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ABSTRACT

The principles of static and dynamic similitude were applied o typical
complex structural components for the purpose of examining the application
of modeling techniques to sonic fatigue predictions. Modeled specimens of
curved panels, honeycomb sandwich flat panels, and honeycomb sandwich cant-
ilever beams have been tested. The tests were conducted on full scale, 5/8,
and 3/8 size models. The tests and analyses demonstrated that scale reduct-
ions of linear panel dimensions, and other slze factors necessary in the
fabrication of models, may be separately considered in maintalning the est-
sblished similitude relationships. Both random spectra and discrete fre-
quency acoustic excitation are considered.

Correlation of avallable data from other sources has established a frequen -
cy parameter defining the effects of redius of curveture along one side of
a curved panel. This frequency parameter converts to a stress reduction
factor that has been verified experimentally in meny modes. Although the
section modulus for honeycomb sandwich panels need not be ecomtrolled by the
scaling factors, the generstion of response modes is significantly related
to the aspect ratios of surface dimensions. This panel aspect ratic effect
can yleld = dominant excitation of higher complexity modes at low stresses
and impose difficulties in fatigue duration tests. Experimental data are
used to identify these complexities and differences between modes without
introducing consideration of coupling effects.

Stress correlation is the critical parameter in modeling for acoustic fat-
igue. True models with exact geometric scaling in all elements are not
necessary. Adequate modeling is obtained by maintaining the same aspect
ratio and modes for the specimen and model. The frequency and stress then
vary at predetermined magnitudes with a functionsl relationship to demping,
amplitude, and cross-section (thickness) geometric parameters. Non-linear
effects are dependent on excitation levels. In general, a prerequisite to
sonic fatigue tests is a lknowledge of the non-linearity induced by damping
and amplitude for each specimen. The experimental data confirms the ap-
plication of basic procedures formulated by Miles, Palmgren, and Miner wvhich
minimize the requirement for random excitation in thke use of modeling tech-
niques for sonlc fatigue predictions.
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1. INTRODUCTION

On the question of fatigue fallures in structural components of aero-
space vehicles, there is 1little doubt that a major contribution comes from
acoustically induced vibrations. In recent years, considerable research work
has been oriented towards a better definition of the acoustical loading that
these components should be designed to sustain, and towards a more critical
analysis of the vibratory responses induced by the acoustical loading.
Progress and advancement to meet newer challenges in the technology of
acoustically induced fatigme of structure is dependent upon an optimm
achievement in both these undertakings. Like all engineering accomplishments
of the past, however, analytical results must be subjected to proof tests
before acceptance. As wvehicles become more and more complex and loading
requirements are more and more severe; the performance of these tests would
incur a great deal of engineering effort and expense. This situation has
drawn attention to the potential use of models, as specifically in the
current program, for studying a technigue by which acousticelly induced
fatigue strength can be predicted.

In a technological sense, models have been used and are used in
almost any engineering task. In the determinstion of physical properties
of newer or more exotic materials, sample apecimens of any shape or form
are fabricated and tested. These are essentially models; for example, in
the case of the tensile gtrength of a round bolt or a rectangulsr pin, one
would simply refer to the unit strength of = modeled specimen in the same
loading environment and determine the desired strength from the cross-
sectional area of the bolt or pin. The area is, therefore, the essential
modeling parameter. Because a tensile specimen is usually round, it can be
considered as a true model of the bolt and s distorted model of the
rectangular pin. 1If an additional consideration is required in this case
to determine fatigue strength, the question of loading conditions will
naturally arise, Similitudes are extended to the case of fatigue only if
the stress reversals or variations are compatible in magnitudes. For the
bolt and pin, possible differences in the most llkely stress concentrations
of model (test specimen) and the bolt or pin must be considered and eval-
uated. TFor the purpose of this program satisfactory fatigue properties
commonly expressed in the form of 3-N curves for the specimen material
are assumed available for loading conditions representative of those imposed;
the intrinsic variation in an S-N curve is not an Investigation objective.

Specifically, therefore, a premise is established that under identical
environments, the behavior of a specimen and its models are alike, Indeed,
the designation of a "specimen” or a "model" is merely symbolic. The know-
ledge that is being sought in modeling studies for sonic fatigue is no more
exclusive than in other cases. The response of a given elastic assemblage
must be ascertained under given conditions that are common to both specimens
and models, which incidentally need noi be restricted to true models only.
The program is one of defining the parameters relevant to both response and
loading.



The purpose of this study is to demonsatrate through analysis and
experimentation that some basic relationships remain appliceble in modeling
complex structures for acoustic fatigue analyses. For providing informetion
on the more pertinent simulation requirements of desirable structursl
components, two structural assemblages In the form of honeycomb sandwiched
panels and curved plates were chosen for study. Neither of these
structural unit types have been completely delineated in its physicel
properties - only those consldered of major importance were defined in the
study. The objective 15 to extend the parameters as defined in this study
towards a prediction of the fatigue strength of each unit in an acoustical
environment,



2. DYNAMIC MODELING REQUIREMENT AND PARAMETERS
2.1 Background

Dynamic similitude through the use of models as a method of solving
many engineering problems has long been recognized. In fatigue investiga-
tions of structural components exposed to random excitations, acoustically
or otherwlse induced, the applicatlon as reported in Reference 1 will of
course be anticipated. The advocated reduction of e prototype specimen
in a1l its lineer dimensions by the same scale factor i.e., into "true"
models, however, poses severe limitations that must be overcome. The
theoretical background on the use of "adequate' models, not exactly
scaled, is provided in Reference 2,

Generally speaking, the use of models is predicated upon the premise
that In dynamic stress simllitude, a structure is correctly modeled if its
stress under a given dynamic load can be predicted from the measured stress
in the model. Thus in true models, the same stress is merely duplicated.
Insofar as fatigue strength is concerned, the equivalent kmowledge (S-N
curves) applies. For the seme life-cycle duration, the product of
frequency and time 1s a constant. Since the frequency is inversely propor-
tional to the true model geometric scale, the duration on a time basis
becomes directly related to scale factors. However, quite frequently
geometric variations and changes in response modes require that differences
in resultant stresses must be taken into account in fatigue considerations.
Avallable data from Reference 1 and other sources have been, therefore,
re-examined in this direction whereby some of the reported discrepsncies
mey be resolved,

2.2 Fatigue Data Correlstion
2.2.1 Stress Variations between Mpodeled Specimens

Some typical examples of stress variations are found in the data of
Reference 1 and reproduced here in Figures le and 1b. Spectrum analyses of
strain gage signals from similar locations are indicated as S3, Sy, and S
of Figure 1 for 1/3 end 1/6 scaled models of a ribbed square plate excite
by random noise of apvropriately scaled acoustic powers. To reproduce the
game stress in both cases, all corresponding spectra should follow the
game shape after a downward shift in frequencies at a scaled ratio of 2 for
the smaller model (frequency scaling for the 1/2 :1 geometric scaling). The
pover spectrum difference should then be +3dB (=10 log 2) for the larger
model. In the data shown, this difference is +6dB for the maximum stress
indicated.

2.2.2 Mode Frequency Variations between Modeled Specimens and
Fatigue Correlation

By comparing the shapes shown in Figures la and 1b, it is also
pbserved from the spectrum differences at location 5; that the square
element within the ribs responded differently between models This may
gerve to explain the increased stress in the 1/3-model plate. The relation-
ship between excitation powers was separately determined to have been
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properly applied between all specimens (See Ref. 1). If the increase in
maximum stress is taken into account, it 1s very likely that the reduced
fatigue time of the 1/3-model plate would fit an acceptable S-N curve or
could be corrected to show a constant "N" for the same "S" as in the other
specimens. In this respect, it must be mentioned that locatioms 3, and S,
are essentially the same insofar as plate vibrations are concerned.
Failures induced by tramsverse bending could occur along either side. For
this reason the spectra at Sp» and 5; are compared as respective maxima.
The mode frequenciles observed at 16; and 500 cps, not being precisely an
inverse ratio of geometric Bcale factors provide a necessary correction factor
in converting fatigue cycles to the indiceted duration time. Eecause the
stress is the criterion in fatigue, such a correction is always necessary
when a time duration is used.

2.2.3 Fatigue Time Corrected

The average S-N curves for aluminum,when plotted on log-log scales,
exhibit 2 nearly wniform slope beyornd 10% cycles without significant
variations between material classifications or stress concentration factor
changes. On this basis, for a stress difference corresponding to +34B
(= 20 log stress ratic) or 1.4k times higher strees, the number of cycles
affected is gpproximately 10 times. Thus the observed durations of the
higher stress at 155 cps should be multiplied by 10 if the frequency had
been correct at the modeled stress for the l/3-mode1. Based on 65 cps
for the full size panel mode of Reference 1, the 1/3-model frequency
should be 195 cps, To correct for the frequency differences, the actual
time observed at 165 cps is to be shortened by a ratio of 165/195 making
a total correction of 8.5 times.

Examination of the detalls of the 1/6-scaled specimens (Design I
of Reference 1) reveals that a reduced corner radius at the advocated
scaling law would very likely incur an inereased stress concentration
factor. Based on the given full scale reference, the cobserved fatigue
duration of the 1/6-scale specimens should be adjusted by a ratio of
1.5 for stress concentration differences, Concurrently the time correla-
tion required 1s based on the observed response at 500 cps (Fig. 1b)
divided by the scaled frequency of 6 x 65. The total correction factor
is 1.9@ (:ggg_ x 1.5) which is applicable in an interpretation of fatigue

5 .

time T between true models at scale factors N'. The corrected failure
time result for the Reference 1 specimens is shown in Fig. 2. A linear
relationshlp is clearly indicated which verifies the theoretical result
that duration time is directly proportionel to geometric scale factors.
The range in data scatter which is represented by either the vertical or
horizontel spread between the two lines, is attributed partly to damping
coefficient variatlions, currently undetermined in extent, and partly to
normel scatter Iin fatigue data.
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2.3 8imilarity of Restricted Temperature Effect and Some
Nonlinear Charecterlistics of a Soft Spring Variety

In Figure 46 of Reference 3 an extensive change was reported in the
resonance frequency accompanying a temperature change of only a few :
degrees Fahrenheit in a clamped beam specimen. This temperature change was
limited, however, to the beam itself through localized heating in such a



manner that the main clamping fixture remained essentislly free of a thermal
gtrain. This must be considered as a unique case in variance withsteady state
operational environments where both the clamping end the clamped generally
assumed same temperatures. Only a slight drift in frequency was usually
observed unless the difference in thermal expansions was extremely great.

A large change in resonance frequency of the order reported must be
attributed to the induced compressive streas. As the temperature of the
beam was increased, the natural extension in its physical length caused it
t0 exert an axial force con the clamping fixture. This action is the same
as a compressive force applied sxlally on the bheam. Before the EFuler's
load is reached, at which point the beam buckles as a column, the

effect of such an induced compressive force 1s to reduce the tensile stress
of bending in response to an applied transverse load. It is, therefore,
feasible and relatively straightforward to calculate the ratio of the
change in tensile stresses due to tempersture changes as 1f a static
compressive ioad was applied. A dynamic similarity of this restricted
temperature effect is also found in a cylinder under torsional vibrations.
For sny particular mode, an elementary block or columm mey be considered

s an elastic unit between nodal axes, sublected to axial compression

and latersl bending at the same time. This was dliscussed in Reference L
based on data extracted from Reference 5. The two cases are plotted in
Fizure 3 to compare the temperature effect and torsional vibration
characteristics. The advantage in using logarithmic scales is evidenced

in the fact that differences in readings are reflected merely in scales

and that a geometric similarity is revealed in the curves. Thus, the
general result is defined in the slopling lines which are parallel with a
common slope of 12 dB per cctave. As the compressive load is increased,

the maximum vibratory stress increases for decreasing frequencies character-
istic of nonlinear soft springs. It appears, therefore, unwarranted to
emphasize merely the effect of restricted temperature changes on a vibreting
unit without e complete investlgation. It is interesting, however, to
observe that if a temperature differential exists between the clamping
fixture and the vibrating unit, a frequency shift is inevitable. Conse-
quently in normal test set-ups, clamped boundaries must be released between
tests to relieve residual axiasl forces and to minimize the expected
frequency drift.

2.4 Sinusoidal versus Random Excitation in Response & Fatigue Tests

A useful correlation nf the fatigue demage sustaineble by an elastic
unit resnonding in a singie mode under random loading has been mathematically
determined by Miles (Reference +)}.Miles'theory wvas based in terms of the same
damage that would be cumulated if a given random stress expressed by its
ms spectrum or power spectral density, had been replaced by an equlvalent
sinusoidel power spectrum whose level is raised /e (e = 2.72) times, or
10 log a/e decibels. Supporting date may be found in Reference 7 from
vhich Figure 4 is reproduced, a{=7 for aluminum) being the indicated slope
of & log S-log N curve. It is readily observable that both the random and
constant amplitude fatigue curves exhibited the same general slope and
were spaced apart to a degree in accordance with Miles' deductions.
Accordingly for the equal damage condition represented by any ordinate
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Figure 4. Typical Fatigue Data (From Ref 7

in Pigure 4, the observed sinusoidal stress level exceeds the random stress
by 3 to 4 dB versus the calculated difference of 10 log /e which is

4L dgB. The use of Miner's cumulative damage index, Reference 8, in this
analysis by Miles can be considered as gquantitatively substentiated.

In achieving a satisfactory correlation of damages between e random
and a sinusoidal stress, it becomes quite evident that under laboratory
conditions either method may be used in obteining relevant fatigue datsa.
However, it must be emphasized that the solution by Miles 1s predicated
upon an idealized solution . & single mode in linear response.

The use of random forces in general implies large forcing amplitudes and
elmost necessarily induces nonlinear response in the resultant stress
unless the specified spectrum is very moderate in level. Frequently, many
mode components contribute to the same damege. Due to the difference in
modes, the maximum stress may not be the damepe stress pertaining to a
perticular mode. For example, a clamped beam would have its maximum bend-
ing and damage stress at the clamned ends in the first mode. The
maximum stress in a 3rd mode would rrobably be located elsewhere while the
contribution nf the third mode to the ultimate damage at the ends wae &
much lesser stress. To aszsure the maximum stress in the modes of importance
(generally the low order modes), the separation of modes is necessary.

For this purpose, the nse of sinusoidal forces, either acoustically or
mechanically applied, becomes most suitable.



2.5 Modeling Parameters Extended to Complex Configuretions

The evaluation of previous results introduced in the foregoing
discussiondemonstrates that for fatigue considerstions, particularly between
scaled models, it is Important to secure a basic knowledge of the stresses
induced in each specimen. For simple structures in rectangular sections,
the geometric similarity achieved in true models reasults in equal static
stress being generated in all cases under egual foreing powers or loading
pressures. The expression of fatigue {8-N solutions) at any omne siress
level tranaformed into a relationship between model scale factors N' and =
time duration T (See Pig. 2) is a particular solution and should not be
extended to complex structures without necessary qualifications. For this
program, a honeycomb sendwich structure and a curved penel will be used to
illustrate the qualification procedures.

2.5.1 Modeling Parameters in Honeycomb Sandwich Panels

The geometrical representation of a honeycomb sandwich section is
given in Figure Shec, Appendix A.

2.5.1.1 Stress Parsmeters

The bases for stress correlation are represented by equation A2 and
A3 given in Appendix A, yielding the following relationship for the same
stress conditions being modeled,

M_a M.d
Sle/e) 1 ) e (1)
) 190 | pull seale 2le/ee) I 4 Model

where 11-1/d 1is the section modulus, M, is the maximum static bending
moment, and c/c, is the dsmping coefficlent ratioc. A more useful form
of this same equation is given in Appendix A as Eq. A3a which expresses
M, in terms of the maximm forcing pressure intensity p and the ratio

1/2 cfc, 88 8 smplification factor (A.R.). Thus, the equation of the
modeled stress O is

2
gp a“ 4 (A.R.)
0= ~ (1a)
5 6 Ak~
with gp 2%/¢ =My where (A/6) 1s the moment coefficient and & is the
relevant length factor; and Ak< = I,., vhere A is the sectional ares of
tis plate and k is its radius of gyration.

Note that for uniformly distributed loading intensity on rectangular plates,
for which all linear dimensions are identlcally scaled, the above relation-
ship is automatically maintained. This was designated in Reference 1 as a
scaling law, where the damping coefficients were considered as being the
same. For honeycomb sandwich secrtions, numerdical values of I, end 4 are
subjected to cther practical considerations such as the thickness t of the
face sheets and the depth ¢ of the core used. The result is that as the
static bending moment M, is exactly proportional to the square of the

size factor, the ratio of I‘l_l/d is not. It is, therefore, necessary to
consider eac': parameter separately,including the damping coefficient retio
a8 an additional variable., For fatigue considerations, it is convenient
(but not necessary) to keep the lumped ratios in the above relationship =t

10



some given level. This can be accomplished by adjusting the loeding
conditions after c/c., Iy_; and 4 are gjetermined for the full scale unit
and its modeled aspecimen. The neceseity of scaling every linesr dimension
is hereby removed.

