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VIBRATION ANALYSIS OF CANTILEVERED CURVED PLATES
USING A NEW CYLINDRICAL SHELL FINITE ELEMENT
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The stiffness and mass matrices for a relatively simple finite
cylindrical shell element are presented. The element has 28 degrees
of freedom corresponding to the sevengeneralized coordinates dw/dx,
0w/ Oy, w, Ou/ dy,u, dv/ Jy, and v at each corner, All six rigid
body modes for the element are adequately represented by this model.
The element is used topredict the vibrations of a curved fan blade, and
the results are verified experimentally, It is found that a 4 x 4 grid of
the finite elements is sufficient to predict the first twelve vibration
frequencies for the fan blade to within ten percent, The agreement
between experimental and theoretical mode shapes is generally very
good,
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SECTION I

INTRODUCTION

Considerable progress has been made in the past few years in applying the finite element
method to the analysis of shell structures, The majority of the work has been devoted to
shells of revolution in which closed rings or conical shell segments are used in the modelling

of complete structures, Most of this work is reviewed in Reference 1,

Attempts to develop a finite element method for general shell structures have taken two
different approaches, In the first approach, the shell is replaced by an assemblage of flat
plate elements which are either triangular or quadrilateral in shape. Each plate element is
connected in some fashion to those surrounding it and undergoes both bending and stretching
deformations, This approach has been successfully used for cylindrical geometry in Reference
2 and for general shell shapes in Reference 3. The second approach, which ultimately should
give better results, is to develop curved shell elements that permit exact geometrical rep-
resentations of a structure, Initial attempts to derive such a curved finite element for an
arbitrary shell have been only partially successful (Reference 4). Since such a development
would be a major accomplishment, it appears feasible to approach the problem more slowly
by setting up models for particular shell configurations, such as cylindrical, conical, spherical,
and so on, The logical one to begin with is of course the cylindrical shell partly because it is
geometrically the simplest and also because the practical applications are so numerous.

The first start in this direction was made by Bogner, Fox and Schmit (Reference 5).

The element presented in Reference 5 has 48 degrees of freedom and the authors state
that an assemblage of their elements is geometrically admissible (i.e,, has continuous
zero and first derivatives of the displacements along element interfaces) and therefore
guarantees monofonic convergence of the total potential energy as the modelling is successive-
ly refined, The example application presented in Reference 5, the pinched cylinder problem
discussed by Timoshenko in Reference 6, is essentially a ring-bending problem and is
therefore not an adequate test of their shell element, Furthermore, 48 degrees of freedom
per element lseem to be more than necessary to ensure geometrical admissibility, That is,
according to the convergence proofin Reference 7, piecewise continuity of the first derivatives

of the in-plane displacements and of the second derivatives of the out-of-plane displacement
are sufficient conditions for monotonic convergence of the total potential energy, Hence, it

appears that this 48 degrees of freedom model is not the most efficient representation because
extra degrees of freedom are included to ensure piecewise continuity of the second derivatives

of the in-plane displacements,
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Since the work reported herein was completed, another cylindrical shell finite element
representation with only 24 degrees of freedom has been published by Cantin and Clough
(Reference 8), Thedisplacemsnt functions assumed forthis element include terms which couple
the u, v and w displacements in such a way that all six rigid body modes for the element are
represented exactly, Further, when the shell radius goes to infinity, these displacements re-
duce to the conforming flat plate case, However, it is not clear whether or not their element
is conforming for arbitrary shell radii, The example applications given in Reference 8§ indicate

that this element works well for static problems but no dynamic solutions have been presented,

There is still some question as to the necessity of completely conforming (continuous
normal derivatives at element interfaces) finite elements for plate bending problems, For
example, assemblages of the now well-known 12 degrees of freedom nonconforming rectangular
model (Reference 9) always exhibit good convergence even though in some cases it is not
monotonic. It is worth noting that there have been no reports of nonconvergence or of con-
vergence to an incorrect answer with this element, For shell bending problems, this question
is much more important, since a conforming element may require many more degrees of
freedom than the nonconforming one. In some practical applications where the total number
of degrees of freedom is limited by computer size, better results may sometimes be obtained

