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CLASSIFICATION IN THE FREQUENCY-TEMPERATURE
RANGE OF VISCOELASTIC MATERIALS FOR DAMPING
OF FLEXURAL WAVES IN SANDWICH STRUCTURES
WITH VARIOUS BOUNDARY CONDITIONS.
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Damping of flexural waves by constrained or unconstrained viscoelastic layers is conside-
red in order to classify the viscoelastic materials according to their efficiency for given ranges of
temperature and frequency . The loss factor is computed for structures of various geometries ,
such as beams, plates and tubes, with various materials of the constraining layers, such as steel,
aluminum, fiber glass composite . The influence of boundary conditions is studied . The curves
corresponding to particular loss factors are plotted in the frequency - temperature plane for a gi-
ven structure, so that the efficiency of the damping treatment may be evaluated immediately for
each range of temperature or frequency . A classification between different materials can then be
made . An experiment giving the modes and the corresponding loss factors of free sandwich

plates is presented .
1 External consulting engineer for CERDAN .
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INTRODUCTION

The damping of flexural vibrations by the mean of viscoelastic materials is a classic method
involving different techniques such as extensional damping by unconstrained layers, and
shear damping by constrained layers . The resulting loss factor for an elementary structure
such as a beam, a plate or a tube, is given by well-known theories (Oberst, Ruzicka and Ker-
win). However, one of the user's problems is the choice of the different added layers : the vis-
coclastic material and, eventually, the material of the constraining layer, and their dimen-
sions,

This paper presents a method of classification of viscoelastic materials, based on their
intrinsic loss factor or on the composite loss factor of damped structures in which they are in-
volved. The principal results are curves representing a given loss factor in the temperature-
frequency plane, so that the user can immediately evaluate the damping's efficiency in the
ranges of temperature and frequency he is interested in. It is also possible to plot the loss fac-
tor of a composite structure versus the frequency (or the temperature) for given temperatures
(or given frequencies), or versus different thickness ratios for given temperatures and fre-
quencies.

The combination of all these possibilities helps to find the best viscoelastic material, and
eventually the constraining material, and to optimize the thickness of each layer.

The utilization of the method will be illustrated with some examples of damping by five
different viscoelastic materials .

INTRINSIC DAMPING .

Characterization of a viscoelastic material .
Under linear conditions, the complex modulus is a classic way to characterize the be-
havior of a viscoelastic material . The stress-strain relation can be written :

c=E{fT)(1+HBET)) €

where f s the frequency, T is the temperature, and E, B are respectively the Young's modu-
lus and the loss factor of the material .

The complex modulus E(1+iB ) is provided by experimental data giving the variations of E

and B with temperature and frequency . Usually, there is an equivalence between temperature
and frequency effects, so that the separate variables f and T can be combined in a single vari-

able f(xT called the reduced frequency , where the 'shift factor' o is a non-dimensional par-

ameter depending only on temperature . The Young's modulus E (or the shear modulus
G=E/3 ) and the loss factor are then given ,in function of the reduced frequency , by the 'mas-
ter curves' which characterize each viscoelastic material . Figures 1 and 2 show the master
curves of two viscoelastic materials : M1 and M4 .
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Classification of viscoelastic materials according to their intrinsic loss factor .

One way of comparing the efficiencies of different viscoelastic materials is to look for
the frequency intervals where their loss factor is greater than a certain value, for the tempera-

tures one is interested in.Table 1 shows the frequency intervals where B >0.5 for five mate-
rials: M1 to M35, and for three temperatures . This method gives a first indication about the
best materials available for given temperatures and frequencies .