2.5.1.2 Frequency Parameters

The required parsmeters in a frequency correlation between modeled
specimens are given in the followling equation which is a modified version
of Equation A6 introduced in Appendix A.

£ I 12K [ _welght of face sheets 1/2

ro a2 total section weight (2)
where f. is the resonance frequency in cps, C 1is & constant dependent on
panel chape (b x &) or aspect ratio (b/a) and constraint conditions, X is
the redius of gyration due to the face sheets, and the bracketed weight
correction is due to the core weight adding inertisl forces during vibration
(the bending stiffness being provided by only the face sheets). The values
of the conatant C are given in References 9, 10, 11, 12 and shown in Fig.

5. 1t is evident that only identical modes may be considered if the above
equation is applied to modeled specimens. For the modeled plates of Reference
1, the frequency is inversely proportional to the scale factor. For honey-
comb sandwich sections, the weight correction cannot be held constant in
view of the requirements set forth upon the values of I,_; end 4 for stress
perameters discussed in the preceding section. It is, therefore, necessary
tc consider the frequency of the mode to be investigested in each case and
avoid a general correlation of fatigue time to scale ratios.

2.6 Selection of Honeycomb Sandwich Panels and Model Dimensions
2.6.1 Scale Ratios and Number of Specimens

While the selection of scale ratios is entirely arbitrary, practical
considerations as to the minimum size that can be conveniently handled in
experimental investigetions usually impose an upper limit in scale
reductions. In order to fulfill the programmed requirement of using two
model sizes, these were estsblished st 5/8 and 3/8, full size being 1.

Three specimens were provided in each size. As indicated in Section 2.5,
parametric requirements in comparstive stress and frequency changes
between models dictate specific ratios indicated in Sections 2.5.1.1 mnd
2.5.1.2. The given scale ratios are, therefore, nominal sizes only and
not to be used in calculations.

2.6.2 Panel Sizes and Aspect Retio

The largest size wu-based upon the size of the fixtures available
which established the full scale panel dimension at 41 x 28 inches with an
aspect ratio of 1.465. At an overall section height of one inch, prelimi-
nary design calculations indicate that a reasonable fatigue strength could
be expected 1f the face sheets were(0.012 inch in thickness. The section
modulus Iy _;/d is a routine caslculation.

Ag indicated in Section 2.5.1.1, it is not necesseary to change the

section modulus in precise proportion to the square of the scale ratios.
The choice of modeled specimen dimensions is in fact quite large. How-

1
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C, A CONSTANT

VIBRATION FREQUENCY OF RECTANGULAR PLATES ]

b x a x h INCHES ]

C = f_a/h; {;, STEEL PLATE FREQUENCY IN cps ]
I, PLATE THICKNESS

a, b, SIDE DIMENSIONS

f,» ALUMINUM PLATE FREQUENCY = 0,985 f_ |

b/a, ASPECT RATIO B —— .
i ; ) ; ' B S S R . H |
1.0 1.5 2.0 2.5 3.0 5
Boundary Conditions
1. All Sides Clamped 6. Three Sides Supported,
2, All Sides Simply Supported Long Side Clamped
3. Two Adjacent Sides Clamped 7. Two Long Sides Clamped,
Other Sides Supported Opp. Short Sides Support
4, Three Sides Clamped, Short 8. Two Short Sides Clamped,
Side Supported Opp. Long Sides Support
5. Three Sides Supported, 9. Three Sides Clamped,

Short Side Clamped

Long Side Supported

Figure 6. Frequency Constants for Rectangular Plates
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ever, some convenlent starting point can be realized by making the

respective core depth at 5/8" and 3/8" for the present models. The same con-
venience cannot be extended in scaling face sheet thicimess without incurring
excessive fabrication costa. Accordingly for the 5/8-size specimen,
0.012" face sheetswere used again and 0.010" for the 3/8-size models. The
overall panel dimensions vere respectively 23-3/8 x 16-1/4 and 1b-1/h x

9-3/4 (unchanged after an original full size panel of 38 x 26 was modified
to 41 x 28). A summary of these dimensions is shown in Table 1.

2,6.3 Bending Rigidity and Core Selections

A8 indicated in Appendix A, optimum achievement of complete bending
rigidity in the face sheets 1s dependent on the provision of adequate
core strength in resistance to the shear force V which is approximately a
linear fimctlon of specimen size. An enalysis on the strength of hexagonal
honeycombs and core selections i3 given in Appendix B. The requirement can
be simply stated that the density of core required is directly proportional
to scale sizes. The lightest honeycomb densitywes, therefore, determined
by the 3/8-size panel dimensions for which the shear stress safety dictated
a density requirement of 6 1bs/ft3. For full size and 5/8-size specimens,
the cores used {as supplied) are the nearest proportionate in densities
required. Other geometric characterlstics are given in Table 1.

13
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2,7 Selection of Models for Curved Plates

The stiffening effect in curved plates is a highly complex phenomencn.
A definition of this stiffening effect was one of the test objectives to be
obtained before a proper fatigue correlation could be attempted through
model tests. The selection of specimen sizes was, therefore, hased on true
models where all linear dimensions were scaled arbitrarily at these ratios:
1, 5/8 and 3/8. The net dimensions of each size are shown in Table II.
The plates were rolled to the correct radii before mounting and clamped
on all sides., It is assumed that such a specimen panel similates very
closely a curved plate element within & structursl component unit con=-
fined in wndistorted boundaries. Three specimens were fabricated in each
case,

TABLE II CURVED PANEL SPECIMEN DIMENSIONS, 2024 ALUMINUM

Nominal Thickness Plate Size, inch R, Redius of
Specimen of Plate Net, between clamps Curvature on
Size inch b X 8 side a, inch
Full 0.064 33 x 2l 36

5/8 0.040 21 x 15 22-1/2
3/8 0.024 13 x 9 13-1/2
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3. EXPERIMENTAL OBSERVATIONS IN HONEYCOMB SANDWICH MODELING

3.1 Weight Analysis of Specimen Samples

In oxder to determine the weight correction required in the frequency
equation, Bq. 2 (Section 2.5.1.2), an sccurate weight analysis is needed in
each case. For this purpose a beam section wae carefully weighed after
curing and compered to the total welght of separate elements and adhesive
materials used. The actual weight, reduced to a unit area basis becomes
e significant loading factor in subsequent vibratory tests.

3.1.1 I1lustrative Example

Full-size Honeycond Sendwich Section; Beam size 1.5" width x 12"
span {= 18 s8q. in. in flat surface ares)

2 Face Sheets, 0.012 thick each, weight = 0.0L32 1b.
Core (density as supplied, 17.1 1b/rt3), weight = 0.1775 1b.

Bonding Adhesives FM-1000, weight = 0.0150 1b.

Calculsted Total Weight = 0.2357 1b, or
107 grems

Measured Total Weight = 105 grams

The agreement is satisfactory. The unit weight of 0.0131 1b/in2 per g
(=0.2357/18) compares very favorably with other honeycomb sandwich
constructions on recom even though a heavy core is used here.

3.1.2 Frequency Correction Factors

From the weight analysis illustrated above, the frequency correction
factor may be readily calculated. For the full size section, the correctiom
is J0.0532/0.2357 = 0.428, This correction factor has been taken as

applicable to all beam or plate configurations of this scale (full size).
Table II] summarizes similar resuits for all specimens tested.

TABLE III FREQUENCY CORRECTION FACTORS

Weight of Face Sheets | Frequency
v, Tota% Weight Total Weight Correction
Scale 1b/in per g = Ratio = o Ratic
Full Size = 1 ,0131 0.183 0.428
5/8 .008k41 0.285 0.534
3/8 .00413 0.485 0.696

17



3.2 Verification of Frequency Correction Factor - Use of Captilesver
Beams

Referring again to the frequemcy equation (Eq. 2, Sectiom 2.5.1.2), it
is cbserved that the calculated frequemcy corrections of Table III can be
verified experimsntally 4if a simple configuration such as s cantilever beam
is used for which the value of the lumped constant C is obtainable from
meny sources (References 9 and 13). However, two spans were gmployed in
each of the three section sizes for added validity in test results. With
three samples in each case, & good average is derived from a total of 18
besas. It is umeocsssary to relate the modeling rstios to the spams which
vere chosen merely to change the response Irequencies.

3.2.1 Cantilever Besm Tesnts

The clamped emd of a cantilever beam WaE mounted on the table of an
electro-mechanical vibrator vhose frequency oam be accurately controlled
with its input force to the hesm momitered by am accelsrometer. A strain
gage attached to the bdeam provided a direet reading of the dymamic
stress, correctable t0 a maximm styess by the matio (sguared) of the span
to the distance bDetwoen the struin gage emd the free end. The test arrmnge-
ment is shown ip Fgure 6. Two methods are available to determine the
resonance frequency which in this cease would be the first mode. The vidbra-
tory fregquency of the input fores required to sustain s sarisos response, or
to keep the phase sngle between these vectors at 90° would
indication. The second method is to pluck the beam geatly and cbserve with
an oscilloscope the timed frequemcy truces of the decaying

g ~READING Stress .READING

( ) OSCILLOSCOPE Q
FREQUENCY

COUNTER _W_.l
O ACCELEROMETE l_l

STRAIN GAGE CIRCUIT

Figure 6. Test Arrangement for Cantilever Beams
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3.2.2 Test Results

The results are given in Table IV, On the strength of the agreement
between the observed frequencles and the calculated values, a complete
verification of the deduced frequency correction factors is achleved. That
the calculated frequencies are alightly lower than observed is a natural
result of excluding core contribution in the moment of inertia. The
differences are barely detecteble and do Justify the simplified approsach.
However, 1t is significant that the differences should occur in the direction
cited and not reversed. In the latier case, the beam deformation deviates
from pure bending depicted by Figure 54b and approaches the conditions of
Figure Sika in Appendix A. This was observed in the case of longer spans
with increased dynamic shear forces. As the shear stress exceeded a marginal
limit, beam sections began to deviate from the idealized coplenar condition
with a reduction in its true moment of inertia snd to show a decrease in
resonence frequency. The frequency test offers, therefuore, s method to
determine the maximum safe span which in full-sized sections, appears to be
lo" cantilever. The same shear force is generated at longer spans in other
end conditions. TFor &ll1 plate slzes selected, this sheer force will be found
to be well within the respective safe limit.



TABLE IV RESONANCE FREQUENCY OF CANTILFVER BEAMS

] Demping Toefficient
Cantilever .
Beams Resonance l'requency, cps ¢/ ¢y
. Ohserved .
ﬁection Span Calcu- by from decay Group
alze in. lated Ipyoitation curve bean Aversge
95.3 5.3 0.007%
16 2.9 96,2 6,2 0.006k 0,00€ 2
Fuil 0.1 91.0 0.0072
Size 38.2 38.2 0.0118
ol by, +0.9 “a. b A 0.0117
41,5 W0, 8 P4
1% 1A% .6 16+.7 169.0 0.004 0,00k
130.0 L3l. 0.005
12 131, 135.0 135, 0.00€% 0.00"5
8 127.0 128.4 0.00°0
-/8
794 75.6 0.0NGkL
16 Tj ! 7618 7608 0.009T 000 W
75.8 T6 . 0.0089
51.2 1°1.¢ 0.0058
10 149, 152.8 152.¢ 0.00LE GO0
.1 150.8 151.8 0.0066
YA -
T3 7.8 0.008%
1L 76.72 7.8 1.6 0.0080 0.0081
76.3 76 0.007:
*Cut Crom 24" beams
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3.3 Extension of Cantilever Beam Tests to Damping Correlations -
A Size Pactor

In aacertaining the resonsance frequency by the second method discussed
in the preceding section, the decay trece provides a conveniently concurrent
basis for the calculation of the lumped system damping coefficient ratio,
¢/ce. The results indicate that there is & significant variation between
slzes. The aimple assumption of unchanged damping coefficient ratios in
dynamic modeling sppears to be faulty and the lumped parameter represented
in Equetion 1 (Section 2.5.1.1) 1s, therefore, preferred at equalized dynamic
stregs. 'nisrequires thet the damping coefficient retio asscociated with each
gpecimen, full-size or scaled models, be accurately determined before a lumped
parameter is applied in fatigue tests. The following analysis correlates
damping changes to model sizes or scales.

3.3.1 System Damping

A comprehensive and 1llustrative study on system damping by Kerr and
Lazan is availsble in Reference 14 from which some necessary data were re-
introduced here. The results using cantilever beams will be applied to
clamped beams and plates, to 1llusirate the adapteblility tc panels of
somewhat complicated sectlons.

Figure 7, replotted from Reference lh, shows the results of system
damping D in terms of work done per cycle {in.lb/cycle} plotted against the
maximum bending stress. Relevent mathematical equations for the damping
work in a lumped but equivalent system are given in Reference 15 and are
written below. .

r

s
a
D:j PE%ndt=wao (3)
0
2x
Wy dy 2 .A
Y 3 L
-':&.150, L = 5 "~ {R} dt e 7w _‘J{:ﬁax wr ( )

Where P represents the input force applied at the clamped end,

Yo the amplitude of P, a sinusoldal functiom
wy the resonance frequency,
¢ the damping coefficient
y the amplitude at any section, and
Ymax ‘the max:lmm amplitude at the free end.
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On the assumption that the maximum amplitude, or deflection, has & linear
relationship to the maximum bending stress, 1t becomes evident that Equation
4 may be represented by a straight linewith a slope of 2 as plotted in Figure
7. The data, therefore, indicate that (1) significent points A, B, and C
may be located where the specified linear relationship between deflection
and stress begins to weaken, and (2) below these points the demping coefficient
c 1s constant but assumes Iincreasing values ag A, B, or C is exceeded,.
Furthermore, in replacing the amplitude (yu,.) by stress (Opax), a modifica-
tion is introduced equivalenit fo dividing the abscisse dimensionally by h/ge.
Thus the thickness difference is effectively removed from considerstion,
resulting in a single curve in each case with a common parameter ¢, This
dimensional change is also reflected in the ordinate scale. Thus by
comparing the damping work at polints A, B, and C 1t will be found that the
readings become exactly in inverse proportions to gh, a condition that is
also indicated in Equation AS Appendix A, where ( ) g)“ is a constant in &
particular mode for a given heam or plate configuration. A normelization
process is, therefore, feasible if the relative abscigse locations at A, B,
and C could elso be rationalized. This may be directly accomplished in a
dimensional analysis of the critical damping coefficient c¢. which, as
expressed in Reference 1) and many other textbooks, is:

kW c

Cc = 2 -,QT- ( “)
where k, the spring constent, carries the unit of force/displacement for a
lumped elastic system of total weight W. Inasmuch es transverse deflection
due to bending only is conslidered, the characteristic dimension of k is
essentially y [/ El/w f or EI/ 13. Because ¢ and c, must have the same
dimensions and disregarding common constants for the beams concemed, the
parameter c governing the 7bscissa positions of A, B, or C in Figure 7
varies therefore as ( § )*3/2 vhich the observed data satisfactorily confirmed.
For higher stresses such as at point T shown in Figure 7, the increased
damping coefficient ¢y can be referred to the dotted extension of the linear
base line through point "B” and calculated by proportionate increment in D
as indicated in the figure. A more significant indlication is found In the
fact that upon normallization, all data points presented in Figure | merge
into one curve as shown in Figure 8. Moreover, additional data given by
Kerr and Lazan in the same reference for an assortment of beam section: of
sandwich construction cbeyed the same normalized curve shown in Figure 9,
differing only in scales and specific readings. The general shape is
therefore accepted in subsequent analysis and extenslion of linear conditions
will be shown as dotted lines for consistency. From the combined location
of points such as A, B, or C, & correlation of damping for different sections
and etffective spans is obtained.

3.3.2 Damping Correlation Tesats
In order to apply the Kerr-Lazan curve to current test results, a
change in scale expressions is necessary. While retaining the stress

expression in psi, but changing the system damping to force input in unit
of g's (which is a varisble standard to be defined by the system weight

23
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per g in each beam) it must be realized that essentially the system damping
is being recorded on a unit-displscement baslis hecause the work done is a
product of force and displacement. Consequently, the stress correlation
in current tests to locate polnts such ag A or B must be reckoned after
correction to the same basis of unit displacement. Representative test
results as recorded are given in Figure 10 for cantilever beams in the 5/8
size honeycomb sandwich sectlons at 12" and 16" spans, correlation noints
are designated as A and B, damping coefficients ratics having been
esteblished in decay traces at 0.0056 and 0.009L respectively.

