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VIBRATION ANALYSIS OF A CANTILEVERED SQUARE PLATE BY THE
STIFFNESS MATRIX METHOD

G. C. Best*

General Dynamics,
Fort Wor:h, Teras

The analytical development of the stiffness matrix ofa triangular flat
plate inbending is presented. The method used employs a stress assump-
tion containing eleven constants as against six force/deflection co-
ordinates in the supported element, the excess constants being adjusted
so as to minimize a positive definite function involving edge stresses,
The assumption is made so as to satisfy both the differential equations
of equilibrium and compatibility. A square cantilevered plate of constant
thickness is then simulated by a mesh of these triangles and vibration
frequencies and locations of node lines computed, Results are compared

with those of another author obtained by a classical solution employing
Fourier’s series,

INTRODUCTION

In recent years more and more use isbeing rmade of the stiffness matrix method for analyz-
ing structures which is evidently due to an awakening realization that the methcd possesses
an almost universal applicability, since with it one can analyze the most arbitrarily compli~
cated structures and practically all types of analyses fall within the scope of its capability.

As is well known, the stiffness matrix method proceeds by simulating a givenstructurebya
finite number of basic elements fastened together, the matrix of each element is computed
and then added into an overall stiffness matrix from which the various desired results may be
obtained. The key to a good representationofa structure therefore rests with having available
the stiffness matrices of suitable basic elements, Elements of the bar and shear-panel {ype
have been available for some time, (References 1 and 2) and more recently plates in bending
for representing shell-type structures (Reference 3) and tetrahedrons to simulate solids
{References 4 and 5) have made their appearance in the literature, This paper deals with the
development and evaluation of a triangular plate in bending for thin shell-type structural
analysis,

GENERAL BASIC ELEMENT ANALYSIS

A number of methods have been developed for obtaining the stiffness matrices of general
basic elements {Reference 6). in most all cases an assumption is made either as regards the
displacement distribution or the stress distribution within the element. Many of the methods
require that certain of the matrices involvedbe square and nonsingular which amounts firstly,
to imposing the restriction that the number of load/deflection coordinates in the developed
stiffness matrix and the number of constants inthe assumption be identical and secondly ~— the
nonsingularity condition — to imposing a restriction on the assumption which can be very
awkward to satisfy, More recently (References 7, 8 and 9), methods have been advanced which
allow the number of constants in the assumption to exceed the number of coordinates in the
desired stiffness matrix by an arbitrary amount thus giving added range to the applicability of
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the procedure, The element presented in this paper — a triangular plate in bending — is
developed by use of such a method, a short outline of the method having been previouslty given
in Reference 7.

STIFFNESS MATRIX OF TRIANGULAR PLATE IN BENDING

The load/deflection coordinate picture for this element is as shown in Figure 1, The P,
shown in this figure aretransverse loads - the resultants of shearing forces in the z direction,
while the double-headed arrows, — the M; and T; ~— are the resultants of clockwise bending
and torsional moments along the edges of the plate, respectively.

A stress assumption - satisfying the differential equations of equilibrium (p. 229, Reference
10) and those of compatibility (pp. 7 and 230, Reference 10) — is made first. This assumption,
involving 11 arbitrary constants, and which is intended to approximate the stress distribution
in a small triangular portion of a thin plate in bending, is as follows:
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where » = Poisson’s ratio and the k; are arbitrary constants,

This can be expressed in matrix form as

a = Uk {2)

W
here o col ( O'I y ’UZ |Txy 1Tyz ‘rZK )

-
"

collk, ,kp, - - k)

The deflections corresponding to loads Ty M are now fixed at zero so as to support
the element. The remaining loads are then obi;za.fned3 by integrating the appropriate stresses
over the edges of the plate. The formulas are as follows:

X oh
R zf (-‘rz)d:dz

f } zdzdx
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where h = 1/2 thickness of the plate (assumed constant) and ¢; = cosa; and s; = sina with
the a; as shown in Figure 2, Integration along the side 2, 3, of length .2 o3 18 indlcated by ds.

Inserting the assumed expressions for the stresses (Equations 1), and carrying out the
integrations, gives in matrix form:

P = Vk {4)

where

P,,M,,T,)

P = coll{f M ,T, P, T,

the matrix V, defined by the above, is too large and complicated to be shown in this paper.

