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QUADRATIC MATRIX EQUATIONS FOR DETERMINING VIBRATION MODES AND
FREQUENCIES OF CONTINUQUS ELASTIC SYSTEMS
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The mathematical idealization of vibrating continuous elastic systems
into discrete element systems, as used in matrix analysis, leads fo the
equation of motion in the form of an infinite matrix series whose co-
efficients involve ascending powers of the frequency. The equation of
motion of the idealized discrete system is of the form
(A-w® B-w'C-...) q=0 where the matrices A,B,C... depend on
the inertia and stiffness properties of the system,w is the circular
frequency, and q is the column natrix of discrete displacements,
The conventional analysis uses only the first two terms of the atrix
series and it leads to the characteristic equation of the form |A ~ w" B[ =
0. If the next higher order term is retzained, then the equation of motion
is a quadratic matrix equation in w and the characteristic equation
becomes |A - w'B-w'C | = 0. The formulation of the guadratic ma-
trix equation of motion and its solution are discussed. Details of the
method are presented for structures made up from bar and beam ele-
ments. Some typical numerical examples of the method are presented,
including a comparison with the conventional eigenvalue solutions to
demonstrate the considerable improvement in accuracy of the calcu-
lated vibration modes and frequencies when the term with frequency to
the fourth power is retained in the equation of motion for the vibrating
elastic system,

GENERAL THEORY

The essential feature of the matrix methods of structural analysis is that a continucus
elastic system can be represented by an equivalent discrete element system having a finite
number of degrees of freedom. In the discrete system ihe displacements are specified at
points selected arbitrarily on the actual structure, and these displacements are then used
to determine the equivalent elastic properties of the discrete element model representing the
continuous system (see Figure 1) For static problems the determination of the equivalent
elastic properties no special difficulty. The displacements v = w (x,y,2) in the continuous sys-
tem can be related to a finite number of displacements selected on the structure. This re-
lationship may be expressed by the matrix equation

u = au tn
where
u:{uxuyuz} (2)
represents displicements in the directions of x,y, and z axes,
v={uu,uy) )

vepresenls u column matrix of the N specified displacements and @ is a rectangular matrix
‘whooe cocfficients are functious of x,y,7. Naturally such a relationship is only applicable o
iincar <vsiems. When the upolied loads are time-dependent, no such simple relationship ig
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exactly possible since the displacements u, being dependent on the previous history of the
applied loading, can no longer be related to the instantaneous values of U; however, if a
large number of displacements Uare considered then the static relationship w=al is a
good approximation provided Y is determined from the equations of motion of the system.
For harmonic vibrations the form of Equation 1 is preserved except that the coefficients in @
depend also on the frequency of vibrations (Reference 1).

Equation 1 can be used to obtain the total strain-displacement relationship

e = bU {4)

where the coefficients in b are derived by differentiation of the matrix a. If virtual displace~
ments Sy are imposed on the continucus system (see Figure 2), it follows from the Principle
of Virtual Work and d’ Alembert's principle that

T - hg ;T Tp _ T
'[;81 adV-LSU¢dS+LSUXdV+8UP j;psu ugyv (5)

where 3€ are the virtual strains corresponding to Su and the remaining symbols are
defined below:-

o= {0' x Tx " Ty }, stresses (6}
® - {Cbxcby CPZ} , surface forces (7)
X = {xx X, xz}, body fcrces i8)
P = {F; Ry« Pn} » external forces ( or moments) (9}
corresponding to the dispiacements U
[ '{iix i.]y U, } , accelerations (10}
and
P = plx,y,2), density on

Using Equation 1 it follows also that
= adu 12}

and
U =9U (13)

Furthermore, since virtual displacements are taken at constant temperature, the virtual
strains can be determined from Equation 4, Hence

3¢= Se¢ =bSuU (14)
The stresses 0 are related to the total strains e through the generalized Hooke’s law

o :=Ce + cT aT {15)
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where the coefficients in € and Cy depend on elastic constants, a is the coefficient of
thermal expansion and T is the temperature change.

