminates when the middle pair of rollers of a three-
pair set leaves the ralle. The rails are assumed to be channels 50 that the
reactions of the rollers may he in either of two directions perpendicular to
the reil axis. Four combinations of reaction forces are possible. The com-~
bination generating the greatest friction (retarding force) is selected. A
friction force attributable to lateral reactions on the rollers is also
calculated., The emerging partial frontal area of the escape system is con-
tinually calculated by multiplying the total area by the ratio of the exposed
instantaneocus partial chord to the body total chord.

For structurally gulded escape bodies only, Phase II begins as the middle
pair of rollers leaves the rails and ends as the last pair departs. As in
Phase I, the reaction force on the rollers may be in either of two directions
perpendicular to the rail axis. The reaction force is computed first assuming
it acts in the direction opposing the dreg force. If the quantity computed is
negative, then the reaction force is assumed to act in the opposite direction
and the equations are changed accordingly. With one palr of rollers remeining
in the rails during Phase II, the seat 1s free to rotate. If the fuselage-
supported catapult tube is still attached to the seat, the bending moment is
computed with change in pitch angle.

Phage IIT commences when the escape unit becomes free of the eircraft.
For those escape bodles having rails and rollers, Phase III starts &t the

34



FIGURE 22 - WIND AXIS, STABILITY AXIS & BODY AXIS REFERENCE
SYSTEM
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TABLE IV

COMPUTER PROGRAM INPUT DATA

Main Progrem Description

Selection of three or six degrees of freedom

Selection of no thrust misalignment or thrust misalignment

Selection of no plot or plot

Selection of no print or print

Configuration now running 1, 2, 3, or &

Last configuration, this case

Selection of minimum or maximum thrust

Pitching velocity about the Y body axis - (g)

Angle of attack - (o) (see figure 22)

Flight path angle of A/C « (7)

Angle of side slip - () (see figure 22)

The angle between the heading reference in the horizontal earth plane
and the line of intersection of the horizontal plane and the
vertical plane through the X body axis ({¥) (see figure 23)

The angle between the Z body axis and the line of intersection of
vertical plane in which € is measured and a plane through the ¥YZ
body axis - (@) (see figure 23)

Rolling velocity about the X body axis

Yawing velocity about the Z body axis

Time differentisl between the occurrence of an emergency and actuation
of the escape system

Welght of ejected object prior to rocket burnout

Weight of ejected object after rocket burnout

Welght of ejected object at time of parachute deployment

Time at which rocket thrust goes to zero

Angle whose sine = parallel CG shift/perpendicular CG shift

Distance CG shifts parallel to rail axis during stabilizatlion system
deployment

Distence CG shifts perpendicular to rail axls during atabilization
system deployment

Moment of inertis with respect to the X axis before stepilization
system deployment

Moment of inertia with respect to the Z axls before stabilization
system deployment

Moment of inertis with respect to the Y axis before stabllization
system deployment

Moment of inertim with respect to the X7 axis before stabilization
system deployment

Moment of inertia with respect to the X axls after stabllization
system deployment

Moment of inertis with respect to the Z axis after stabilization
system deployment ,

Moment of inertie with respect to the Y axis after stabllization
system deployment

Moment of inertia with respect to the XZ axis after stablllization
system deployment

Moment of inertis with respect to X axis constant due to body slump
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TABLE IV - Continued

Moment of inertia with respect to Z axis constent due to body slump

Moment of inertis with respect to Y axis constant due to bhody slump

Constant for sizing used in 1ift equation

Constant for sizing used in dreg equation

Coefficient of friction between the rollers and the rails due to side
load

Time st which stabllization device starts

Time of deployment of a stabilization device

Selection configuration symbol for plotting

Call for symbol to indicate temminstion of catapult thrust on plots

Call for symbol toc indicate beginning of free fall in plots

Call for symbol to indicate termination of rocket thrust on plots

Call for symbol to indicate recovery parachute deployment on plots

Constant factor used to determine CG shift due to "G" forces

Constant factor used to determine CG shift due to "G" forces

Initial A/C altitude

Initiel A/C velocity

Time at which program stops

Altitude at which program stops

Aerodynamic chord of ejected object

Aerodynemic span of ejected object

Distance parallel to rall axis from lower roller to initial CG of
ejected object

Perpendicular distance from initial CG of ejected object to reil axis

Moment armm of ecatapult or rocket thrust

Distance of CG off sagittal plane

Distance between the CG and the thrust line perpendicular to the
sagittal plane

Angle of catapult thrust forward of rail axis

Angle of rocket thrust forward of rail axis in sagittal plane

Angle of rocket thrust off sagittal plane

Angle of spine aft of A/C vertical axis

Angle of seat back aft of A/C vertical axis

Angle of rall axis aft of A/C vertical referencé axis

Distance between top sand bottom rollers

Distance from lower roller to middle roller

Distance from lower roller to top of rail

Distance fram top roller to top of rail

Distance, parallel to rails, that ejected object moves before
catapult stripoff

Reference area.

Distance from Z axis to Point A perpendicular to Z axis

Distance from X axls to Point A perpendicular to X axis

Distance from X axls to Point A perpendicular to Y axis

Distance along Z axis between CG of aireraft and CG of escape system

Distance along X axis between CG of alrcraft and CG of escape system

Selection of top or aft mounted parachute for first parachute

Selection of top or eft mounted parachute for second parachute

Selection of top or aft mounted parschute for third parachute

Selection of top or aft mounted parachute for fourth psrachute

Coefficient of friction between the rollers and the rail

Load factor on A/C perpendicular to flight path
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TABLE IV - Continued

Time at which first drag parachute is deployed
Time at which second drag parachute is deployed

Time at which recovery parachute is deployed

Automatic deployment altitude for main recovery parachute
Factor used to calculate bending of catapult tube

Bending moment of catapult tube when yileld point has been exceeded
Incremental time
Incremental time
Incremental time
Incremental time
Incremental time
Thrust balancing

during Fhagze
during phase
during phase
during phase
during phase
factor

(o]

1
2
3
L

Code for three or six degree of freedom
distance OE (figure 24)
distance OK (see figure 24)
angle OKL (see figure 24)

Parachute
Parachute
Parachute
Parachute
Parachute
Parachute
Parachute
Parachute
Parachute
Parachute
Parachute
Parachute
Parachute
Parachute
Parachute

Parachute
Farachute

Parachute
Selection

attaciment
attachment
ettachment
attachment
attachment
attachment
attachment
attachment
attachment
attachment
attachment
sttachment
attachment
attachment
attachment

attachment
attaclment

attaclment
of no DART

distance
distance
distance
distance
distance
distance
distance
distance
distance
distance
distance
distence

FK
GK

0A (

0l
oD
OF
oG

Ge
EL (
GE (
FE (

EI

(see
(see
see
(see
(see
(see
(see
see
see
see
see
{8ee

figure
figure
figure
figure
figure
figure
figure
figure
figure
figure
figure
figure

24}
24)
24)
2h)
24)
24)
2k )
24)
2l )
24 )
2h)
oL}

angle €l {see figure 2&;
see figure 2h

angle B1 (see figure 24)
or DART subroutine

angle 012

of no STAFPAC or STAPAC
of no STAPAC or STAPAC
Selection of no STAPAC or STAPAC
Selection of no STAPAC or STAPAC
Distance from A/C CG to A/C DART
Distance from A/C CG to A/C DART attach point along A/C Y axis

Distance from A/C CG to A/C DART attach point along A/C Z axls

Time delay from start of Phase III to start of STAPAC vernler rockets .

