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FOREWORD

This material is an extensive revision of work at Douglas Aircraft Company,
Long Beach, California, Contract AF33(616)-6460, intended originally to be published
as part of the USAF Stability and Control DATCOM, That volume, however, has grown so
full of aerodynamic data that it seems more appropriate to issue the flying-qualities
estimation methods as a separate report. The work, spanning the last several years
as time has been avallable, has been conducted under Project 8219, Stability and
Control Investigatioms, by the authors. The manuscript was released by the authors
in December 1965 for publication as an RTD technical report.

This technical report has been reviewed and is approved.
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Chief, Control Criteria Branch
Flight Control Division
Alr Force Flight Dynamics Laboratory
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ABSTRACT

Methods, ranging from rigorous and complicated to simple and approximate, are
presented for estimating flying qualities in accordance with such specifications as
MIL-F-8785 (ASG)., Aerodynamic and inertial data are assumed to be known. Intended
mainly for design use, the report gives encugh detail to indicate derivations and
conditions for validity. Topics include the static and dynamle, controls-fixed and
controls-free aspects of aircraft stability, control, and trim, Although emphasis
is on linear analysis, methods are given or indicated for such nonlinear problems
as drag, pitch-up, inertial coupling, and spinning. Appendixes give an introduction
to aeroelastic effects, ways to analyze control tabs, a derivation of the controls-
free equations of motion, and an introduction to root locus analysis.
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SYMBOLS

{Ft-1b-sec units; one can hardly go wrong inusing radians for all angular measure. Directions
are generally from the pilot’s viewpoint, See Figure 1.)

a

b

Ql

cg

Acceleration, ft/se02

Wing span, ft

control-gurface hinge moment (total)
control-gsurface hinge moment (pilot effort)

Boost ratio =

Reference chord, ft

Mean aerodynamic chord (of wing, unless subscript), ft
Center of gravity, percent m.a.c.

Drag, 1b

Exponential base = 2,718

Equivalent airspeed, V «/p/_

Psi

Stick or pedal force, 1b {positive when tending to move the stick aft or right, or
right pedal forward)

Acceleration due to gravity, 32,2 ft/ sec? at aircraft altitudes

a3
surface  ,a4/ft (See Figures 4 and 7).

Surface-to-stick (or pedal) gearing, - 3A
08 stick

-08a r

Gqg = = — » 6 = - 5

0 oA r dhAp
Altitude above sea level, ft

Hinge moment, lb-ft; generally aerodynamic hinge moment (same sense as §).

Incidence of horizontal stabilizer to a = 0 reference line, rad (positive trailing

edge down)
Horizontal stabilizer deflection from incidence for trim, rad

Thrust-line inclination to a = 0 reference line, rad (positive in direction of
positive a ).

Moment of inertia in roll, slug ft2 [ I, = 1‘pc0527} + Izpsinzq where subscript

p denotes principal axes and 7 is the principal-axes inclination in the sense of a .
See Reference 6.

i : 2 _ 1 .
Product'of inertia, slug ft [ Iez® 7 I,p— Izp)sm 2mn. See L above.]
Moment of inertia in pitch, slug ft2

Moment of inertia in yaw, slug ft2[ I, = Izpcosz-r;+ prsina'r;. See L above.]
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SYMBOLS (Continued)
Ix/ mbz, nondimensional radius of gyration squared in roll

Iy/méz, nondimensional radius of gyration squared in pitch

Iz/mbz, nondimensional radius of gyration squared in yaw
Lift, Ib; rolling moment, lb-ft (positive ‘‘up’’ or right-wing down, resp.)
Mass; without subscript, mass of entire vehicle; slugs

Mach pumber; pitching moment, lb-ft: unless designated otherwise, aerodynamic
pitching moment, (positive nose up)

Mean aerodynamic chord, ft
Load factor, —\%[—Z(force normal to flight path) (positive up)

Normal force,lb; yawing moment, 1b=ft (positive up or nose right, resp,); numerator
(of a transfer function); neutral point, %c/100.

Roll rate, rad/sec (positive right-wing down)

Pitch rate, rad/sec (positive nose-up)

Dynamic pressure, é— p v?, /2

Yaw rate, rad/sec (positive nose right); normal distance from hinge line (See T)

Normal distance from hinge line to control-surface cg (positive forward), ft

Reynolds number

Area (of wing, unless subscript), £t2

Time, sec

Thrust, 1b; response time, sec

Incremental speed in x-direction, ft/sec

Incremental speed in y-direction, ft/sec

True airspeed, ft/sec except as noted; In Section IIIC, V is ground speed.

Incremental z-velocity, ft/sec

Weight; without subscript, weight of entire vehicle; 1b

(a) Axes: generally “wind-tunnel stability axes*’ for static analysis. For analyzing
dynamics, x,y, and z are fixed in the vehicle; they coincide with the static x,y,

and z at the operating point (stability axes) or with the principal axes (for which

Ixz = 0) (See Figure 1),

x1
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SYMBOLS {Continued)

(b) Distances along appropriate axes from the center of gravity, ft

ZT Perpendicular distance from cg to thrust line {positive for thrust line below cg).
X,Y,Z Forces along x,y,z axes; without subscript, aerodynamic forces; 1b
Y (s) Transfer function

- _ Drag
Cp Drag coefficient oS
Cp, Untrimmed drag coefficient at zero lift

. s . 2 2
CDCLZ Untrimmed coefficient of drag proportional to Cy ( acD/achae,et c”
Cp .Cpg Drag-coefficient derivative with respect to angle of attack and pitch-control
@ U8 geflection

Ch Hinge-moment coefficient based on free-stream dynamic pressure and control-

surface area and chord;l without subscript, longitudinal-control-surface hinge
moment (positive in the sense of positive surface deflection),

Cha'ChS'ChBt’ChiH’ Chq Pitch-control hinge-moment coefficient derivatives with respect to

vehicle angle of attack[not locala; Chg ™ MHChg,, 1™ %;—} » control deflection,
H

tab deflection, horizontal-tail deflection, and pitch rate (@€ / 2V),respectively, per

radian

Cy aH Elevator hinge-moment-coeificient derivative with respect to horizontal-tail angle
of atfack, based on local dynamic pressire, per radian

Cht Tab hinge-moment coefficient, hased on free-stream dynamic pressure and tab
area and chord (positive in the sense of positive tab deflection}.

C gp,Cp_ C ‘QB C P‘Séc‘q' Sr’c i »G Rolling-moment derivative with respect to roll rate (pb/2V), yaw

rate (_rb/2V), sideslip angle, aileron deflection, rudder deflection, and sideslip
rate (8h/2V), respectively, per radian

Cy, Lift coefficient, L/q*S (positive up)
CLi ,CLq, CL&'CLQ'CLS Lift-coefficient derivative with respect to horizontal-stabilizer

H .
incidence, pitch rate (gc¢/2V), angle-of-attack rate (ac/2V ), angle of attack, and

elevator deflection, respectively, per radian

CLl W/q*S

1
With ailerons, for example, carefully determine whether reference area of data is that of
one or both ailerons; likewise for aileron deflection.

xii
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Cm

SYMBOLS (Continued)

Pitching-moment coefficient, M/q*S¢ (positive nose up)

CmiH ' Cmq s Cmc'z s Cma , CmS , CmS i Pitching-moment-coefficient derivative with respect

Cmo

Cn

to horizontal-stabilizer incidence, pitch rate ' (@T/2V), angle-of-attack rate
(ac/2v), angle of attack, elevator deflection, and tab deflection, respectively, per
radian

Pitching-moment coefficient at zero lift, zero elevator deflection, etc.

Yawing-moment coefficient, N/q*Sb (positive nose right)

Cnﬁicn Sa’ Cngyp Cnp, Cn,.+Cn B Yawing~moment-coefficient derivative with respect to

sideslip angle, aileron deflection, rudder deflection, roll rate (ph/2V), yaw rate
(rb/2V), and sideslip rate (Ob/2V), respectively, per radian

Normal-force coefficient, N/q*S (positive up)

Normal-force-coefficient derivative with respect to angle of attack, per radian
(Cx, = CL, * Cp)

Side-force coefficient, Y/q*S (positive to the right)

Cyp, CYr' CyB R CYSa_' Cy Sp? Cy B Side~force-coefficient derivative with respect to roll

Aa

rate (pb/2V), yaw rate (rb/2V), sideslip angle, aileron deflection, rudder deflection,
and sideslip rate (5b/2V), respectively, per radian

Angle of attack, radians {positive for nose above the flight path)

w/V

Sideslip angle, rad (positive for right slip)

Flight-path angle, rad (positive nose up)

Control deflection, rad

Tab deflection, rad (positive in same sense as control-surface deflection),
Linear deflection of rudder pedals (See Figure 1 or 7), inches

Linear deflection of control stick grip or wheel (positive aft), inches
Linear deflection of control stick grip or wheel (positive right), inches
Downwash angle, rad

Damping ratio

Efficiency factor, local g*/free-stream g*

xiii
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SYMBOLS (Continued)

6 Pitch angle, rad (positive nose up)

Sweep angle {of control-surface hinge line)

H, Relative density m/pSc
My Relative density m/pSb
£ lp + atrim
p Air density, slugs/ft>
T Aerodynamic time, m/pSV sec
b Bank angle, rad (positive right wing down)
V] Yaw angle, rad (positive nose right); phase angle
wy Undamped natural frequency, rad/sec
S'ubscripts
a Aileron (positive deflection right aileron trailing edge up, left down)
ac Aerodynamic center; distance from cg to ac
B Bobweight; at bobweight location
C Canard surface; pilot command; crosswind
cg center of gravity
d Dutch roll
e Elevator (positive deflection trailing edge down); equivalent (See EAS)
F Flap
FE With all landing gear fully extended
Gust
H Horizontal tail
L Left; landing configuration
0 At zero time or zero lift

Rudder pedal; phugoid mode

P At pilot’s location

xiv
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SYMBOLS (Continued)

r Rudder (positive deflection trailing edge left)
R Roll mode; right

] Stick; stall; spiral mode

gp Short-period mode

t Tab; trim

T Throttle; thrust

\' Wind

Mathematical Symbols

: approximately equals

2 is defined as

lQl absolute value (magnitude) of Q; determinant of Q

aly Q evaluated at condition X

A characteristic determinant; change in quantity following.
v is proportional to

—El(lx_ fotal derivative with respect to x

Q total derivative of @ with respect to time

—daT partial derivative with respect fo x

F{Q) F as a function of @, with other variables zero

8 Laplace operator
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SECTION 1

INTRODUCTION

This report provides a compendium of methods for estimating vehicle character-
istics, static and dynamic, relevant to flying qualities. Related subjects include
¢losed-loop, pilot-vehicle analysis, determination of vehicle sensitivity to aero-
dynamic or configuration changes, synthesis of artificial stabilization, manual and
automatic control systems, simulation, and flight testing. These additional subjects
are given no more than cursory notice here, but have received considerable attention
in the recent literature.

The methods presented are not unique, and this publication is not intended as
an endorsement of complete applicability and validity. Variants will suggest them-
selves to take the best advantage of available data and the nature of the sgpecific
problem. Although the methods are stated primarily for conventional aircraft, the
most general forms are complete encugh to be used with a minimum of caution for any
vehicle, The effect of earth curvature, important at hypersonic speeds, is con-
sidered in Reference 1, References and approximations for hovering and VTOL transi-
tion are given in Reference 2,

The reader's genmeral knowledge of stability and control phenomena is assumed,
The intent here is to complement texts such as References 3 and 4 by presenting
rigorous and simplified solutions for handling~quality parameters, indicating deri-
vations and assumptions so that one can readily determine validity or modify the
methods to suit peculiar needs. The aerodynamic characteristics are assumed to be
known. The derivatives can be estimated from wind-tunnel test results, Reference 5,
NASA reports, and other available sources, corrected as necessary for aeroelastic
effects (Appendix I gives a brief introduction te the effects of aeroelasticity on
stability derivatives). Effects of compressibility, aeroelasticity, thrust, etc. on
the aerodynamic data are assumed here to have been accounted for; for example, we
generally write CL(C!), not CL( a,M, q*, T, etc.).