Observe that following the changes of ¢ introduced in 3.3.1, the
damping coefficlent ratios 0.0056:0.0094 should be in the same
proportion as (12:16) +3/2 . A close sgreement is obtained numerically.
For stresa correlation of points A and B, it is necessary to convert the
respective readings at 4700 and 9000 psi to & unit displacement hasis.

The cross -sections being the same, the comparative ratio becomes i+700:
(9000)(12/16)+ or 4700:2860 which is also in reasonable agreement numerically
with (12:16)-3/2. For input correlaticn, the original factor of g4 is
now effectively cancelled, leaving a direct comparison of ftotal input force
which is proportional to the span and actual damping coefficient ratio, or
(¢ )(c/eo). Thus for the experimental input readings 0.55 and 1.2 in
Figure 10, the ratio 0.55:1.2 1s found to be quite close to (12}{0.00%6):
(16)(0. 009&) In cantilever beam tests, therefore, a reliable method is
available to correlate damping coefficient ratics to size changes.

3.4 Extension of Cantilever Beam Tests to Fatigue Life Observation

3.4.1 Distinctions in Failure Location snd Correlation to Sonic
Fatigue Strength

Besldes verifying the frequency correction factors dlscussed in
Section 3.2, a clear indication is found in the results observed that (1)
adequate core rigidity prevailed in all ssndwich specimens fabricated and
(2) in confining wultimate failures to the face sheets, a uniform tensile
atress was obtained corresponding to the material strength with an appropriate

stress concentration factor K¢. Without exception, not only were the
tensile fractures confined to the locations of maximum hbending moment

at or within, the clamped section as shown In Figure 11, but the failure
stress averaged consistently 30,000 psi {peak) within a range of approx-
imately 20%. Although a failure becomes noticeable only after a time
duration has accumulated in the tests, it 1s the short term fatigue which
compares very well with the sonic fatigue strength shown in Figure 4 for
sirmple aluminum plates such as a face sheet. Therefore, insofar as the
strength is concerned, there is little difference as a result of the
nature of the loading imposed on the material. The stress, as lumped in

Equation 1 is indeed the criterion - providing adequate core strength is
provided so that failure cccurs in the face sheet and not in the core.
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CANTIVL.EVER SPAN ~«—-|-— CLAMPED END

——» CLAMPED END

Figure 11. Face Sheet Fracture in Honeycomb Section
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3.4.2 Illustrated Ceses of Inadequate Core Stength in Sandwich
Structures .

In addition to the stress criterion of the previous paragraph, a
frequency significance of providing adequate core strength in sandwich
structures can also be experimentally proven. A honeycomb sendwich beam
of the follewing proportion with a light core was used, Figure 12,

Face Sheet, aluminum; thickness 0.020"

Core, aluminum; density % 1b/1t3

Total Weight; .006 1b/in

Cantilever Span 10.5"; Arrangement shown in Figure 12a

The calculated resonance frequency is 222 cps based on & correction
factor of 0.834., The inadequacy of core strength is reflected in the
actual resonance observed at 191.5 cps, and alsc in the final failure con-
ditions shown ln Figure 13. Similar failures of a brazed steel honeycomb
panel also wlth a light core, sublected to high intenslity acoustical loading,
are shown in Figure 1L for comparison. Indeed a modeling of failures between
disgimilar structures 1s demonstrated. The significance indicated is
that inasdequacy in core rigldity is not permissible in sound sendwich
structures.

3.4,3 Significant Differences in Honeycomb Sandwich Failures

In the case i1llustrated in the preceding section, based on the peak
loading observed immediately before the fallure was initiated, the calculated
maximum bending stress in the face sheets 1s 8740 psi. The potential strength
is not, therefore, fully utilized. More significant, however, is the fact
that the ultimate load was not sustainable as it continued to decrease sharply
before a failure could be identified as such. The decrease in load is attrib-
uted to a rapid deterioration of damping for which a change from 0.0096 to
0.0078 was observed well in advance of any indication of the impending
fallure. The nature of a core fallure appears to be inherently catastrophic.

In contrast to the above, by confining fallures to the face sheet in a
sound design, more bending resistance must be temporarily carried by the
core for increased system damping. This is indicated in Figure 15 for a
current bean specimen where the top curve 1s a normel decay trace and the
lower curve 1s derived from the same strain gage after the occurrence of a
failure., There is a slight change in frequency but the damplng coefficient
ratio 1s raised many times over from 0.0079 to 0.12. Although such an
increment canpnot be reckoned as a general rule, the fact remains that a face
sheet fallure will not become catastrophic and ellows ample time for Inspection
and repair. A design standard based on full utilization of face sheet
strength seems to be the proper approach. In actual applicatlons, investipga-
tion of core strength should be conducted for each of its two lateral axes.
In this report, transverse bending along the ribbon directlion only Y1ae heen
investigated.
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S —END INSERT
e USED AS
SPACER

FRACTURES IN MIDSECTION
OF CORE EXTENDING OVER
ENTIRE WIDTH OF BEAM

VIEW AFTER REMOVAL OF END INSERT

Figure 13. Core Failure In Honeycomb Section
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(B)

(A) NORMAL DECAY TRACE, - CANTILEVER BEAM
76.3 cps, c/c, =0.0079

(B} DECAY TRACE FROM 3AME SOURCE AFTER FACE
SHEET FRACTURE
67.2 cps, c/c, =0.120

Figure 15. Sample Excursion Traces
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3.5 Crack Propagation and Resonance Frequency in Fatigue Failure

The consistency in the behavior of all eighteen cantilever beams 1s
summarized in Figure 16 vhere the frequency change of each besm is plottied
versus the input levels. The frequency change is expressed on a percentage
basis of the normal besm frequency. In the resultant curve there seems to
be a significant point wvhere the crack in a fece sheet may dbe, in fact,
initiated. As the crack propegetes beyond this point, the change in resonance
frequency occurs at a different rate. This point is designated in Figure 16
as the knee, a mere 1 to 1-1/2 percentage below the normal resonsnce. It
is noteworthy that a recommendation of the same percentage change in
frequency as & gafe limit is contaimed in Reference li based on different test
procedures. Of primary importance is the indication in Figure 16 that a
fatigue failure is completed within an intensity range of input forces equive-
lent to a level change of 5 dB only, reckoned from the initial crack at the
'‘mee’ in the fallure history curve to an ultimate realization of the accomp-
lighed fracture. Therefore, it appears quite necessary to rely on cantilever
beam tests to establish an accurate reference of the fatigue strength.
Furthermore, the composite failure history curve also sustalns the wmiformity
in damping correlation obtained by merging all response points such as ‘A°',
'B', 'C', Figure T, at one location as indicated in Figures 8 or 9.

Similar to the established damping criterion, the input force at a uwit
displacement basis is normalized upon the displacement parameter v /*/I
modified by (c/c.)™L flue to the dynamic amplificetion involved. The joint
parameter becomes v | /AK? (c/c,) as mumerically illustrated in Table V. In
Figure 16, proper scales of the input levels apply to respective sections at
indicated cantilever spens. Table V shows the calculated scale ratios
required for corresponding failure curves to merge together. The data were
actuslly fitted at sllghtly different ratios prior to the sbove deduction.
For beams of the ssme sections v and A will be common. By substituting /3
by its proportionate quantity (o/ cc)2 introduced in Section 3.3.1, the input
parsmeter 1s reducible to (/) (c/c.) presented in Section 3.3.2. Figure 16
includes data from beams other than the indicated spans but corrected by

the required parametric ratio, c/c.'s as tabulated in Table IV.

3.6 Nonlinear Regponse
3.6.1 Similarity of Cantilever Beams to Other Elastic Units

On the question of nonlinear response in an elastic plate element sub-
Jected to transverse bending variations, theoretical analysis is referred to
References 15, 16, 17, and 18 and to References 19, 20, and 21 for experi-
mental investigations. The presence of an induced axial force is gensrally
attributed to be the basic cause of nonlinearity. In a cantilever beam such
a force does not appear to exist because one end is always free vhile the
other end only 1s constrained. Nevertheless, it can be shown that there
are induced stresses of varying magnitudes at different beam sections which
influence the bending stresses snd promote a nonlinear relationship to
changes I1n transverse loading intensities. As sketched in Figure 12b for
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the cantilever beam section dx, weight dW, at instantaneous asmplitude y, the
dynamic forces acting on the rigid body system may be represented by vectors
T, and Ty, the resultants of uniform sectional stresses, and vectors Y and R
the inertial vectors for converting the system to s static balance such that
vectorially Tp + Ty + R = Y. It is cobserved that Ty is always greater than
T2 and becomes a maximm at the clamped end. The induced stress modifies
the bending displacement y and causes a nonlinear change in bending stress
much in the same manner as an induced stress at constant magnitude {under a
given load) influences nonlinear response of beams and plates. Due to the
varying nature of T, which is proportional in magnitude to the displacement
¥, the characteristlc elastic shape in cantilever Peams remsins, however,
unaffected dynamically and a constant resonance frequency is maintained,

3.6.2 Experimental Data for a Clamped Clamped Beam, Demping
Characteristica

In contrast to a cantilever beam, the dynamic elastic shape will be
greatly modified in a clamped clamped beam if the axial tensile stress induced
by forces similar to T, approaches a magnitude that can no longer be neglected
in comparison to the v%bmtory bending stress., An example of such a case
can be found in Reference 20 from which the pertinent data are replotted in
Figure 17 on the same scales a3 Figure 9 for direct comparison of the
observed nonlinear changes attributable to variations in the damping
coefficient c. The increase in damping can also be investipated from the two
factors defining the damping work done. Representing the displacement factor,
the bending deflection coefficient ¥ is given in Reference 22 as a variable
dependent of u, & complex function of the induced axial tensile stress.
Representing the forcing intensity, an equivalent bending stress coefficlent
¥V, may be used. Both coefficlents are plotted in Figure 18z and equal to
unity in linear cases vhen u = 0. As nonlinearity becomes more pronounced,
the coefficients ¥, and ¢, assume divergent values. Because the demping
work can also be expressed as the force per unit displacement, in the ratlo
of coefficients v, over ‘¢5, a change in damping coefficient ¢ is inherently
indicated which is given in Figure 18b. In the nonlinear response of Figure
17, the function u reaches a probable high of 6. From Figure 18, this would
correspond to a doubling of coefficient c or c/c:c for s reduction of 6 dB in
dynamic amplification ratio. In addition to a change in damping, there i oo
a gimultaneous change in elastic shape and a resultant increase in resonsnce
frequency 1n nonlinear response which must be teken into further consideration.

3.6.3 Resonsnce Frequency and Amplified Amplitude or Maximum
Dynamic Stress Variations

In Section 3.3.1, Equation 3 may be interpreted as an expression of
constancy in the ratio D/fyo for a given imput force P regardless of
response nonlinearity in the amplified amplitude yp,y. By multiplying both
sideg of Eguation 4 by Wy, an expression of damping power is obtained, Luyoc
"C Yaax wpy®. Rearranging and extracting D/y,,, &8 & related constant if

is unchanged,
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Figure 17, Flexural Response to Acoustical Forces on Beams
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Puw, o Yoax Ui (6)

it is, therefore, observed that for a given damping coefficient ¢, the input
power is proportional to Ymax wra. In such a fictitious nonlinear response
»* frequency w, the input power will be P'w which must be equal to Fuw, or
yw2 vhere «w is the nonlinear resonance frequency, P' the nonlinear input
torce and y the maximm nonlinear response amplitude. The generalized
gsolution is therefore -

yw‘? = Constant, or
T = Constant where o is the maximum dynamic stress.

A graphicsl representation of the sbove equality is given in Figure 14
\from Reference 19) where O, is an amplitude or stress corresponding t0 Ymax,
and 0', the nonlinear a.mplftude or stress corresponding to y at frequency w,
The line joining O, and O’y will be dictated by the numericel relationship
yw® that requires a i to 1 amplitude change or -12 dB when « = 2wy, In
conjunction with such necessary amplitude chenge, an apparent change in
spring constant is indicated for which a familiar modification in the forcing
function attributed to Duffing ls -

Fooay+ ‘by3, where a and b are two constents.

with this modification, Chu and Herrmann (Reference 23) calculated the
frequency changes which can be pletted as the accented curve in Tigure iy,
P varying sinusoidally. Sound pressure levels corresponding to P msy be
indicated along the ordinate scale at wy.

The increase in demping coefficilent ratio presented in Section 3.6,2
must now be incorporated. An illustrative example is provided in Figure 20,
utilizing data from Reference 20. The necessary correction is resclved as
the tabulasted change in damping obtalined from a reduction of amplification
ratio or a_ relative decrease in dB of sound preasure levels for conatant
damping alongz the 12 dB per octave rule indicated above. These differences
may be compared with the expected reductions in amplification ratios, con-
verted to relative levels in 4B in figure 18b.

3.6.4 Sinusoidal Versus Rendom Excitation Tests
In Figure 13, the amplitude at the point O'E drops very sharply to the
f

linear resonance curve that peaked at point 04. the frequency is then
reduced from w to 2 , a sudden increase of amplitude to point 0, will be

Lo
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observed. This is discussed in Reference 17 and attributed to phase angle
changes in Reference 19. For random excitation and respomse, the frequency
? becomes the more significant becsuse the net dasmping power, representsd
by the integrated area under the resomance curves, excludes the ares between
7 and w., A separate curve for rendom excltation can be formed, after an
sppropriate nuwber of points like O, have been obtained first in sinusoidal
axcitation tests. Inssmich as the basic nomlinear forclng function repre-
sented by Equation © in the preceding sectiom is generally applicable without
restrictive conditions, the resultant random frequency curve shown in Figure
21 may be employed under all conditions such as i1llustrated for the best fit

with date points from Reference 1. The use of sinusoidal excitation is
reconmended as an essential step by virtue of a definitive indication im the
locations of freguencies 2 .

3.6.5 Nonlinear Effect Due to Deficiency in Core Strength

As indicated in Equation A6 of Appendix A, the frequency of a
beam or plate element of honeycomb sandwich construction can be evaluated
on the bagis of complete adequacy in core rigidity, subject only to a
welght correction factor demonstrated in Section 3.2 and verified in the
tabulated results of Table IV, Section 3.2.2. In the case of marginal
rigldity at a shear stress that i1s still within the strength of the core,
the expectation is a degradation in rescnance frequency as shown by the
three beams in the full size sections at 24" cantilever span. While the
change in frequency is barely detectable, the extent of nonlinearity in
amplitude or stress response to load changes is much more severe. Thig
offers another reason for the advisability of testing with sinusoldal
excitation forceas. For these beasms, the results are shown in Figure 22,
plotted in the same manper as Figure 10. The correlation point B is calcu-
lated as before (Section 3.3.1) in addition to & reference check point S.
Through these two points the linear response line {dotted) passes. The
accented so0lid line, transferred from an established curve would represent
the anticipated primary response curve if the core rigidity remained
adequate. The actual response in this case involves, therefore, secondary
nonlinearity. The area between these curves indicates the effect due to
core deficlency. In comparison, the observed stress response for beams at
16" gspan in the same sections passes through the calculated linear check
points and the correlation point A without any indication of secondary
poniinearity. As a further proof, a 12"-span was cut from the outside
end of each of two 2l"-beams. The observed frequencies of these shortened
halves reverted to slightly above the theoretical frequencies. See Table IV,
By reducing the dynamic shear force, the shear stress is held within
a safe limit and perfect adequacy in core rigidity is again maintained.
Incidentally, the test also shows that the damage was localized to the
clamped area gnd did not extend to the free ends where the shear forces were
less.
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3.7 Honeycowb Sandwich Panel Tests
3.7.1 Full size specimens, 41" x 28" plate dimensions
3.7.1.1 Calculated Frequenciles

The calculated resonance frequency on the basis of Equation 2, Sectiom
2.5.1.2 is shown in Figure 23 for various modes defined by mode mmbers m
for the longer side b, n for the shorter side a and the boundary conditions
C for clamped, and S for supported edges. Thus 1,18 would be the expected
first mode. In practice, supported edges are not physically achieved
unless accompanied by a slight yleld in the clamping plates in vhich case
the effective dimensions extend to bolt hole centerlines. Figure 23 showvs
the clamped mode frequencies in solid lines, supported mode at clamped
dimensions in dotted 1ines and extended dimensions (+2 inches 1o both b and
s) in broken lines. Mode mumber's m are plotted ss ordinates for all fre-
quency curves at parameters n for each of the dboundary conditions specified.
The theoretical resonance frequencles of Fig. 23 were defined from the data
of Fig. S using the techniques of Appendix A of Reference 33.