Selection
Selection

subroutine

subroutine in pitch plane
subroutine in roll plane
subroutine in yaw plane
attach point along A/C X axis

Subroutine

An integer defining the system configuration

Angle between the seat X-axis and the radius to forward bridle pivot
Angle between seat X-axis and radius to apex of bridle

Angle between seat X-axils and radius to aft bridle pivot

Radius from seat origin to forward bridle pivot

Radius from seast origin to apex of bridle

Radius from seat origin to aft bridle pivot

An array describing DART brake line force versus length of line paid out
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TABLE IV - Continued

Attachment distance OE, OK, OKL, FK, GK, OA, 0I, OD, OF, 0G, GC, EL,
GE, FE, EI, Al, A2 & Bl (similar to parachute attachment) - these
18 items required only when both bridles are flexible

STAPAC Subroutine

An array describing the vernier rocket thrust/time relationship

An arrey describing the biesing spring torque about the gimbal axis

An array describing the mechanical advantage of the gimbal/vernier
rocket interconnecting linkage

Angular position of the gyro gimbal relative to the caged position

Angular veloclty of the gyro gimbal

Pitching angular velocity of the ejection seat

Angular veloclity of the gyroscope wheel about its spin axis

Inertia of the gyroscope wheel about its spin axis

Inertia of the wheel, gimbal and connecting linkasge about the gimbal axis

Inertia of the vernier rocket about its centerline of rotation prior to
ignition

Inertia of the vernier rocket about its centerline of rotation at the
completion of rocket burning

Angle at which the gimbal 1s stopped when rotating the vernier rocket
toward the position of maximum aft pitching moment

Angle at which the gimbal is stopped when rotating the vernier rocket
toward the position of maximm forward pltehing moment

Factor of efficiency for a rotational collision with extremes of vernler
rocket anguler travel '

Load et which the rotational stop begins to yleld

Disgplacement of the rotational stop at load P

Simulated thrust force at which rotational friction of the system has
been measured

The rotational friction of the system at simulated thrust

The rotational friction of the system at zero vernier rocket thrust

The effective misaligmment of the vernier rocket thrust line relative
to the rotational centerline of the vernier rocket

Distance from the dynamic center of gravity of the elected system to
the centerline of the vernier rocket rotation

Angle between the vermier rocket thrust line in the zero position end a
line from the vernhier rocket centerline of rotation to the dynamic
center of gravity of the ejected system

Angle between the horizontal seat reference plane and a line passing
from the dynamic center of gravity to the vernier rocket centerline
of rotation

Filag to determine mode of interpolation for the biasing spring

Flag to determine mode of interpolation for the vernler rocket thrust

Flag to determine mode of interpolation for the linkage

Flag to determine mode of interpolation for the gimbal angle

Flag for determining rate sensitive only or rste and position sensitive
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temmination of Phase II. For escape systems with no rails and rollers, FPhase
III commences at the initiation of ejection. For convenience, FPhase III
terminates and Phase IV commences at the initlation of the final recovery
parachute.

The program accommodates a meximum of three parachutes and if required
can cause the last parachute, normelly the recovery parachute, to shift from
back-mounted to top-mounted. The initiation of parachute deployment for both
drag and recovery parachutes may be introduced at any desired time,

Parachute drag area (CpS) is input as a function of distance traveled
through space. (See figures 5 to 9, Section II.) Vehicle attachment is simu-
lated by a four-point gecmetrical system {figure 24) with the forces and
moments calculated in & separate subroutine.

Thrusts for the catapult and rocket are individual curve inputs as time
functions. (See figures 16 to 19, Section II.) The program accommodates two
catapult and two rocket curves per system. For those systeme utilizing both
catapult and rocket, the catapult curve is read initially and terminates at
strip-off. At this point in time the abscissa of the rocket curve is shifted
and the rocket thrust is read until rocket cutoff time, For systems utilizing
only the rocket, the distance that the ejected object moves parallel to the
rails before catapult strip-off is set to a small negative value and only the
rocket curve is read.

The progrem contains provisions for the total system CG to shift due to
slump of the individual crew member. The shift is a function of the "G"
forces and is assumed to be along the sagittal plane.

2. PROGRAM OUTPUT

A listing of the main program output may be found in Table V. For cases
run in only three-degrees-of-freedom, the first 26 ltems are output; for six
degrees, the entire listing is output. Those ltems appended by an asterisk
(*#) are oriented in the earth reference system.

The program provides for three methods of producing the output: (1)
Numerical printout; (2) SC-4020 (cathode-ray tube); and {3) Benson-Lehner
graphical.

The numerical printout is the standard operatlion mode and produces
printed output that consists of a listing of the input and a time history
output in standard decimal form. This output mode may be selected by input
item 3. (Refer to Table IV.)

The SC-4020 output is optional and may be selected by input item L.
(Refer to Table IV.) Selection of this output mode produces an output tape
which is utilized by the Stromberg-Carlson plotter (SC-4020) in projection of
the data onto the face of a cathode-ray tube. The lmage produced can then be
photographed by any of a number of cameras and the film utilized in the
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TABLE V

PROGRAM OQUTPUT

Description

Mach Number

Thrusting Moment (ft~1bg

Dynamic Pressure (1b/ft<)

Total Velocity of Escape System (ft/sec)

Distance Along "X" Axis (ft) #

Velocity Along "X" Axis (ft/sec) *

Acceleration Along "X" Axis (ft/sec®) *

Beight Above Sea Level (ft) *

Velocity Along "Z" Axis (ft/sec) *

Acceleration Along "Z" Axis (ft/sec2) *

Angle of Attack (deg)

Euler Angle Theta as Regards Body Direction (deg) *
Flight Path Angle (deg) *

Total Distance Traveled Along Flight Path (ft)
Acceleretion of CG - "G"

Acceleration of Arbitrary Point - "G"

Pitching Velocity (deg/sec)

Pitching Acceleration (deg/sec2)

Pitching Moment (ft-1b)

Damping Moment in Pitch (ft-1b)

Angle Theta as Regards "G" Force at CG (deg)
Angle Theta as Regards 'G" Force of Arbitrary Point (deg)
Total ILift (1b)

Total Drag (1b)

Rolling Moment (ft-1b)

Demping Moment in Roll {(ft-1b)

Angle Psi as Regards "G" Force at CG (deg)

Angle Psi as Regards "G" Force at Arbitrary Point (deg)
Rolling Velocity (deg/sec)

Rolling Acceleration (deg/sec?)