The nondimensional stability derivatives used herein are referred to the "wind-
tunnel stability axes" system of Figure 1, For a detailed treatment of axes systems,
transformations, and equations of motion, see References 6 and 7. The notation here
is generally2 consistent with that of References 5 and 6, but may differ occasionally
from the notation in other references.

Artistic parts of stability and control analysis do remain: estimation of the
coefficlents and a priori simplification of the analysis method., In the interests of
rigor the relations presented tend to be overly inclusive., With the multitude of
configurations possible it has been impractical to state where each factor is signif-
icant or unimportant. The items given such attention should be considered typical
rather than inclusive, Nevertheless, a general feeling for the aerodynamic and
inertia characteristics of the design vehicle, together with the assumptions listed
herein, should allow confident analysis with a minimum of work,

2Note the definitions herein of hinge-moment derivatives, and, in Section IV, of
real-time acceleration derivatives in terms of F/mV rad/sec or M/I rad/sec2,



AFFDL~TR-65-218

Trim and maneuver capabilities not covered explicitly here can be checked by
using the appropriate control deflection and force equations, remembering that pilot
force restrictions and hinge~moment limitations, cable stretch, etec, cause available
control and trim deflections to vary with speed and altitude,

Stability augmentation 1s discussed at appropriate points throughout the report,
Examples of generally applicable analysis methods are: equivalent derivatives
(Sections IIC, TIIIA), and root locus (Appendix IV). More information about methods
of analysis and synthesis can be found in References 8 through l4.

In addition to the detailed presentation, the following summary presents
simplified methods and critical conditions for showing compliance with military
flying qualities specifications such as Reference 15. Table I furnishes a convenient
starting point for flying qualities analysis, Critical flight conditions can be
determined, at least in a general way. The rough formulas tabulated there can give
quick answers, and sections eof this report and other references glving detailed
treatments afford additional help,
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a is measured in the plane of symmetry, B normat to it.
Vcos B
Vsin S8
o

&

[
N<
n "

a. Wind - Tunnel Stability Axes

"‘HaL

~6tM,

+3a

b. Sense of Positive Deflections and Hinge Moments

Figure 1, Axes System and Sign Conventions
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TABLE ) FLYING QUALITIES
SPEE. MIL-F-8T85 SEE PARA.
PARA. SURJECT {This Report} SEE REF
3.1 GEMERAL
31 Awplane Leadings — —
312 Altitudes — _
313 Dperational Flight Envelopes — .
31a Maximum Permissible Spaed Envelcpe — MACA TNB29; &7
315 External Stores o —
KR N.] Effects of Armoment Provisions Il Ad —
317 Release of Steres H A4 18
KR} Decelerction Devices IT Ad -
319 Configuratinns — —
3110 EHecis of Asymmetry H D —
12 MECHANICAL CHARACTERISTICS OF CONTROL SYSTEMS
129 Contrat Friction and Breckout force wCE 14, 39
322 Adjustable Controls — —
323 Rate of Control Displacement ¥ E %
3.24 Cockpit Contral Free Play ¥ E —
325 Artitica! Stobility Devices HC A, App. 1V 8,9,13,14,22,23,61
33 LONGITUDINAL STABILITY AND CONTROL
3131 Elevator-Fixed Static Stobility 1al 20
332 Elevater-Fres Static Stahility 1naz2 3
333 Exception in Tronsonic Flight Itei, 2 58
134 Stability in Accelerated Flight NC1, VA 21,55,56,57,58
335 $hort-Period Oscillations I¥B1, IVvC1 6,8,13,31,33,34,66
336 Long-Pericd Oscilletions VB, IvC1 6,8,33,37
337 Control Effectiveness in Unaccelerated Flight flAY,23 —
338 Control EHfactiveness in Accelerated Flight Nal231€1 —
339 Controi Forces in Staady Accalerated Flight ncz -
3310 Control Forces in Sudden Puliups IVE 38,39,40
33N Control Effectivenass in Takeaff no —
332 Control in Catapult Takeoff bt -
3.3.13 Contral Forces in Takeoff nn;, B2 —
3344 Control Effectivenass in Landing nNal1,2 32 -
3.3.15 Contral Farces in Landing NAY23; B2 -
1114 Contrel Forces in Divas BZ I C2 -
137 Auxiliary Dive Recovery Devices I1Ad -
3.3.148 E#fects of Drag Devices a4 -
139 Langitudinal Trim Changes A4 -
3320 Longitudinal Trim Changs Caused by Sidesiip HAd -
34 LATERAL-DIRECTIONAL STABILITY AND CONTROL
341 Damping of Lateral-Directional Oscillations VB2 IVC2 3,4,8,9,26,66
342 Spiral Stahiiity B2 IvC2 3,26
343 Seady Sideslip AL 2 kvl
344 Static Directional Stability (Rudder Positian) [N _—
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ESTIMATION SUMMARY

CRITIGAL ITEMS ANO ROUGH FORMULAS (SEE SEGTION INDIGATED TQ FIND ASSUMPYIONS)

Aft cg, light weight critical for static stability & low w, ; fwd cg, heavy wt for control & high w.
Maneuvering & damping deteriorate at high alhruda aeroelastic effects grearest (for the some spesd) at low qglt.
Limited by stall, thrust, cantrai power

n - eos
Altitude lost in dive racovery: ¥ En. (52575 )+ v (winyol, Tps units; & 25% safety margin mey be added
Asymmatric stores: find lateral trim from asymmatric-thrust farmulas.
Buffet, trim change {3.3.19)

Acpa*s
= ‘%ﬂ—-— fr/nc!

See asymmetric-thrust formulos.

Worst eHect is with low stability, low force gradients, augmentation off.
Low @*, gross maneuvering, augmentation aperation, farward cg, heavy weight, landing flare influence needed rate.

Undesirable: cockpit-contral movement, residual ascillations, insufficient authority, lack of turn coordinotion, etc.
Failure modes: transients, lack or delay of pilot adaptation, handling qualities olter partial or complets failure.

(—rg"";TzT +5 g(n: Lt Cpd- CMJCL+——]>0 Cm, < g, Derivatives vary with M, & , g*, T; oft cg critical.

2 v Light weight gives hugher thrust cueH at spec. speed
< [
Reversible Controis: [(E:;'Tg Ty Cn) l(au bha au ](Cn; c_:;'cLa) ( Mg "ha cma)[ C|_ (;,‘a c") .*T(a“ Eﬁ%‘u)}m

whers Cpe ;}'3:5,[\\"?. =Hp- %(%EL)B]

Afected by wing & tail airfeil, sweep, aspect ratia, control-surface {arm, etc.

Cm

N, - e % (- Ma , pOC i *.T, possibbe eff fa. A itical
m-te( % T/100) ( g *4wxs )>p Funcrion of cg, Mh,q possible effects of a eg critica
9CNg —eal: : .._[ b ] Lo
wy, 1/-2—2—.3—(10,,, gl ;w ¥ wneg w1 STiCmg* Cmg ]} T8 50 CN,
Tz v, 3¢ Cmg/Ch g
: b -.P_Sl'_[ T Yo dom ( Y 29 % Emg /! )
Ui VT T, W R 5 T2 A b+ v° Nen — €0 1
| 2
c T
| | oL ¥, 9Cgp _ “Da I _v_ Cm ]
(2Lanly or (§+ E) E- [CD"' —2 Ju Cmu (—,—q Tt e
o]
: ! . : Te d cq, low and high €y ; H Limiteti
B FRN S - [(c + G a,lt +(c --\r— Com. @ )c ] Forword cg, low and high Cy ; imitation
trim cmacN L La ol my Mg~ "SE my o/ VN, c"‘B cNa
Ha: 5.""“ g: Ani 35: H -q—#E- t::: - Forward cg critical. M and q" effects on Cma., H, Nm' a'lrim

dFy . (O, G W C"B
e (mdn); B 5 S'E'[_Cma (N, —egl

. Conitral forces max. ot fwd cg, heavy; min. at oft cg,

light. M,q" effects,pitch-up.

F  must leed narmal acceleration. Bobweight, log
e

w—T[lzT/E,:q) +{a+ i,.md)]
Nose-wheel lif1-off at ¥, Lo £ 15,8 kt. (Mcin gror ar static defl; nose geor fully extendad}. See Fig. 5.
s{op + 16m2 /g

Cansider ground effect for 3.3.11. Forward cg, heavy weight critical for 3.3.11 and 3.3.12.

g 00238 _ 2 ]
| T V. SeEy [ Chﬂ(n - “h‘im] + chB BLG] + (ﬂF Yeal {Reversible controls)

Lo Forward cg, high weight. Ground effect.

Fp ot nase-wheel lifr-off: F, =

See 33.7; consider ground effect on all factors. Forward cq critical; high Iy may also be critical For flare.

¥ . . .
E: % .i_;zz'_a_vsl-s.t. Ch, (asL-al_EVSL) + ChB(BSL_ BIZVSL)] + IAF,‘1..| [Reversible controls) Forward cg, heavy weight critical; ground effect.
See 3.3.2,336
Trim ch 3.3.19), buffet
rim change | ), butfe o CLy ACmCmg AGL  ~AC . CmyAC -G, ACm
AF, * ._... a5,y (Chy Aa+ C”BABH- (?5-) A3, Ao m H E-L:v Y. cLu c-maT—mch;- [Applies when AF, occurs before

a sngmhnanr speed change has accurred; reversleE contrajs).
Find &F, for A, to produce -ACL (8}

i @ Cn. L - K’q' -1t de
"*n;\/—"g'cl_l:x i bt zraln.,, {Cvﬁ+ z_:c? ﬁ?g' c" ]] | Ve \ V..kl Kiic,.;g( '+ rll i) ﬂ/s::‘

R g
W, .2 Co'y Cg'
_J;] P . i
(w“d 1 7Y T’"‘Hg Small cq effect on wnyt aft eg eritical.
ce

1, _Tre ( 23 .. . ) "

- % —t—Cy —-C ; + Gy aritical.

FRET AR et

Light weight gives lower spec. speed, thus higher thrust coeflicient. Small cg effact: aft cg critical. Derivatives can vary with a, M, q" 8, T.

c Gog Cp
{4 : - —"é( |- L ﬂ) > 0 for aft rudder: left rudder to hold right sideslip
48 Cn, Uz, g
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TABLE I {Qoncluded) - FLYIVG QUALITIES

SPED. MIL-F-8135 SEE PARA.