3.7.1.2 Test Arrangement

The test arrangement is shown in Figure 24 for the specimen mounted
on one side of a duct through which acoustical forces at controlled inten-
sities are propagated. The input sound pressure level was sensed with
three microphones spaced apart at less than 1/4 of the minimm acoustical
wave-length vhen sinusoldal signals were being used. If & truly progressive
wave is generated, identical sowund pressure levels should be indiceted. In
general, this condition is likely umobtainable and significant changes in
sound levels are expected because of reflected waves at the duct termination.
Due to the fact that the pressure trough would be quite sharp, its effect om
pressure distribution upon the specimen surface may be neglected. For the
effective pressures acting as if uniformly distributed on the specimen, the
highest reading of the three microphones was therefore used. VWhen specimen
vibrations contain higher harmonics resulting in significant distortions
in sound waves as indicated by the microphones, the corrected harmonic
amplitude at the excitation frequency indicates the true effective pressures.

The strain gage circult was the same a8 used in cantilever beam tests,
and gage locatioms in accordance with the designations of Figure 2ha. Read-
ings were directly recorded as bending stresses in psi rms or peak.

When the acoustical excitation is by random signal, the three micro-
phone outputs are more or less even. Any one signal, microphone or strain
gage, may be selected to feed into a spectrum analyzer for a continuous
record and to feed into a probability density analyzer for indications
pertaining to amplitude distributions.
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MICROPHONES
NO, 1

(A) FLAT PANEL, CLAMPED
ON ALL SIDES

(B) CURVED PANEL, CLAMPED
ON ALL SIDES

Figure 24. General Test Arrangement

3.7.1.3 Modes Observed

The following analysis will Indicate that the modes observed in each
specimen are neither simple modes defined in singular combinetions of m, n
nor restrained in one of the classical boundsry conditions. However,
multiple mumbers in both m end n vere ildentified for maeny modes existing
simultaneously at harmonically related frequencies. Thus the application
of Fourler's series in the analysis becomes completely relevant. While
the combined conatreint cen be created through the elastic properties of
the supporting elements, the harmonic relationship of the frequencles is

L8



greatly influenced by the overall aspect ratio of the original panel. The
choice of a ratio so close to 2 was unfortunate. The significance of {2
as an aspect ratio 1s given in Appendix C. The unfortunate result (from
a test viewpoint) of the many hermonic modes obtainable is that it becomes
virtually impossible to excite single pure modes. However, the subsequent
stress analysis shows that for such a panel aspect ratio & significant
reduction in stress is reallized. Thils of itself could be of substential
benefit in structural design. Unfortunately, this indication of potential
benefits accrusble from panel aspect ratio of (2 was obtained at the
expense of relinquishing fatigue deta for these panels. If an aspect
ratio of 1.8 had been used, the interaction of these harmonlcally related
modea would have been extensively reduced and the first mode response
would have been enhanced.

Examples of mode analysis are given in Figure 25 and 26 for full-size
specimens. Figure 25 shows the observed waveforms at 385 cps at an
acoustical excitation level of 138 dB re 0.0002 ubar, analyzed into two
predominant amplitudes at frequencies of 385 cps and 770 cps. Each of
which can be further divided into component modes, - 1,25 or 2,1C at 385 ops
and 3,28 or 4,18 at 770 cps. Figure 26 shows the waveforms at 470 cps at
the same excitation level, analyzed into three predominent amplitudes at
frequencies of 470 cps, 940 cps and 1410 cps. The component modes are
2,25 and 2.5,1C at 470 cps, 2,35 and 3,2C at 940 cps, and 5,2C at 1410 cps.
Observed frequencies falling between the theoretical values of m, n modes
in Figure 23 were assigned the fractional m value rcorresponding to their m,
n location on the figure {e.r. 2.5,1C). Note that to be sustained, these
modes require a higher order m, n mode with m an integer for excitation
(e.g. the 5,2C mode at 1410 cps excites the 2.5,1C mode at +70 cps). In
these multiple numbers for either m, n or both occuring at the same
frequencies, phase angles would be constantly but regularly varying as
displayed in the oscilloscope pictures in both figures. A summary of all
modes detected in this manner is tabulated in Table VI rom the two nanels
tested. Inesmuch as the calculated frequencies curves are verified, the
third panel was not needed in model enalysis.

3.7.1.4 Damping Coefficient Ratio and Frame Vibrations

The multiplicity In the number of modes excited at any one instant
gives considerable complexity in the decay trace. This complexity
does not permit a simple and accurate I1ndication of the dsmping
coefficient ratio. The mode multiplielty is further complicated by
the frame vibrations which appeared tc be in resonance at about 128 cps,
investigated through a separate strain gage attached thereto (see
Section 3.7.2.3). No coupling effect between the frame system and the
panel system was observed, however, in spite of the fact that at an excita-
tion frequency of 128 cps, the first penel mode with supported edges was
excited in coexistence with the first clamped mode at the second harmonic

L
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order of excitation. It is to be recalled that as a second order excita-
tion, the latter mode is self-excited and extracts no damping power from

the input energy (see Reference 15). The energy summation of all modes

must, therefore, be identical to the demping energy in whichever fundamental
mode [l »15 or 1 ,lCJ existe individually without complications. Because
of the displacement reduction in 1,1C mode, the damping coefficlent ¢ {(but
not necessarily the coefficient restio to critical c¢/e. ) becomes larger in the
1,15 mode.

Representative oscilloscope displays of frame vibrations, ocecurring
at the same time as panel vibrations in complicated modes, are shown in
Figure 27, By extracting an imaglinary decay trace appropriate to the frame
frequency as shown at the top of Figure 27 and superimposing the same over
the original tracee, not only are the multiple panel modes easily
revealed, some phase reversals required in the frame trace can also be
observed, These reversals do not occur when the frame drives the model
panels at second or higher harmonic orders (see Section 3.7.2.3). It
appears, therefore, that the frame and panel are essentially two separate
elegtic systems in simulteneous resonance without interference or amplitude
reinforcement. Both amplitudes are 90® in phase to the common forcing
vector whose energy is shared by the two systems. If the respective phase
angles are 90° end 270°, then the amplitudes are merely opposed or reversed
without upsetting the ilnput energy distribution. The conclusion is that a
sub-structure need not be specifically designed to have a drastically
different resonence mode. The mounting of an electronic package or black
box at the area of maximum amplitude is, however, a different problem where
the input to the black box itself may become excesaively large.

3.7.2 5/8-Size Specimens, 23.75" x 16.25" Plate Dimensions
3.7.2.1 Calculated Frequencies

The calculated resonance frequencies are given in Figure 28 in identical
manner as described in Section 3.7.1.1. Recause the specimens are modeled
in the seme aspect ratio these curves take the same forme a8 Figure 23
except for numerical changee in frequencies . In extending the boundaries
to bolt-hole centerlines for supported conditions, 2 inches are added for
each side, modifying the aspect ratic differently to result in a slightly
altered frequency curve shown in broken lines.

3.7.2.2 Test Arrangement

The test arrangement is identical to that given in Sectiomn 3.7.1.2.
3.7.2.3 Mocdeg Observed

The modes observed are identified through the waveforms of strain gage
signals displayed on an oscilloscope and analyzed into component modes
pertaining to each harmonic order. An example is shown in Figure 29. Like
the full -gized specimens, each order is again a combined mode, Table VII
lists all modes so recognized which are represented by the data points from
two panels plotted onto Figure 28, the calculated frequency curves. The
third specimen was not tested.
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FULL-SIZE HONEYCOMB
SANDWICH PANEL NO. 1

STRAIN GAGES NO. 1

STRAIN GAGE LOCATIONS

ARTIFICIAL DAMPING
SIGNALS AT SUPPORT

FRAME FREQUENCY SHOWN
AT THE TOP AND BOTTOM
FOR REFERENCE. NOTE
PHASE REVERSALS REQUIRED
TO FIT STRAIN SIGNALS
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HONEYCOMB SANDWICH PANEL NO. 2, "5/8" SIZE

EXCITATION LEVEL 150 dB
at 528 cps

Bl STRAIN GAGES
\:’h : No. 4

NO. 4
NO. 1
NO. 1
ANALYSIS: HARMONIC 18T ATH 5TH
FREQUENCY 528 2112 2640 cps
1,1C 4,1C 3,38

| Qe

MODES 2,15 OR 2,35 OF 5,15 OR

( g [ E
OBSERVATION GAGE READING COMBINED MODE IN ALL CASES

PHASE OSCILLATIONS DUE TO
VARIATIONS IN MODE NUMBERS

Figure 29. Sample Response Waveform and Analysis From a
Honeycomb Sandwich Panel
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By comparing Tables VI and VII together, it is noted that the same
modes are duplicated or successfully modeled. For example, the combination
of 1,15 and 1,1C mode in the full-sized specimens 1s also observed in the
5/8-8lze specimens in spite of the fact that in the latter panels frame
vibrations were excited by the acoustical forces, exclting in turn these
same panel modes of higher harmonic orders. The presence of frame vibrations
is indicated by a separate strain gage attached to a frame member whose
signal is shown in Figure 30. The lower curve shows the predominant frame
frequency, ldealized into the artificial trace at the top of the figure,
which reveals the true pesnel modes at the 2nd and 4th harmonics when it is
superimposed onto the panel trace. It proves to be difficult, however, to
extract appropriate decay curves for damping coefficlent ratio calculation.

A further significance derived from Tables VI and VII is seen in the
mode perameter product m * n for supported component modes. This will be
discussed in & subsequent section (5.3)

3.7.3 3/8-Size Specimens, 14.25 x 9.75
3.7.3.1 Test Arrangement

In view of the size reduction, it became expedient to use s different
mounting which closgely simulated fully clamped boundary conditions. The
size of the opening, or the frame slize, exposing the panel to acoustical
forcee was slightly larger than the honeycombed section, extending the true
panel size to 1k,25" x 11". The test arrangement is sketched in Figure 31,
employlng acoustical forces generated through electro-dynamic apeakers.

3.7.3.2 Calculated Frequency & Damping Coefficient

The frequency is calculated on the same basis as before, e.g., 1,1C
mode at 1000 cps. The observed decay curve is shown in Figure 32, obtained
vhen the electrical input to the speeaker was instanteneously removed. The
observed frequency is 990 cps and the decay rate corresponds to a damping
coefficlent ratlo c/cc of 0.015. The slight modulation is probably caused

by the heavy frame structure which 1s smoothed out and averaged for damping
calculation.

At this frequency range, it would be difficult to aubject this panel
to the same acoustical enviromment as the larger panels. Because the
frequency correlation has been obtained and very little increment in stress

could be realized in this arrangement, further tests with 3/8 panels were
not conducted.

3.7.4 Mode and Response Correlation between Models

Apart from the general indications in Tebles VI and VII that similar
modes were indeed obteined in the modeling experiments, detailed considera-
tions in fatigue analysis requires specific correlation in the respective
stresses and in the respective modes generated. Therefore, for each
combination mode, the stress component due to each individual mode must be
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Figure 31, Test Arrangement for ‘*3/8” Size Honeycomb
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ascertained in order to dlifferentiate between the cumulative damage in each
case. The basic considerations as indicated by Equation 2 (Section 2.5.1.2)
for frequency correlation and Equation 1 (Section 2.5.1.1) for stress
correlation will be applied in the following cases.

3.7.4.1 Combined Mode: 1,1C and 2,18

Full-Size Panel 5/8-S1z2e Model
Tested at 142 4B, 227 cps Tested at 150 dB, 528 cps
Freq. Equation: Cy. 12 Kk
n J/Welght Ratic
f"n s—l?—— Gi&ht Ratio
Modeling Requirement: cn’ = common congtant for each
B component

(W.R. = weight ratio)
Modeling Parameters

Ky = 0.496 inch ky = 0,319 inch

a, = 28inch 8, = 16.25 inch
JBL = 0.3 By = 0.53

f, = 227 cps cbserved f2 = 528 cps cbserved

o
Calculated frequency ratio, _2, = 0.319 {0.534) (28)2 = 2.37
fl 16.25)=(0. 0.430

Observed frequency ratio, % = 2,32

These ratics hold true for all other modes at higher harmonic orders.
Observe that the weight ratio factors cannot be retalined at a fixed magni-
tude. Whereas the frequency ratio ceases to follow inversely as the apparent
geometric scale factor of 8 to 5 in this case, the inclusion of the weight
ratio correction is clearly indlcated a&s a necessary modeling parameter,

Stress Analysis, full-size panel Stress Analysis, 5/8 size model
12 aB 150 4B

Center of Flate, Sinusoidel response, | Center of Plate = 3300 psi, rms

™ms = 1100 psi
lst order response = 3100 psl
Linear Conversion to 150 dB, = 2760 psl
{best sine wave fit from pigure 29)

8 p a2a (A.R.

) (Modeling Basis; See Appendix A)
6 A k2

Stress Equation: ¢ =
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Modeling Relationship: i ] common constant

H

common pressure intensity

k-
[}

A= common area, as fabricated

Modeling Parameters

4, = 0.502 inch d2 = 0.324 inch
k= 0.496 kp = 0.319
a, =28 a8y = 16.25

(AR); = yet unimown (AR)> = yet unknown
o = 2760 % = 3100

(AR)2 (e/c.)1 /2
A = c = /B
ssume ( )l © cc)e = ( lj from cantilever tests

2 2
_ 2 _ (16.25)°(0.324)(2.26) (.L96)° 8
Calculated stress ratioco = 7 = 315 5 “T02 = 1.1

Observed stress ratio = 23‘{00 = 1.12

Note that if the model stress was left uncorrected into a sinusoidal wave,
the obzerved stress ratio would be 1.20. In any event, the devliation from
full agreement 1s within 5% which is only 1/2 dB off. Therefore, either
reading may be used for subsequent asnalysis into its component stress due
to vibratory excursions in either 1,1C mode or 2,15 mode at the same fre-
quency. The locations of the strain gages permit response observation in
n-modes only which, in this case, are stronger than corresponding m-modes
of the same order along the other principal axis. If a single m,1C mode
prevalled, the edge stress should be almost twice the siress at the center,
As this is not so observed, a simultaneous mode m,1S5 must also be in exis-
tence vhere the stress would be zero at the edge and high at the center;
hence the necessity of the following analysis as illustrated.

Thus the given conditions, observed with a model apecimen, are:
Excitation Frequency and Intensity: 528 cps at 1504B or 0.13 psi peak

Center Stress: 3100 psi rms in combined 1,1C and 2,18 mode
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Edge Stress: 1350 psl mms, responding to 1,1C only, zerc in 2,15 mode

let J,.represent the edge stress due to a component load intensity Pe
at 528 cps, and (AR), be the resonance amplification factor at a
damping coefficient ratio (c/c.),.

with B8/6 = 0.0726, (from Reference 24 ; See Appendix A)
a = 16.25 in., the clamped spen
A = 0,024 in?
k = 0.319 in,
d = 0.325 in.

Then % = 1350 x 1.414 = 1910 psi peak

1910}(0.024}(0,.319}(0.31
0.0720)(16.25)(16.25)(0.325

Possible answers are paired below:

And p, (AR), = = 0.752 % psi peak

1,1C MODE - Reaponse & Amplification Ratio

(AR) 100 80 60 50 Lo 30 20

C

Pe 0.00752 0.0094 0.0125 0.015 0.0188 0.025 0.0376

At the same time, the center stress could be determined by changing 3/6
from 0.0726 to 0.0349 for a component magnitude of 650 psi ms, leaving a
difference of 2450 psi rms as the other component in m,1S mode.

at 528 cps, and (AR)

Let 05 represent the center stress due to component load intensity pg
be the resonance amplification factor at damping

coefficient ratio (07%) g

Then Y = 2450 x 1.414 = 3460 psi peak; B/6 = 0.0506 (From Ref. 22;

23.8 See Appendix A)
Based on a = —Le—l"i = 12.9 in.

R 460)(0.024){0.319)(0.
a2 By (AR), = (R HTR TR S0 2E] = 322 * Pot pen
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Possible answers are palired below:

2,15 MODE - Response & Amplification Ratio

(AR) 100 80 €0 50 ho 30 20

Pg 0.0311 0.0388 0.0519 0.0620 0.0778 0.104 0,155

Though these component modes are considered in different boundaries,
the actions are necessarily simultaneous. For this reason a uniform ampli-
fication ratio prevails in addition to the known condition pg + p, = p =
0.130. It appears, therefore, that the followlng combination is the only
solution applicsble to the conditions at 150 dB.

]
1l

0.025 psi, (e/c.)

0.10k psi, (ec/c,)

P, 0.015

0.015

Pg

While it appears that the demping coefficient ratio in a supported system
should be much lower than that in s clamped plate, the cbservetion is made
that in thils case the supported constraints can be realized only at the
expense of elastic deformation in the form of twisted clamping plates or
distorted frames, resulting in additional damping work required and a
relatively higher lumped coefficient ratio. By consldering this clamped
plate in 5/8 size to have the same damping ratio as a 3/8 size specimen
(Section 3.7.3.2), a slight error of little significance is probably incurred.