Yawing Moment (ft-1b)

Yaw Dsmping Moment (ft-1b)

Angle Phl Regarding "G" Force at CG {deg)

Angle Phi Regarding "G" Force at Arbitrary Point (deg)
Yawing Velocity (deg/sec)

Yawing Acceleration (deg/sec?)

lateral Distance (ft) ¥

Velocity Along "Y" Axis (ft/sec) *

Acceleration Along the "Y" Axis (ft/sec®) *

Side Slip Angle (deg)

Euler Angle Psi as Regards Body Direction (deg) *
Euler Angle Phi as Regards Body Direction (deg) *

* Denotes earth reference system (refer to figure 23).
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production of the desired output print. The output consists of a title psage,
graphs and mmerical data printout. Each page of the output contains a title
strip which ldentifies the run conditions and two figures in the right margin
of this title strip can also be utilized to identifying the particular run.

The title page for the SC-4020 lists the nine aircraft conditions at the
time of the emergency (0.00 second) and at the time of initiation of ejection.
The aircraft conditions listed are: Height; Veloclty; Aircraft pitch; Air-
eraft pitch rate; Aircraft roll; Alireraft roll rate; Alrcraft yaw; Alrcraft
yaw rate; Flight psth angle and Time.

The graphical output consists of 24 graphs for three-degree-of-freedom
computer runs or 42 graphs for six-degree-of-freedom computer runs. The
abscissa of each of the graphs is time in seconda. The ordinate for the
graph (refer to Table V) consists of items 1 through 24 for the three-degree-
of-freedom runs end items 1 through 42 for the six-degree-of-freedom runs.

Data for each of the four escape concepts being analyzed appear on each
of the graphs, providing individual concept informstlon as well as comparison
of all four if desired. Letters A through D identify plots for the four
escape concepts, (A) ejection seat, (B) encapsulated ejection seat, (C) inset
capsule, and (D) nose capsule.

The flight condition parameters of the sailreraft between the time of the
emergency {0.00 seconds) and the time of initiation of ejection are straight-
line functions. In order to present the largest scale possible for the abscis-
sa of the graphs, the alrcraft conditions at the beginning and end of the
period are plotted and the time span is removed from the graph. The number of
parameters which are printed on each page can be varied from one to three.

The last portion of the SC-4020 output is camposed of the numerical
printout of the data. The frequency of printing time-point data within one
condition can be varied from 1 to 200,

A link described in reference 2L may be appended to the program to read
the output date to be plotted and prepare a magnetic tape in a form which can
he used to control a Model J Benson-Lehner Plotter to ylield the graph-sheet
curves desired. This routine plots one straight-line sectional (linear point
connection) curve per 8%—by-ll-inch graph sheet, draws the axes, sequence-
identifies, and numerically labels the axes.
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SECTICN 1V

SUBROUTINES
1. DIRECTIONAL AUTOMATIC REALIGNMENT OF TRAJECTORY (DART)

The Stencel DART stabilization system, used on ejection seats, is a
device vwhich stabilizes the seat in pitch and roll. The system is composed
of: (1) The "DART line" consisting of four braided nylon lines, the lower
parts of which are encased in a nylon tube; (2) The bridle, eonsisting of
an aluminum tube "V" frame, pivoted at the forward edge of the peat bottom and
having an eye through which the DART line passes, and a steel cable which
Joins the eye of the forward bridle element to two points on the aft edge of
the seat bottom; and (3) Two friction brake assemblies mounted on the seat
bottom. (Reference 25)

Before ejection, the DART system is stowed, with the bridle folded up
against the seat bottam and secured with a break line. The lower (covered)
part of the DART line is attached by its fitting to the cockpit floor and
stowed in the pockets of the stowage baeg, which is attached to the DART 1line
cover and inserted between the bridle and the seat bottom. The remainder of
the DART line passes through the eye of the bridle, and divides, two lines
going to each breke assembly. The lines pass through the brakes and the re-
meining length 1s stowed in pockets attached to the seat hottom.

Upon ejection, the bridle is extended and the lower part of the DART line
(free length) is extracted from its stowage, without imposing any significant
load on the seast, When the seat reaches a sufficient distance from the air-
craft to completely withdraw the free length from its stowage, the line
hecomes taut and begins to be drawn through the brakes. These impose & load
on the line, and, depending on the position of the seat, a correcting moment
ie spplied to the seat. When the upper ends of the DART line are withdrawn
from the brakes, the line separates from the sest.

In developing s DART configuration for a particular seat, the three para-
meters (1) Aversge DART force (combined brake load), (2) Free length, and
(3} Runout length, are varied to obtain the desired combination of trajectory
control and rotation rate. The DART system is deplcted in figure 25.

The forece and moment equations for the DART subroutine are as follows:

Fy = (XATTA - XATTB)(FD)/L (1)
Fy = (YATTA - YATTB){FD}/L (2}
Fz = (ZATTA - ZATTB)(FD)/L , (3)
My = -FyY(ZATTB) + Fyz{YATTB) (4)
My = Fyx(ZATTB) ~ Fz(XATTB) (5)
Mz, = FY(XATTB) - Fy(YATTR) (6)
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FIGURE 25 - DART SYSTEM
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Where:

L =/ (XATTA - XATTB)® + (YATTA - YATTB)® + (ZATTA - ZATTB)2
FD is the DART brake force

XATTA, YATTA and ZATTA are the true distances in the escape
system axls system between the escape system CG and the DART
attach point on the A/C and are calculated by the main program

06 7T - ARCTAN (ZATTA - RC SIN &p)/(- XATTA + RC COS §g)

oD = ,/(zATTA - RC SIN §5)2 + (- XATTA + RC COS dp)°

XATTB = XATTA - DD COS dg
ZATTB = ZATTA - DD SIN g
YATTE :» 0.0 = Bridle confluence point is on sagittal plane

For the specialized condition where both bridles are flexible, the force
and moment equations are similar to those describing parachute attachment.

The effect of the DART system upon an ejection seat type of escape system
is shown in figure 26. The aircraft conditions at emergency were: V = zero
Kn, upright aircraft. The seat CG - rocket thrust offset was 0.16 ft.
(Reference 25)

2.  GYRO-CONTROLLED VERNIER ROCKET STABILIZATION (STAPAC)

A unique and simple system developed by the Douglas Alreraft Company and
referred to as STAFPAC, 1s utilized to stabilize an ejection seat against con-
ditions of CG-main rocket thrust misalignment and aerodynamically induced
pitching moments. It is operative from the time the seat leaves the guide-
rails and burns for approximately 0.5 seconds. (Reference 25)

The system comprises a vernier rocket, a rate gyroscope, a spin~up/gimbal
uncaging mechanism, a rocket ignition system, and intercomnecting linkasges and
pneumatic lines. (Refer to figure 27.) The vernier rocket is ignited by a
mechanically fired initiator.

The gyroscope is gimbaled about one axie only, providing a gyro which
does not indicate position but is sensitive only to rotational rates. The
rate gyro 1ls mounted on the ejection seat with gyro wheel spin axis and gimbal
axis oriented ln & manner to sense only pitching motion of the ejection sesat.
The gyro inertia and design spin velocity are set to provide the required pre-
cessional torque to operate the vernier rocket. The rack which is used to
spin the gyro up to speed alsc provides a gimbal caging function by indexing
& a8lot in the gimbal structure. When the rack retracts to spin up the wheel,
the gimbal is also uncaged. The mechanicel linkage between the gyro and the
vernler rocket transmits the rotational motlon of the gimbal to the rocket.
The pneumatic tubing channels ges from the spin-up mechanisms to the pin
puller which actuates the rocket ignition system.
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The NAR modified version included in this progrem provides for both rota-
tional rates and escape system position, in all three axes. This is accompli-
shed by providing a vernier rocket in each of three planes.