with the nonconforming elements,

In the present work, an attempt is made to develop the simplest possible nonconforming
representation for a cylindrical shell element, The radial or out-of-plane displacement com-
ponent w is assumed to be a twelve~-term polynomial in x and ¥, the longitudinal and circum-
ferential coordinates of the element, respectively. This is the same displacement function
used for the plate bending element discussed above, The in-plane displacement components
u and v are each assumed in polynomial form up to linear terms in x and cubic terms in y.
It will be seen subsequently that the higher order terms in y are required because of the shell
curvature. The 28 arbitrary constants in these expressions for u, v and w are determined as
functions of the seven generalized coordinates dw/ 2x, dw/ oy, w, du/ dy,u, &v/ dy
and v at each of the element corners, The expressions for u, v and w are then substituted into
the strain energy and kinetic energy integrals from shell theory vielding 28 by 28 stiffness and

mass matrices for the cylindrical shell element,

The rigid body modes incorporated in this element are determined by carrying cut an

eigenvalue analysis of these stiffness and mass matrices, It is found that all six rigid body
degrees of freedom are adequately represented. The vibrations of a curved, cantilevered fan

blade are then predicted with various element gridworks, and the results are verified

experimentally,
249



AFFDL-TR-68-150

SECTION II

THEORETICAL FORMULATION

DISPLACEMENTS

As pointed out on Page 22 of Reference 9, the first requirement of a finite element is that
it must be capable of undergoing rigid body motions with little or no strain. Hence, the
cylindrical shell element will require special displacement functions in order to ensure that
all six rigid body modes are included. First, it is clear that the twelve term polynomial in
x and y used for the plate bending element may be used here for the radial displacement w,

wix,yl = a

2 2 2
|+02x+03y +u4xy +usx +usy +c|7: y

2 3 3 3 3
+ ag %y + agx +a,, +a, Xy + a,, xy { )

Second, since the element sides y = 0 and y = b (Figure 1) are straight, it will be sufficient
to assume linear dependence on x for the in-plane displacements u and v, On the other hand,
their dependence on y will have to be higher order than linear because of the shell curvature
in that direction, This was shown clearly by early experience with a 20-degree of freedom
model in which u and v were only linear in y. The complete results for this model which are
given in the Appendixes of Reference 10 indicated that two of the required six rigid body modes
were not adequately represented, Hence, cubic terms in y are included in the expressions for

u and v as follows:

2
ulx,y) = @ +a, x+a,y to,n +a.,y

+ a xyz + a4 ys + t:lzox){3 (2)

2
: +
via,y) = o, tao,,x +a,,y ta,,xy a,g ¥

2 3 3
+ 0pg Xy ‘Y a7y T Oz Xy (3)

The 28 constants in Equations 1 to 3 are determined as functions of the 28 corner dis-

lacements w_., W.. W,, U_, v,
p ac Xl’ y1 1} yl, y1!

These are then substituted back into Equations 1 to 3, yielding expressions which completely

u;, Vis (i =1,4) for the element (W, = ow/ 9x, ete.).

define the displacements anywhere on the element in terms of the corner displacements.
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Figure 1, Cylindrical Shell Element

STRAIN ENERGY AND STIFFNESS MATRIX

The strain energy of an isotropic elastic, thin cylindrical shell element is given by (Ref-
erence 11)

h
b o = _
U= f f & _E [ez + €2 +2ve ¢ +*12—V€2 ] dzdxdy {4)
o 2(-2% Lx y Xy Xy
o o -

where E is Young’s modulus and v, Poisson’s ratio, The strain displacement relations are

du_ % w
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_Substituting Equations 5 into Equation 4, and integrating through the shell thickness yields the
strain energy expression,where D = E h3/12 (1—1;2).

b 2 2 2 2 2 2 2 2
o3[ LR (SE) ra SF T eun (55
12 2 12 duz = duy 12 ] dv\z

p - (e L) (S) 4+ Bir, 00 B4, O

heg  R*/\ o« 2R  dx h®R  dy
_2 azw ﬂ__ a(t-y) 3%w v 2w w Ov_
R gy dy R Ox0dy Ox R 3¢ Oy
12 du dv — ou_Jdv_
+ ' [zv 3% 3y +(l=v) 3y ox ]}dxdy (6)

The assumed displacement functions are substituted into Equation 6, and the integration
over the midsurface ofthe shell elementis carried out, The resulting strainenergy expressionis

a quadratic function of the 28 corner displacements for the element, and may be written in the form

T w oKW (7
where W is the nondimensional vector of nodal coordinates
T
w -
(v Wyyo W /a0 u, u /b, Yyio VLTI S
Wogn - oroa WL (8)

and K is the element stiffness matrix given in Table L.