In order to avoid tedious manipulations, the master curves of the viscoelastic materials

have been stocked in a library ; the user can then compute E and p for each value of f and T
by the mean of a simple program using the following method : it first computes the shift fac-

tor Gipzthen the reduced frequency forr, and finally E and B.The user can obtain more global

results than the table above by plotting E and P versus frequency (or temperature) for the
temperatures (or the frequencies) he is interested in. However, if he wants to have a general
view of the efficiency of the material in order to make a first selection, the most appropriate

method consists in plotting the curves corresponding to different values of B in the (f,T)
plane . These curves are obtained by a program which computes [ for several values of f and

T, and then plots contour lines corresponding to the desired values of B . In order to have re-
liable results, one should consider a great number of points in f and T, and make regular sub-
divisions in log(f) and T . Figures 3 and 4 show the curves obtained for M1 and M4 for

10 Hz < f <10000 Hz and 0°C< T < 60°C . A comparison with the results of Table 1 or the
master graphs shows that the curves give quite good results if we take into account the impre-
cision on the master graphs .

The different types of viscoelastic damping treatments .
There are two types of viscoelastic damping treatments :

-the extensional damping ( by unconstrained layer ), in which the extensional deformation of
the damping layer accounts for the damping

-the shear damping ( by constrained layer ) , in which the energy losses due to shear motions

are dominant .

We will study these two types of treatments with one viscoelastic layer and for elementary

structures such as beams, plates, and tubes .

EXTENSIONAL DAMPING.

This method consists in adding a viscoelastic layer of Young's modulus E,,(1+jB) to the base
structure (Figure 5) .

The loss factor of the composite structure in the case of a damped beam or plate is given by :
[1,2,3]:
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Beh(3+6h+4h2+2eh3+e2h%)

'n =
(1+eh) (1+4eh+6eh2+4ch3+¢2nd)
Hj , H,, : Thicknesses of the layers

e=E,/E]
h=Hy /H; |
ch = Ey Hy /Eq Hy : Ratio of the extensional stiffnesses of the two layers

In most practical cases,eh << 1.

For a damped tube, the loss factor is :

BE,R3%Ry%)

n=
EjRy*R4) + E,R3*Ry%)

with Ry, R : Internal and external radii of the initial tube
Rz  : External radius of the damped tube

For the beam or plate as well as for the tube, the composite loss factor increases with the
intrinsic loss factor , the Young's modulus and the thickness of the viscoelastic layer . The
best materials for extensional damping are then those which have the greatest loss factor and
extensional stiffness . Increasing the thickness of the viscoelastic layer improves the efficien-
cy of the treatment, however there is a limit above which the damping tends to saturate and
even to decrease . .

For example, the material M4 is better than M1 for extensional damping (Table 1, Figures 3
and 4) . In fact, M4 and MS$ are used for extensional damping, whereas M1,M2 and M3 are
used for shear damping .

Figures 6 and 7 show the curves 1 (£,T) for a beam damped by M4 and M5 . By comparing
them, one can deduce that :

- M4 is less efficient than MS for high temperatures and low frequencies, and more efficient
for low temperatures and high frequencies

- M4 is more efficient than M5 for intermediate temperatures and frequencies

More precise results can be obtained by superimposing the figures 6 and 7 ). The best materi-
al for the particular case considered is then deduced immediately for each ran ge of tempera-
ture and frequency . .

The influence of Hy, can also be studied by plotting the curves n( H,/ H; ) for given val-
uesof fand T (Figures8and9).
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SHEAR DAMPING.

This treatment, which has been considered by many authors [1,2,4], consists in applying a
constrained viscoelastic layer (Figures 10 and 11) . Ruzicka and Kerwin [4] have provided a
simplified theory with the following assumptions :

-The considered modes are sinusoidal (simply supported structure)

-The effects of the boundary constraints are negligible

-Shear and torsional distorsions of the elastic elements are negligible

-The dimensions of the different cross-sections remain constant

-There is contact without slippage at all the interfaces

-The stress-strain relations are linear in all the layers

-The axial inertial forces are negligible

-The elastic elements have zero extensional and shear loss factors

-The elastic elements are considerably stiffer in extension than the viscoelastic material
-The viscoelastic material is thin and of approximately constant thickness

The loss factor of the composite structure is :
BXY

1 + X(Y+2) + (1+BHX2(Y+1)

with B : Intrinsic loss factor of the viscoelastic material
X: Shear parameter
Y: Geometrical parameter

The intrinsic loss factor is deduced of the master graphs . It depends on the frequency and
thetemperature : B (f,T) .