The force and moment equations for the STAPAC subroutine are as follows:

The STAPAC subroutine calculates two forcaes and one moment
in a single plene.

Fy = FVAV COS(THETA - PHIROC ~ @MEGO) (13)
Fy, = FVAV SIN(THETA - PHIROC - (MEGO) | (1k)
My = (FVAV)(V2)(SIN (PHIROC + §MEGO)) (15)
Where:

FVAV = Vernier rocket thrust (16}

THETA, Vo and @MEGO are input veriables and
PHIROC is the angular position of the
vernier rocket

Figure 28 compares the pitching, rolling and yawing velocities of an in-

set capsule with and without STAPAC under identiecal conditiona. The initlal
aireraft conditions were q = 30 deg/sec; p =30 deg/sec and V = 100 KN.
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SECTION V

ANALYSIS

1. SAFE EMERGERCY ALTITUDE ANALYISIS METHODS

The 3328 matrix ejections established the safe minimum altitude at which
the aircraft may experience egress emergencies for each of the four escape
concepts. Data for each of the 3328 ejections were scanned to determine the
altitude (Hp) at which the recovery parachute descent velocity vector is -90°
+15° and the vertical velocity for the ebecape body is less than five percent
above the steady state terminal veloclity of the parachute-escape body combina-
tion at the appropriate sltitude. The minimum safe emergency altitude for the
escape concept at a particular airerafi condltion was estahlished by finding
the difference between the altitude at the emergency (2500 feet was selected
for the computer program) and the altitude (Hp) which satisfles the escape
body direction and velocity limits, and adding 100 feet, the selected minimum
safe fully inflated parachute altitude. Safe Emergency Altitude = (Altitude
at the Emergency - Hp) + 100 feet.

The computerized analysis program for determinatlon of the Safe Emergency
Altitude presented the followlng printed output:

Case

Condition

Concept

Safe Emergency Altitude

Hy - Altitude at EJection Initiation

O - Angle of Attack at Ejection Initiation

6 - Euler Angle of Ejection Initiation
W - Euler Angle of Ejection Initiation
@ - Euler Angle at Ejection Initiation

Ho - Altitude at Descent Terminal Velocity
T « Time at Hp

X -~ pistance at T

Y - Distance at T

Total Distance Traveled to Hp

Terminal Velocity
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2. ACCELERATION ANALYSIS METHODS
An analysls program (ANAL2) also examined whether humsn tolerance to
acceleration is exceeded during the escape. The output is an IBM tape which
is used by a Stromberg-Carlson L4020 printer plotter to convert the date to
tabular and graphic plots. The tabular sheet presents the safe emergency
altitude information previously listed and the following acceleration analysils
information:
G Limits Not Exceeded
or
G Limits Exceeded
Time at Which Limits Were Exceeded

A¥XX - Acceleration, X Component

AYY - Acceleration, Y Component
AZZ -~ Accelerstion, Z Component
AOS ~ Acceleration Limit, X Component
BOS - Acceleration Limit, Y Component
COS = Acceleration Limit, Z Component

Onset Limits Not Bxceeded

or

Onset Limits Exceeded

Time at Which Limits Were Exceeded

AXX

Acceleration Onset, X Component
AYY - Acceleration Onset, Y Component

AZZ

Acceleration Onset, Z Component

AQOS - Acceleration Cnset Limit, X Component
BOS - Acceleration Onset Limit, Y Component

cos

Acceleration Onset Limit, Z Component

The graphical output of the analysis program contains crossplots of the
four escape concepts for:

Acceleration of the Arbitrary Point - "G" Versus Time-sec
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Euler Angle Theta Regarding "G" Force at Point Versus Time-sec

Euler Angle Psi Regarding "G" Force at Point Versus Time-sec

Buler Angle Phi Regarding "G" Force at Point Versus Time-sec

Acceleration of CG - "G" Versus Time-sec

Buler Angle Theta Regarding "G" Force at CG Versus Time-sec

Euler Angle Psi Regarding "G" Force at CG Versus Time-sec

BEuler Angle Phi Regarding "G" Force at CG Versus Time-sec
a. Selection of Arbitrary Point (A)

The computer program determined the resultant acceleration at a point on
or near the humen body of the occupant or one of the occupants of the escape
concept. The location of this point was accomplished as follows:

The experimentally determined tolerable limits of tumbling about the
iliac crest as presented in reference 26 are shown in figure 29. This curve
is a plot of revolutions per minute (rpm) versus duration (seconds) and estab-
1ished from 45 rpm for 600 seconds to 9% rpm for 3.2 seconds.

Tolerable limits of acceleration as presented in reference 27 are shown
in figures 30, 31, and 32. These curves are plots of #GX, +Gy, and Hiz versus
duration (seconds) and extend fram .0l seconds to 2000 seconds.

It was desirable to select a point on or near the human body at which the
scceleration limits alone could be used as a test of human tolersnce. It wss

decided to compare the -Gy and rpm for like duration and select a point where
application of the acceleration -Gy could result in a comparable rpm.

2

a = - 32.2 G 1)
iradiusj :

Therefore:

v2
G = (radius)32.2 (28)
Where:

2
v2. (2redtun)sn?). o (redtus)? rm? (1)
Therefore:
2.2 .
_ .011(radius)“rpm~_ 2

G = Tredias)32.5 = .000341 (radius )rpm (20)

If we assume that the point lies along & line passing through the iliac
crest and parallel to the spine then:
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G = -Gy = .000341(radius )rpm? (21)
-G -G
Radius = 2932.55 rpie Feet = 35190.6 ;5§§ Inches (22)

Durations of 3.2 to 10 seconds were selected for comparison since at
durations above 10 seconds the -GZ tolerance curve is constant and below 3.2
seconds the tolerance to tumbling curve is unknown. The locus of points fall
in a 7.78 inch wide band which is perpendicular to the back line and located
8.13 inches above the iliac crest. Assuming that a distance is selected which
is midway on this band, then (radius) is equal to approximately 12 inches,

The resulting tumbling is compared to the limits of reference 27 in the
following itables:

Duration  BRef. 26 Ref. 27 %z rpn for

(seconds) rm x@m? -G, 1m? Radius Radius = 12
10.0 T2 5184 1.2 . 000231 8.13 59.32
8.0 Ts 5476 1.3 000237 8.34 6.7k
7.0 76 5776 1.4 .000242 8.52 64,07
6.0 78 6084 1.6 . 000262 9.22 68.50
5.8 8o 6400 1.7 . 000265 9,32 70.60
5.0 82 6724 2.0 . 000297 10.45 76.58
h.5 84 7056 2.2 .000311 10.9k 80.32
b1 86 7396 2.5 .000338 11.89 85.62
3.9 88 TTL4Y 2,8 .000361 12,70 90.62
3.7 90 8100 3.0 .000370 13,02 93.80
3.4 92 8464 3.5 .000kL13 14,53 101.30
3.2 gk 8836 L.o .000h52 15.91 108.30

Certain ground rules which were established for determinstion of the
location of the polnt are listed:

l. The point must lie on & line between the iliac crest and the eye.