FARA. sUBJECT {This Rupert) SEE REF
345 Static Directional Stebility (Rudder Forea) i A2 -
146 Dihedral Effect (Aileron Position) e A1 —_
147 Dihedrol EHect {Aileron Forcel N A2 —
348 Side Force in Sideslips A1 —
149 Adverse Yaw WD, F 13,2
1410 Asymmetric Power {(Rudder Free) np —
34N Directional Control (Symmetric Power) T Y e
34.12 Directional Cantral (Asymmetric Power) o —
3.4.13 Directional Contral during Takeo#f and Landing e -
344 [irectional Control 1o Counteract Adverse Yaw ¥ D -
3.4.15 Cirections! Controd in Dives A —
314.14 Lataral Control imal, 2,1 Sea 3.4.1 refs 30
35 GENERAL CONTROL AND TRIMMABILITY REQUIREMENTS
151 Contral for Spin Recovery WG 41,4243 44,45 45
152 LControl for Taxiing 1D inc —
353 Control Surface Oscillations v ¢ 16,37,61,66
354 Primary Flight Control Trimmability i A13 IVAZ Ell
3535 lireversibiliry of Trim Controls 61
356 Trim System Failuee A4 61
3.57 Roll-Pitch-Yaw Coupling IV F 42
KX STaLL CHARACTERISTICS
361 Required Flight Conditicns — —
362 DBefinition of Stalling Spaed, ¥ — —_
363 Stail-Warning Requirements YA 53
364 Stalling Charocteristics YA 5,51,52,54
3.7 REQUIREMENTS FOR POWER- AND BOOST-CONTROL

SYSTEMS
371 Normal Contral System Cperation VoD &1
372 Power or Bopst Failure vD 14,68
373 Transfer to Alternate Control System 1A {1BZ;11AZ;1¥B,C —
374 Lengitudinal Contral on Alternote System i, —
375 Lateral Conrrel an Alternate System 1 eE12 —_
3786 Directional Central on Alternate System e —
177 Ability to Trim an Alternate System HALS NI A2
37.8 Feel System Failure - —
4 QUALITY ASSURANCE PROVISIONS
[ NOTES
6.1 Intended Use _— —
&2 Definiions — —
63 Interpretotion of Qualitative Requirements - —
6.4 Rates of Operotion of Auxiliary Devices 1 Ad -
6.5 Conirol Force Coodinglion HC2,1He2ivd -
&6 Artificinl Stability Devices VD 8,13,14,30,33.61
6.7 Aeroelastic, Coniral Equipment,ete. Effects ¥ DLApp I 61,62,63,64
68 Lateral OQscillations — a—
59 Contral Fosition Mecsurement - —
& 10 Engine Considerations - .32
a1 Control System Characteristics VYD 39,51
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ESTIMATLON SUMMARY

CRITICAL ITEMS AND ROUGH FORMULAS (SEE SECTION INDICATED TO FIND ASSUMPTIONS)
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SECTION II
STATIC LONGITUDINAL STABILITY AND CONTROL
A, LONGITUDINAL TRIM
1. General Remarks

Stability is the tendency to return to the operating point, or trim condition,
after a disturbance. This section outlines methods for calculating these operating
points., In general, requirements specify stability in terms of departure from
steady, straight, wings-level flight, Since the static stability concept implies
constant throttle setting, and throttle setting for steady flight varies with speed,
data obtained from the trim equations are not necessarily indicative of stability
or lack of it (Sectiomn II B),

Starting with general nonlinear equations, successive simplifications are
introduced to reduce computational effort. Choice of a method depends upon accuracy
of input data, desired accuracy of the result, and any peculiarities of mission or
vehicle, Usually it will be possible to simplify the more complicated relations
a priori by omitting negligible terms, assuming piecewise linearity, etc.

Steady flight here infers constant speed, For straight, steady flight, addi-
tionally, all angular rates are zero but flight-path orientation (y,{) remains
arbitrary unless further specified, Trim may have two meanings, representing nulls
of elther airframe or contrpl system. In general, the former interpretation applies
here; zero pilot force is indicated by "force trim." With artificial feel, force
trim does not generally imply hinge-moment trim, The distinctions are obvious but
should be kept in mind,

The 1lift, drag, and moment equations are basic in establishing longitudinal trim
conditions, For force trim an additional equation 1s added, In a fairly general
form the four equations for a reversible control system and steady, straight,
symmetric flightd are:

H

L [CL(GStH,St]%p Wcosy—Tsin{iT+ a) (1

l 2 : .
D = [C { a, 8"H’ ] -E-p\l s = Tcos(1T+ al)- Wsiny (2}
M = [c (a,8,i,,80] wpvist = -T (3)
m* % ety zf T
- L oviss = -
Ho = [C (a, 8"H‘8”] ZPV Sece - erel+unbalance+breckou1,etc . (4)

3Equations for other cases can be derived simply from the general dynamic equations

of motion such as given in References 3 and 4., Tor example, consider "steady" wings-
level pitching, with constant angle of attack and constant pitch rate, Besides the
obvious addition of pitch-—rate derivatives to all of the equations, Equations 1 and

2 become:

t + Tsinlip+a)-Wceosy
D - Tcoslip+ al+Wsiny

mvVy
v

(Note that § = yt+t@=y, and that in our flight—path axis system W = 0, Reference 16
discusges the principal effects of "steady' longitudinal acceleration and some other
cases of possible interest.)



AFFDL~TR-65--218

Some quantities may not be present (for example, iy or 8t), and others may be negli-
gible, Control through a tab requires an additional equation to account for tab
hinge moments (See Appendix II), The functional terms are, in general, dependent
also upon Mach number, dynamic pressure, and thrust (and, in ground effect, upon
height above the ground); thrust at constant throttle varies with p and Vv , and
sometimes with o ,

Often a simpler method will work, but the nonlinear equations can be solved
graphically or by machine, To illustrate, a graphical procedure is presented to
give Be (V) in straight, steady flight, with no horizontal stabilizer adjustment
but hinge moments balanced by a trim tab. Equations 1 through 4 become, in our
example,

[cLt@ + ct® + cudn]q*s = Weosy - Tsinli, + a) (5)
[cptar + cp®) + ¢80 ]a*s = T costiz+a) - Wsiny (6)
[Cpl@) + ci®) + o8t |a¥se = - Tz, (7)
[cpta + cot8) + c (81 ]|a*s,T, = ~ Higq (8)

Choice of altitude(p),and V determines dynamic pressure q* and Mach number M in a
standard atmosphere. The functional relationships normally are defined in terms of
these quantities (aeroelastic and compressibility effects), leaving )r,a,S,T, and Bt
unknown, (A quantity depending on thrust can be plotted as a family of curves with
thrust as a parameter.) Vehicle weight and center of gravity must also, of course,
be specified; and the pitching-moment reference center must coincide with the ceater
of gravity, erel is described in Section IIB2, To make the problem determinate,

choose y (for example, level flight) or T (for example, maximum thrust)., Here we
will choose ¥ , although the choice of T often results in a simpler problem., The
procedure is then: (1) From Equation 7, plot 8(T = 0) versus @ with &t as a
parameter. Do the same with Equation 8, Then by superimposing the two families of
curves, points where curves for the same St cross define the locus of O versus Q
for T = 0 (the dashed line of Figure 2), Repeat for other values of thrust. The

T = Constant

de ~

Figure 2, Determination of e Versus a at Constant Thrust
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result is a set of curves of & versusq with thrust as a parameter and &t indexed
along the curves; (2) Find . (3), c (8¢), ¢ (8), and ¢, ( dt) as functions of

a@ and T, if necessary. Then, knowing 8e (a,T) and 3t (@,T) from the last step,
solve Equations 5 and 6 separately for a(T) and plot as in Figure 3. The inter-
section of the two curves defines the operating point for the given q*,

Drog Equation

Lift Equation

Operating Point

T

Figure 3. Determination of Operating Point

The accuracy of input data normally does not warrant such complexity except for
gross nonlinearities in addition to C, (a?2),

2, Trim Drag

The first simplification is to assume at least plecewise linearity of all
functional relationships except ¢y (a) and to consider only the change in trim

angle of attack in calculating trim drag., In the absence of a handy performance
specialist the method below can be used to estimate the trimmed drag coefficient,
Considering y;c:,S ,and T in Equations 1 through 3, after linearizing,

= = 2
Cp = Cpt8=0)+ acDCchL + C )

. 2
= = +
cDOtS 0) ach ch
L
where
c, = —;—i [Wcosy—Tsin(i +a)]
L q°s T
i cL z T 2
gl (Cmyt g )
o = c c >
LS m
| - Qa
c c
i ms La

T and @ both appear explicitly above, but since the correction factor o is not
normally too much greater than 1, untrimmed drag and lift equations can be used
to find o

10
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c
Z L
a = c + a,
. lia . 2 . !
T = [q S(CD + CDC CL) + WSmy] m
2
L

The correction factor o is a function of center-of-gravity position (Cm ).
As shown in the following, & can be approximated similarly if desired; ¢p (8) is
most negligible for long tall length, Additional simplification is often possible.
The expression ¢ <1 represents an uplead on an aft tail or elevon; the resulting
decrease in drag is usually about compensated by tail or elevon drag and so is normal-
ly neglected in performance analyses, The extension to stabilizer trim, etc, 1s
obvicus. Having thus disposed of the only universal nonlinearity and the drag equa-
tion, we proceed to write analytical expressions for the solutiomns,

3. Linear Trim Equations

With linear derivatives, y such that siny = » and cos y = 1, and ig+ @ such
that sin {(ip+a) = i7+a and cos (ir+a) 1, Equations 1, 3, and 4 become complete-
ly linear. The equations for zerc pilot force in straight, steady flight with fixed
iy are, in matrix form:

B T 14 \ ’ Weosy -Tig f »
. * @ SLy % || %nim q%s Y CL% L
a ] . a
: = _ - _A_. . i
crna Cma cm.ﬁt Btrim cmo q*s © H+ cmaao = Cm
c Ch. © Sty —c, - —xeeletc] |_ox
| a T T | DA A ST [ | M|

where Cp, St is neglected and where all quantities are evaluated at the trim conditions

W, ecg ,V,p,T, etc.). Cho 1s explained in Footnote 4. Hg,,1 is described in Sec-
tion IIB2. Solutions are presented in terms of the trim characteristic determinant,

At?

1.
CLu-i- a5 CLB 0
8, & Omg  Cmy  Cmg,
c c c
ha hs h St
T
© o, (10 * Rs) Oy - Cp (c, +—=%g)C ~C S, |
ma]orterm
L]

4Take, for a rigid, talled airplane, the following equalities:
a = iH+a-¢
|
Chlay=0)+ C i, + 55— Cp. (a5 - €,
H h'HH n Xy
For a flexible airplane the last two terms can be altered to account for static
aeroelasticity.

c
Po

11
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Using Cramer's rule,

ClomatCXe c*
i »* * * L¥m§™ “m LS. ~L

Trim® 7o {Cha (GG + C X J-C (S e, + c*c |2 :

trim A,[ hgy "L ms Cn Ls ms, L “hy™ “h Lg] Cn o€

major term
*
S {c [c (c +T)+C ] c [c*tc * e ]} CLCm+c CN g
mmA mShLuSLha Pt la' %8 L “mg Cn N~ CLLm
R Q a
major term

=4 fo* - e _ T _
Btyeim A, {CL[CmaChS Cnacma] c:m[chac,_8 (CL gt q—*gychs]
S———’

olways importaont

a’ L c -c )C c
Ma 3’ h
involves arﬂﬁcml feel, flops

Aside from the more obvious assumptions, the approximations assume that T £ D, so
that

T_ . -
CLg ¥ 75 ° CLa* C ® Cny

For trim through an adjustable stabilizer, CLiH&iH can have an important

secondary contribution., In that case Aip replaces 3t throughout and the following
terms are added to the most rigorous trim sclutions only, as follows:

as, = ¢ [c e -¢c €
t LiH[ m, hS ha M
Madgd= ¢ [ch*cm -Cc.¥ ¢, '
iy 8 -

- * _o* ]
A84,) = cl_iH[cm Chg™ Ch* Cmg |

A(Al HAf) = 0

12
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{a,)} Nonzero Pilot or Actuator Force

For a given trim setting (Aiy and 3t) or for an irreversible control system,
we will still have, in general:

c T c Weosy — Tiy ) .
L | a%s cLaao“CLiHA'H A CL
= z =
c ¢ S - Cp——= L + C. @, — Cm. Biy~Crrn St -cp
L ms Mg q*S ¢ m, o miH H o mg, m
T X
A'Q (¢, +—=)C_ —C_ C = Cy C
La q*s m8 Mg L8 Na m8
a = %[c’c +c'c | ¢ o
= e
L "m m L c
a ) . Ng ) )
) ' Cm. +CmC C{ Cm
5 = —é[tc“a%)c;ﬁcm NEE Na - a
a a Cme CN Cone CN
S Ta 3 Ta

To find the elevator stick force F, for a reversible control system, solve the
hinge-moment equation for Cj, and convert; for an irreversible system, the artificial
feel characteristics plus friction, preload, etc. determine F, (See Section IIB2).

For an all~moving tail, substitute 3H for & and retain iy if needed as a
reference setting for 3H, For a canard controller, 3 becomes HSc and it may be
necessary to consider the effect of canard-induced downwash on the wing Cj (a).

For elevons the equations hold as written, but €y, becomes more important and Cy
may have to be considered.