KINETIC ENERGY AND MASS MATRIX

The kinetic energy for the cylindrical element at any instant of time is {neglecting rotary

inertia)
b a M2 2 2 2
T :-é-'!: j;};/ p [(g—:) +(3:) +(%) ]dzdxdy {9)
m iz
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where P is the shell material density, Assuming that the displacements are sinusoidal in
time, and integrating through the shell thickness yields

T:—%—”ifbfaph [ua +vz+wa]dxdy {10}

[] 0

where w is the frequency of motion,

The assumed displacements are substituted into Equation 10, and the integration over the
midsurface of the element is carried out, This yields the quadratic form
2T
T: % W MW {mn

where M is the element mass matrix given in Table II.
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SECTION III

RIGID BODY MODES

A simple check of this finite element model can be made by using it to determine the
free-free vibrations of a rectangular section of a cylindrical shell, The six lowest modes for
this problem are rigid body modes with zero frequency, and an approximate solution using one
finite element should include these modes,

Thus, the first test for the presentmodelis to determine the eigenvalues and eigenvectors

for the matrix equation

[K-—xm]w_=o (12)

where K and M are the 28 by 28 stiffness and mass matrices given in Tables I and II,
respectively, W is the displacement vector given by Equation 8, and A =phab3 w2 /25200 D is
the nondimensional eigenvalue, Carrying this out for v =0.3, r = 2000, 8=1,0, and q = 0.5
(see Table I for definitions) yields the seven lowest eigenvalues: 0.4813 x 104 0,8912 x 1014
0.2108 x 1077, 0.2379 x 1077, 0,1920 x 10”2, 0,1951 x 10~ and 07887 x 10~2

The first two eigenvalues are essentially zero to the accuracy of the double precision
calculations, The two associated eigenvectors represented combinations of rigid body motion
of the shell element inthe longitudinal and circumferential directions, It was found that suitahble
linear combinations of these two eigenvectors would yield pure rigid body motion in either the
longitudinal or circumferential directions alone. Hence, the first two rigid body modes pre-

dicted by the cylindrical shell element were pure ‘‘ translations’’ in u and v,

The next four eigenvalues, while not exactly zero, are quite small relative to the seventh
one, This last eigenvalue corresponds to the first true vibration mode for the free-free
shell segment and is within a few percent of the corresponding flat plate solution (Reference 10).
The eigenvectors associated with eigenvalues three to six were very good approximations
of the following rigid body motions: number three was a translation paraltel to a normal at
X = a/2 and y = b/2, number four was a rotation about the same normal, number five was a
rotation about a cylindrical generator through y = b/2, and finally, number six was a rotation
about a chord at x = a/2.

Hence, it may be concluded that the cylindrical shell element provides an adequate
representation of all six rigid body modes,
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SECTION IV

VIBRATIONS OF CANTILEVERED CURVED PLATES

A problem of considerable practical importance that is not amenable to ordinary analytical
methods is that of the vibration of curved fan blades, Such a fan blade is depicted in Figure 2,
This blade is a rectangular section of a cylindrical shell where y = 0, and y = W are parallel
cylinder generators. The curved edge x = L is considered built-in or clamped to an infinitely
rigid foundation, while the other three sides are free, The thickness is h, and the radius of

curvature is R.

EXPERIMENT

An experimental model of the fan blade shown in Figure 2 was constructed by rolling a
piece of sheet steel 0.120 inches thick to a radius of curvature of 24,0 inches, This curved
sheet was then cut to size (W = L = 12,0 inches) and welded to a 4,0 x 4,0 x 16,0 inches steel
block to simulate the clamped boundary conditionindicated in Figure 2, The vibration modes of
this blade were excited by a sinusoidal magnetic force, and the mode shapes were determined
by sand pattern observations and measurements with an inductance pick-up.