3.7.4.2 Simple Mode, 2,15 Predominating

Apart 7rom the combined mode discussed ebove, there are many other modes
of higher complexities but inducing much lower stresses. Agreement in
modeling parameters 1s nevertheless obtained as illustrated below.

Observed date corresponding to 140 dB excitation levels are as follows:
Full Size Panel 5/8 Size Model

Specimen #1 at 185 cps Excited by frame vibrations at
the 4th harmonic order of direct
excltation frequency.

Specimen #1 at 125 cps, 4th

harmonic = 500 cps for partial
Specimen #2 at 195 cps resonance only and low amplitude
Center stress = 350 psi center stress = 40 psi

Edge stress = 110 psi Specimen #2 at 133 cps, Lth
harmonic = 532 e¢ps for full
regsonance center stress = 430 psi
edge stress = 60 psi

Center stress = 270 psi
Edge stress = 170 psi
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The difference between this mode and the previous mode is the relative
veaknesgs in 1,1C mode and the enrichment in many other modes at still higher
orders. For aimplification, idealization to a simple 2,15 mode may be made
by tranaferring and adding the observed edge stress, which would have been
zero, to the center for the meximm plate stress. The full size panel
average of 450 psl rms as compared to 490 psi in modeling relationship follows
very much the same ratioc as 2760 to 3100 in the previous illustration. How-
ever, lmportant significance is indicated in the frequency changes and the
stress magnitude attained.

In the modeled specimens, this mode was generated in self-excited
vibrations for no energy loss with the mode frequency remaining the same as
before. The slight frequency varistion (528 to 532) is of an experimental
nature or due to differential temperature changes. The input energy at a
different frequency was largely consumed in frame vibrations so that by
extrapolation to the previously illustrated level at 150 dB the indicated
stress at 1550 psi was well below the directly excited response. In the
full-sized panel, the mode frequency was 227 cps, where in combination with
1,1C mode, the energy absorbed by the edge constraints was partially
compensated between the two modees resulting in lowered damping work necessary.
However, as a directly excited and predominantly 2,15 mode, the additional
force required to overcome damping is available only at a reduced frequency.
The observed reduction to 185 or 195 eps is expected from the generalized
relationship Pw = constant and the average at 84% of the theoretical mode
(227 cps) is compatible with other results under similar environment. (See
Section 5.1 and Fig. 50).

It is interesting to note that the idealized center stress for any
m,1S mode can be obtained from any combined m,1C mode by adding together
the component stress readings at the center and at the edge for a given
excitation level. This condition wams indeed supported by the results of
such & summation in the data obtained. As one component appears to ilmprove
nonlinearly with soft spring charscteristics, the other component must vary
with hard epring characteristica in order to msintain the sum at an appro-
priate level. The equalivent total response remained in fact linearly de-
pendent on the excitation pressures applied.

3,7.4.3 Simple Mode, 3,1C Predominating

This mode at 550-600 cps is observed with full-size specimens sub-
harmonically genersted as a second order within an excitation frequency
range of 263 to 286 cps. The modeled panels in the same mode would be at
1500 cps, too high to be excited as a domineting component., Al) observed
stress readings at the center gages are in agreement and indicating 240 to
250 pei at 140 dB. The average edge stress of 400 psi serves to substantiate
the clamped boundariea on the basis that the aspect ratio of the middle
element in this 3,1C mode would be in excess of 2.5, and the bending stress
coefficients for the center and edge locations would approach one to two as
the readings so indicated. To calculate these stresses, due to & self-
excited mode, a determination of the effective forcing intensity is required
in addition to a still unkmown damping coefficlent, However, by assuming
that the maximum dieplacement y is related through the factor y w? = constant
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(see Section 3.6.3) the amplitude of the self-excited mode at twice the
frequency at full power may be reckoned at 1/4 as large, i.e. the equivalent
intensity p' equals 1/4 p. Using e bending stress coefficient of 0.73 from
Appendix A corresponding to b/a =~ 2.5 for the center element in this

case, the stress equation 1is:

_ SO.T3%£12.&)ElE.h?é.?g51§AB)E _
o = AN ORI = 00 (1.414)

With p = 0.04) psi at 140 dB, p' = 0.010; the amplification ratio {AR) is
35, which appears to be within the proper range as estimated in the combined
mode illustrated elsewhere. It is demonstrated that in higher modes, the
atress is always so significantly reduced that ite damage contribution

becones increasingly less and less.
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b, EXPERIMENTAL OBSERVATIONS IN CURVED FLATE MODELING
b1 An Investigation of Boundary Conditions and Resonance Response
To snalyze the vibratory motions of a curved plate such as ABCD shown

in Fig. 33 as a representative element in a fuselage section (see Ref. 26)
& ring section may be used in the same analogy as a beam is to a flat plate.

11—
l.-r':".":-_: _____ ; ]
A' B 1
i ]
! ' l
) :
D C :
] ) I
] . ] |
i | 1
1 1 ]
] ] [}
] i 1
) | 1
! . 1
> | e ! !
SECTICN 1-1
SHOWING i NUMBER OF 1—>

COMPLETE WAVES PER
CIRCUMFERENCE, AND [=mR/;

Figure 33. Outline of Cylinder (Fuselage Section)
Vibration in a Breathing Mode

For ring modes, the resonence frequency equation as given in Reference 15 is

EI  [1° (4 - 1°) (7)
R - L

If the number i1 of complete waves per circumferential length ie large, it is
rermissible to simulate ring segments as stiffened flat beams elther in
1/2-wave lengths or full-wave lengths with respective end conditions as
specified in Table VIII. The observation i1s that the stiffening effect
prevalling at increased modsl frequencles may alao be expressed asan increased
moment of inertia or as s shortened effective span, To account for the
boundary conditions of & complete plate, additional stiffening due to axial
congtraint must be added. For the observation of dynamlc effect between
two axially adjacent elements , a preliminary test was undertaken with a two-
panel configuration to determine the extent of possible interactions.
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4,1.1 Curved Plate in Two-Panel Configuration

The center clamp was one inch wide and solldly clamped on both eides
of the specimen plates. The aspect ratio of each element as a divided
half of the full plate was maintained at b/a = 1.525 with b = 24.5, 15.25,
and 9.15 in. respectively for the scaled models arbitrarily selected as
full-size, 5/8, and 3/8 sizes. As one-half of the plate, or one element
panel, was lightly but sharply struck once, strain gage signals from
corresponding locations in each half were displayed simultaneously on an
oscllloscope to show the characteristic waveforms. The samples given in
Figs. 34 and 35 are for full-size and 5/8 size specimens respectively.
The indicated frequencies of 271 and 446 cps are found to be within 3%
of the expected scale ratio at 5 to 8. The use of 3/8-models was termin-
ated becsuse the frequency would be too high and streass level too low for
meaningful fatigue tests.

Besides indicating the stiffening effect, the real signiflcance lies
in the moduletion between the two elements or in the transfer of dynamic
energies between the two panels having nearly equal but not identical
modal frequencies. The true decay rate follows the envelope shown in
each figure yielding a damping coefficient ratioc of 0.0016 for the full-
size specimens and 0.0017 for the 5/8-models. In spite of the extremely
low damping, the observed stress in each case under the maximum acoustical
forees avallable was not high enough to warrant continued tests in this
configuration. However, within the frame work of the discussion of fre-
quencies and length factors in Parsgraph 5.1, the results do indicate a
consistency in damping ratios which in conjunction with high frequencies
point to the fact that for the curved elastic element, the length factor
is significantly reduced (because of the high frequencies) and approaches
simply supported boundaries (because of the low and uniform damping).
Furthermore, in the transfer of energy between the two halves, a modifi-
cation in fatigue contribution appears to be taking place due to the
indicated manner of stress variations. These may possibly be sdditive
to the Rayleigh distribution that was the basis of fatigue cummulation
used in the Miles-Miner (References 6 and 8) theories, In order to
attain test objectives directly, the center clamp was, therefore, re-
moved resulting in enlarged test specimens at the dimensions given in
Table II (Section 2.7). After this change was made, the two original
halves of the 5/8 scale plate vibrated in phase as shown in Fig. 36, modu-
lated jointly at a frequency equal to that expected of a flat plate. The
enlarged full size plate on the other hand, was excited in a higher mode
such that the two previously divided halves remained cut of phase, 1In this
case, however, the energy transfer previously evident with the ceater
clamped installed was clearly not shown in Filg. 37. The modulation wes
common to both halves and was again due to the flat plate mode.
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SIGNALS FROM
STRAIN GAGES

NATURAL FREQUENCY AT 271 CPS
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10 MSEC “"‘“ l“‘" “FULL-SIZE’* CURVED PLATE
SPECIMEN IN 2-PANEL CONFIGURATION,
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T0

CALCULATED
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Figure 34. Decay Signals From a Curved Panel



CURVED PANEL, "5/8" SIZE IN 2-PANEL CONFIGURATION

FREQUENCY = 446 cps
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Figure 35. Decay Signals From a Curved Panel
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GAGES

‘___ 90 MILLISEC
STRAIN I

b n

RN .

4w DECAY ENVELOPE FOR
"'1 c/ce = . 0055
MODULATION
FREQUENCY = 47 cps

FREQUENCY = 249 cps

¢s5/8’* SIZE CURVED PLATE IN
ONE PANEL CONFIGURATION
(CENTER DIVIDER REMOVED)

Figure 36. Decay Signals from a Curved Panel

4,1.2 Curved Plate In 1-Panel Configuration, Test Arrangement

The curved plates now messure 33 x 2k.4k x 040 inches in full size
with a 36" radius on the 24%.4" side, 21 x 15.25 x .024, and R = 22.5" in
5/8-size, and 13 x 9.15 x 0.024, R = 13.5 in 3/8 size. Observe that the
aspect ratios vary slightly which miat be accounted for in all frequency
correlations. The test arrangement was essentially the same as for flat

plateshwith the exception that more strain gages were used as indlcated in
Flig. 2ub,
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SIGNALS FROM STRAIN GAGES

mmmmm 'im...-

mm lmml“l IIU- Lh.'l ‘+ NO. 1
: CALCULATED
DECAY ENVELOPE

FOR c¢/cc = .0016
NO. 2

(a
4 -»I l<-50 MILLISEC

NATURAL FREQUENCY AT 252-266 cps
--| |< 10 MILLISEC

PHASE OPPOSITION
AT NATURAL
FREQUENCIES

MODULATION AT
30 cps

“FULL-SIZE”” CURVED PLATE
SPECIMEN, CENTER DIVIDER
CLAMP REMOVED

Figure 37. Decay Signals from a Curved Panel
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L.1,3 Frequency Correlation in Curved Plate Modeling

The observed frequencies of the curved plates in each size are sum-
marized in Tables IX and X together with line sketches of the vibrating
element&indicated by node lines)in each configuration. From these results,
the stiffening effect of curvature 1s calculated in terms of the ratio of
its frequency to that of a flat plate of the same linesar dimensions with
equal mode numbers m end n. Significant agreement i1s cbtained in the
stiffening effect so defined as well as in frequency dependency on size
factors. It is, therefore, indicated that modeling of stiffening effect
of curvature has evidently been achieved. In the higher modes, eddi-
tional comparison of current results from full-size plates with data
extracted from Reference 27 is shown in Figure 38, using the product of
mode numbers as a lumped argument. It appears from Figure 38 that a key
is belng obtained in reducing the nonlinear characteristics of stiffness
in curved plates to a function of the subtended angle which 1s shown to
be the control parameter identifying each curve. To obtain frequency
modeling of curved plates, the subtended angle of the curvature 1s, there-
fore, maintained constant. As in the case of flat plates, either true or
adequate models may be used 1ln other linear dimensions.

The same stiffening effect of curvature is alsc illustrated in the
curves of Flgure 39. In this case the separation digtance or ratio between
the calculated flat plate frequencies {determined as for Figure 23) for the
plate geometric data of Table IX and appropriate curved plate data for the
same mode numbers represents the stiffening effect. It is noted that when
the flat plate curve for n = 1 1s displaced to the right at the designated
ratio of first mode stiffening as defined in Table IX so that the 1, 1
point coincides with the cobserved curved plate 1, 1 frequency, the trans-
posed curve (dotted line-Figure 39) intercepts the accented lines for
curved plates. Thus at the point marked ¥, a common condition exists
where the mode could be either 2,1 or 2,3 (See Section 4.3.2) depending
on the prevaliling stiffening effect over an unstiffened condition at Fi
or F3. No modes m,n lying asbove and to the right of this transposed flat
Plete n = 1 curve could be defined on the curved plates.

Th



TABLE IX FUNDAMENTAL MODES IN CURVED PLATES

Nominal Scale Rati
1 5/8 3/8
Item
Dimension's, inch
Plate Thickness 0.064 0.040 0.02k
long side, b 33.0 21.0 13.0
Short side, a 2k, 5 15.5 9.3
Radius, R 36.0 22.5 13.5
Aspect Ratio b/a 1.347 1.355 1.397
Calculated flat
plate in clamped (29.2) (45.3) (T4.5)
@ edges
~ | Observed Modulsa- 0 0
® | tion Rate (beat 3 2 I
"'g' frequencies on curved plate)
3]
B
£ Curved Plate 153/15L olg 126
o
; o
E 260
0
,8
Stlffening Effect 5.11 5.12 5.52
= Freq. Ratio
Flat Plate at Maintain same outside
Curved Flate dimensions.
" Increase thickness h 10 h,, -
g Frequency
ol L I 2 _n 3
£ ) 2 = (Freq. Ratio)® = hg
: ‘* : g
he
%
Curved Plate at Approximation only:
‘E ate = Consider flat plate to have
1,3 mode and determine a
A t Flat ’ 3
g pparen ® distance between displacement
1 a1 nodes,
E; Plate Sizes Actual curved element will be
m bounded by stress nodes at

distance ag. &g < 83, for a
slightly higher frequency.
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TABLE X HIGH ORDER MODES OBSERVED IN CURVED PLATES (FULL SIZE)

Frequencies
Mode Deaignation Flat Curved
m, n Plate |Plate Ratio
>
cps cps

156 260 1.67

182 280 1.54

229 338 1.48

278 388 1.50

ko5 540 1.34

Les 580 1.2k
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,2

Damping Analysis in Modeled Plates

Damping coefficient ratlos are derived from decay curves as shown
in Figure 40 for a full-sized panel and in Figure L1 for a 5/8-model plate.
In the tabulated results given in Table XI, a genersl agreement in first
mode damping coefficients is indicated not only between plates of the same

size but also between model zizes.

The observation is, therefore, that all

control length factors which determine the frequencies as well as damping
are effectively simply supported (See Section 4.1.1).

TABLE XI DAMPING CHARACTERISTICS IN CURVED PLATES

Mode
1,1 2,3 3,3
Frequen
quency e/e, Frequency ore Frequency

Specimens cps cps 't cps

No. 1 (152) - 260 — 282
Full

No. 2 153 0.0062 258 - 28
Size

No. 3 154 0.0068 260 0.002 286

No. 1 2kg 0.0055 X L8o

Note:

Size 22" _EE

No. 3 260 0.0064 X

not
tested
No. 1 4p6 0,0030 X
3/8 | No. 2 X X X

Size

No. 3 X )4 X
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CURVED PANEL, FULL SIZE; NO, 2

STRAIN GAGE NO, 1

(A)
P L | 7% SHOWING ALL SIGNALS
STRAIN GAGE NO: 3 10 MSEC ARE m PHASE AT 153 cps
AVERAGE c/¢ = 0.0062
FREQUENCY = 153 cps
STRAIN GAGE N(_). 1
t {B)

STRAIN. GAGE NO. 2

Figure 40. Decay Signals From a Curved Panel
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STRAIN GAGES NO. "5/8" SIZE CURVED PANEL
- - NO. 3

FREQUENCY = 258 cps
NOTE AMPLITUDE

MODULATION
'0""‘ "5/8" SIZE CURVED PANEL
NO. 2

C(' o docal

(RN W AN
" Y J 78{ ',Wgﬁ" FREQUENCY = 260 cps
INDICATION OF CROSS-

MODE MODULATION

Figure 41. Decay Signals From a Curved Panel
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To determine the damping coefficient at a higher mode is an endeavor
that has not been extensively covered elsevwhere. The effort being presented
below appears to yleld a reasonable result but limited to only one higher
mode. The procedure is shown in Figure 42. The initiel step, Figure L2a,
is to ascertain the decay envelope (dotted) for the first mode at 154 cps.
If repeated blows of identical intensity are applied, then the same decay
envelope could be transferred to Figure 49b or 42c at the appropriate time
scales ag noted, adlusting amplitude scales for a best it for veriances
in forcing intensities. The decay envelope at the next significant mode,
apparently 260 cps in this case may then be extracted from <the outside
traces which varied within 110% of each other for an average c/cc of 0.002.
Compared to the dsmping coefficient of 0.006 at the fundsmental mode, this
implies a shortened control length in a numerical relstionship that 1s
compatible to the correlation determined for cantilever beams (Section
3.3.1). However, the stiffening effect is different which accounts for the
relatively low frequency in the higher mode.