2. It must be a minlmum of 12 inches from the center of gravity of
the escape concept.

3. It must be located such that the distance from the iliasc crest
to the point is a minimum, '

4., The point must remain constant for each escape concept regardless
of the variation in center of gravity location.

The date from reference 28 were used to detemmine the location of the
iliac crest. BSubject number 11 froam this reference was selected as comparable
to a 5th percentile subject by comparing certain vital dimensions to the
eriteria for 5th percentile given in "Anthropometry of Flying Personnel -
1950" reference 29,
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Reference 28 Reference 29

Weight 132.6 pounds 132.5 pounds
Sitting Height 33.3 inches 33.8 inches
Stature 62.7 inches 65.2 inches

Subject number 2 from reference 28 was selected as camparable to a 95th
percentile subJject because of the following comparlson:

Reference 28 Reference 29
Weight 203.2 pounds 200.8 pounds
Sitting Helght 38.0 inches 38.0 inches
Stature 73.3 inches T3.1 inches

The iliac crest was assumed to be positioned at a distance equal to one-
half the walst depth from the backline (back rest) and located from the top of
the subject's head which is placed relstive to the eye reference point. Uti-
lizing the measurements of reference 28, the 5th percentile subject iliac
crest is 3.9 inches from the backline and 28.3 inches below the top of the
head. For the 95th percentile subject, the iliac crest is 4.95 inches from
the backline and 31.8 inches below the top of the head. The eye 1s 10 inches
forward of the backline and 4.2 inches below the top of the head; <therefore
in the geat reference coordinate system the iliac crest is located from the
eye as follows: 5th percentile 2 = 24,1 inches, X = -6.10 inches; and 95th
percentile Z = -27,6 inches, X = -5,05 inches.

For System A the CG's (Table I) were positioned relative to an origin 2.5
inches below the seat reference point neutral. (Refer to figure 33.) The eye
polnt and the iliac crests for the 5th and 95th percentile occcupants were
plotted and connected by lines. An arc of 12 Inches radius was drawn from
each CG location intersecting the corresponding iliac crest to eye line.

Point (A) was selected as the midpoint of the resulting locus of points.

For System B the coordinate system 1s releted to the rails and is measur-
ed vertically from the lower roller along the centerline of the rails and
horizontally nommal to the centerline of the rails. (Refer to figure 34.)

The rails are canted 16 degrees back of vertical, the seat back angle is 13
degrees and the seat reference point neutrel is located 6.25 inches sbove the
lower roller and 5,125 inches forward of the rall centerline. The eye is
located 10 inches forward of the backline and 31 inches vertically above the
geat reference point neutral.

The 5th and 95th percentile ilimc crest to eye lines were drawn as for
System A, Center of gravity locations were plotied for the four conditions:
5th percentile with booms stowed; 5th percentile with booms extended; 95th
percentile with booms stowed; and 95th percentlle with booms extended, The 12
inch radli were drawn from each CG loeation. For each of the 95th percentile
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FIGURE 33 - POINT (A) SELECTION FOR SYSTEM A
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FIGURE 34 - POINT (A) SELRCTION FOR SYSTEM B
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CG locatlons two intersection points developed and, contrary to the rule that
the distance from the iliac crest to point (A) should be & minimum, only the
upper points were considered so that a locus of points consistent with the 5th
percentile (A) points would be utilized.

For System C the coordinate system wae related to the aircraft system
with the 7 coordinate measured vertically from the eye location and X glven as
a fuselage station. The eye position, 5th and 95th percentile CG'as and iliac
crests were plotted in figure 35. Lines were drawn between the iliac erests
and the pilot's eye and a median point (A) was established.

For System D the eye location was estimated fram reference 30 to be fuse-
lage station 233.9 and water line 124.45. The S5th and 95th percentile centers
of gravity, eye and iliac crests were plotted in figure 36 and the locations
of point (A) were found by drawing arcs of 12 inch radius about the centers of
gravity. The selected point (A) for System D was the midpoint of these two
locations.

The locating dimensions (in system coordinates) for components used in
the determination of point (A) are listed in table VI together with positions
of the selected points (A) in the computer coordinate system. The selected
points are shown in relationship to the human body in figure 37.

D Acceleration Limits

For the analysis, four output parsmeters are considered: Acceleration of
arbitrary point (G); Angle Theta as regards "G" force of arbitrary point
(degrees); Angle Psi as regards "G" force at arbitrary point (degrees); and
Angle Phi as regards "G" force at arbitrary point (degrees). For all three-
degree-of-freedan runs only the first two parsmeters are generated. All four
items are produced for each six-degree~-of-freedom run. This information is
shown graphically in figure 38.

Two sets of ellipscids establish the limits of human toleresnce to accel-
eration. (Reference 27.) The selection of ellipsoid set 1s based upon the
orientation of the acceleration resultant., If angle Theta is positive, the
ellipsoid set is defined by axes A = 2G¥; B = 2Gy; and C3 = 2(+Gyz). When
angle Theta is negative, the ellipsoid set 1s defined by the axes A = 2Gy;

B = 2Gy; and Cp = 2(-Gz). Fifty-six ellipscids are used to analyze the pro-
gram output data and the acceleration tolerances at 28 time durations are
applied,

Bquations of ellipsold, X°/A2+Y2/B2+72/C2 = 1, are appropriate where A,
B and C (and Cl) are the axes of the 56 known ellipsoids and X, Y and Z are
the velues of the calculated axes. The limit ellipsoid data for the program
are listed in table VII.

The coordinate system for the orlentation of the resultant acceleration

is related to the human spinal axis which 1s 13 degrees aft of escape body
vertical for all four concepts.
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During the time from ejection initiation to 0.5 seconds past rocket burn-
out or second drag chute deployment whichever occurs last, the acceleration is
checked at intervals of .02 seconds. The 56 tolerance ellipsoids are checked
at each time step. This procedure analyzes the output data for acceleration
versus duration.

C. Acceleration Rate of Onset Limita

The output is analyzed for rate-of-onset of acceleration by the ANAIZ
computer program. The tolerance limit egain is defined by two ellipscids;
vhen the resultant acceleration is orlentated in the upper hemisphere (angle
Theta positive), the ellipsoid is

2
§+§+%=1 (23)
Where:
A= ((+6x) + (-Gy)) = {(2000) + (1000}) = 2000 G/sec (24)
B = ((+Gy) + (~Gy)) = ((300) + (300)) = 600 G/sec (25)
¢ = ((2)(+cz)) = ((2)(300)) = 600 G/sec (26)

When the resultant acceleration is orientated in the lower hemisphere
(angle Theta negative), the ellipsoid is

X? Y2 2
A—-2+-B-§+%a—")—2 =1 (27)
Where: ‘
A = ((+Gy) + (~0x)) = ({2000) + (1000)) = 2000 G/sec (28)
B = ((+6y) + (-Gy)) = ((300) + (300)) = 600 G/sec
c'= ((2)(-62)) = ((2)(200)) = Lo0 G/sec

The three planea of the resultant tolerance limit to rate-of-onset of
acceleration are depicted by figures 39, 40, and 41,

During the time from ejection initiation to 0.5 seconds past rocket burn-
out or second drag chute deployment, whichever occurs last, the rate-of-onset
is checked at intervals of .02 seconds. One of the two tolerance ellipsoids
is checked at each time step. ‘
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3. SAFE EMERGENCY ALTITUDE ANALYSIS (SEA)

In the Appendix are graphs of Safe Emergency Altitude (SEA) versus 16
escape system conditions for each of four systems for the 208 aircraft flight
cases. Cross plots of these graphs, figures L2 through 97, show the SEA ver-
sus various initisl eircraft attitudes, rotation rates, flight path angles,
and ejection reaction times. On the cross plots, the highest SEA for each
escape system condition in a given aireraft case dlctates that system's
plotted positlon.