Figure 2, Curved Fan Blade
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The first twelve vibration frequencies for this fan blade are given in Table III along with
sketches of the corresponding nodal patterns, See Figure 3 for more detailed drawings of the
experimental nodal patterns and tip deflections, The experimental results presented in Table
III are reasonably clear and need little discussion here, It is interesting to note that the first
‘‘torsion” mode, one, occurs at a lower frequency than the first ¢ bending”’ mode,two, This
is the reverse of what would occur if the blade were flat and is a result of the stiffening due
to the blade curvature,

Some of the experimental nodal patterns and tip deflections presented in Figure 3 exhibit
a noticeable amount of asymmetry with respect tothe center line of the blade. This asymmetry

must be associated with residual stresses induced by the rolling and welding processes.

THEORY

Theoretical predictions of the vibration modes for the fan blade described above were
calculated with various combinations of the shell elements developed herein, The process
for settingup the eigenvalue problem for a givenassembhlage of finite elements is fairly standard
now, and need only bedescribed briefly here, At each element corner junction, all the general-
ized coordinates are made continuous and the sums of the corresponding forces (ordinary
plus D’Alemhert’s) are set equal to zero. Allthe generalized coordinates vanish at the clamp-
ed edge, x = L in Figure 2, Square elements (i.e, s = 1,0) were used in all the calculations,

The computations were carried out for various assemblages of elements uptoadx4
grid representation, However, before discussing the results in detail, it must be pointed out
that the approximation of neglecting in-plane inertia was used in evaluating the 3 x 3 and 4 x 4
grid results, This approximation was required in order to reduce the order of the eigenvalue
problems to a practical size. It is worth noting that the neglecting of in~plane inertia is fairly
standard procedure in most shell dynamic problems and was carried out by straightforward
matrix partitioning. The reader is referred to Reference 10 for complete details. The validity
of this approximation was verified (Reference 10) by carrying out the calculations for a 2 x 2

grid representation of the fan blade with and without the inclusion of in-plane inertia,

The complete results shown in Table III merit detailed study especially as to how the
predicted frequencies change with refinement of the finite element assemblages, It may be
noted that in general these frequencies converge very rapidly towards the experimental values,
Furthermore, the convergence appears to be monotonic. The only possible exceptions may be
modes three and twelve where the predicted frequencies appear to undershoot the experimental

values slightly, However, the differences are well within the possible experimental error.
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TABLE I VIBRATION FREQUENCIES FOR CURVED FAN BLADE

APPROXIMATE FINITE ELEMENT GRIDS
MODE  SHAPE EXPERIMENT
Fx 1 2x2 3x3 4 x4
(cps) {cps) (cps) {cps) {cps)
N
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N
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Finally, it may be noted from TableIlIthat the first 12 vibration frequencies for the curved

fan blade are predicted to within 10 percent by the 4 x 4 grid of finite elements.

The fact that the convergence is apparently monotonic although highly gratifying is rather
surprising, in light of the experiences with flat plate elements, In particular, it has been found
that the nonconforming plate elements exhibit some nonmonotonic convergence when used to
solve the comparable cantilevered flat plate problem, For example, as shown in Table II(c)
of Reference 12, the predicted frequencies for modes four and five are overpredicted with
one element and then underpredicted with a 2 x 2 grid of elements, It must be emphasized,
however, that the present results are true only for the particular shell configuration considered
herein, and it is not clear how they would change with changes in radius-to-thickness or

radiug-to~-width ratios.

The fan blade vibration nodal patterns and tip deflections as obtained from the 4 x 4 grid
of finite elements are given by the solid curves in Figure 3, These may be compared to the
experimental results obtained from sand patterns and inductance pick~up measurements and
shown as dashed curves in these figures, For most of the modes, the agreement between
experiment and theory is extremely good, This is especially true for modes one to six
inclusive, The most notable discrepancies occur for modes seven and ten, It is interesting to
note, on the other hand, that modes 8 and 9 which are the ‘¢ symmetric twins'’ for modes
seven and ten, respectively, are predicted much better by the theory, It is not clear why this
should be so, but it does suggest that the present cylindrical shell element is more capable of
predicting symmetric modes which require lesstwistingthanthe antisymmetric ones, Finally,
the agreement between theory and experiment for the higher modes 11 and 12 again becomes

quite good,

At this point, it is worth considering the effect of curvature on the fan blade vibrations in
more detail, Calculations were carried out for various values of radius-to-thickness ratio
R/h up to 200,0 using the 4 x 4 grid of finite elements, and the results are shown in Figure 4.
Note that the length-to-thickness ratio L/h was held constant at 100,0 for these calculations,
The lowest two modes are not shown in the figure because their nodal line patterns did not