Subﬁ,tity}tion of Equations 12Tthroggh 15 into E ai.:'jon 5 leads to T
ISU b Cb 4v +f3U bCTaTdV-'-fSU a®ys + ISU a X4y
s v

v v {i6)

+8UP - psuTa’al av

Since the virtual displacements SU are arbitrary Equation 16 Vwill be satisfied provided

MU + KU = P _becTaT dv +fS o’ ® gs +L°Txdv un
v

where

_ T
M-j;paudv {18)

represents the mass matrix of the equivalent discrete system
and

T
K-LbChdv (19}

is the stiffness matrix for the displacements U. Eguation 17 represents matrix equation
of motion of the equivalent discrete system. The first term on the right hand side of Equation
17 is the column matrix of external forces in the directions of U ; the second term represents
equivalent concentrated forces due to some specified temperature distribution; the third and
fourth terms represent equivalent concentrated forces due to surface forces and body forces,
respectively. Thus, Egquation 17 serves not only to determine the discrete system inertiz und
stiffness properties but also to convert distributed loading into one consisting of discrete
forces.

QUADRATIC EQUATIONS OF MOTION FOR A VIBRATING SYSTEM
For a harmonically vibrating system Equation 1 may be written as

Wix,y,z,t) = @lx,y,z;w) U(t) (20)

with
Uty) = qe ‘@t 2n

where w is the cireular frequency and q represents a column matrix of amplitudes of the

displacements U, The corresponding strains are then calculated from
ol x,y,z,¢ )='bix,y,z;w)U(tJ (22)

Thus both @ and b are dependent here on the frequency w.

From Equation 21 it follows immediately that

U = ~w2qei“” ST {23)

781



AFFDL-TR-66~80

Substituting therefore Equations 21 and 23 into Equation 17 with its right~hand side equal to
zero (no external loading present) and then cancelling the exponential factor elwt, one obtains
(-w’M +Kiq = 0 (24)

Equat;on 24 has nonzero solution for q provided that the determinant formed by the coefficients
of (-w” M +K) is equal to zero, i.e. '

| —w?M +K 1 =0 (25)

It should, however, be noted that both M and K are now dependent on the frequency w. Thus
no direct eigenvalue solution is possible for Equation 24, but this situation can be remedied
if the matrix @ is expanded into an infinite series in ascending powers of w. It will be assumed
that

w

a = ) w'a ; (26)

rzo '

such that @, =0 for r 21 at the points where U displacements are specified; thus a, will

represent static displacements due to unit values of U, It follows therefore that the matrix
b can also be expanded into a similar series, i.e.

g r
b = Y b, (27)
r=o

It will be demonstrated later that when the series 26 and 27 are derived and substituted into
Equations 18 and 19, then the mass and stiffness matrices are of the form

- 2 - a -
M = M°+ w Mz + {28)
and

K = Ko +w'K, + (29)

M, is the mass matrix based on static displacements while M, is the first term in the
expansion for M depending on w, Similarly, K¢y is the stiffness matrix based on static dis-
placements and K, is the first frequency dependent term in K. Substitution of Equations 28
and 29 into Equations 24 and 25 leads to the equation of motion

(K, - oM - w'M, - K - 1g = 0 (30)

and the characteristic equation

Ky - oMy -w* (M, -K,} -] = 0 (30
For practical ealculations, it appears that there is no need to go beyond the term with
w' anu  consequently only quadratic equations of the form

(A - w’B - w')q = o {300)
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and the characteristic determinants

| & - w®B -w®C | = 0 (3ia)

will be considered in subsequent analysis,

The expansions of M and K for a single siructural element lend themselves to the standard
congruent transformation procedures for assembling the total mass and stiffness matrices.
If there are any actual concentrated masses present, these are simply added to the correspond-
ing diagonal terms in M.