The geometrical parameter Y is defined as

Y= {ED./EDg}-1

where (EI)q (resp. (EI),, ) is the flexural rigidity of the composite structure when the elastic
elements are completely uncoupled (resp. coupled) . Another expression for Y is :

MAI A2 d2

Y=
(A + MAZ)(II + MIZ)

with M = E9/E;
Ay 7 : Cross sections of the elastic elements
I) 2 :Moments of inertia of the elastic elements
d :Distance between the neutral planes of the elastic elements
More generally, Y = Yx (Y/Y)
where Y() is a function of dimension ratios and ratios of Young's moduli of the elastic layers
Y/Y() is a correction factor representing the influence of the viscoelastic layer

Yo=YH,=0)
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The expressions of Y for a beam, a plate or a tube are given with figures 10 and 11 ;

The shear parameter for the mode n is given by
Gy By dg?
' Pn2 Hy Yo (EDg

where G'y, B, and Hy are respectively the shear modulus, the mean length and the thick

ness of the viscoelastic layer : :
dg is the distance between the neutral planes of the elastic elements when H,=0

Py is the wave number
The frequency of the mode n for the beam or the tube is :

a2n (Er)n

h=— |—
212 | m

where (EI),, is the flexural rigidity of the composite structure

m is its mass per unit length
L is its length
ay, is a coefficient depending on the boundary conditions

lt:or a simply supported structure, the modes are sinusoidal ; the wave length is related to L
y: .

2L
= —
n
and a,=nx

The wave number p,, is then given by :

2xn m
)? = 2,
An EDy

Pn2= (

If we suppose that (ED)y, is the real part of the complex rigidity (BI)n*[4], then
Xn
(EDp =Re ED," = EDgRe (1+ — Y)
%*
1+X,

withX,* =X (1-iBy)
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If we introduce the 'coupling parameter' :

X (14 Xp) + X 28,2

Zn =
(14X,2) + X,2B,>

the flexural rigidity can also be written :

EDy = (EDg (1+Z,Y)

Then the shear parameter for the mode n is :

G\ B, dy? G\ By dg? 14Z,Y
Xn = =
21tfn” m H, Yq (El) 2nf, H, Yon(ED),
(EDyp

(the expressions of (EI)( and dgy are given with figures 10 and 11)

For a given frequency, X, and Z , are obtained by an iterative method, then the loss factor is
deduced.

If we consider a motion in one direction, the formulation is the same for a plate,with
analogous expressions for the wave number and the frequency (Table 2).

In order to compare the effects of different constraining layers, the curves n(f,T) have
been plotted for a steel beam damped by M1, and constrained by steel, aluminium or fiber
glass layers introducing the same added mass (Figures 12,13,14) . It appears that in this case,
the most efficient material is aluminium, which can provide a loss factor of 0.2 . However,
this is a global conclusion, and another material can be more efficient for particular values of
temperature and frequency .

The influence of the viscoelastic material can be studied by considering the steel beam
damped by M1, M2 or M3, with the same constraining layer, for example steel (Figures 12,
15 and 16). It appears that, globally, the most efficient material is M1, which can provide a
loss factor of 0.15 .

Inf f bound fitions (& :

In the case of a free structure, the modes are no more sinusoidal, so that the theory is not
valid . However, analogous relations for f, and a, may be used [5], knowing that the expres-

sion for a; is not valid for the first five modes . If one is interested in the value of the fre-

quency , independantly of the modal analysis, the loss factor is the same as for the simply
supported plate.
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EXPERIMENT

Modal damping measurements have been made on steel plates damped by constrained
viscoelastic layers (with steel constraining layers ) . The plates were free and excited by a
hammer . The measurements were made in five different points, and a modal analysis has
given the modal frequencies as well as the corresponding loss factors . In the frequency ran
ge of measurement, a few flexural modes were identified . We plotted he experimental and
theoretical values of the loss factors on the same curves (Figures 17 and 18). We can see that
the experimental values are a little lower than the theoretical ones. However, the agreement
between experiment and theory remains quite acceptable.