Let m be the order of the stiffness matrix of the supported element, {(in this case m = 6) and
let r be the number (=11) of constants in the stress assumption, there are therefore 5 excess
constants, For any given loading these excess constants are adjusted so as to minimize the
function

. _% f & 1&F ds (5)

S
where &= col {o, »Tpjand o,,1, are the normal and tangential shearing stresses on the edges
of the plate, § indicating integration over the plate edges, Let the matrix T transform from

X, ¥, 2 coordinates to surface coordinates, Then

o = To (6)
where, for this case - for side | -
2 2
s o] 2¢. s (o]
- i i i (7)
T s, ¢ ~s. ¢ 0 (s'z~ ¢ © 0
Inserting Equations 2 and 6 into 5 gives LT
w = =k Bk (8}
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where T

B:ﬁu
S

TTTUds = [ba‘B] (9)

is an (r x r) matrix.

The minimization of Equation 8 holding the loads constant is an isoperimetric problem in
the calculus of variations. (Reference 11), Hence one writes as the function to be minimized

¢ = sza:BkakB + ZB)\ (v B B (o)

where the >‘a are Lagrange multipliers, (@ =1, 2,...,m), Settmgthepartials with respect to k,,
and A, to zero gives - on noting that B is symmetrical -

9¢ _
dky Z—I ba,yka + azl )\ V a,y" 0 y = B2, (in
29

V. kg - =0 = 1,2, -, 12
o, %::, »B *8 "% Y m b2

Returning to matrix notation and letting I = col (NAg....\,) transforms Equation 11 into

Bk +V I =0 (13)

Equation 12 becoming Equation 4 again.

The matrix B is shown to be nonsingular inReference 7 hence may be inverted. Transposing
Equation 13 and solving for k gives

K = _a'vT (14)

Substituting this into Equation 4 and premultiplying the result by (VB-' VT )'i and substituting
into Equation 14 gives

k = Mp {15)

where
M - evTve'v)! te)
* the nonsingularity of (V B V' ) being also proved in Reference 7.

By Reference 12 the flexibility matrix of the supported element is

}
F = o 17
AN AN R a7

[+]

where ¢, is the stress vector a.i a point in the element caused by a unit load at coordinate i,
and ‘(l’: col (ei,e,{ v € ,y}w iz .szI ) is the strain vector caused by unit load at ], the
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integration being taken over the volume V, ofthe element, in this case 2h times the area of the
triangle.

Expressing the customary relation between stress anc, strain in matrix notation as
€ = No - 18)

and using Equations 2 and 15 converts Equaticn 17 into

F - .Ti MG Me. (19)

where r
G =IUNUdV0 and e,

VO

is a column vector with a one in the ith place and zero elsewhere. This amounts to
F - M GM (20}

By inversion of Equation 20 — the nonsingularity of @ and hence F being also proved in
Reference 7 — one obtains the 6 x 6 stiffness matrix of the supported element:

5 = F (21

In order to obtainthe 9 x 9 stiffness matrix 8 of the unsupported element, the transformation
matrix H is defined satisfying

= Hp (22)

where P¢ = support loads determined from equilibrium equations as linear combinations of the
applied icads p so that the stiffness matrix of the element sought is

S : HSH ' (23)

The integrations in the above are accomplished by use of numerical formulas which are exact
in each case up to the degree of function involved, all calculations being performed upon a
high speed digital computer.

EVALUATION STUDIES

For purposes of evaluation the vibration frequencies and mode shapes of a square canti~
levered plate of constant thickness were calculated by the stiffness matrix method using the
above element. The triangles were arrangedingroups of four, each group forming a square as
shown in Figure 3, the masses being concentrated at the mid-points of the contained sides. The
node-line results for a 144 triangle representation are shown in Figure 4 together with the
node-line locations calculated in Reference 13 which employs a Fourier series solution and is
considered to be exact. Also inTablelthe corresponding frequencies obtained in Reference 13
are shown together with those obtained by the stiffness matrix method for a variety of simula~
tions, employing 16, 64, and 144 triangles successively,
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DISCUSSION OF RESULTS

From Table I it is apparent that, as the mesh of the representation grows finer the
frequencies calculated tend to converge toward the exact values. Also, from Figure 4, it is
noted that the approximation of the first four symmetric modes is good but that for the 4th
anti-symmetric mode is relatively inaccurate, A possible explanation lies in the fact that — as
result of the stress assumption, Equationl, which makes 1, and 7, independent of x and y —
the torsion onthe edge of the element, i, e. the T coordinate’in Figure 1, can only be carried by
shearing stresses 7y, in the plane of the plate and no transverse shear contributes to this
moment, its integral being zero. Hence, as result, this element is better equipped to carry
bending moments than twisting torques. Another feature of the simulation which may contribute
toward the above discrepancy is that concentrated masses are used, thus neglecting moments
of inertia of those portions of the plate adjacent to mass concentrations. Doubtless the use of
mass matrices (Reference 14) would give superior results in this respect for any given repre-
sentation.
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