The mechanization of stability augmentation may conceivably affect the relative
settings of elevator and tab for hinge-moment trim, but, still, the pitching- and
hinge-moment equations have to balance. If necessary, stability augmentation effects
can be treated as equivalent derivatives (See, for example, Section IICl) in any of
the equations above. For the effects of control tabs, see Appendix II,

4, Trim Changes; Release of Stores

Most thrust, secondary control, or configuration changes are fairly rapid, being
essentially completed within a very few seconds of initiation. In those cases the
trim change can be calculated from the force-trim equations at constant speed (See
Table I)., Throttle, speed brakes, and landing gear normally fall in this category.

Flap retraction, however, on some aircraft is a slow process during which
gipnificant speed changes occur, In such cases a step-by-step calculation procedure
is suggested. For example, consider flap retraction in a climbout at constant
throttle, constant rate of climb or constant attitude; in any case a flight procedure
must be gpecified as well as a trim setting; see the applicable specification,

13
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The trim equations, modified to include acceleration along the flight path,
yield the initial longitudinal acceleration and the control force, Take the new

flight conditions one increment of time later: V| = V, + a, At, pih) =p(h0+ hAt),

Sﬁ= SFb + SFZXT. Again the trim equations (with uew derivatives, thrust, angle of

zero lift, etc.) yield the longitudinal acceleration and the control force. Continue
the process until equilibrium is reached or the control force peaks. Such a method
should give good results if changes during the time increment are not excessive,
although it may not reproduce the effects of short-period or phugoid oscillations
excited in the actual case,

Large thrust changes, full deflection of large speed brakes, etc, obviously
can involve rapid speed changes. A quick estimate of acceleration effeets can be
made by taking one step of five seconds {the time limit of Reference 15), If a
force appreciably higher than allowable is calculated or thought possible, the
analysis can be repeated with smaller steps.

Drag chutes tend to trail at the local flow angle, Thus, a stable drag chute
imparts a force at its attachment, proportional to dynamic pressure at the chute
location in the wake, at roughly the angle € below the flight path (where the
downwash angle € is also taken at the chute location). Thrust reversers can disturb
the flow over the vehicle severely, thus changing stability and control derivatives,
local flow angles, and dynamic pressures.

Release of stores involves weipght changes as well, (Finding the forces and
moments caused by opening armament bay doors, etc. is another subject but, once
found, these effects are amenable to analysis.) The trim changes could be found
by step-by-step calculation, but for large trim changes it is better to get a time
history from the dynamic equations of motion, In wost situations the linear equa-
tions of Section IV> will do., The cperating point could be the final trim condition,
and initial conditions those at release. Initial conditions are Laplace transformed
as follows (See Reference 17):

frm—
-
-
—
—
1]

Y (s)

——
LAY
-
e
[SeS
1]

sY(s) =~y (O+)

——
-
—
—
—
[
"

szY(s)-y(O-*}s -y{(0+)

where, as stated above, Y(s) is the Laplace transform of y(t); t = O+ is the instant
after store release. These terms are incorporated into the equations of motion
developed later (Section IV), Extraction or pickup of heavy cargo is a more com-
plicated problem, but even here it is usually sufficient to consider the extracted
load as a forcing function on the vehicle, Equations can be formulated analogous to
the two-mass problem found in any text on dynamics (for example, the work cited
above), or the equations of Reference 18 might be used, for a more comprehensive
analysis. '

5Note that in the trim equations % stays with the relative wind, but in the dynamic
equations x is fixed in the body once the rotation starts.

14
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B. SPEED STABILITY

Static longitudinal stability has been variously defined. Here we take the
definition used in the military flying qualities requirements (References 15 and 19):
In a stable vehicle the cockpit-longitudinal-control force and deflection required
to maintain straight, steady flight at a speed different from the trim speed are in
the same sense required to initiate the speed change, that is, airplane-nose-down
control to fly faster, nose-up to fly slower,

"Stick-fixed" stability refers to the variation in control deflection, "stick=-
free" to control force., Usually control-surface deflection is equivalent to cockpit-
control deflection in determining static stability, As noted earlier, longitudinal
stability is customarily defined with throttle and trim control deflections fixed
at their steady~flight operating-point settings,

This definition reduces exactly6 (for linear equations) to the concept of static
stability as a limiting case of dynamic stability (for example, Reference 20).
Except in simple cases, however, it differs from the angle-of-attack stability of
Reference 3 and the lift-—coefficient stability of Reference 21. Besides its use in
in requirements, the definition adopted appears the most natural one and the most
generally applicable.

Static longitudinal stability is generally a strong function of center of gravity
location, The center of gravity at which neutral stability is evidenced is called
the "neutral point;" the distance (in percent mean aerodynamic chord) that this
neutral point lies behind the actual center of gravity is the "static margin,”

Most practical airplane configurations are deficient in the tramnsonic range,
Current military flying-quality specificationsdo not always require static stability
transonically, but place limitations principally on AF, and 4 Fo/dV . Thus it is
often useless to calculate neutral points in an unstable transonic range,

Normally the neutral point is evaluated only for excursions from level-flight
trim and from trim at maximum rate of climb,

Note that all of these calculations must include any effects of compressibility,
aeroelasticity, and engine thrust or power, and that the reference center for the
moment derivatives must coincide with the center of gravity being considered,

1., Stick Fixed

There are several methods by which the stick~fixed neutral point and static
stability or static margin can be found, The most graphic of these methods uses
plots of control-surface position required for straight, steady flight versus
airspeed, First, find operating-point trim and throttle settings from the trim
equations of Section IIA, Then at other speeds the elevator deflection is found
from the trim 1ift and pitching-moment equations at constant trim setting, with
allowance for thrust variation with speed, etc, at constant throttle, Any coeffi-
cient or derivative changes with speed must be incorporated, Normally, changes
in ¥ can be neglected., If the drag equaticn is to be considered, ¢ can be re-
calculated at off~operating-point conditions or a linear drag variation taken over

6By ignoring the effect of density gradient; see Section IVB1,

15
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a limited range of angle of attack. The control-surface deflection is obtained for
two or more center-of-gravity positions over the speed range of interest., Ths stick-
fixed neutral point is then found by plotting the slope d & /dV against center of
gravity location, The neutral point is that center of gravity at which the slope

is zero,.

An exact solution for the stick~fixed neutral point can also be determined by
means of the longitudinal characteristic equation.® The characteristic equation is
generally of fourth degree with two pairs of complex roots=-~one pair indicating the
stability of short-period motions and the other, long-period motions, The stick-
fixed static stability is representative of the stability of the long-period motions:
when the center of gravity is moved aft to the stick-fixed neutral point, the long~-
period motion degenerates into two real roots, one of them zero. This occurs when
the zero-degree term of the characteristic equation becomes zero. Thus, the stick-
fixed neutral point can be found by determining the center of gravity for which (in
fairly complete linear form)

EQ cosy[{CL +C )(!29-26%"1 EIE'TT P\z’oga -g-})-cma(c +v°ﬂ+.§i_“£.§.1’.)]

+sinro[(!2“a&n'lz‘at * T)(e-co )*Cma(co“!agac_f‘;%ﬁ' QE)]=°

where the subscript o refers to the operating point, the trim condition, and £ =
ip + @¢pym+ The expression above can be evaluated and plotted as a function of

center of gravity to find the center of gravity at which the function 1s zero. Sim-
plifications for level flight, constant thrust, incompressible flow, etc. are obvious.

As Indicated, in many situations a number of other simplifications are possible,
Negligibly small and nonexistent terms may be dropped to make the expressions more
tractable, For the simplest forms, at least, the stick-fixed neutral point camn then
be found readily by setting the total derivative d 8 /dCy,, evaluated in straight

steady, level flight (C = [W-Tsm{l.r + a)]/ q*S) at constant throttle equal to zero

and finding the center of gravity necessary for the differemtial equation to hold
(for example, References 3 and 21), Normally Cma is the only term grossly affected

by small shifts in center of gravity, and it varies linearly with fore-and-aft
center of gravity position, The very simplest neutral-point approximation 1is

-x Cm

T c
or _ La

(-Xpeg)  ©
No (% E/100} ¢ Xt Mg
T Ci_a

where (-x;ef} is the moment-reference-center distance aft of the mean aerodynamic
chord leading edge. However, this method 18 often a gross oversimplification.

16
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2, Stick Free

Stick=free static longitudinal stabilitv refers to the varlation with airspeed
of control force (discounting breakout force) reauired to maintain straipght, steady
flight., In confipurations that have irreversible control systems, stick-free static
stability is generally identical to the stick-fixed static stability treated in Sec-
tion IIB1 (Flight control system nonlinearities and certain types of feel and augmen-—
tation, however, can make a difference,) The treatment that follows deals with both
reversible and irreversible control systems, A convenient method of determining stick-
free static stability, static margin, or neutral point uses the variations of control-
surface position required for steady flight, Section IIBl; the corresponding stick
force is given by the equations under "Reversible Longitudinal Control", Figure 4
shows the sign conventions, which agree with those of Reference 3 but not Reference
21, Negative dFg/dV is stable, Stick-free stability is also indicated by variation
with speed of tab deflection required for stick-force trim,

Stick-free static stability is often most critical at very low speeds, where
the angle of attack is high and power effects are strong. Care should be taken
in this case to account for nonlinear hinge-moment characteristics, which are quite
prevalent, Test data should be used wherever possible. The stick-free neutral
point can be found by plotting the calculated stick force versus speed, with center
of gravity as the parameter, over the speed range of interest, and cross-plotting the
slopes against center of gravity position, The center of gravity at which the slope
is zero is the stick-free neutral point,

Although static stick~free stability in the transonic regime is not generally
required by current military flying-quality specificationg the force reversal must
be mild, gradual, and not seriously objectionable to the pilot, The permissible
reversal is defined by specification. Static stick-free stability in the transonic
range is required by the military services only of airplanes with cruising speeds
or mission requirements necessitating prolonged transonic operation, Such stability
may be obtained aerodynamically or, for example, by an incremental Cj(M) transonically
through the longitudinal control surface,

(a2) Reversible Longitudinal Control

The control force, including the effect of boost, is given by

G | 2 Cﬂe(o(‘SJStJ.,,)
Fe = —B{?PV Seeeleh"(q'}'__e',\ R’ eh‘s"eh‘strim;i} + (AR Kool

to—zeros (ISFe feel includes friction and preload as well as incremental forces
from mass unbalance, springs, bobweights, ete. (See, for example, References 3, 21,
22, and 23}, A bobweight not statically balanced or a downspring adds a constant

incremental F, that, as shown in Section IVCl increases the static stick-free speed

stability. The quantities &, & and their trim values are determined in Section 1IA,

Fo l Kr«f-. WOV

-numbers G can change with gq* because of cable stretch, etc,
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a. Aft Control

St - AA . _ 'ﬂ|85 L L,Ag
As = 1585 {in.) e rh rh .O-S rh
f d3e dSe
+Ffg (1b) G=-l2 rad/in. )= - rod/ft is positive
&t (dAs )=- <&,
84 r. (in.)
J— +3s {rad) h
3

] oot AA(in.)—%{e (rad)
T K_/

128, H d3 i -
E = iLF s l2tH H = GH Ib + hinge moment(H, lb- ft)
e 4,¢ 4. dAg for equilibrium

b. Forward ( Conard) Control

r, fin .1’\*1 [*-AA(in)
X = e

— hinge moment
for equilibrium

Figure 4, Longitudinal Control Force Related to Surface Deflection
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The control-surface mass=unbalance effect in 1-g flight, for either forward or
aft control, is

where To is the distance, normal to the hinge line, of the elevator center of gravity
forward of the hinge line., A downspring contributes a constant AF, = (G/B}Hp
where Hp is the downspring hinge moment., A nonstatic-balanced bobweight contributes

AF, = (dF,/dn)g . For the effects of control tabs see Appendix II, which gives
examples of tabs and their treatment,

(b.) Irreversible Longitudinal Control

Mechanization may vary, but normally, in the abscnce of any special feel such
as OF,/ 0M, a spring provides Fo(8s); add trim, friction, and preload forces.
Feel bobweights can alter stick~free speed stability. A "q-spring" (Fg = Kq*d)
can eliminate the large change in force sensitivity with dynamic pressure inherent
in a constant-rate spring at the expense of some added complexity. Nonlinear springs
are also used for this purpose, but some of the nonlinear effects are undesirable;
for example, lightening of stick foree per g at high load factor, and unequal re-
sponse to up and down control, Similarly, G may be nonlinear.,

The comments on reversible control apply here, too, Maximum deflection is
limited, of course, by maximum actuator output or control stops.