CONCLUSION

We have developed a program based on well-known theories and which can be of great
help for the designer of damping devices with viscoelastic layers . It allows the user to visual-
ize immediately the efficiency of damping treatments and then to choose the most appropri-
ate . It offers different possibilities such as :

- extensional or shear damping

- beams, plates or tubes

- various viscoelastic layers, which master curves are stocked in a library

- various constraining layers, such as steel, aluminium, fiber glass composite
with different thicknesses of the added layers .

However, one has to make many tries before finding the best damping device . The pro-
gram needs to be extended to an optimization program which would give the best materials
with the appropriate dimensions for a given structure to damp .
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M1 M2 M3 M4 M5
T=0°C 1 1 1
1740 1000 10 000
T=20°C 6 20 20 1 1
10 000 10 000 10 000 600 40
T=40°C 300 250 3 15
10 000 10 000 10 000 3000

Table 1 - Frequency intervals (between 10 Hz and 10000 Hz) where the intrinsic loss factor is

greater than 0,5 for the viscoelastic materials considered M1toMS5).

FREQUENCY OF SIMPLY FREE (n>5)
THE MODEn SUPPORTED
2
a (ED a_=mni7tT _(2n+1)7‘:
BEAM/TUBE " 0 7 =T
nT o 12 m A== o DT
2nL n T T n= 55T
2 2 1
( PLZTE an Dn a_=nit an=—'_2___( nr T
motion along one = / o a1
direction) Boopi2V M| A =5 | A ==m=T
L : Length
m  :Mass per unit length / surface

" (ED)y, : Flexural rigidity of the beam or the tube
D, :Flexural rigidity of the plate

Table 2
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Figure 3 - M1:-Contour lines for p=0.4;0.5;0.6;0.7; 0.8
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Figure 5 - Unconstrained damping treatment
Structure : E\(1+iB)
Viscoelastic layer : E{(14jn7) , Nj<<1
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Figure 6 - Extensional damping . Contour lines forn=0.05; 0.1;0.15; 02
DAMPED BEAM
STEEL H;=0.01m

Mé H,=002m  jap.is
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Figure 7 - Extensional damping . Contour lines for n=0.05;0.1;0.15;0.2
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Figure 8 - Extensional damping - Composite loss factor
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H; I Eq Structure
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R =Hy/H;
3MR(R+1)2
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Y H
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Figure 10 - Shear damping for a plate or a beam

JAB - 19

Confirmed public via DTIC Online 02/18/2015



From ADA309667 Downloaded from Digitized 02/18/2015

M =E,/E;
R = Hy/H,
S=Hy/A
T = 142RS
8MN2(T3-1)2 sin2(yN)
Yo=

Om2(T2-1) {(1-(1-28)%) + M(T4-1)} - 8MN2(T3-1)2 sin2(uN)

Y=Y0

n(1-(1-28)%)  wMT41)  MN2(T3-1)2 sin2(/N)
EDp= E;a* { + - }
64 64 727 (T2-1)

m = (w4) { pp((A+2HpP-A2) + py(A2-(A-2H P) ]

Figure 11 - Shear damping for a tube
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Figure 12 - Shear damping . Contour lines for n = 0.05;0.1;0.15;0.2
DAMPED BEAM
STEEL H; =001 m
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Figure 13 - Shear damping . Contour lines for n=0.05; 0.1; 0.15; 0.2
DAMPED BEAM
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Figure 14 - Shear damping . Contour lines forn=0.05;0.1;0.15;0.2
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Figure 15 - Shear damping . Contour lines forn =0.05; 0.1; 0.15; 0.2
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Figure 16 - Shear damping . Contour lines forn=0.05;0.1;0.15;0.2
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Figure 17 - Shear damping .Loss factor versus frequency for T =27 °C
curve and experimental points (x)
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Figure 18 - Shear damping .Loss factor versus frequency for T =27 °C
Theoretical curve and experimental points (x)
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