EQUIVALENT MASS AND STIFFNESS MATRICES FOR BAR ELEMENTS

The equation of motion for a bar element (see Figure 3) is given by

2 dzu
= —liy = O (32)
dx
where
¢® = E/p (33)

and E is the Young’s modulus, Assuming the solution of Equation 32 to be of the form

u, = 0U = aqge'®! (34)
with
- jwt
v = {uu,}={aa}e (35)
it can be demonstrated that
a = [( cos wa/c - cot wh/c sin wx /¢l cosec wh/c sin wx/c)] (36)

where £ is the length of the bar element. The straine for this case is determined from

. da
e = dx - X U (37)

Hence

o
n

da/ dx
(38)

= [— -;:‘-‘-"-(sin wx/c + cot wé/c cos wx/c)%’—(cosec whrc cos wx/c)]

Substituting Equations 36 and 38 into Equations18 and 19 and then integrating over the whole
volume of the element one obtains
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(%ﬂ—cosec%&—cosm—g—ltt-—%cot wg—)
(1 --“élcot—"‘::—ﬂ )(%cosec%—-—cos w%)
(%g-cosec%ﬂ*-cos—“é—&)“(l+%p'—cotw-%-—)

K = —g%%gcosec—ué—lw (40)
-0 +-“E'=c— cot il’C-‘-‘!H--“‘-i-:-‘g-c:ose:::—‘-"—z:-g- + cos w -g'-}

where the symbol A has been introduced to represent the cross-sectional area of the bar
element. The coefficients in matrices M and K are here functions of the circular frequency w.
Since the frequency is unknown initially these matrices cannot be evaluated numerically.
Each coefficient in Equations 39 and 40 could be expanded into a series in ascending powers
of w in order to formulate matrix expressions of the form given by Equations 28 and 29,
Although this method has been tried out, it is not recommended since the formal way described
below is more expedient,

Using Equation 26 the displacements Uy in a vibrating bar element are given by

fes) .
u, = (Y w'a,) qe'?! {(41)
r=o
Substituting Equation 41 into equation of motion 32
o.4] . o0 .
S Y w'a) ge'®t + 2 Y w'olqe'@ = o (42)
r=0 r=o

where primes denote differentiation with respect to x. Equating to zero coefficients of the
same powers of W in Equation 42, the following equations are obtained:

a, = 0O (43)
a, = O {(44)
c? a, = -a, {45)
c? a; = —4a, efc 48)

Fawitons 43 twough 45 ean be integrated directly. Only the first matrix term a, ig used
W -atisfy (he boundary conditions that ugx = Up at x =0 anduy = Us at x = £, while the re-
Planing terms 05, ©4, ¢y . . . must all vanish at x = 0 and £. Hence
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a, = [(1-€1€]; &= xse (47)
g, = 0 (48
a, = L[(a{—seh gg -6 (49)
2~ Pl

a, = O etc (50}

The matrix @, represenis the static displacement distribution due to unit values of the bar
and displacements Uy and Us.

The strains in the bar element can be calculated from

3 ® . : @ ,
e = a‘:x = (Y wrur ) qelwf ) wrbr) qe'“” (51
' r=o r=o0
Hence
_ dog I
bo * I T["l |] (52}
da, _
bl = ry = 0 (53)
_ gg; _ ¥ Arrs 2 _ 2
b, = 5o = pBE[(Z 6 +3E (1 - 3¢7)| (54)
do
b3 = "a"li = 0 etc (55)

Using Equations 18, 26 and Equations 47 through 50 it can be shown that

; Aj! 2 |
M, - p-—e“[l 2] (586)

o

and
31 78
M = 20t Ak (57)
2 45E 78 |
Similarly, Equations 19, 27 and Equations 52 through 55 lead to
(I
K = AE (58)
0
£\
311 7/8
_ 2 Al
K, = p a5 \;?/8 \ {59)

o 785



AFFDL-TR-66-§0
The matrices M, and K, can be recognized as the equivalent mass and stiffness derived
from the static displacement distribution.