L.3 Stress Correlation Between Models

4,3,1 First Mode Response

The observed datea for the fundamental mode are shown in Figure 43 in
the form of stress variations at various sound pressure levels for which sep-
arate scales are provided for each panel size in order to show the curves in
the same figure. A significant difference exists between the respective ratio
of the stresses at the edge and at the center. A change in mode shape had
occurred which could be attributed to the curvature size. For the apparently
different behavior in the modeled plates, additional data must be obtained in
an extended dissertation. The following snalysis can be based, however, on
the center stresses which were the Qominant readings in all specimens tested.

In the modal enalysis of Table IX it has been shown that the curvature
effect is to raige the first mode resonance of a reference [lat plate of the
same dimensions by a particular stiffening ratio. A simple approach in
gtress analysis is to calculete the maximum bending stresses in the flat
plate and convert it to curved plate stress by considering the same stiffen-
ing effect as a corresponding change in the moment of inertia,-stiffened as
it were and raised in magnitude by the square of the frequency ratio.

For example, under a statlc peak pressure p, the equation of bending
stress in an unstiffened plate is:

5= fAp (a/h)ex

and for the stiffened or curved plate,

S, = B8» (a/n)2 ;f = fp (a.,/h)2 (Frequency Ratio)"2

82



STRAIN GAGE NO. 1| FULL-SIZE CURVED PANEL
NO. 3

FREQUENCY = 154 cps
c/ce = .0068

(A)

MODULATION DUE TO OTHER
MODES, 260 cps ETC

AVERAGE c/c, = .002
FOR 260 cps MODE
(DECAY AMPLITUDE
EXCLUDING 154 cps
ENVELOPE)

STRAIN GAGE NO. 2

Figure 42. Dceay Signals From a Curved Panel
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The peak dynamic stress.io which equation (A3) in Appendix A also
applies is simply this same {static) bending stress multiplied by an
amplification ratio and becomes a modeling criterion., Thus at 120 4B,

P = 0.0042 psi peak for the fundamental mode, the moment coefficeint at
the location and orientation of the relevant strain gage i1s 0.0349
(See Appendix A) and the bending stress coefficient is 0.21 (= 6 X 0.0349).

Full-Size Panel 5/8-Size Model
ﬂ = 0-21 ﬂ = 0-21
a = 24,5 inches a = 15.5 inches
h « 0.064 inch h = 0.040 inch
¢/ce = 0.0065 c/ce = 0.006
Prequency Ratio = 5.1 Frequency Ratio = 5.4

4

Calculated Stress = 495 psi ‘ Calculated Stress = 455 psi
Observed Stress = 450 psi Observed Stress ~ 450 pai

The agreement confirms the large reduction of bending stress in a
curved plate due to the stiffening effect. At a sinusoidal excitation
level of 150 4B, a maximum stress of 10,000 psi is indicated which would be
far short of reaching fatigue within a reasonable test period.

4,3,2 Response in a Higher Mode, Full-Sized Panel Only

In the following illustration, it is intended to demonstrate that a
celculated stress 1z in ready agreement with an observed value if the
stiffening effect is predetermined, The fatigue expectancy can then
be 8imply reckoned on the basis of known material properties expressed
in constant ampllitude S5-N curves.

The observed data in the next higher mode at 260 cps for the full size
plate are given in Fig. 44, The mode may be designated either as 2,3 or
2,1 depending on the strength of the principal stress. Referring to Fig.
39, the 2,1 mode would be reckoned along the dotted line curve drawn for
the stiffened flat plate as a complete unit. If the elements between node
lines are considered individually, the controlling length factor becomes b/2
which is now the shorter dimension. Referred to an unstiffened flat plate, the
same mode may also be the 2,3 mode stiffened to the accented solid line for the
curved plate. In the latter case, there are two displacement nodes within the
outside edges and the middle strip may be singulerly considered as a flat
plate element stiffened to a lesser degree at a parametric mode number m-.n
of 6 formulated in Table X and in Fig. 38. The control length becomes
merely a fractlion of a.

The stress analysis follows, - c/c, = 0.002 (See Fig. 42 for full-

glzed specimens only, in 2,3 mode- where the central portion vibrating as an
element messures very nearly 7' long on the shorter dimenmsion.)
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BENDING STRESS FULL-SIZED

+PSI CURVED PANELS
4 PEAK AT 260 cps
e :/:f/ P

5000 [ PR e P ~

i CENTER STRESS _°" o+ o

- IN 2,3 MODE o~ _ ~

-

2000 — SPECIMENS o,® /’/ /

1000

500

200

100

50

20
10
SOUND PRESSURE LEVEL IN dB RE 0, 0002'# bar
1 | i ] 1 | X | i |
110 120 130 140 150 160 >

Figure 44, Vibratory Stress in Curved Plates
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Se= gD (a/h)?'; - g= .73 a= 7 displacement node distance
a3 = 7% .5 = 3.9 stress node distance

(between the inflexion noints of a ~lamped beam)
The tactor 0.%> for determining the inflexion point distance 1s obtained Llrom
Reference 13. The effective aspect ratio for this mode component is
24.5/3.0 or larger than 6. The bending stress coefficient as listed in
Appendix A is 0.73. Stiffening ratio = 1.67 (from Teble X)

At 120 dB sound pressure level,
8, = (0.73)(0.0042)(3.9/0.064)2(1/1.67)%(1/0.004) = 1020 psi peak

Agalnst this velue, the cobserved readings from two specimen panels
wvere 1350 and 760 psi averaging 1055. The analytical value is, therefore,
reasonable.

On the other hand, if the mode was 2,1 the calculated maximum stress
would be: - at a stiffening ratio of 5.1 (from Table IX) in frequencies
and an approximate stress coefficlent B= 0.57 which is averaged from
the nearest end conditions listed in Appendix A.

S, = (0.57)(.0042){16.5/0.064)2(1/5.1)7(1/.013) = 470 psi

Against this, the observed reading from the third specimen was only
160 psi. This is in fact expected because the maximum stress location in
this case would be at the center of the short side and not at the actusl
gage location. Using appropriate coefficients from Reference 24 or 25, the
corrected bending stress at the center of the short side should be ~lose to
three times the observed value at the center of the lomg side. The resulting
stress at 480 psi would then compare very favorsbly with the calculated
result.

The cbservation can now be made that in curved plates, an additional
degree of freedom is available in the stiffening effect. In the above
illustration, the 2, mode dominated in two specimens and 2,1 mode dominated
in a third. Due to the reduced stiffening, the maximum stress in the 2,3 mode
is higher than in the 2,1 mode as data so indicated. However, as excitation
forces are increased at higher sound pressure levels, the plates would tend
to be stiffer by virtue of inherent hard-spring characteristics; and mode
2,3 improves to 2,1 but the stress either decreases by comparison or changes
nonlinearly. Under this condition no fatigue due to bending stress can occur
within & reasonsbly long test perlod.

4.3.3 Changes in 5till Higher Modes

Two of the higher modes were observed at 283 and 338 cps for the full-
sized specimens with composite curves shown in Figs. 45 and 46, The results
indicate that a8 excitation pressures are raiged, the maximum stress
increases nonlinearly in a general sense a8 both the mode complexity and
the stiffening effect vary simultaneously, Thus one mode mey appear to be
more linear than another without necessarily having a nonlinear spring rate
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BENDING STRESS

+PSI PEAK FULL-SIZE CURVED PANELS
STIFFENED 3,3 MODE
A AT 283 cps
CENTER STRESS
10K -~ //
L 70
i 00’0
5K - /
b Q
/ )
2K b= 0 8
()
1000+

500 |- ,/

200 |-
100~ SOUND PRESSURE LEVEL IN dB RE 0, 0002 g bar
| l | J L l [l ] 1
120 130 140 150 160 >

Figure 45, Vibratory Stress in Curved Plates

88



BENDING STRESS
= PSI PEAK ,
FULL-SIZE CURVED PANELS

STIFFENED 4,3 MODE
4 AT 338 cps

10K = CENTER STRESS
[ o/
[ ]
5K |- Py ,/
3 Qo
o/ \\\
2K - o ° 4,1 mode
1000 |~ o
500 =
] *
200
100~ SOUND PRESSURE LEVEL INdBre 0.0002 4 bar
i l i ' [ l . l 1 I t’
110 120 130 140 150 160

Figure 46. Vibratory Stress in Curved Plates
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in either. By superposing Figures 45 and 46 for these two modes over
Figure 44 for another mode, it is observed that the peak amplitudes appeared
to be approaching a common limit et about 155dB. The implication is
that at high acoustical intensities, many modes exist at the same time, with
amplitudes limited in each component mode and apparent nonlinearities
attributeble to the presen~e of many modes. The possible potentlal for
mode improvement (i.e., altering the primary response mode) with

increased stiffening effect giving reduced stress is found in ohe of the
three specimens tested as shown in Figure 46 at 141 dB. In changing from
4,3 to 4,1 mode, the principal component was sub-harmonically excited in

the form of low amplitude modulatioms carrying highly enriched harmonics

at 4,3 mode frequencies. Indeed in many other modes, frequent up and

down changes in response amplitudes were of this nature.

One other example of such mode improvement is provided in the wave-form
analyses given in Fig. 47 for a full-sized specimen., Depending on the
gpecific strain gage signal of reference, many concurrent mode cormponents
can be identified. Fig. 4Ta shows a good resonance condition at 156 dB for
e nominal 5,3 mode at 386 cps, with some gecond harmonic component at 772
cps but little modulation at 193 cps as a subharmoniec. However, at 141l 4B
in Fig. 4Tb, considerable noise is generated at 194 cps due to the un-
stiffened flat plate response in the 4,1 mode. Insignificant strailn in-
dications are shown at 19% cps. Returning to 156 dB again, Fig. 47c shows
the enriched harmonics of 193 cps, identifiable as a subharmonic of no
less than five different modes existing simultaneously in the response.

4.4 Response to Random Excitation

With a specimen retained in the test fixture, discrete frequency excita-
tion was replaced by random signals of limited bandwidth. The spectrum
analysis of this signal is shown at the top of Figure 48a which indicates
that the bandwidth extended essentially from 60 cps to 500 cps with s
moderate amount of extraneous high frequency noise presumedly caused by
the accompanying airflow. The amplitude distribution in terms of 1ms
sound pressures was ascertained by means of a probability density analyzer
in conjunction with an X-Y recorder. The result shown in Figure 49 con-
firms the normal distribution assumed in the theoretical analysis by Miles
and many others whose solutions were introduced in Seetiocn 2. The spec-
trum analyses of all five atrain gages in use are showa in Figures 482 and
48b recorded through 1/3-octave band filters.

Significant indications in support of the analyses presented in
References 6 and 19 may be obtained from these random response data. For
the condition of equivalent rms stress, the deduced requirement is that a
sinusoidal excitation level should be in excess of the random spectrum
level by AdBl, expressed as

AQB, = 2 + 10 log Af, vhere Af = (c/cc)(Efr) for each resonance mode
at frequency fr

The cbserved results based on the maximum stress are given in Table XII,

along with the calculated results obtalned from the above expression for
the two modes indicated.
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‘ Microphone Signal

: - 156dB At 386 cps
Curved Plate
Response = 5, 3 Mode

Strain Gage No, 5
Showing 2nd Harmonic at 772 cps
For 10, 3 Mode Component

Microphone Signal
141dB At 388 cps

Curved Plate Response = 5, 3 Mode
But Generating Noise At 194 cps

Strain Gage No. 3
Showing Weak Modulation At 194
cps, - A Flat Plate 3, 3 Mode

- Microphone Signal
A ~ 156dB At 386 cps

Curved Plate Response = 5, 3 Mode

Strain Gage No, 1
Mode Complexities

Flat Plate 3, 3 Mode At 193 cps
Curved Plate 5, 5 Mode At 579 cps
(Coupled Into 5, 3 Mode With
Phase Oscillations)

Curved Plate 10, 3 Mode At 772 cps
(o) ' - Curved Plate 10, 9 Mode At 1544 cps

Figure 47, Characteristics of Response Waveforms
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RECORDED ANALYSIS IN1/3 OCTAVE BANDS CURVED PLATE, FULL SIZE NO. 3
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Figure 48a. Spectra of Random Noise and Response

92



RECORDED ANALYSIS IN 1/3 OCTAVE BANDS CURVED PLATE, FULL SIZE NO. 3
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Figure 48b. Spectrum Analysis of Response
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TABLE XII FRANDOM - SINUSOIDAL EQUIVALENCE

SINUSOIDAL EXCTITATION for

RANDOM EXCTTATION SAME rme STRESS RESPONSE

CPEC- | STRESS| SOUND | EXCESS oven
1/3 Oct| BAND [“pruy | READ- |PRESSURE| RANDOM | MODE
BAND | LEVFL | ypupr, | mmg | LEVEL |SPECTRUM, |FREQUENCY!
AdB,
* psi dB cps
Oba. [Cal.

°cps 4B 4B

150/180 | 141 | 125 | 780 129 L 5 154

224/280 | 139 | 120 | Lbo 121 1 |2 260

The agreement in AdB, obtained here, is within 14B. BHowever, larger
variations are not intolerable. The calculation of spectrum levels in
random analyeis in the first place incurs uniform averaging in the band-
width concerned and is not generally a precise indication. Secondly, a
permissible variation in the damping coefficlient ratic can easily absorb
this difference. At higher modes, the second factor alone hecomes
increasingly large numerically.

Insofar as random fatigue is concerned, it has already been indicated
(Section 2.4 and Fig. 4) that the sinusoidal equivalent stress level, or
sound pressure level must be in excess of an equivalent level for equal
stress by AdB, (= 10 log &/e) if failure time is to be reproduced. AdB,
can be added %o AdBl for fatigue considerations.

Another significance cannot be allowed to pass unnoticed. In
Figures 48a and 48b considerable amplitude changes occur in the strain
gege indications within the 140/180 cps band. The implication is that
the fundamental mode at 154 cps in this case has a tendency to disappear
or not be excited., This is advanced as an explanation of why this
particular mode was overlooked in one out of three specimens tested.

In any event the stress analyses here readily establish that the expacted
stress in & fundamental mode of curved plates may not be produced. At the
sape time the maximum stress occurring ia any one of many higher modes

is very much lower than the first mode stress. The frequency and stress
magnitude depend on which of the higher modes dominated the response
amplitude. Unless the thickness of the modeled plates of this progrem
wers further reduced, a fatigue duration test would not be justified.
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5. DISCUSSION
5.1 Vibratory Modes and Stress Response Releted to Fatigue

While the experimental results presented in Sections 3 and 4 indi-
cated satisfactory correlation in the parameters governing the reeponse of
the specimens tested, either as individual elastic units or as modeled
components, the attainment of long term fatigue remains dependent on the
megnitude of the stress induced by the acousticel forces applied. In this
regpect, the proven strength obtained in a shorter duration, even though at
a mechanically recreated cyclic stress, also correlated with existing data
of acoustically induced fatigue for the same plate material in simple
geometric configurstions. The problem is reduced to defining the vibra-
tory modes prevelling in whatever configuration 13 belng investligated vhereby
the induced stress can be predicted for lmown fatigue expectancy. From the
test results obtained significent factors in the purely geometrical dimensions
have been found which greatly modified the modes obtainable in an acoustical
environment and accounted for the stress reductions observed. TFor this
discussion, the basic equations of motion in s linear response may be utilized.