Figures 42 through 45 sghow, for all systems, SEA versus aircraft angle of
attack ( @ ) for aireraft zero velocity, while figures 46 through L9 present
SEA versus aireraft angle of roll (@) for zero velocity. It cen be seen that
where O is the only variable, System D has both the lowest SEA, -230 feet at
& = 15°, and the highest SEA, 1400 feet at & = =90°. Where ¢ ip the only
variable, System D has the lowest SEA, zero feet at @ = zero degree, and
System C the highest, 1300 feet at ¢ = 180 degrees.

SEA are plotted versus @ for aircraft flight path angle { ¥ ) of 10,
<10, =30 and -60 degrees and for true velocity (V) = 100 knots, in figures 50
through 53. For these combinations, System D has the lowest SEA, ~500 feet
at ¥ = 10°, and & = 15°, and also the highest, 2300 feet at ¥ = -60° and
o = zero degree. '

In figures 54 through 57, SEA are plotted versus o for pitching velocity
{q) of zero, 30 and 90 9/sec. System C shows the lowest SEA, -200 feet at
O = zero degree and q = zero °/sec, while System D shows the highest, 1450
feet at o =-90° and q = 90 °/sec.

Figures 58 through 69 plot SEA versus Y for combinations of ¢ = 15,
-15 and -90 degrees; q = zero, 30 and 90 ?/sec, aircraft rolling velocity (p)
of 60 and 180 °/sec, and aircraft angle of roll (@) of 30, 60, 90 and 180
degrees. For conditions of & = 15°, q = zero %/sec and p = 60 ©/sec,
System B has the lowest SEA, 100 feet at ¥ = zero degrees and ¢ = 90, while
System D ha.g the highest, 2100 feet at ¥ = -900 and ¢ = 300. For conditions
of & = -15", q = 30 0/sec: and p = 60 0/s;ec-., the system having the lowest SEA
is D with 220 feet at Y = zero degrees and ¢ = 180 dggrees s and again System
D with the highest, 2100 feet at ¥ = -90° and @ = 90°. For conditions of
o = -90°, q =90 °/sec and p = 180 °/sec, System B has the lowest SEA, 475
feet at ¥ = -30° and @ = 90°, and System C has the highest, 1950 feet at
? = -90° and @ = 60°.

The influences of ¢ and p on SEA are demonstrated in figures 70 through
73, which plot SEA versus ¥ for cambinations of ¢ = 90 and 180 degrees, and
p = 60 and 180 ©/sec, while the effects of ¢ and q are shown by figures Tk
through 77 for combinations of @ = 90 and ~90 degrees and g = 30 and 90 9/sec.
Where @ and p are the variables, both Systems C and D have the lowest SEA at
the seme condition, 50 feet at ¥ = zero degrees, @ = 180° and p = 60 o/sec.
The highest SEA value is for System D with 2350 feet at ¥ = -90%, @ = 180°
and p = 180 °/sec. The lowest SEA with the veriables of ® and q ig that of
System C, - 350 feet at ¥ = 10°%, q = 30 /sec and @ = -90°, while the
highest is of System D with 2200 feet at ¥ = -90%, g = 90 ©/gec and @ = 90°.
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SAFE EMERGENCY ALTITUDE - FEET x 10°
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FIGURE 42-SYSTEM A SAFE EMERGENCY ALTTTUDE VERSUS Of
(¥ = ZERO DEG; q = ZERO DEG/SEC; V = ZERO KN)
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Figures 78 through 81 show SEA versus ¥ for combinations of aircraft yaw
angle ( W) of zero, 15 and 45 degrees and aircraft yawing velocity (r) = zero
and 90 °/sec for the four systems., Systems C and D sgain show the lowest SEA
value, -175 feet at conditions of ¥ = zero degree, W = 1592 and r = zero
°/sec for System D. The highest SEA ig demanded by System D under conditions
of ¥ = -90°, W = zero degree and r = zero 9/sec.

Figures 82 through 85 show SEA versus ¥ for V = 100 knots and = 15°
and cambinations of & and ¢, for which System D has both the lowest snd high-
est SEA. The lowest is -220 feet at ¥ = zero degree, o = 15° and @ = 30°
and the highest at ¥ = -90°, ¢ = 15° and ¢ = 90°.

Figures 86 through 89 refer to SEA versus ¢ with?¥ = zero, -10 and -30
degrees and V = 100 knots. System C has the lowest SEA, -200 feet at ¢ - zero

degree and Y = zero degree, and System D has the highest, 1900 feet at ¢ =
180° and ¥ = -30°.

It can be seen from the example and a review of the figures, that Systems
C and D usually form the extremes of SEA while Systems A and B nomally fall
between those extremes.

Figures 90 and 91 show for the various rotation rate sets, the percentage
of matrix conditions for which each system produces the highest safe recovery
height. For V = zerc knots, System D produces the highest safe recovery
height most often for pitch and System A, for roll., At V = 100 knots, System
D remains highest for pitch; System C, for yaw and System A for roll, combined
pitch and roll, and combined pitch, roll and yaw. At V = 800 knots, System C
has the greatest percentage of highest SEA in roll, the only alreraft attitude
rerturbation studied at this velocity.

Figures 92, 93 and 9% show the SEA differentials due to the 0.8-second
humen reaction delsy for ¥ = zero, =10 and -90°. (Escape system conditions 1
through 8 reflect a reaction time of 2.4 seconds and conditions 9 through 16,
3.2 seconds.) If it is assumed that this same 0.8 second differential is the
delay between the ejection of the first crew member in a multiplace aircraft
and the ejection of the last crew member, the additional height demanded msy
be determined so that the latter may be safely recovered. These and other
data show for System A that the safe emergency altitude must be raised 68 feet
at ¥ = -30° and 138 feet at VY = -90° to allow for the last crew member at
100 knots velocity. If the emergency should occur while the alreraft is roll-
ing from an initial inverted attitude, the additlonal height necessary is of
course a factor of the roll rate; if p = 60 °/sec, 43 feet are reguired; if
p = 180 9/sec, 223 feet.

Figures 95, 96 and 97 show the influence of welght, thrust offset and
impulse on SEA for Systems A through D at velocities of zero, 100 and 800
knote. The aircraft condition is in all cases upright in horizontal Tlight,
Flgure 95, welght influence on SEA, shows the additional altitude required
between the minlimum maximum weights. The influence of thrust offset is illus~-
trated in figure 96, which has offset the varisble ss a function of weight and
impulee. Impulse as & function of weight and offset is shown in figure 97.