C. MANEUVERING FLIGHT

Although "maneuvering stability" concerns the control force and surface deflec-
tion required to effect a change of steady normal acceleration, the term also
indicates the stability of the vehicle's short-term response to any longitudinal
disturbance and the frequency of the short-period longitudinal oscillation; it can
be visualized as a pitching spring rate. Maneuvering stability iIs easy to measure
at large departures from l-g flight, and it more or less generally guarantees
against short-period dynamic instability in large-perturbation maneuvers., Maneuver-
ing stability is usually investigated in level flight,

To agree with this rationale, d3 /dn and dFe/dn are normally taken in wings-
level flight as the vehicle passes through a horizontal attitude at the trim speed
with steady normal acceleration., This practice is followed herein, Trim and
throttle settings are those for level, l-g flight at the same speed, altitude,
weight, and center of gravity.

Define nW as the force applied normal to the flight path (positive "up"). (Note
that an on-board accelerometer gives a slightly different n, in terms of body axes,)
Withd = 0 in a steady wings-level pullup, the normal acceleration is

a, = =ln=-cosycosg¢lg
o = ~-(n-cosy)lgq
{,?U H Vq
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-Passing through level flight, cos y = 1. Then the pitch rate ¢ is {g/V)(n -~ 1);
while in a coordinated level turn it is Ié/vﬂ [n - (l/ni] since then n = 1/cosg.
To find d 8/dn in a level turn, then use :

o ) g~ (KD

3
level turn dq \ dn leve! furn n dn

pullup

The stick-fixed maneuver margin is the distance (in percent &) of the center of
gravity forward of the stick-fixed "maneuver point." Although stick-fixed maneuver-
ing stability is required by current military handling-quality specifications, the
degree required is not specified. A minimum maneuvering margin of 5 percent mean
aerodynamic chord is generally desirable,

1, Stick Fixed
Stick~fixed maneuvering stability in symmetrical pullups can be found by solving
the normal-acceleration equation of Section Il together with the linear incremental

1ift and moment equations.

Assuming T invariant with q,

+ Ba)-sintiz+ a,, )]

- qc .
matn-1)=(C_ Ao+ G\ Gy +0  ABIGS ¢ T[sintip+a,,

: T q9c *
-[(CLa‘i' W)Aa+ch 5V +CL8A8]q S
AM = Aa + -2—q3+058}*‘-o
M -‘cma a Cmq Vv ms q Sc=

(in the approximate form with T= D and small ip +@). The result is

- -
Crna - pgSEc pISt
C +—— ( 4w '—q) aw Cmg
43 ULl R La” q%s
o “(a5) = =5 Cng
CITI - T CL
] 3 cLa+E*§ 3

c
. -W Mg I
= + C
Q‘scms (CNa 4y mq)

the further approximation holding when CLq and CLB are negligible, It may be

recognized that d3 /dn is proportional to the short-period natural frequency squared.
A pegative gradient is stable. Again, for all-moving-tail, elevon, or canard control
the substitutions are obvious. Note that effects of compressibility, aeroelasticity
and thrust on the derivatives can be important, For the effects of tabs, see
Appendix II,
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Replacement for last paragraph of Section IIC, pp. 19 and 20

Define n,W as the force applied ncrmal to the flight path (positive "up").
(Note that an accelerometer fixed to the aircraft gives a slightly different
n; because in general it is not aligned exactly normal to the flipght path?®.

Take stahility axes, which are also fixed in the body during dynamic

motion but chosen so that in steady flight the x axis parallels the
projection of the velocity vector onto the plane of symmetry, the x-z plane.
The aircraft attitude with respect to a fixed horizontal reference is described
by the Euler angles ¥,0,%: vwyaw through ¥, pitch through @ and roll through
% in turn to reach the alreraft attitude. The flight path is described by
its azimuth {generally different from ¥) and its inclination to the horizontal,
y. IfRp=20, stability-axiz 0 equals v in the steady state; but in the
general case the x axis is inclined differently than the velocity vector.
For stability axes it can be gshown that

-1 1 sin y \
® = tan " (tanf sind) + sin ( /1 ¥ tanlf sinZ¢ . cosB j

Other quantities we will need to describe the motion are P, Q, R, the angular
rates about the aircraft x, y, z axes respectively; U,V,W, the linear
velocity components along x, y, 2 respectively; ny, ny, nz, the sensed linear
accelerations in g's at the center of gravity, i.e. the sum of inertial and
gravitational accelerations (equal, in Newtonian mechanics, to the applied
forces divided by the vehicle weight). The equations of motion are developed,

for example, in Refs. 3 and 4. For steady maneuvers U=V=W=P=Q=R=0 and in
stability axes W=0 also, leaving V=Vpginf and U=Vgpcosf. The foree equations
then yield , _
“\\K STARILITY AR
-1 > -
ng=X/(mg) = EVR + sind 4 | ,

ny=Y/(mg) éUR ~ cos0 sind

ny=-7/(mg) = éUQ - éVP + cog® cosd

L = (IZ-IY) QR - IszQ
= —(Iz-I4)PR + Iyxz(PZ-R2)
N = (Iy-Ix)PQ + IxzQR

where Iy, Iy, I, are the moments of inertia about x, y, z and Ixz is the
product of inertia, fxzdm.

In a vertical-plane pullup with y=p and ﬁR=O, the force equations in
flight-path axes become

ny=siny
n,=0
nz=\IQ + cosy
g
With V=W=0, U=VR and G=y, so that
Q=g (nz - cosy)
Vr



This is not really a steady flight condition because ©= Qt varies with time;
but instantaneous, or guasi—steady, solutions are of interest. Passing
through level flight, Q=0 if ﬁz = 0; also

Q=g (ny -1
Vr

Simple balance of forces gives the same results.

In flight tests, maneuvering stability can be evaluated more quickly
in turns than in pullups. Normally, corresponding to operational practice,
coordinated turns are investipated. (To coordinate a turn a pilot zeros
the side acceleration he feels; in a steady turn this is the same as zeroing
ny at the center of gravity.) The test technique is either to bank slowly
into a turn, descending to maintain airspeed as the turn tightens, or to
perform a series of slowly decelerating turns at constant altitude with
varying constant values of n,, As with pullups, here we consider the steady
or quasi~-steady state. Some simple approximate solutions have generally
good accuracy. According to the references cited, in turning flight about a
vertical axis (0=9=0) the body-axis components of turn rate are exactly

P = T@Sino
Q= ?cos@ sind
R = Ycos0O cosd

Even for a coordinated turn the equations are all coupled and quite nonlinear.
Substituting for P, Q and R in the ny equation, in the general case of steady
flight

ny = (1/g) (Vg cosB) (¥cos® cosd) - cosO sind

in a stability axis system. Then the turn rate is

y= g (tan@ + ny )
VgRecosf cosd cos@

With B generally small in coordinated turns (this may not hold at very low speed)
¥= {g/VR) tand

Similarly, in coordinated turns the kinematic and motion equations yield

Ny = sin® - tanB sind cosO« sinO« siny/cosf = siny
ny = (cos® + tanB8 sind sin0)/cosd=s cosO/cosd = cosy/cosd
Q = (gnz/VR) sin¢=(g/Vg) (nz - cosZy/n,)

Px¥ (g/Vp)ynZ; - cos?y tany

Ra + (g/VR) 4/1 — cos2y/n,? cosy

where the appearance of vy infers application to flight-path axes.



\

For turns to starboard R is positive, P is negative for positive y. For
turns to port the signs are reversed; hut Q is always positive in a steady
erect turn. These angular rates may be transferred to principal axes (Iyz=0):

P
R

p P cosa -R sina

P

#

R cosa +P sina

where a 1s the inclination of the primcipal x axis to the flight path, the
angle of attack of the principal x axis. Qp of course equals Q.

Returning to the 1ift and pitching moment equations, the increments from
steady coordinated, straight, level flight are given by

= (nz"l) W
ACL = (nz-l) E
qs

(ﬂz—l) CLJ. = CL Ao + CLq %‘" + CLG (5 + kQ)

(positive k for added damping) including a pitch damper which is not washed
out, Then

Ao = [(nz—l) C‘Ll - (CL + CLék) Q - CL'S ﬁp)]/CLa

&
q 2V
In terms of rates about the aircraft principal axes (see, e.g. section IV F),

MM = 0 = gSc [Cmy, g + Cmgge + Cng(8, + kQ)] + (Izy~Txp) P Rp-He (Rpcose + Ppsine)

where Hg=lp w,, the engine angular momentum, and e is the inclination of
the engine rotor axis to the principal x axis. Substituting, for a steady
turn

. :
~(Cpg aCL5)5 Cm_g(nz—l)CLl + [(Cmq CmaCL e + (Cmﬁ“ maCL6)k]g_(n —coszy)

CL& CLQ Lq 2V CLOL n,

Tzp-1 cos?
( Zp XP)EE (1#59%—1)[(coszy—nzztanzy)sinacosu + nzsinY(coszu-sinzu)]

qSc V2 Nz
H cos 2
+ £ 1- [(cosycosa-nzt ) -
uq 8 —“Qw—- Y nztanysina)cose ~ (cosysina + nztanycosa)sine]
v



To simplify this, take level flight (v 0) and implicitly define equivalent

derivatives:
_ % - C * 2Vk RS 2m ]
Cm(S 'SP = Ty (nz"l) CL]. + (Cmq + T(:]116) p_V-E;S 4; (ﬂz )

-

(Iz,-1xy,) H 1
- P 7P Z2m ) sinocoso+ " e 1— -
L % gC 2 2mg 5 (cosacose-sinasing)
me2  pVZS " wve pv2s ¥ "z

or

....C .
6p = L1 { “My(n,o1) + fok o+ 2 ¢t/ -T2 o0 inacosa J(n, -2 )
* q 8 —_— z Nz
Chg ! CL nyme2 V2

He

1
?favh(cosucoss - sinosine)j f1-4,9 }

- -

A normal accelerometer inclined at a, to -zg will sense a load factor ny =
‘ny cosay - ny sinay (with n, positive upward and ny positive forward). In
coordinated flight with 8256, ny # siny, so that the accelerometer will read

Np %N, COSMp

where n,; is the load factor normal to the flight path, because nx, v and
likely ay too are small.

Except at very low speed, as in STOL operation, the contributions of
the inertla and engine momentum terms should be negligible.

The essential difference in pitch control deflection between pullups

‘i’ and turns 1s the intrusion of roll and yaw rates for the latter. At high
speed the terms coupling the longitudinal and lateral-directional perturbed
motions from steady coordinated turns are minimal. Then, at least, pitch -
heave motions can occur without exciting roll-yaw-lateral motion. Therefore,
in steady turns, paradoxically the contrel gradient in pullups is more
indicative of dynamic stability than is the gradient in turns. The
expressions developed can be used to account for the difference,.

Maneuvering stability requirements generally apply at constant throttle
setting (to balance drag in lg level flight}. 1If either thrust is increased
or speed is decreased to maintain a constant-altitude turn,

n,= l/cosd
Q f'(g/VR) (nz - l/nz)
Neglecting trim changes and the effect of any thrust changes on the

stability derivatives, Ref, 21 derives expressions for Ad,, dé./dn,, AF,
and dFe/dny for this simplified but common case.