EQUIVALENT MASS AND STIFFNESS MATRICES FOR BEAM ELEMENTS

The equation of motion of a beam element (see Figure 4) in the transverse direction is

given by 4
. Ou .
¢ El +uy =0 {60)
where
¢ = EI/pa (6

and I is the moment of inertia of the beam cross-section. For simplicity of presentation
shear deformations will be neglected, but if required these can be accounted for without any
special difficulties. In addition to the transverse displacements uy the beam element under-
going transverse vibrations will have displacements ux which in accordance with Engineering
Bending theory can be calculated from

du 0uy
u*="a—xy =-ﬂax ‘q;'r]=y/.e (62)

As before the displacements u are expanded in ascending powers of w o0 that

Uy a a a

OX X 2 2x
u= z + w + w +---]u
u g a a
Y oy 'Y 2y (63)
s (d, + wa, +wat:2 +.-0U = uqe'wt
where
jwt
V- {ul U, U, u4} = {q. 9, 93 Q4} e (64)
Hence
_ . iwt i wt
u = (rz;-ow a.lqe o, qe (65)
o . .
- 4 wt wt
Substituting Equation 66 into Equation of motion 60
00 W \ o1} .
c (Y w'u,y Yqe '@t - (T wrn,y)qe'w' z 0 (67)
r=o r=o
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Equating to zero coefficients of the same powers of w in Equation 67 the following equations
are obtained:

W

agy = O (68}
a:‘; = 0 (e9)
c*asy = Yoy : (70)
claly = ajy " ete (7

Solving Equations 68 through 71 it can be demonstrated that

3
agy = [11-3¢ + 26%)( £ - 26 + &0 IM3E —2eh £t e (72)
uiy = 0 , {73)
L)
o, = _&[(6652.—155{% 105€4-21E% e&N12€%- 2263+ 21£% 145+ 382
2y~ 2520EI (74)
(30£%- 5ag+ 216%-6€TN-9€2 + 13E3- 7€+ 3ET11]
ay, * 0 et (75)

The matrix Goy represents static transverse deflection distribution due to unit values of
U1....U4. The remaining matrices in @aare determined from Equation 62. This gives

0, = [61€-E5Im i1+ aL- 3£%18y 6(-E+E%)7 (26- 3 2)2q | (76)
Q,x = O o - (77)
. = LAE [(-132f + a68E? —4208°+ 126€ - a2&%) (-24£ + 66£2—105E*+ 84E°
2% n
2520EI (78)
_216%2n (-78€+ 162€° - 126§+ 428%n  (186-396% + 42€°- 216%) 271
Osx: O - etc (79}
The strains in the beam element are derived from
du, tizuy (32uy
e = - —3y=-"4— 7
Ox ox ox
(80)

(b, + wb, + &b+ -~ 1U = bU

Hence using Equations 72 through 75 and Equation 80 it follows that
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b, = - ﬂ;r;o;y

0

--—E—[(—e+|2§}(—4+ 6126128 K -2 +6£)ﬂ]

[(22-156¢ + 210£2-105¢* + a2£%1a-22¢ + T0¢°

8

(82)

(83)

~708Y+ 28 (13 - 548 + 105€%- 4283 -3+ 138 - 35£%+ 215’1£] (84)

b, - —lv?u'l'y =
b2 = —f'r’lﬂléy
-pant’
420El
b -

_ﬂ")?a;y: o ---

etc

(85)

The next step is to substitute the calculated series for a into Equation 18 to determine the
equivalent mass matrix M. The first two component matrices appearing in the expansion
of Equation 28 have been calculated and are given by Equations 86 and 87.