In the three figures there is a marked change in trend especially at 800
knots, due to the aerodynamic characteristics of the escape body.
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L,  ACCELERATION ANALYSIS

The crew member's tolerance to acceleration is keyed to Point (A) which
is chosen as described under heading V.2. For the four system concepts,
figures 98 through 101 provide correlation of Point (A} total acceleration
magnitudes with increasing veloclties, with defined influences of rolling and
pitching rates.

a. Accelerstion Magnitude Limitations

The small effect of adding rolling velocity as high as 1800/sec to an
initially rotationless aircraft is shown by comparison of figure 101, with
rolling, to figure 99 which lacks rotation about any axis. Conversely, with
the exception of System D, above 300 knots velocity the imposition of 180%/sec
roll upon the escape body pltching positively at 90°/sec produces a salutary
acceleration-reducing influence, referring to figures 98 and 100. System D
demonstrates a small increase in "G" as rolling is added to the pitching body.

As indicated by figures 98 and 99, the introduction of positive pitching
ontc the previously rotationless aircraft markedly augments acceleration above
a velocity of 300 knots for systems excepting D for which the Increase occurs
above 450 knots.

Alreraft true speeds (knots, 10,000 feet altitude) above which total
acceleration at Point (A) appreciably exceeds human tolerance are shown below
for each system:

Q Q

sac gec A B C D

0 0 550 700 T00 800
180 0 550 700 700 800

0 90 350 375 Loo 600
180 90 450 600 600 650

Since yawing produces acceleration patterns similar to those of pitching,
but lateral acceleratlion is generally less tolerable than vertical or longi-
tudinal, allowable airspeed must be reduced for cases which generate suffici-
ent alrecraft yaw to impose dominant side loads on the escape body at high
dynamic pressure. Nevertheless, it may be deduced that all four systems are
adequate, from an acceleration standpoint, below 300 knots alrcraft velocity
throughout the matrix.

Point {A) maximum total acceleration relationships to propulsion impulse
and thrust offset in ejection phases I and III are presented in figures 102
through 106. Weight changes within the matrix limits are roughly equivalent
to the inverse of impulse variations. FPhasge I meximum accelerations for
Systems A and B, as may be expected, vary almost directly with impulse (in
this circuustence, thrust), as demonstrated by figure 102. The effects of
impulse variations on all systems in Phase III are illustrated in figures 103
and 104 which indicate expected trends.
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The influence of propulsion rocket thrust offset on maximum acceleration
magnitude is discernable solely in System A, and then only at airspeeds below
500 knots. FRotations imposed by matrix thrust offsets are insufficlent to
genergZe significant total acceleration increments, ag shown in figures 105
and 106.

b. Acceleration Rates of Onset

Within the investigated matrix representing the likely range of maneuvers
of VIOL and conventional aireraft at low altitude, the following generaliza-
tions emerge: '

1. BSystems A and B can be expected to exceed acceleration onset limits
in Phase II (tip-off as escape body rotates about lower roller
moving pivot) during ejection at airspeeds above 200 KEAS, and
sometimes to exceed onset limits in Phase II1 at TOO KEAS and
ahove.

2, Systems C and D, if aerodynsmically stable, remain within cnset
limite at airspeeds up to 800 KEAS.

3. Equivalent airspeed, manifested by dynemic pressure, 1s the
dominent factor in onset values.
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5. DISCUSSION

The two previous sections described the analyses of the computer program
output data for definition of safe emergency altitudes and acceleration limits
of the four crew escape concepts. These analyses yielded data useful in dis-
cussion of several aspects of escape under adverse flight conditions. (Refer
to figure 21,)

It should be borne in mind that the objective of this analysis is not the
comparing of four escape concepts, but rather the defining of capabillities and
limitatlons of four representative systems to each of which are arbitrarily
attributed certain features with equally arbitrary performences. thereby
granting, or withholding, an advantage during low-altitude escape. The single
common denominator 1s equelity of the safe emergency altitude for each escape
concept at zero altitude, zerc alraspeed, mircraft upright and statie. Signi-
ficantly, all systems are improvable within the current art.

Further, no attempt has been made to integrate matrix cases into aircraft
mission profiles by assigning relative frequencies of expected occurrence.
Bach aircraft maneuver case, however exotic or commonplace, carries equal
welght.

A very minor limitation in the computer analysis should be noted. Even
though the frequency of calculation, resulting in computation intervals ae
small as 0.002 second, is progremmed to increase as rates of change increasge,
same lag in generation of end velues 1s inherent but of no real consequence.

a. Escape Concept Capabilities and Limitatlons

In determining the limitetions and capabillities of the four escape con-
cepts, stringent combinatlons of escape system configuration paremeters are
considered in crder to arrive at conservative conclusions. Sixteen combina-
tions of escape system minimum and maximum initiation time, propulsion
impulse, thrust misalignment and escape body weight are included in the in-
vestigation matrix. The conservative establislment of operational boundaries
for each system concept is performed by selection of the maximum safe
emergency altitude (SEA) from each set of 16 system conditions for the 208
adverse flight cases.

The Appendix contains cross plots of SEA versus system conditions for all
of the 208 flight cases. The immediate discussion is restricted to the zero-
to-100-knot, level and descending flight veloclity range most important to crew
egcape in VI0OLi and conventional tekeoff and landing situations.

Limitations for System A, the open ejectlon seat, vary from an SEA of
-160 feet under VTOL emergency flight condition of zero knots and angle of
attack of O° to an SEA of 1450 feet at an sircraft perfomance point of 100
knets at -90° angle of attack and -90 dive., This defines the total range
of minimal altitudes at which the zero and 100 knot, level and diving flight
matrix of aireraft maneuvers, both fevorable and unfavorable, may be accom~
panied by emergencies requiring and resulting in System A safe escape despite
the most adverse combinstion of variable initiation time, impulse, offset and
welight.
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System B, the encapsulated seat, hes & minimal SEA of -229 feet at 100
imots at 90° roll, 15° angle of attack and 60°/sec roll rate, and the upper
SEA is 1630 feet at the aircraft case of 100 knots, angle of attack of -90°
and -90° dive.

System C, the inset cabin capsule concept, encounters a great spread in
SEA extremes in that the lower SEA is =502 feet mt aireraft velocity of 100
knots at 152 angle of attack and +10° dive, and 2103 feet altitude is re-
quired at flight conditions of 100 knots, angle of attack of -90° and -90°
dive.,

The nose capsule, System D, exceeds the SEA limits of the other concepts
studied. This system has = minimal SEA of -875 feet at 30°/sec pitch rate,
and an upper SEA of 2287 feet in the case of 100 knots and -90° dive.

b. Improvement Fotentlals for Escape Concepts

The capabilities of the limited escape system concepts subjected to the
computerized anslysis may be improved by several feasible methods without ex-
ceeding humsn acceleraticn tolerances. Methodology may lnclude utilization
of forced parachute deployment, aneroid timers for parachute mode selectionm,
varisble propulsion burn times, and attitude and position control.