Hereafter, attention 1s restricted to symmetrical pullups.
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The stick-fixed maneuver point is that center of pravity at which d 8/dn
vanishes. It can be related to the aerodynamic center, the hypothetical neutral
point associated with angle-of-attack change only (References 3 and 21), Define
the aerodynamic center as the center of gravity at which Cmcx would be zero., Then
with

*x
Mg . ac
cf‘a ¢

(negative x for the aerodynamic center aft of the center of gravity), the stick-fixed
maneuvering neutral point is at the center of gravity for which

—

*ac |
= —— Cp
c 4p, Ta

The maneuver point may vary from several percent mean aerodynamic chord aft of the
constant~speed aerodynamic center for tailled configurations at low altitude to
approximate coincidence at extreme altitude, The control-deflection gradient is

dd . +w (Np — cg) N~ cg % - Cmg 1 c
dn q*$s CL. Cnm ' Tm Cg G, “Mg
c |- ___EL &
mS Crn CN
3 a

with the maneuvering neutral point Ny and the center of gravity stated in percent
mean aerodynamic chord divided by 100. (Nm is measured aft from the mean aerodynamic
chord leading edge). N,-cg is the maneuver margin,

To include the effects of stability augmentation, effective derivatives can be

calculated, For example, if 3= 8c+ Kq, substitute (Cmq + 2—;1( C,.na } for Cmq and
(CL +-2!£K.CL } for €1, . The result will be, as desired, dSE/dn; normally the
q ¢ 3 q

major effect will be the augmentation of C; . Note that augmentation may introduce
q

new stability derivatives and increase the importance of some in the original set,

An alternative to the equivalent=derivative approach is to use servo-analysis tech=-
niques {(See References 8 and 9 and Appendix IV for some pertinent applicatioms),
which give not only d3 /dn but all the transfer-function coefficients as functions
of augmentation gain. Authority-limited augmentation becomes ineffective statically,
of course, in sufficiently large amplitude maneuvers,

Where C is a nonlinear function of @ such as pitch-up, control deflection can
still be calculated as a function of load factor using Cm(tl), or & versus n can be

calculated directly by using the nonlinear equations or the local slope CmCI at the
angle of attack corresponding to a given load factor.
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2, Stick Free

Stick-free maneuvering stability refers to the maneuvering control force
gradient, dFg/dn, under flight conditioms the same as those for stick-fixed maneuver-
ing stability. The pernissible force gradients are specified in current military
handlinpg~quality requirements according to airplane class. A pull force to increase
normal load factor (positive gradient) is indicative of stability and is required.
Stick-free maneuvering stability is a function of the stick-fixed maneuvering
stability, the nature of the control system, and the feel system, Nm; the stick-
free maneuver point, is the center of gravity (expressed in percent m,a.c,/100) for
zerc stick force per g.

(a.) Reversible Control Systems

Using the linear stick-fixed equations to find d& /dn, dg /dn, and d(%)/dn,
the stick-force equation

ik
dFe _ 0F, . dF, dd . dFe da . OFe _v)
dn _ an a8 dn  da dn a(%_%,—) dn

glves

ol 2tk 35 (0L o) omglt

c
dFe 0Fg G W . -
dn _9n B85 S & Cn - ( W T ) ch8
La ma Cma cl_u q*s
| |
C {= - + —C, C
+ "18( *chLq) Al L3 mq C —L-C
C C,+—=) —-C C L
“‘8( ) ‘s "a
C G Cc
. OF h m ,
s & 4 %_2_'36-66 __&(__g+_l_cm )+ Cﬂ..,.l_.ch ]
n Cm8 CNQ 4u Mq Ng 4, Nq

usually nTajor term

where dFe/tin accounts for bobweight and mass unbalance:

dF, oF G
:;Eg. : (._Ji)a B ‘E- “Qﬁh

with fé the distance, normal to the hinge line, from the hinge line forward to the

elevator center of gravity. The matrix approach of Section ITA3 leads to the same

result., As with stick-fixed maneuvering stability, augmentation can be treated by

using equivalent derivatives or servo analysis techniques. PFor the effects of con—-
trol tabs, see Appendix II.
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Note that the force gradient is independent of speed, (except for Mach number
and Reynolds number effects) and, except at aft centers of gravity, is only weakly
dependent on altitude.

Although feel springs are normally associated with irreversible systems, these
devices can be used in reversible systems. Then the feel-spring term below would be
added to the reversible-control equation.

(b.) Irreversible Control Systems

dFg 1 dR d3 +(au-:.,)
B

dn G dAg dn on

where d 8/dn can be determined from Section I1ICI, Appropriate substitutions for 8
adapt the force expressions to other types of control surfaces.

The stick-free maneuver point is that center of gravity value at which the
stick-~free maneuvering stability vanishes (the maneuvering control force gradient
becomes zero}, The stick-free maneuver margin is the distance of the center of
gravity in percent ¢ forward of the stick-free maneuver point. It should be noted
that although feel springs and bobweights can be used to increase the stick-free
maneuvering stability, feel springs do not increase the maneuver margin, Bobweights
do, however., A nonstatic-balanced bobweight affects the static and maneuvering
stick-free neutral points equally when the derivatives are invariant with speed, A
simple bobweight does not provide the load-factor anticipation that "spring" feel
gives the pilot in maneuvering, Further, it tends to reduce the stability of the
elevator-oscillation mode and can even cause, in the extreme, severe detrimental
effects on the short-period motion {See Section IVCl and Appendix IV}, The require=-
ment of Reference 15 on control forces in sudden pullups and the discussions of the
intricacies of control system design are pertinent here (See Section IVE),

Because of their mechanization, bobweights measure normal acceleration and
their weight components in body axes; at extreme angles of attack and attitudes this
behavior must be taken into account (Reference 6),

D. TAKEOFF

At nose-wheel lift-off speed, full airplane-nose-up control deflection will
just balance the vehicle with the nose wheel fully extended (touching the runway
but bearing no weight). This speed must generally be lower than the takeoff speed.
It should be noted that careful attention to takeoff trim requirements is
essentlial--say a 10-pound push at 1,3V STO* This is an important element of the

problem, The calculation of nose=-wheel lift-off speed has essentially three steps.
First the angle of attack at nose-wheel lift-off is calculated, accounting for land-
ing gear deflection, Then certain dimensions are scaled, using coordinates parallel
and perpendicular to the runway. The dynamic pressure at lift-off can then be
calculated and converted into alrspeed,

23



AFFDL~TR~65~218

> hy Se = max
q“ L_ neg defl

rF
R
ol
-

Flgure 5. Nose-Wheel Lift-0ff Calculation

Since F = puR (uis the coefficient of rolling friction; MIL-C-5011A and MIL-H-
7700 specify a value of 0.025 for takeoff performance calculations), the main gear
deflection from its fully-extended position is given by

_ RlcosOy-psin8y) | R

A ——
M K K

because 91113 generally small, K is then the effective spring comstant of both

main gear (1b/ft), The deflection can be measured normal to the approximate ground
plane., (Use, for instance, static main-pear deflection.) This usage of K may
require a correction to the value obtained from the load-stroke curve,

The main-gear reaction is given by R = W = L = T s5in (i + @) and, using the
small-angle approximation for Aa and 3

where aFE is measured with all gear fully extended, Strictly speaking, ‘ﬂG varies

with ZSM. The variation, however, is usually so slight that a fixed value can be
introduced, using, again, static main~gear deflection,

It is apparent that this part of the analysis is approximate, Calculating the
conditions for validity would seem to be more trouble than performing an iteration
to improve the accuracy. On the other hand, good results are usually cbtained using
an angle of attack based only on static main-gear deflection, The method given,
however, uses the calculated approximate @ .
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Combining these relations and taking
L = q*s [CLa(a—aoi + o ],

for small g and ip there results

W N T q*s
*FE’ Xig [eL®r-ci o+ a*s ir] Klg
a =
T q*s
| + + = | ———

Accounting for possible variation of T with q*, this relation gives @ as a function
of q*.

Next consider the moment balance about the main-gear axle:

M+ L"‘cg+ Dhcg—Tthos(iT+ a)- Wﬂcq—Fr + maxhcg =0

where

=
]

q¥se Cqla,3)
Tcos(iT+ a)-D~F.

ma

When the relations above are combined, drag drops out and the result is

i W[lcg+p(hcg+r)] - T[(hcg-h-r)cos(i-r+ al +;.L{hcq+r )sin(i-|-+a)]
{Cm +[-ﬂ—§-°—+ p(—lle%;j] CL} ST

To summarize the method, then, in its simple form:

(1) For g* values over the range of interest (say, three points), calculate
(considering ground effect)

%
W T qi S
———— - +
Tre * Reg [CL(BJ G %0 s iT] i

a. =
i

*
e (e +TT)EL~L
La  9*S/ K&

(2) For each a; sketch the gear extensions and the ground lire on a profile
drawing in the manner of Figure 5. Scale the dimensions p’cg’ (hc + r)i and
(h::g - hT)i normal to the appropriate ground line (hcg"hT) is relatively

constant, varying only as cos Aa] « Calculate CLi and CMi for each C!i, in the
takeoff configuration, considering ground effect,
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(3) For each a i calculate

h,) (h. +r)

2 plh, +r) {h_. -
'Y c T cg . g
W[ gg'l' t_.-:g i]‘T[—gE——-1 +,,1. ——-—.;:.-"-—-SII'I(IT+Qi)]
* »
9 ) Th. +r)
J cg cg
{C"‘i +[ T THTTE ]cLi}s

*
(4) On the same graph plot g4 versus a4y and q; versus Q@y. The point of

intersection determines qI*JO’ the dynamic pressure at nose-wheel lift-off.
Finally,

- IS
VLO' 17.2 qL‘O knots EAS
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SECTION TII
STATIC LATERAL-DIRECTIONAL STABILITY AND CONTROL
A, STEADY SIDESLIPS

Statjc lateral-=directional stability is indicated by the following phenomena
(Notice that the term stability is used rather loosely in some of these cases):

(a) Rudder deflection and rudder pedal force variations in steady sideslips:
Increasing right rudder deflection and increasing right pedal force in increasing
left sideslips indicate directional, or weathercock, stability.

(b) Aileron deflection and lateral stick-force variations in steady sideslips
{dihedral effect): Increasing left aileron deflection and increasing left lateral
control force in increasing left sideslips are desired as indicators of spiral
stability and for uniformity of pilot control. Excessive dihedral effect, however,
cannot be tolerated in piloted aireraft because it would preclude contrel of the
roll due to attainable sideslip, and would change the form of the vehicle's response
{See Reference 8 and Section IVB2).

{¢) Bank-angle variations in stecady sideslips: Increasing left bank angles
in increasing left sideslips {s normal and rational, and thus desirable.

Reference 15 specifies static lateral-directional stability in steady, straight
sideslips, but U,S5. civil aeronautics regulations, References 24 and 25, specify
wings=-level skidding turns as well, The development that follows concerns only
zero angular rates, but the éxtension to find rudder and alleron deflections and
force variations with ﬁ in wings-level skids is straightforward: add appropriate
yaw-rate terms and set <# = 0 in the given matrix equations. Differences are
generally minor, except possibly at very low speeds as in the STOL operation,

This analysis assumes that the trim conditions are B = ¢ = 8a =&r =0,
although small initial values do not alter the linear solutions forciSrJd[?, etce,
and so usually have no significance to the stability problem, Extension for trim
in the presence of propeller slipstream torque, wing-heaviness, aerodynamic
asymmetries, etc., is straightforward, An example of such calculations can be found
in Section IIID, in which trim has been considered for asymmetric thrust., To
handle unequal right and left aileron gearing, the intermediate equations of
Appendix III can be used directly or combined for the specific application to find
aileron force.

Both stability and controllability are given by the sideslip equations., It
is usual to specify a margin (25 percent in Reference 15) of aileron control over
that required to achieve a large sideslip angle (10 degrees in Reference 15) at
low speed.