4
change, but the numerical results for the frequency squared parameter ph sz /D did change
as follows:
R/h @ 1000 200 300 200
Mode 1 12,0367 29,543 78.978 182,784 331,536
Mode 2 72,597 75,400 83.391 100,927 132.889

261



AFFDL-TR-68-150

sadeyg opoIN [ejuswiliadxd pue [BI132I109Y], JO uostredwo) ‘g aIndig

sdo || €6 ~ ~INIWHIIX3
$d20¢-vES AHO3HL

¢ 300N

i
sd3 6862 — — INIWIHILXT
sdop | 662 AHO3IHL

5d? 2-GBE — — INIWIHIIX3
sd20G - ¢2b AHO3HL

sdd G.G€| —— INIWK3dX3I
sdopa Ly AHO3HL

’ -

542 9-0G€ —— INIWIYIJX3
AHO3HL

sd280-€6¢

sd? 9.98 —— INJWIHIIX3
sd2 ) p-¢6 AHO3FHL

262



AFFDL-TR-68-150

sadeys opolA [UaWLIadxy pPuB [EO1)aI0aY], JO uoslIeduwio))

21 300W

e P

842 06121 —~LINIWIHIIX3
sdo g Gl AHO3HL

rd

sdo |26 ——IN3IWIE3dX3
sd202-€98 AHOIHL

1 300K

Y/ ﬁ

s rd Ea

8do §966 — —LNIWIHIIX3
sdogg {00! AHO3HL

| /
| |
] |
1 |

840 Z-1G. ——LINIWINIX3
sd>g| 26/ AHO3HL

‘g 9and1g

Ol 300N

P

sdd 2 .608—— INIWHIJXI
sdage 2o AHO3HL

/
7
~

P Ea P

502 2.¢b) ——INIWIHYIdX3I
sdd 1618 AHOIHL

263



AFFDL-TR~68-150

The numerical results given above and in Figure 4 for the flat plate case (R/h = 0 ) were
obtained in Reference 13 using a 4 x 4 grid of finite plate elements. These results were com-
pared to ‘‘exact series solutions” in Reference 13, and it was found that the first nine

frequencies (not frequencies squared) were correct to within about 2,5 percent.

The results shown in Figure 4 exhibit some quite surprising effects. One would expect the
curvature to have only a small effect on modes predominated by nodal lines normal to the
clamped boundary, This idea is partially verified for modes two, eight, and sixteen and to a
lesser extent by modes 10 and 15, but it is completely refuted by the resuits for modes four,
six and thirteen, since their nodal patterns are fundamentally changed by the increasing curva-
ture, On the other hand, as one would expect, the effect of curvature on modes with nodal
lines parallel to the clamped boundary is very pronounced. This is especially evident for
mode one, {the clamped boundary is considered to be a nodal line here) where the frequency
squared parameter has increased by a factor of 25, Other examples showing significant
changes are modes three, seven, nine, and twelve. It is especially interesting to note the
apparent interchange of nodal line patterns between modes three and four, and twelve and

thirteen with increasing curvature,
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Figure 4. Effect of Curvature on Fan Blade Vibrations
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SECTION V

CONCLUDING REMARKS

The stiffness and mass matrices for a relatively simple finite cylindrical shell element
have been presented, This element has 28 degrees of freedom corresponding to the seven
generalized coordinates ow/ 9x, dw/ dy, w, Ou/ dy,u, 9v/ Jy and v at each
corner. It was found from an eigenvalue analysis of the stiffness and mass matrices that all

six rigid body modes were adequately represented.

The element was used to predict vibration modes and frequencies for a curved,
cantilevered fan blade, and the results were verified experimentally, It was found that a 4 x 4
grid of the finite elements predicted the first twelve vibration frequencies to within ten
percent, The agreement between the experimental and theoretical mode shapes was generally
very good. These finite elements should prove extremely useful for static or dynamic
problems involving rectangular portions of cylindrical shells, especially since such configura-

tions are very difficult to analyze by ordinary analytical techniques,
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