Coneidering a vibratory pertlcle in any beam configuration
restricted to one degree of freedom, in equation Ak, Appendix A,

2
dhy pPAY W,

s e

axct o

the implied condition is a simple bending phenomenon., Insofar as the deflec-
tion y 1s linearly related to the forcing intensity p , the frequency
solution of @ 1is independent on the amplitude of y . In most cases,the
acoustically applied pressure , p 1is essentially uniform over the entire
confipuration whose linear dimenslons are significantly less than the wave
length of the acoustical forces at mode frequency w . A convenient
conatant M 18 given in Reference 13 from which w can be calculated;
thus: o

kh PA_ur

r EI

and Arﬂ = a constant for a given configuration and boundery conditions,

wvhere { 1is a simmificent length factor. For a uniform plate of rectanﬁulsr
configuration, the frequency f.inthem,n mode is reduced to f. = Ch /
vhere C 18 the dimensionalized constant given in Fig. 5, for unity modes

m and n. For simply supported square or rectangular pletes ,C is unchanged
whenever m = n, The resulting mode frequencies are shown in Fig, 50 with
substantiating data from Reference 28. Some energy loss to the supporting
frame due to friction is indicated in the slight reduction in frequency,
This irequency reduction becomes progressively negligible in higher modes.In »
log-log plot, the idealized relationship for no energy loss follows the cal-
culated line and is unaffected if the mode number m ie converted to a normal-
ized length factor A, inverted in the figure for convenience teo indicate
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A = a/m. The equality is, therefore, transformed to Aa W, = constant. A
second change in the logarithmic scale given at the r&ght-hand side trans-
forms the readings to A* and comverts the product A 2 into snother
constant. The relationship is synonymous to y w2 = constant, where y,
the dynsmic amplitude, is made to be proportional’to the fourth power of a
length factor. This fact in a linear response at a constant damping co-
efficient ratio c¢/c. (See 3.6.3) demonstrates the amplitude reduction in
higher modes, vhere the length factor being a function of the modal
distances decreases for increasing mode orders, For other plate config-
urstions, the initial decrease from a fundamentsl mode is even more repid
at lower modes but approaches the i1llustrated conditions as limiting cases,
Figs. 23, 28, and 39.

Failure to generate response in the fundemental modes, for vhatever
causes there may be, invariably results in greatly decreased stress responses,
The basiaz of fatigue simlilitude at a uniform astress required to correlate
scale ratio to duration change becomes quite diffieult to realize unless
each and all the higher modes can be completely defined. In the honeycowd
sandvich panels, the higher modes were a0 closely related harmonically to
the fundemental mode due to the aspect ratio selected that high mode
responses became the more dominating. In curved plates, the stiffening
effect in the higher modes is much less than the fundemental mode. And at
the curvature selected, the generstion of a truly fundamental mode is over-
shadoved by the relative emse in the formation of higher modes. In this
regard, the observation is made that a constancy in ywe is equivalent to
uniform g2 units in power spectral densities as well as in total power.

The most likely mode combination is predicated upon an equal energy distri-
bution when rendomly excited., Thus, from the strain gage responses of
Figs. 48a snd 48b, a more or less uniform stress in each mods is obtainable
vhen the pressure spectra are equalized at the same level as illustrated at
125 4B in Table XIII.
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TABLE XIII RANDOM RESPONSE AT EQUALIZED FORCING SPECTRA

1/3 Octave Lquclized
Spectrum Stress Response Response per Mode
Band
Level Mod
cps rms s
aB el Reference el Frgﬂgnncy
140/180 125 780 Table XII| 760 154
260
224 /260 70 }Iy linear 70
| | =
40 on
280/355 12 ? ooy 870 138
Table XIT
355/450 L 830 830 395
450/560 8% | 830 540
Sa Determination of Damping Coeflicient and Size Factor

A decay curve for damping coeffieient calculation is found to be very
effective and convenient to use. The validity and accuracy of the result
depend only on the linearity between displacement and stress obtainable
at low amplitudes regardless of the manner of excitation. Thus strain gages
may be at any location and all decay signels may be averaged for better
results., Flg. 51 is given here to facilitate calsulation. From the correla-
tion of damping coefficients with the span of the beam a size factor can be
determined, indicating a scalling law that the damping coefficient ratio
decreases as the model size is decreased. For flat panels, therefore,
fatigue date on smaller models must be modified by demping characteristices,
known beforehand or determined as part of the test. For curved plates,
however, if the dominant modes occur in simply supported elemenis, no appre~
cigble change in damping coefficient needs to be considered.

53 Mode Numbers m, n and Parameter Product m:n
From =ll available information and the data collected in this program,
a lumped argument in the form of the product of mode numbers m and n emerges

as a very useful reference parameter, It appears warranted to continue this
investigation in other cases involving model changes for further substantiation.
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Figure 51, Damping Coefficient Calculation
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In the frame supported plate of Fig. 50, the elastic energy can be
expressed in terms of a frequency ratio based on the calculated resonance
frequency corresponding to a given mode defined by m and n. It will be found
that for equal parameter product m n, this ratio remsins sensidly constant
and approaches unity for no energy loss at higher modes. If imife edge
supports are used, such as in Reference 3, the energy loss is reducible to a
minimum and is negligible in all modes.

When the conditions at the supporting edges are complicated as in
practical structures where deformations in many ways prevall, the response
mode 1s predominated by the components in simply supported constralnment.

The results in Taebles VI and VII can thus be compared in isolated m,n S
modes to reveel a better modeling correlation iln parameter products rather
than in the complicated compositions pertaining to each mode. PFor example,
the response of the full size specimen at the second harmonic of the excltat-
ion frequency (2 x 216 c¢ps) is predominantly a 3,15 mode as indicated in
Table VI and Fig. 23. For the modeled specimen, though excitable at the

same forcing frequency, the comparable response should occur at a frequency
2.37 times (see p.61) higher, or corresponding to & harmonic order of 4.7 in
this case, The closest indication was provided at the Lth and 5th order (of
216 cps) in Table VII as a 1.5,25 and 3,15 modes respectively. The same
lumped argument of 3 is obtained. It is therefore, indiceted that as the
modes become more complicated, there will be many other combinations that can
share the same ergument, rendering it imperative in modeling studies to ana-
lyze each mode completely and to define the elastic response in detail. It
must be added that no coupling effect in excessive amplitude change has been
observed in this test series.

By extending the use of the mode number product as a parameter defining
the stiffening effect in curved plates, the result given in Fig. 38 appears
to offer a highly useful guide in the delineation of the potential for
altering the response mode by curvature. It would be desirable, however,
to secure additional data to substantiate the indicated relstionship by
varying the parsameter dimensions that were held constant in this rather

limited test program.
S.h Application of Beam Test Results to Panels

In view of the fact that the first mode response in all test panels was
unobtainable because of the Joint influence of the prevailing aspect ratio
and edge conditions, s calculated comparison between the Beams in honeycomb
sections and the anticipated panel strength is presented as follows which
can also be applied to curved plates. On the basis that the proven fatigue
strength at spproximately 10,000 cycles is 30,000 psi in the face sheets,

& randem spectrum level in the acoustical enviromment can be resdily estad-
lished t0 meet a service requirement as defined by a given life duration.

Example: Equivalent fatigus duration = 109 cycles with these mowm
parsmeters:
Fanel Size 28" x 41l x 1" Honeycomd; all edges clamped
Radius of gyrstion = 0.496 in. Ares of Face Sheets =
0.02k 1n2, 4 = 0.505 inch
Frequency Correction Factor = /0.183 = 0.43 based on Table
Demping Coefflcient = 0.01 Il

considered here as typical (see Table IV)
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Calculations: Let sinusoidal pressure at f,, be P 2l)
Max. Bending Moment « 0.073 p a2,8/6 =0.073 (Reference
Max. Bending Strees = 0.073 P a< (d) (A.R.), from p.6l
T

_ (0.0 28)(0. 1
0.02 0.49 0,02
Reduce the fatigue strength of 30,000 psi at th cycles 1o 5700 psi

at 107 eycles by extrapolation of S-N curve shown in Fig. 52 as the bending
gtreas limit and asclve for

P = 0.0233 psi peak or 135 dB vwhich 1s expected to be within
the linear response range.

Calculated mode frequency = 27.1) (4360 212 0.4 = 250 cps (Fig. 23)

AdBy = 2 + 10 log (0.01) (500) = 9 for equal stress
AdBs = 4 (average log log S-N curves) for equal damage

Random spectrum level = 135 = (9 + 4) = 122 dB at 250 cps

The proof required is to secure a maximum stress reading of 5700 psi at 135
dB in this mode. If it is extended nonlinearly to 15,000 psi at 150 4B, it
may be used as a test level to secure an accelerated fatigue life at 200,000
cycles. At 250 cps, thie takes 13.3 minutes., If the test stress is set at
10,000 psi, the fatigue durstion will be 133 minutes. If a higher mode
prevails Instead, the stress will be greatly reduced. A much extended test
is required which i1s not considered to be within the originally programmed
scope for defining applicable modeling techniques.
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6. CONCLUSIONS AND RECOMMENDATIONS

Stress correlation is the critical parameter in modeling
for acoustic fatigue. True models with exact geometric scaling in
all elements are not necessary for achieving the required stress
correlation. Adequate models are obtained by maintaining the same
aspect ratio and modes for the specimen and models. For curved plates
the necessity of maintaining identical modes between specimen and
model requires that the radius of curvature must be scaled in the same
ratio a8 the linear dimensions defining the aspect ratio. The
frequency and stress of adequate models then vary at predetermined
magnitudes with a functlonal relationship to damping, amplitude, and
cross-section (thickness) geometric and material parameters.
Nonlinear effects are dependent on excitation levels and may be
present in both specimen and model or may appear to be different
between the specimen and models. These nonlinearities are amenseble
to resolution. In general, a prerequisite to sonic fatigue teste is a
knowledge of the nonlinearity induced by damping and amplitude for each
specimen, Data of this type are obtainable from non-destructive
vibration tests. The experimental data confirms the application of
basic procedures formulated by Miles, Palmgren, and Miner. The
requirement for random excitation in the use of modeling techniques
for sonic fatigue prediction is thus minimized.

6.1 Honeycomb Sandwich Comstruction - Preliminary Tests and
Modeling Procedures

6.1.1 Configuration Integrity Test

The structural integrity of all honeycomb sendwlch
sections should be determined by obtaining specimen fallure with
mechanlcal vibratory tests. The use of cantilever beam specimens in
& minimum of two span lengths suffices for this requirement. The
reasons for the requirement are: (1) To ascertain that failures are
confined to tensile (bending) fractures in face sheets, and (2) to
compare the maximum available low life-cycle strength in complete
stress reversals (R = -1) with an applicable S-N curve.

6.1.2 Damping Coefficient Ratlos
In testing the configuration integrity, the damping
coefficient ratios should be obtained as a function of amplitude prior

to the determination of fatigue strength. These ratlos, sultably
corrected for span changes, are required for panel modeling parameters.

6.1.3 Modeling Procedures
The modeling parameter in frequency is based on the equation

fh,n = Cm,n k o X

waare

m,n
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f. is the frequency of full-size or model panel at mode numbers

e m and n in dimensions b and a respectively, cps
,m 8 frequency constant common to all panels st the given mode
m,n, in-lb-sec system
k, the radius of gyration of the section, inch
X, a welight factor equel to welght of face sheets

Total section weight ~# 2ad
&, , the short dimension {(in b X a) inch
3

The only restricted constant is cm,n for which the aspect
ratio of the specimen and model panels must be kept the same and with
the panel edges identically constrained. All other variables may be
chosen in suitable proportions.

The modeling parameter of dynamic flexural stress is based on the
equation: o -
o ] & n(A.R.) 8 a;; Kt (A.R.)
maX= J-é = — > where
h 6Ak
Onax is the maximum reversible bending stress in a fundamental mode
defined in length factor am,p;

d, distance of extreme fiber to neutrsl layer of honeycomb section
whose total face sheet area per unit width is A at radius of syra
tion Xk,

h, the thickness of an equivalent rectangular section;

(A.R.), an amplification ratio = ;—;%E- at damping coefficient
ratio ¢/c,; end - S Te

B, a maximum bending moment coefficient appropriste to the mode
defined by ay ,. (Ref. 24 and 295)

By examining these two parametric equations Jolntly, 1t can be seen
that if all dimensionsl factors are in proportion to scale ratios in true
modeling and the welght correction is neglected, the frequencies would be
raised in & sceled (down) model for the same strees if the amplification
ratio remained the same. Because the last condition is generally not ob-
tainable, it is unnecessary to use true models. In adequate modeling, by
maintaining the same aspect ratic, the frequency and stress in each mode
of the specimen and the models are allowed to vary at predetermined mag-
nitudes. These modeling parameters are appliceble to isotropic panels by
correct interpretation of the terms k, X and A. For a constant gage
penel, the sectional width is given a unity velue: Thus, A o h; koch;
and Ak? oc h3, vhere h is the panel thickness. X is of course unity.

The modeling parameter between sinusoidal and rendom environment is
based on the Miles' solution and depends on the conditions specified below:
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(a) For equel rms stress observation - The equivelent sinusoidal pressure
level is 4dB, above the spectrum level at mode frequency f, in
random excitation. Thias level change in decibels 1z given by the
equation 4dB; =2 + 10 log Af vhere 4f = 2(::/cc):t’r

(b) For equal fatigue or damege stress in mode f, -~ The equivalent sinusoidal
pressure level is AdB, + 4dB, above the spectrum level at mode
frequency f. in rapndom excitation. The level change in AdB, 18
given by the equation 4dBy, = 10 log[%e| wheree = 2.727and
ais average slope in a conventional S-K curve on log-log sceles,
i.e.

= log (Life Cycle Ratio) ... log np -log n; with sy>sp and no>n; .

log (Strees Ratio) ? log 81 - 1og 8y
If more than one mode is involved, then the damages due tc all

relevant modes are cumulated together in accordance with Falmgren-Miner

Rule. However all modes which are not contributory to the stress at a

particular location must be excluded. In this respect, it is evident

that different damages will result due to: (1) variations in the model stres:

response and (2) variations in the composition of a random environment.

The model response jas best determinable by sinusoidal excltation tests

and can be verified foras many excitation levels as desired. A specific

level is then selected for fatigue test. The lifetime durations between

models can be readlly compared with an acceptable S-N curve.

The nonlinearity parameters are dependent on the specific excitation
levels under consideration. In general, a prerequisite knowledge is
required for each specimen or model on the extent of the nonlinearity in-
curred and on the frequency range of respective "jump phenomena" (best
obtaineble with sinusoidal excitation forces), before a long range
fatigue relationship can be established. Deta of this program indicate that
a8 well designed honeyconb sandwich structure based on the tensile strength of
the face sheet is predominaently a vibrating body with linear characteristics.
Unless the core is deficient in shear strength ox rigidity, nonlinear
response is probably negligible even in random considerations. However,
with undersized cores the failures would be catastrophic in nature; a
contingency that has been ruled out of the current applications.

6.2 Curved Plate Configuration - Modeling Procedures
6.2.1 Definition and Limitation

The curved plate 1s defined here as a stiffened rectangular flat
plate unit element with linear dimensions a x b and hent to a radius R
in one direction only. Although s lumped argument was intrecduced invelving
the product of mode numbers m and n that appeared to correlate well with
data from this program end one other source, potential independent and/or
interrelated effects of thickness to radius, thickness to length, length
to vidth, and width to radius ratios have not been specifically considered.
The following procedures are applicable within these limitations.
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6.2.2 Aspect Ratio and Radius of Curvature

The modeling requirement is that both the linear dimensions
defining the aspect retio and the radius of curvature are to be scaled in
the same ratio, i.e., a, b, and R are the essential modeling dimensions.
The subtended central angle for the curvature is the same in all cases.

6.2.3 Frequency Parameter and Stiffening Effect

For each mode the stiffening effect of curvature is the same. The
stiffening effect is defined as the ratio of the frequency of the curved
configuration to that of an unstiffened flat plate. The variation in the
stiffening effect with mode numbers sppears to follow the relationshiy
indicated in Figure 38, for which a lumped argument is introduced as the
product of mode numbers m and n for the two sides. Frequencies of
the referenced flat plate, unatiffened, are calculated for esch mode
desired on the same basis as i1llustrated in Section 4. The plate thick-
ness h is, therefore, s parameter dimension and need not be necessarily
scaled. Because of the stiffening effect of curvature, it would ususlly
be desirable to scale down the thickness parameter more than by the
scaled model reduction in order to maintain important model freguencies
within e desirable frequency range for the tests. Observe that in this
varied degree of stiffening effect, the fundemental and higher modes are
no longer harmonically related as in unstiffened flat plates, even for
an aspect ratio of 1.4 as demonstrated in Section 3.

6.2.4 Equivalent Flat Plate and Stress Parameter

An equivalept flat plate designates an imaginary flat plate of
the same linear dimensions but with an increased moment of inertie such
that its mode frequency is the same as the curved plate, The increase
in moment of inertia is, therefore, propertional to the aquare of the
frequency ratio which refiects a corresponding decrease in bending
stress In the equivalent flat plate cr the curved plate.