1. Controls Fixed

Steady straight sideslip equilibrium conditions involve zero lateral accelera-
tion, rolling wvelocity and yawling velocity and occur as a result of zero net side
force, rolling moment, and yawling moment., In the general case there are four
variables: sideslip angle, bank angle, lateral=-control (alleron) deflection, and
directional-control (rudder) deflection, Some derivatives are functions of (trim)
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angle of attack. Drag due to sideslip will change the trim speed or flight-path
angle, but that effect is neglected here,

The following steady-state lateral-directional functional equations apply for
stralght steady sideslips at small flight-path angle (y):

c, (8a,8r,8) = O
Cﬂ (80, Sr, B]

Cy (3a, 8r,B1)+ Ew*—-s-sinqb = 0

0

Possible variation of derivatives, particularly Cnﬁ » with center of gravity should
not be overlooked., In linearized form these equations become:

4] an C"Sa C"ar ¢
0O ¢ C c
N by g, “lg, B
arg CYB CYSQ CySr ] :G 0
;

Solutions can be found by moving a column of derivatives to the right~hand side and
reversing their signs, then solving by Cramer's rule, For example,

- -
0 Cngy Oy, [P [ Ong

O Cpg Cps |[B0 |- “Ceg B
W

-q*_S- Cysa Cy8r Sr —CyB

can be solved directly to get:

n
- = 3o - B .
d Sr C"B D’Sa nB . nB
B~ T C c - T ¢
‘ Y N Y. "Sr
S ©h
3a Sr‘
c
2
Sr
Cg - Cn c
d80 = - B n8r B Lo "B
G. © c
48 . (. "Sa ﬁar) 23
L - C
8o J|?'Su "Sr
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- -
c c c
e - ;80 CEB (Cb_ ‘!Sr Co )
d¢ . _a’s. | Y& "8 %8 B | “r36 Crg, P
w y C C C C

9B Bl Cng Ol sy s, 5 "3 Ly

! ¢ Ch ’ C’BI—CQ En——

130 Sr Se  dr

Cc
= —_C|_ (Cy - % cn )
Ll B ﬂsr B

etc,

is negligible,

Other derivatives may be formed in this manner: d §a/d 8r = (d 8a/df3)+ (d dr/dfB),

The approximations apply when Cﬂsu >> C“S and Cna P> CES
when CYS

The linearization of sin
<;b to c,bpresumessthat radia:jn measure is used throughout, Positive values of
d

a
an aft rudder, dB » and aB are required.

With an aileron-rudder linkage or static stability augmentation/, effective
stability derivatives can be formed

, and, for dep /43,
Intermediate approximations are apparent.
units of all terms in these equations must be consistent,

Wote that the

dSr

for

df3

For example, in the steady state a lateral
accelerometer will measure ay = -g sin ¢ =Y/m. If we have

3r

. a8r d8r 98¢
_Src+——aB B+—a°ya v+ 38, da,
primary interest is in Src. As long as no rudder-deflection 1imit is reached, the
linear steady-state equations can be written:
W 3¢ aSr dSr
c C c -C
WSS 00, Uy, T OB Oy, Oploma Sy, | P || T,
adr adr
- c C c Cph + c c 3
? day Mg, 3% —B- "8t "Sq 950 "% R S| e
-}.1: L 93r aar S0 _
9 c C —C C, +—=
da, 9& B aB 28 25 350 2 "8r
R

?Angular-rate feedback is of no concern here because we take p and r to be zero,

washed out so that it contributes nothing to steady yawing.

Even for the wings-level skids of References 24 and 25 the yaw-rate signal is usually
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If augmentation sipgnals deflect the ailerons as well, similar equations could be
written in terms of ¢, f3 , and the pilot-commanded deflections & r. and Sac.

Twe simplified cases will be considered: B and Ba signals to Or (-%E—r— =0 ),
Y

and ay feedback to Sr(*-‘-@!- = d_Sr = 0).

af 3%
(a.) Sideslip and Aileron Feedback to Rudder
Cc c C
D50 z‘ﬁ - 88 c{‘g_ ‘s,)
c C C
a8, "8 2, Cng %\, Cng g, LY
a8 ~¢C c c )
A "3 - nSu L3, R
Cc C
| j'8c| "3 ]
cn8c| c!B @Lc"Sr cn&: CRBr ]
c, ¢ ('~ C ©, ¢ - c )
d3re - _‘230 B Lg‘u "3 i "8 c‘Su "Sr _ %
d3a cn8 C‘e ]
r ¢, - Sr an
L B nar -

Total derivatives not involving Sr such as d&a/ dB,d¢/dB,d¢ /dBa are not affected
by any feedback through the rudder, That this statement holds in general follows
from the rules governing linear operations on determinants. Likewise, feedback
through the ailerons affects only those total derivatives that involve Sa.

It is seen that for an aft rudder, negative 08r/0f83 1is stabilizing. Adverse
yaw (negative C“So and Cg ) reduces apparent directional stability,dSrc /df3 , while

"favorable'yaw increases it. These effects can be offset by

a8y . C"Sq /(I _ CE‘o\r CnB
EFG Cnar Cnar CﬂB

but the necessary gain may vary with fiight condition."

{(b.) Lateral Acceleration Feedback to Rudder (ay - 31)

When C

Cc C Cc Cc

"Sa 3¢ <« | and Y80 <« " _'8

%y Cn ] te “n

Sa & Sa 3 B

there results
C Cc c c
e B i, guagts . (B a(, e Aoy

dB Cnar c‘&: an doy w Sr an C“Br c’Bo an
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Further approximation yields

c
dSrc i an [|_a_8ri_(c yB

BT, LTy TG O, T,

As before, of course, total derivatives not involving &r remain unchanged. Normally
<2 cng, | >> [0y,
CnB NSy ¥ael ?

so the major effect of ay augmentation is given by the gross approximation

d3rc CﬂB aar
: - + 2L 4 ¢
a5 Cng, %9y & B

Thus for an aft rudder, negative dSr/doy gives an apparently stiffer vehicle; that

is, more rudder pedal for a given sideslip angle, Comparing the result to the effect
of 3 — 8r feedback, as a gross approximation there is an equivalence

o8y i(‘C ) 2 a8y
day CLI 2] 0

The effect of aarfday tends to vary inversely with C; in level flight: at a

typlical gain on a supersonic fighter, dS%/dﬁ?might be increased by about 10 percent
at low speed and by an order of magnitude at maximum dynamic pressure,

(c.) Nonlinear Aerodynamics

If the aerodynamic data are nonlinear to such an extent that linearization at
large angles 1s not permissible, a graphical procedure may be followed:

Solve the first two sideslip equilibrium equations below graphically for rudder
and aileron deflections., Solve the third equation for bank angle,

C, {8a) + ¢, (3r, B)

¢

n

Cy t3a) + ¢ (3r, B)
c

0

y (8a) + C (Br, B) + ¢ _sing =0
Step 1: Plot rolling-moment coefficient Cyp against yawing-moment

coefficient C, with sideslip angle and rudder deflection as parameters
as shown in Figure 6a. Only a small range of data about C, = 0 is
required,
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(=)

-—

Cl(Sr B

CONSTANT &r LINES
a. STEP |

— — — CONSTANT 3 LINES

(-) Ch(drB3)  {+)

Figure 6, Determination of &8r and Sa in Sideslips

Step 2: Plot the negative of the rolling and yawing-moment increments
due to aileron deflection as function of sideslip angle as shown in
Figure 6b, These increments are given by the functional equations

-Celsu) —[CQ(SG:B)_CQ‘B)]

- Cpt3a) = - [ CptBa, B)- ot B)]

=), | __4#_
_ cztscﬁLr,_},
jl_’r— f ————— CONSTANT Sa LINES
] o
’%ﬂ: ? ~— — — CONSTANT B LINES
/

-} -¢,(8a) (+)

b. STEPZ2

Figure 6. {(Continued)
Step 3: Superimpose the data of Figures 6a and 6b,

Step 4: The rudder and aileron angles required to maintain a given side-
slip angle are determined by the intersection of the curves for the given
sideslip angle from Figures 6a and 6b respectively,

Step 5: Bank angle is then found from the third equation of the original
set by using the solutions for Or and Ba from Step 4.
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Thus

~Cy18a) = Cyt 8r, B)
¢=sin"[ ! c[_y rB]
|

Usually there is negligible pitching-moment change with steady sideslip. If
that is not the case and if, further, any of the directional derivatives are functions
of longitudinal control position (for example, short-coupled aircraft or combined
lateral and longitudinal control surfaces), the magnitude of the interaction can be
found by iterating the separate longitudinal and lateral-~directional trim solutions.

2, Controls Free
Current military and civil flying-quality specifications require static controls-
free lateral-directional stability in steady sideslips. Rudder pedal forces are
allowed to lighten at sideslip angles greater than 15 degrees but are not permitted

to reduce to zero or to reverse.

The controls=free stability is determined by the total derivatives

dF, _¢ OFy\ d8r  IF, | d¢ aF,
af (aSr) 4B +(a<;b Ye * EYZ

dFy , dF, \dda . dF,
Ye; '(aaalds 3B

References 24 and 25 also require stability in rudder-free and aileron-free sideslips
or skids. Generally, rudder and alleron force stability as given here assure meet=
ing those requirements algso, Details can be found with the equations of Section IV,
eliminating rate and acceleration terms.

(a.) Reversible Control System

The control-gystem terminology in this report {i{s used widely but not universally,
Especially for lateral control, different sign conventions and definitions of Ba
are gometimes used, Care must be taken that all equations are consistent in sense
and magnitude, For linear hinge moments,

G
= | ¥ = .
F = B, [q 5T, (Chr+ Chr B+ Chr Sr + ch'_ St,) + wrrr¢] + {AF ) o0l
o B 3r 3t,
I/ T
a 2 By aaq clB 080 astu Q G fea

where Y, 1s the distance normal to the rudder hinge line from the hinge line forward
to the rudder center of gravity. The derivative Cha is normally negligible, Omn

the ailerons, 1if GaR = GaL as assumed here (See Appendix III) the effect of mass

unbalance is evident only in the control-system rigging; the hinge~moment increments
of the two sides cancel, For the effect of control tabs, see Appendix IX. A
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similar expression can be written for spoilers; when only one spoiler is deflected
at a time, the factor 1/2 disappears [The factor (1/2) (G;) comes from the definition

Ga ] d( SSR + SaL)IdA's ] -

As in the longitudinal case, (AF, )gop1 and (AFg)feel include friction, pre-

load, etc. forces. Artificial stabilization can be handled as in the preceding
subsection,

+Ap __ 093¢ _rad +H,

Gy T -??-B positive
+F, ' for ag aft rudder F, corresponding / \
i to+F, 5
-0y

X 1 —==

e d

PLAN VIEW OF RUDDER CONTROL

?yi -+A;
+F,

+3
oR H,
44— o Ng
/ -V
G =- 98a or“_J_dSo _rad
a 335 Tw 0O w ft
is negative

REAR VIEW OF AILERON CONTROL

Figure 7, Lateral-Directional Control Terminology

To account for nonlinear aerodynamic hinge-moment characteristics such as

rudder lock, the control forces should be found for various sideslip angles from
the functional equations

@

Fr = 5 Cn, 13, B,31, 1 g*s T + (AF)

Gq

T s B #o =
Fa = B, Chu{Sa,B, Sty ) a¥STo+ (AF )y,

feel

and plotted versus 3 .
B. ROLLING PERFORMANCE

& primary lateral-control consideration is the rolling performance available
for a given lateral control force or deflection. Although rolling performance is
often specified as the wing-tip helix angle pb/2V in radians or as a roll rate, p,
in degrees per second, some rolling-performance requirements are specified in terms
of a bank-angle change during the first second following control deflection or as
a wing-tip velocity in feet per second, The roll-mode time constant, which many
investigators have found to be an important rolling-performance parameter in itself,
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is discussed later, in Section IVB2, Since one of the most Iimportant functions of
rolling is to initiate course changes, roll performance should be determined about
stability axes.

Calculated time histories of alleron rolls are very useful, since the required
information is made available directly. A linearized lateral three-degree-of-freedom
analysis is pgenerally sufficient unless the configuration is subject to appreciable
nonlinear inertia-coupling effects, Although hand computation is possible, digital
or analog computers are recommended for this analysis, In view of the bank-angle-
change requirements, ramp control inputs representing actual control-surface rates
should be used, Step control inputs may be used if the bank-angle change during
the first second is not of interest, or to get insight or an approximate answer
for time-to-bank., When roll rate is of interest, the steady-state value correspond-
ing to constant contrel deflection is the value to be concerned with, If no apparent
steady rate exists, the roll rate at the first point of minimum rolling acceleration
may normally be quoted, In some cases the peak roll rate may not occur prior to
rolling 360 degrees. In this event, it may be desirable to restrict consideration
to the roll rate that can be achieved in rolls that are completed at 360 degrees.