156 Symmetric
2
0 420 54 132 156
-138 -32% -22p ap?
36 Symmetric
PAEL 2 39 ap?
* 30 (7
-3 -3¢ 36
3¢ -4° -3 ap?
[ _
0.728746 Symmaetric
(pad?p®| O.1532338 0.03252484° o
M, x 10
Bl 0.659142 0.1443861 0.729746
-0.144386¢0 -0.03140822° -0.1532334  0.03252484°
[ 0.317460 Symmetric ]
{pAEFg’(, 0.793651¢  0:3174602° o
+ (= x
El L 1 0.317460 0.5952382  0.317460
~0.595238f -0.2777788°% -0.7936518  0.3174604°

788

{86)

(87}



AFF¥DL-TR-66-80

where r is the radius of gyration of the beam cross-section. The first matrix term in .
Equations 86 and 87 represents the translational inertia of the beam element while the second
term represents the rotatory inertia effects. The stiffness matrix is determined from the
calculated series for b and Equation 19. The first two component matrices appearing in
the expansion of Equation 29 are given by Equations 88 and 89,

12 Symmetric T

6t a2
KO = —Eis (88}
£ -2 -t 12 '

6 202 -62 4f?

0.364872 Symmetric ]
3| o.07661622 0.01626248° -3
= | 2 & ' 10
K4 = '.p:'.'xﬁ) 1 ‘ x (89}
0.329571 0.07219332  0.364872
-0.07219338 -0.01570418> -0.07661628 0.0162624 4°

The matrices Mg and Ko represent the equivalent mass and stiffness based on the static
displacement distribution in a beam element (References 2, 3, 4, and 5).

EIGENVALUES AND EIGENVECTORS OF THE QUADRATIC MATRIX EQUATION
Iterative Solution (Method i)

The quadratic matrix equation

(A—wza-w“c)q = 0 (30a)
will be assumed to have eigenvectors P, , P, ... P, corresponding to positive (including
zero) eigenvalues w), w2 ... Wy, Introducing

Q2- [wf w? . w? _| {90)
p = [p‘ P, Py ] {an
Equation 30a can be written as
2 4
Ap -Bpfl -cpfl = 0 {92)

Postmultiplying Equation 92 by p~1 one obtains

I

a-BplLip ' - cpQ% =0 (93)

Introducing new matrix
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2 -
E - pap {94)

Equation 93 can be transformed into
E®= ¢ A-¢'BE
This latter equation is then used for an iterative solution. By letting
E - E ot AE (96)
where
€, p, g: p;' 97)

is obtained from the conventional solution eigenvectors pp and eigenvalues ng satisfying

Ap,-Bp, > =0 (98)
Equation 95 becomes
(E + AEIE = ¢'A-C'BE (99)
Hence
EL (E + ¢'By'cta (100)

The iterative loop is then established from

Er-+-| &(Er +c'er'c'a

and once satisfactory convergence has been achieved for E the quadratic equation eigenvalues
and eigenvectors are determined from the conventional eigenvalue equation

Ep- pﬂz= 0 (101)

or
(E - a'Llq = O (102)

The above method has been programmed for the IBM 7094 computer. The computer program
was prepared by Mr. F.O. Young of the Digital Computation Division, Wright-Patterson
AFB, Ohio, and was successfully used for the illustrative problems discussed in the sub-
sequent section. One drawback of this method is that occasionally, since the guadratic
equation has hoth positive and negative eigenvalues, the iteration procedure will produce
some negative eigenvalues in place of a few highest eigenvalues (frequencies). If these fre~
quencies are required alternative methods must be used for these cases. This usually occurs
when Eg differs greatly from the final value of E .

Direct Eigenvalue Solution (Reference 6) (Method ii)

Introducing
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6 = w q (103)
Equation 30a can be manipulated into
¢’ Aq-C'Bi-wq=0, 104)

Equatioas 103 and 104 can now be combined into one matrix equation

2
-w'I b o q
. " s ) = 0 . (105)
¢ A -{C B+wl) q
or
0 I, q
2 =0
: -w II'.z‘1 ) (105 a)
¢'a ¢'B Lq

Since Fquation 105a is of a standard form, available eigenvalue and eigenvector programs
can be used. The only disadvantage of this method is that it involves 2n urnkknown components
in each eigenvector as compared with n components in the original idesalized system.