6.2.5. Fatigue Consideration Versus Instebility

If a comparison is made between the decrease in bending stress in
curved plates and acceptable S-N curves, it would be realized that the
accrued increase in fatigue life would be more then adeguate on a
time basis to offset the increase in mode frequency. Thie is illustrated
in Figure 53 for the worst condition in which the slope of the given
5-N (log-log) curve is much steeper than most materials within an
average fatigue duration range. For a curved plate, moderately stiffened
by curvature so thet the mode frequency is doubled, the reduced stress
would be only 25% of the original value. The fatigue extension in life
cycles is 1000 times at the same frequency or 500 times in time-duration
based on the calculated strength of the wmstiffened flat plate. 1In
other words to maintain the game fatlgue strength on a stress basis. it
would be permissible to allow a 2/3 decrease in the true section modulus
in the curved plate. In reducing the rigidity soc drastically it is
suggested that this would come very likely under an instability
criterion which was not investigated in this program.
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6.3 Recommendations for Additional Tests

In fatigue under a random enviromment, ascoustically or otherwise
induced, the question appears to be a definition of the environment
itself rather than on the mechanics of fallure. Data presented in this
report are in satisfactory support of the spplication of Miles, Palmgren-
Miner cumillative fatigue hypothesis. In this respect, the use of power
spectral densities or spectrum levels in dB per cps is recommended for
the definition of acoustical environment in lieu of octave band levels.
This definition is also applicable to stress response which is more specific
than the overall reading usually taken. Concurrently, it is emphasized
that nonllnear response is better revesled with sinusoidal excitation
tests than with random signals. A recommendation 1s also made that the
concept of using models for scnic fatigue predictions be extended %o
establish modeling parameters for anisotropic panels, e.g. corrugation
stiffened, or stiffened single faced panels.

6.3.1 Curved Plates

The application of a method using acoustical excitation to resolve
the question of increased stiffening in curved plates has been demonstrated.
In order to consclidate the findings illustrated in Figure 38, where the
atiffness parameter is the subtended angle of curvature, it is recommended
that investigations be conducted on at least three more parametric changes
to supplement the existing curves. Academically, 1f the specimens include
one plate configuration at a subtended angle of 180°, with axia) ends free,
the result obtainable by this method should be Iin agreement with seversl
published treatiseson incomplete circular rings where the minimum subtended
angle 1s usually 7 , e.g., References 29 and 30. In this connection, it
must be noted that the subtended angle, held constant in this progrem,
might be a complex function In itself of other characteristic ratics such
as thickness to radius, thickness to length, or thickness to width.

The latter two ratios may be compounded in turmn by the asgpect ratio.

6.3.2 Flat Plates

In order to resolve the question of the Influence of aspect ratio
on plate modes, particularly in the reduced stress at 1..4 aspect ratio,
it 1s recommended that further verification be obtained by extending
the investigation to cover a wider range in espect ration. A suggested
range for aspect ratio would be from 1.1 to 2.5. Better control of edge
restraint and wniformity of specimene and models could be obtained by
using flat plates (aluminum 2024) on supported edges. It is enticipated
that higher modes could then be generated separately for a beiter
evaluation of damping characteristics.
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APPENDIX A

BASIC BEAM THEORIES APPLIED IN ANALYZING HONEYCOMB SANDWICH CONFIGURATIONS

1. Bending Rigldlty and Stress

The extreme cases in which a honeycomb sandwlch comstruction deflectsa
in resistance to transverse loads only are sketched in Figures Sha and 5ub.
Sections of wldth dx along the longitudinal length are shown as isolated
elastic units in exaggerated proportions under the action of external
shear forces V, the bending moments being deleted for clarity. In Fig. Gha,
the two face sheets deflect Individually but essentlally in the same
flexural mode. Both compressive and tensile stresses in bending are 2
induced in each face sheet for a totel bending moment resistance of 2EIf %ig.
In Fig. S4b, the face sheets bend as a unit with plane sections remsining
plane at all times. It is, therefore, clear that in the latter case, a
simple bending phenomenon in face sheets is depicted for a reslstive moment
Mg = EIy day/dex where 1-1 represents the neutral axis of the entire
section. For a honeycomb sandwich section as dimensioned in Fig. S4c the
moment of Inertiq I;_; of the face gheets 1s given in the equation

b 3 e t,°
I, = 2[—+bt{——+;}]

= 2 (If +bt {ef2 + 1-,/2}2) (A1)

The first term in the bracket, being much smaller then the 2nd term is
ususlly neglected. In other words, the bending rigidity in a honeycomb
sectlon rests predominantly in EIj_; end 1s a maximum when adequate strength
is built into the core enabling an element such as 1234 to maintein the
coplanar requirement of the face sheet sections, When this condition is
fulfilled, the statlic bending stress % 1is given by the following equation
end distributed in the menner shown in Fig. sSid.

M, d

I, (A2)

In the above equation, the static bending moment M, is frequently expressed
in the form My, = g‘'p a2 where p is & uniformly distributed pressure, a is
the shorter span of a rectangular plate a x b; and A'is the moment
coefficient as given in References 22 and 2i. A condensed listing is

shown below for clarity because of the motational variations involved.

The coefficients employed elsewhere in this report are accented.
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Bending Moment Coefficilent B'_ o
Simply Supported Edges All Edges Clamped R
(From Ref. 22) (Prom Ref. 24)
b/a Mx Max. My Max. My Max My Max.
center of ceng-‘beorcenter of cen:lc;: f
edge b edge &
_— —_— LA | - +
1.0 0.0h79 0.0479 0.0513
1.2 0.0616 0.0501 0.0639 | 0.0299] 0.0554 | 0.0228
1.4 0.0753 0.0506 0.0T26| 0.0349 | 0.0568 | 0.0212
1.6 0.0862 0.0493 0.0780 | 0.0381| 0.0571 | 0.0193
1.8 0.0948 0.0479 0.0812 | 0.0401| 0.057T1 | 0.01T4
2.0 0.1017 0.046k 0.0829
@ 0.1250 0.0375

From the substitution of g'p a2 for My in equation (A2), it is observed
that the bending stress 0, is linearly proportional to the preasure
intensity p. In dynamic loading the spectrsl pressure intensity q varies
sinusoldally as in the expression q = p cosw t at & maximum value egual to
P. The maximum dynamic bending stress is readily cbtainable from this equa-
tion by considering the maximum amplitudes as derived from s lumped mass
systenm,

o= » OT 0 =g, (A.R,) (A3)

2 c/cc
where c/c, represents a damping coefficlent ratio and (A.R.) stands for
the amplification ratio { = 1/2 c/ce).

The maximum dynamic flexural stress ig simply the amplified maximum
static bending stress O . A dlrect expression of the latter in the
form Gp=8p a2/m2 is freouently used for e uniform plate of
thickness h, 8 now becoming a stress coefficient having a value of
6 8’ The values of stress coefficlent A also depend on the aspect
ratios and end constraints. In Reference 25 many curves can be found
delineating its values in specific cases. A condensed listing is given
below with accented values indicating those that were used in this report.

Max. Bending Stress Coefficlent A
Simply Supported,| Clamped on One Edge
b/a All Edges | Simply Supported on Remarks
3Edges | .. : o
1 0.29 0.50 Readings off curves
from Ref. 25.
1.4 0.u4T* 0.67% *Average 0.57 used in
test example, p. 87
2 0.61 0.72
3 0071 0'73
6 0.73 l Extrapolated reading.




Careful dist.inction has to be exercised in employing the coefficilents of
bending moment A’ from References 22 and 24 and of bending stress B
from Reference 25,

An additional variation is found useful in the substitution of A k2
for the moment of inertia term I;.; where A ig the sectional area whose

radius of gyration is k. The general expression of the maximum dynamie
flexural stress is therefore

o = 2P ald(a.R.)
6 A X2 (A3a)

for a bending fiber at distance 4 to the neutral axis.

2, Shear Rigidity and Resonance Frequencies

In the application of equetions Al and A2, the prerequisite condition
is emphasized that there must be adequate core strength in shear to sustain
the bending rigidity in the sandwich structure as being bounded by undls-
torted plasne sections. In order to verlfy the extent to which this condition
is fulfilled, the resonance fregquency solution to the general equation
governing elastic vibrations is utilized. If the observed resonance
frequency agrees with a calculated theoretical velue, then adequate shear
rigidity prevalls.

The general equation (Refs 13, 15, 18)

dl"y wA 2
EI—71 +—g-— ye. = 0 (al)

indicates %Ijlcat the second term represents a vector due to the lnertial force
at the beem section dx which must, therefore, inciude the weight of the vore
carried. In other words, the effective density w is no longer the density
of the face shee’is only. To the solution

o itV BT g
VA (A5)
derived in Reference 13, a correction term must be a.dde? as follows:
3 ; ()‘rf ) 2 { face sheet welght)
r = wA 1 {total weight) (A6)

whete (A.f) is a Imown constant for the given configuration.
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APPENDIX B
A RE-APPRAISAL OF HONEYCOMB CONSTRUCTION AND ITS

STRENGTH CONTRIBUTION IN SAKDWICH CONFIGURATICNS

INTRODUCTION

In this report, the hypothesis has heen used thet in sandwiched
honeycomb structures, core failures would be coneidered catastrophic for
the reason that structural integrity is considerably impaired vwhereas
face sheet fallures may he detectable, arrested, or ctherwise repaired
without the loss of a structural component. The design of the sandwich
is, therefore, based on the conception that ultlmate feilures are confined
to face sheets, To Insure that adequate strength is built into the core
which is usually hidden from view and practically bars nommel) Iinspection,
this analysis is presented as an aid to core selections. For illustrative
purpcses, aluminum cores will be used and are composed of hexagonal cells
with the width scross flats in the direction WW defined as the cell size,
cormer directions deslignated TT'. The depth of the core is along the
direction of the flute, L. Valuable test date from References 31 and
32 are used in this analysis.

1. Compressive Strength along Axis L and Total Shear Force of Bending

Typical test data from Reference 31 are shown in Flg. 55 with an
inset indicating core geometry as defined in the introduction. The cell
size was given as 3/8", wall thickness 0,003"., The maximum load on a
compressive block of 2.0l x 1.98 was given at 1410 1bs, This load will be
compared in the following calculation with Euler's column load, considering
the effective walls per cell as two columms at right angles.

o ekl =y _ 2
Cell Area = 155 (0.375)° = 0.122 in.
No. of effective cells 3.58/0.122 = 32.6
Meximum load per cell = 1410/32.6 = 43.3 1bs. (observed data)

Euler's load per cell Po = n e EI/IE where (= core depth = 5.62"
nel

(10)(10)6 1bs/in.

(0.003)(0.375)3/12 1a*

a

]

I

The calculated P, 1is L1.5 1bs. on the basis that the structural
integrity of the stronger colum for which the moment of inertia I is used,
provides the limiting strength. The egreement is good but is by no means
coincidental. Reduced io normel rore deyths (for exemple A = 7 = i"}, the
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LOAD IN 100 LBS

A

COMPRESSION TEST (REF. 31)
MAX LOAD = 1410 LB

— BLOCK AREA =2.01IN. X1.98 IN.
LENGTH = 5. 62

(DIRECTION L)

i T
i CELL SIZE
Sc = 3/8 IN.

0.003 IN. FOIL

CELL GEOMETRY SHOWING
NUMBER OF EFFECTIVE WALLS
PER CELL = 4

STRAIN IN uIN/IN

L 1 i (] I 1 Il [l L l L L 1

1000 2000

Figure 55. Honeycomb Core Compression Test
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permissible compressive load or strength will be greatly increased and
generally exceeds the applied load. The total shear force V {Fig. 12) in
the bending of a beam or plate is a local compressive force on the cells.
Because of this high strength, it ceases to be a design criterion.

2. Shear Strength in the Ribbon Direction and Shear Stress in Bending

Some of the test results obtained in a direct applicetion of shearing
forces onto core specimens from Reference 32 are plotted in Fig. 56 with the
test arrangement indicated in the inset. These date delineate a shear
strength that is (i) directly proportional to the foil thickness, and (1i)
inversely proportlonal to the cell size. At the same time, it may be
identified with the core density scale at the right. A significant but
not much heralded fact is indicated in the strength of the hond bhetween
the core and fece sheetz' which proves to be stronger than the core at all
times.

If an entire core is considered, the action of the applied forces P
(See Fig. 56) is of course a shear, but the shear is exerted on the two
bonding surfaces between the core a2 a unlt and the face plates., Insofar
&8 the core element or a cell section is concerned, forces P may be considered
also as compressive loed in planes TW transmitted through the cell walls.
For each cell, therefore, there is a Fuler's lcad limit determined by the
stronger wall column beyond which initial fallure will be exhibited in the
weaker column. It is, therefore, not a shearing stress in its true sense
but is conventionally so expressed due to the direction only. The dependency
of this strength upon the sizes 1s 1llustrated in the following application
of the Buler's equation.

2
n EI I
Pe = 2 >—== orp; oc i vhere I, 1s the moment of inertia
2 i 71-.?

{ of ei‘bh%r equivalent element TT
or W and f, is 1its length,
subscript 1 is 1 or 2 for either
T oxr WW.

For the seame cell size, ti (or 8,) is constant.

3 3
Since I, = t Se , Or Se t
i 12 15

and g, >> t, t being the foil thiciness;

Pl increases linearly as t and is larger than PE;
P2 increases as t3 3 = Yielding
Pp/P; st a relative rate of change proportional to t2.

The true strength P,, therefore, varies also es 'ba.
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Figure 56. Honeycomb Core Shear Strength and Geometry
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The apparent unit strength (=P,/A = tE{t) accordingly increases linearly as
t in agreement with dats indication (1) above. If the thickness is kept
constant, P, increases linearly as 8, but P, 1s inversely proportional to
8.. The apparent strength in this case is %he Joint product divided by the

area change (oc S,) which results in a strength change proportional to S, -1
as per indication (ii) obeserved,

In these eptablished strength characteristice, a basis is provided in
selecting appropriate cores that cean be made stronger than the bending
strength of the face sheets. For a given design criterla where the meximum
shear stress is also known, a core can be selected to meet any degree of
overatrength desired. On the basis of availsble test results, 1t appears
that these strengths as given in Fig. 56 for stetlic shear may also be
consldered as safe dynamic shear llmits.
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APPENDIX C

SIGNIFICANCE OF PANEL ASPECT RATIO IN THE GENERATION OF MODE RESPONSE

The bending frenuency of uniform rectangular flat plate, simply
supported at the sides, 18 given by

2
D me n
wm,f ? [;5 + a-—aJ , Wwhere

Wp nis the frequency of the m,n mode

D 18 the plate flexural rigidity

P 1s the plate mass per unit area

8,b are plate dimensions - aspect ratio MR=Db/a, b 2 a

m,n are integers denoting mode number or the number of half-waves,
in b,an directions respectively,

The ratlioc of mode frequency wm,n to the fundamentsl mode frequency & l,lis
2 2 -
w m n 1 1
by, <2 %] (23
wl,l I a®  p°

Subatituting b = 1
[ 2 2 ?][ 2 ]'
Ao +m|l|m+1

m’/‘i 1

For s panel aspect ratio of 2, “m,n ?_ne + ne
w =
1,1 3
For another ratio, e.g. R= 2, _“.J.m,n lma + ne ; the comparison is
tabulated as follows: Wy ] - 5
W
Mode Rumber Node m,n / w Aspect Ratio between
Pattern 1,1 Node Lines
n - AR =2 AR =2 AR =2 AR -2
1 2 8/5 ¥2 1
2 1 17/5 242 "
2 2 n V2 2
1 3 13/5 32 3/2
1 L 4 2 y2 2
2 3 5 3f2vE 4/3
2 b 32/5 E 1
3 3 9 Ve 2
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For all simply supported plates, mode frequencies for m = n are
integer multiples of the fundamental with 4 being the lowest multiple (from
m=n=2). However, in aspect ratio V2 plates, there are lower modes with
frequencies at integer multiples of 2 and 3, vhich facilitate the formation
of modes in the two hermonic series of 1-2-4-8 and 1-3-6-9 ete. in sharp
contrast to the reduced number of modes in the hermonic series of 1-4-5-9
with R = 2.

The presence of four modes at frequenciles 1,2,3, and 4 times the
fundamental led to the ready excitation of all modes in the tests reported
with discrete frequency excitation or with an applied "haystack” shaped
spectrum peaking near the excited mode (e.g.spectrum shape of -6dB per octave
below peak and -6 dB per octave above peak). With the applied energy
being absorbed by a large number of modes rather than concentrated in the
fundamental mode, it was found that the stress levels were dominsted by
the higher complexity modes and were so low as to preclude obtaining
fatigue fallures in a reasonsble time with the maximum sound pressure
level available (168 dB overall).

Although the mode analysis is hased on a simply supported plate,
the seme reasoning applies to the actual system for two reasons. At an
aspect ratio of 2 the first mode (1,1C) in fully clamped boundaries has
practically the same frequency as the simply supported 2,2 mode {2,23).
Secondly, in any physicael condition, some degree of edgewise rotation
approaching pinned or simply supported restraint does exist. All
modes were accordingly identified as clamped (m,nC) or simply supported
(m,n3) in the results presented.
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