Forced parachute deployment by mortar and forced opening by radially
fired slugs are current methods which have the advantage of projecting the
parachute to full stretch of the shroud lines and quickly developing the
canopy skirt, thus shortening the required time and distsnce to fully open.
Forced deployment is especially advantageous during a low speed, low altltude,
high-gink-rate ejection where the trajectory ie short and the distance re-
quired to open the unsided parachute exceeds that avallable.

Employment of en eircraft speed sensor and aneroid timer increases the
low-altitude capability of all of the escape concepts by sutomatically select-
ing & parachute deployment mode to match the altitude and veloclity encountered
et the time of ejection. This deviece assures that the parachute subsystem
structural capacity is not compromised by high dynamic pressure, yet deploys
the parachute as rapidly as possible to promote satisfactory operatlon under
low altitude conditions. '

Propulsion rocket burn time of course may be augmented without reducing
the present thrust level, by increasing the specific impulse or amount of pro=-
pellant. Application of a longer burntime is advantageous only if the escape
body retains an upward thrust vector.

The low altitude escape performance from &n aircraft in adverse attitude
or experiencing rapid attitude changes may be increased through control which
aggures proper orlentetlon of the escape body thrust vector. The rate, hence
the acceleration, with which this orientation can be imposed upon the body
governs what useful thrust remains for prolongation of the escape trajectory.
An inverted aircraft attitude combined with low altitude 1lmposes severe
penaltiers upon the escape system since under these circumstances the height
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must be sufficient to allow for the propelled descent, the distance required
for full deployment of the recovery parachute, and reduction of the descent
veloceity to safe touch-down velues. In the inverted case, it lg desirable to
limit the expenditure of propellant to that necessary only for sepsration from
the aircraft, because any additional thrust consumes valuable altitude. A
gyro=-controlled rocket mode selector could sccomplish this improvement.

To further increase capabllities in the inverted flight envelope, it is
possible to apply & maximal amount of escape rocket impulse in extending the
trajectory. As long as the rocket vector is orientated toward the upper hemi-
sphere, the thrust augments the low altitude performance; the rocket thrust
may be interrupted, after adequate separation from the aireraft, in coordina-
tion with an automatically induced roll to maximize lmpulse utilization.
Addition of a gyro-governed roll rocket is useful to produce the most advanta-
geous rate of change in the roll attitude.

c. Further Exploration of Low Altitude Escape

The analyzed escape concepts are dellberately limited in sophistication
80 that basicelly characteristic date may be developed for each. The applica-
tion of various methods of stability control, forceable parachute deployment
and thrust vector orientation should be further considered. Investigetion of
attitude sensors and vernlier rockets under adverse attltude conditions would
yield valusble data on the desirabllity of these devices. Additional types of
escape systems, such as those incorporating s tractor rocket, selectable-
direction ejection and high glide ratios, should be anslyzed in an attempt to
improve low-altitude escape.

d. Critical Problem Areas of the Attitude Profile

Those combinations of alrcraft conditions which result in the initiation
of ejection when the propulsion thrust vector is directed below the horizon
present & great barrler to the successful culmination of the escape.

Variables which generate attitudes detrimental to escape are unlimited;
however of particular concern is the rate with which aircraft attitudes can
change. An otherwise compatlble aireraft attitude at the instant of separa-
tion may be compromised by the applieation of forces and moments due to air-
ceraft rotational velocities and accelerations. A nose down pltch rate
inevitably increases the rate of sink of the escape body located forward of
the aircraft CG.

Analysis of aircraft cases of identicel velocity and flight path angle
but of upright versus inverted roll attitude demonstrates differences in
altitude required for safe ejection., System A requires 650 feet of additional
altitude for ejection from an inverted rotationless alircraft at 100 knots
velocity, System B needs 700 additional feet, System C 1400 feet and System D
1300 feet.
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e. Important Parsmeters Affecting Low Altitude Escape

If egcape syztem cheracteristics alone are considered, the most important
to low altitude escape is the distance required for recovery parachute opening.
The besis for opening distance is the assumption, that the development of a
parachute canopy is a function of the parachute construction geometry and
dlameter and of the distance traveled by the escape body following parachute
initiation; that is, a parachute of given style and diameter will open in a
distance governed by a specified multiple of that dismeter. Test data prove
this assumption to be sufficiently accurate. 8Since each of the four escape
concepts incorporates a different style and dlameter of parachute, flgures 7T
through 9, each escape body must travel a different dlstance to achleve full
opening. As an exsmple, System D with a Tl.5-foot diameter ring slot para-
chute requires over three times the total opening distance of System A with a
28-foot flat circular parachute, This style~-dismeter-distance relationship is
the reason for selection of multiple amaller rather than single large para-
chutes for heavy escape bodies., The importance of parachuts performance is
manifested by the usual design necesslity of matching auxiliary components,
such as escape propulsion and anercid-timer-dynamic pressure selection devices,
40 the parachute rather than the reverse procedure.

Within the investigated ranges of propulsion impulse, thrust misallgnment
and escape body weights, the thrust-CG offset has the greatest influence of
the three on low-altitude escape trajectories. Offset-generated attitude
excursions of bodies with fixed thrust vectors can be seriously detrimental
because of the losa of optimally directed thrust.

No aingle physlcal parameter of the escape envircnment is more signifi-
cant than ailreraft flight path angle, or sink rate, at the instant of ejlection.
For a rotationless upright aircraft st 100 knots, the all-gystem asverage safe
emergency altitude for 10° climb 1s -230 feet, for horizontal flight is O feet,
for 100 dive 180 feet, for 30° dive 650 feet, and for ~90° dive 1500 feet.

Nevertheless, the lmportance of timely initiatlon of the escape system is
parsmount among factors governing the success of low-altitude escape., The
decision to eject, whether accomplished by the pllot or by electro-mechanical
sensor, must be implementable at the instant which ylelds optimal result.
While this instant ia usually the earliest possible, a rapidly rotating air-
craft at very low altitude may demend selection of a favorable aireraft
attitude at some later time to assure projection of the escape body away from,
rather than toward, the ground.

f. Role of Stability in Escspe System Performance

Pagsive or foreceful stabilization of an escape body during the ejlection
is esaential to success because of the pronounced effect upon the trajectory
height and the accelerstlons encountered. Rotational rates and accelerations
due to instability can cause excessive total accelerations to be imparted to
the man beyond acceptable limits. Accelerations thus generated need not them-
selves directly produce fatallitiea since acceleration-induced incapacitation
of the escaping crew member may result in the seme end.
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The four basic eacape concepts of this analysis are limited systems in
that all include features which provide passive but not forceful stabiliza-
tion. The type and amount of stability contrel provided depends upon the
degree of improvement in the escape system performance which is desired. Two
methods of foreceful stability control, DART and STAPAC, are discussed in
Section IV. The DART system furnishrs control of the pitch and roll attitude
while the STAPAC system can be applied to attenuate pltch, roll or yaw. These
controls improve escape system operation by minimizing perturbations in the
orientation of the thrust vector.
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APPENDIX

SAFE EMERGENCY ALTITUDE CROSS PLOTS

This Appendix consists of 208 graphs of Safe Emergency Altitude versus
16 escape system conditions for System A through D. Each of the 208 graphs
pertains to a specific sircraft flight case described by figure 21.
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