Direct Evaluation of the Determinant (Method iii)

If necessary the quadratic equation eigenvalues can also be found numerically from the
solution of the determinant

la - «B-wCl =0 (106}

NUMERICAL RESULTS

In order to demonstrate the considerable improvement in accuracy of the vibration modes
and frequencies obtained from the quadratic equations, three examples have been congidered
for which exact solutions are readily available. The three examples are: longitudinal vibra-
tions of free-free bar, and fixed-free bar, and transverse vibrations of cantilever beam.,

Ratios of frequencies of vibration of afree~freebar determined from the quadratic equation
over the exact frequencies are shown in Table 1, for number of elements varying from 1 to
10. For comparison, the corresponding ratios obtained from the conventional analysis are
also presented. This table indicates clearly that considerable improvement in accuracy
is obtained when the quadratic equations are used. In Figure 5 the percentage errors are
plotted against the number of elements for the ist and 5th modes in order to show more
clearly the general trends. A perusal of Tablel and Figure & reveals that the percentage error
in frequencies is reduced by almost an order of magnitude when quadratic equations are used
instead of the conventional eigenvalue equations. Furthermore, the rate of decrease in
percentage error when the number of elements is increased is considerably greater for
quadratic equation solutions; thus, the convergence to the true frequency values is much faster
with quadratic equations.
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Tables 2 and 3 and also Figures 6 and 7 present the results of computations for a fixed-
free bar and a cantilever beam. The general conclusions are also valid, although the improve-
ment in accuracy in the case of a cantilever beam is not as dramatic as for the free-free and
fixed-free bars. As example of the improvement in the calculated mode shapes 1st and 2nd
modes for a fixed-free bar are plotted in Figure 8.

All calculated values in Tables 1, 2, and 3 have been obtained from the iterative solution
(method i)of the quadratic equations with the exception of the results marked by an asterisk,
For these cases the solution converged to negative values instead of high positive eigenvalues
(frequencies), and a direct solution(method if)had to be used.

It has been demonstrated that the frequencies and mode shapes calculated from the quadratic
equation (Ko - w? M, - w M, - K,,)) q = O are considerably more accurate than the conven-
tional eigenvalue solutions obtained from (Ko - w“Mg) 95 = 0. This new method appears
to be particularly advantageous for longitudinal vibrations of bars when approximately the
Ssame accuracy is achieved with n degrees of freedom in the quadratic equation as with
2n degrees in the conventional equation. This improvement in accuracy is achieved, of
course, at the expense of more complicated matrix operations necessary to compute the
solution of the quadratic equation; however, this disadvantage is largely offset by the reduced
number of specified displacements and discrete elements in the idealized system.
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qQ :wq {103)
Equation 30a can be manipulated into
c'agq-c'B4-w’q -0, (104)

Equations 103 and 104 can now be combined into one matrix equation

-sz 1 tlT
-1 “tg 2 . =0 _ (105)
C A -{C B+uwl) q
or
o 1 [ q
n R - o
| -w I'zn ) (1050}
¢'a -c’'B Lq
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Tables 2 and 3 and also Figures 6 and 7 present the results of computations for a fixed-
free bar and a cantilever beam, The general conclusions are also valid, although the improve-
ment in accuracy in the case of a cantilever beam is not as dramatic as for the free-free and
fixed-free bars. As example of the improvement in the calculated mode shapes 1st and 2nd
modes for a fixed~free bar are plotted in Figure 8,

All calculated values in Tables 1, 2, and 3 have been obtained from the iterative solution
(method i)of the quadratic equations with the exception of the results marked by an asterisk,
For these cases the solution converged to negative values instead of high positive eigervalues
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It has been demonstrated that the frequencies and mode shapes calculated from the quadratic
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Figure 2. Virtual Displadementa
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