The conventional three-degree-of-freedom, stability-axes equations (Section

IVB2), modified by (a) eliminating the spiral mode8 and (b) omitting the gd term
(which is wrong for large ¢ and generally small anyway), give the tramsfer function

$ls) bes- + b,s + by

Sals) s(aasa+ uzsz-+ as+ uol

For conventional lateral-directional modes the response to a step input,Sa(s) = Sa/s,
is given by

L'aa&: [sz+(2§wn)¢s + (wnz}¢]
2 | 2 2
s (s+T—R)[s +(2§wn)ds+lwn}d]

Pls)

The factors are detailed in Section IVB2, and

I I
Az * i ¥4
oo Bt e T (9 T, Cog,’
= 2 - 2
Sa I, Ly
|- "i*'l-—" I'K | T 1
X'z Xtz

8The assumption is that a steady roll rate is reached before the spiral motion has

progressed very far (e-t/TS is still close to 1), Otherwise no steady rolling
motion exists,
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The time response to a step input has the form
. -t/T, -(Lwplyt 2
| C, e + D e sinlwn,+/1-C4t + )

Ap + Bt + Cpe /TR 4+ p ¢ Swngt iy (wndq/l-'-gdzt A

The amount of Dutch roll in an aileron roll can be shown? to depend inversely on the
damping ratio Cd and stiffness Wn o and directly on

plt)

plt)

8

1 I
+ —BE N + 32 Cp )
“ne \ - (cn&: Iy C“Sa cﬂB z "B

|—(“J

I I
n Xz Xz
d {C +—C WceC + —
By TT; “Mse " T,

Cp B}
With stable (negative) C 8 - » adverse yaw (negative aileron yawing-moment derivative)
tends to reduce the steady roll rate; it can even cause a roll reversal, which is
not acceptable, For low Dutch-roll damping, according to Reference 26, (w“qb /wnd )2
must exceed 0,5 to avold reversal, Favorable yaw tends to create a closed-loop
control problem for the pilot (Reference 26).

1. Steady Roll Rate

The steady-state roll rate, p,, , 18 given by the limit value theorem (Reference
17, for example). For a step aileron deflection,

P “anc) 2 b
® ¢ 9
Sa ( Wn 4 ) Talsa * 8o

In terms of stablility derivatives, neglecting CnB R CAB s Cyr' Cyp, and g,
B T
c c ' C ¢ [ C C r c Cl C ]
|+ ygne “SQ(C‘B+ YB 4 )+ IS4q (Ci-—{B——nL)
' 40 C'  Ca’ Can 4i.Cn; 4. Co r Cp/!
P . 2y Cnsu 2 "B 280 nB He "8 He £3q nJB
- ] 7 I T C [
Sa b Cnp . c,B Cn, . cnp( cﬂe . ’Bc"r)

where
1
Cy + Tu ¢,
e/ = i z i
ll |- Ixzz
LI,
L |

9See Section IVD and Reference 26,
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and

.
|

IK

C =

l‘li | - Iuﬁ'
I, 1,

B.plb/2v,), r( b/2V,), Ba.

Various further simplifications are possible, When ICysqi << | 4;_;,20_9:30]

i F Fi
the simplification is obvious. When lcyaal << | 4'“'2(:280' , |C£r| << | 4;.LZCQB/CVBI,

and |Cp | << | 4,uzcn}3xcyﬁl \

, ™
Pw . _2V C‘éa Cns'a cné
T B
Cl' Ch
L P -
Further neglecting N;,
o, _ z_v,?_f_é_s[._f“_:@_cfé]
da b CQ; czéu Cq

When product of inertia effects are ignorable, the primed notation can be dropped in
any of these expressions, The relation reduces in its simplest form to the one-
degree~of-freedom roll result

( pb ) . CQSO 5
2V o Cp
Note that all angular dimensions are In radian measure,

By using effective values of the derivatives as in Section IIIAl, account can

be taken of stability augmentation, aileron-rudder intercommection, etec, For control
syastem synthesis, however, the techniques of References 8 and 9 are recommended.

Augmentation displacement limiting can be important,

2, Time to Bank

This is a much more complicated problem than the simple version considered here.
Flight control system dynamics and control rate limiting, as well as aircraft yawing
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and sideslipping, affect the result. However, it is instructive to consider the
single~degree-of-freedom roll response to a step aileron deflection, The result
will be more optimistic, of course, than one based on the above control-system
factors. The single~degree-of-freedom response is

L, O¢
- Sa -t/Tq . 4t _
AA#(T) = -—(:zrji [e + TR |]1
Tr

where

_L_ = - q*Sb ..tl. (o

TR I‘ 2V ﬂp
and

L = a*sb C

3a I, lsq

A more refined approximation for llTR is given in Section IVB2, To approximate the
effect of control rate limiting, use an effective time increment:

| 8a
tegg =t * 7 5
max

max

Figure 8 interprets this analysis for several forms of requirements. The time to
95 percent Py 18 3TR'

A requirement is sometimes stated in terms of banking to and stopping at a
given angle in a certain time, The analysis that follows is subject to all the
faults of the time-to-bank analysis gbove, and also to a pilot's difficulty in
trying to perform such a maneuver. (He could not do it both rapidly and accurately.)
Intuitively, the best command for minimum time 1is the double pulse sketched.

3a 5 ' te .

As a result of a linear analysis using a method from Reference 17,
| [
B e [ —— 4
Ve bt 1)

where 4>c is the commanded bank angle., An explicit expression for 4>c in terms of
t, is
2
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1.0 5
08F 4f
o.er ir
L e ]
Poo meR
o4} -
0.2k ik Continuous Rolliag
— - Asymptotes{Cont Roll)
— = — — Bank and Stop
{ Figure 2 of Reference 30, PartI)
O-L o 1 i I
0 | 2 3 4 5 6
t/TR

Figure B8, Idealized Roll Response to Step Aileron

3, Alleron Forces

For a reversible lateral control system, in a steady roll if 8°L = Sag
G b
L S0 g p | ron, 2]
F 57 B, 9 Safa Choa 3a chap 5v | * (BF)tea + OF,
q
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The nonlinear equivalent and the extemsion to spoilers, etc, are readily apparent
(Appendix III and Section I1IA2), For a conventional irreversible system with force
proportional to control deflection:

dF,
fa © 8¢ Do * AF

In each case A F, includes friction, preload, etc, This equation represents a
linear feel spring with constant stick-to-surface gearing. Nonlinear feel springs
and varying stick~to-surface gearing should be treated appropriately,

Although control-surface hinge moments are of little interest in determining
cockpit control forces with an irreversible system, they still determine the available
control-surface deflections. Thus hinge moments and control-system power or pllot-
force limitations must be considered in estimating maximum rolling performance,

C, CROSSWIND TAKEOFF AND LANDING

Reference 15 requires maintaining a stralght course in stated crosswind conditions,
with or without braking, These requirements must be met with a pedal force not ex-
ceeding 180 pounds. Although drag parachutes or other special considerations may
cause difficulty, crosswind directional control usually is not a problem at high for-
ward speeds. There effective sideslip angle is small, and the resulting moments and
forces can be overcome by conventional aerodynamic controls, Since lifting forces
may be high, the landing-gear ground reactions may be low; thus it may be necessary
to depress the upwind wing as in a steady sideslip to achieve balanced lateral forces.

When lateral control is lost at lower speeds and it is no longer possible to
hold the wings level, the resulting lateral component of 1lift may cause a large
unbalance of lateral forces, Although it may be possible to maintain heading, the
aircraft skids downwind. Application of upwind brake to counteract the skidding may
or may not be guccessful, A full analysis, as will be seen, gets rather involved,
For this reason the general case is only indicated, Simplified equations are
developed, and a further-simplified solution given,

Note that in the following methods all angles are assumed to be expressed in
radians and all derivatives, per radian, Ground effect should, of course, be
considered,

The desired condition, shown in Figure 9, is that vehicle velocity parallel the
runway centerline, Small bank angles {(not shown) are possible, Each of the main
gear, then, slips at the angle  , giving a y force opposing the crosswind (com-
parable to wing lift variation with a ), as well as a drag force in line with the
x axis, Nose-gear forces are "drag" at an angle 3| {Figure 9) to the x axis and
a "side" force proportional to ( Sy + ¥ ) at an angle 3N to the y axis, All these
forces, of course, are proportional to the respective ground reactions, Interest
is in conditions where the wheels are not skidding, though braking is considered,

Aerodynamic forces and moments are proportional to q* based on the relative
wind, 8, BSa, and 8r, For a given forward speed and wind, the variable

[(ljl +0)- \U] may be substituted for 8.
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Ground Speed V

l‘a Runway ¢

Figure 9.

All Quantities are
Positive in the Saense Shown

Crosswind Relationships on Runway

The tire forces (See Figures 9 and 10 for notation), allowing for differential

braking, are:

(o =ty - a(xxzum )R

a{Y/R}M
" T Ty YRR

a{X/R)M

XLt T Ty VIR

a(Y/R’
Yot g WRL

BX/R)

XN s —[,_L‘N—W——(l# + SN’]RN COSSN
Yy © Ei;/?mﬂ(w+3N)RNcossN-[pr-
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When the nose wheel is off the ground, the method of Section TID gives Ry = Rp + Ry

directly when three of a , Se » 9%, and T are specified., The discussion below gives
RR and Ry in terms of Ry and (ﬁ + Adding R, terms to the basic equations of Section

I1D, both Ry and Ry can be found:

F -
1 R W-Tiz+q" SR
[ [ q*S(CL;E‘:g) M ip+a"S(C do-CygB)

leg Ly
P,M(hcg-t-r) ;J.N(hcg+r)-£G —q*sg(cm; -_E—CLQ) Ry [ = q*sf[cmo-cmaao-l-{cms —3—0‘_8)8]+(hcg-h.r)'r—ﬂtqw

|
Km KN £G a ‘G’GGFE

References 27 through 29 indicate characteristics of the tire derivatives,

9{X/R) dY/R)
The expressions above are complicated: the derivatives ————— and ——B—

are not well known and vary with tire pressure, runway condition, etc., To continue
the analysis we therefore assume that { is very much smaller than 8 ; that is,
that the angle between the runway and the relative wind is approximately 3 . This
appears a reasonable assumption for calculating controllability in high crosswinds,
Further, in the analysis below, the gear x forces due toy{ are not stated explicitly
and the gear y forces are stated in the form p  R. Thus the lateral coefficient of
friction g, is an implicit function of ¥ (and,” for the nose gear, SN Y. This form
1s handy for cases involving maximum gear drag and side forces. Conservative esti-
mates of limits are:

O (on ice lani < < 0.015 (rolling}

on ice or planing < < _ '

on wet runwoy) Fx 0.25 ( static; braking)
0 < lpyl £ 025 (static)

Gear structural side-load limits may be more restrictive,

To consider a crosswind landing gear, in Figure 10 the gear can be aligned with
the direction of motion., Without braking, its y force will be small (=g 4Ry sin 3 M

with BM positive in the same sense as BN in Figure 10), possibly negligible,

In design it is usual to consider 90-degree crosswinds, Then, neglecting Y as
discusgsed above,

B

ot

- =
tan ch/V) = Vc/V

2 v in ft/sac)

1

?' piV/cosf)? 2 ?I-pv

This approximation for q* is useful when S5 is not specified but 1s to be found,
However, it underestimates q* and thus the aerodynamic forces and moments at large 3 .
If desired, the solution can be iterated to get a better result,
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—

Ap + AL
h AM-RM/KM —_——

. .

N M R L
Figure 10, Lateral~Directional Ground Reactions

Ry and Ry are found separately, knowing T, a , q*, and de, Then

. bg , . . _Km
RR z —E( RM+ KM ¢] = > ﬂR
b K
- L -5 —
RL= ZRu Ry ®) 7 7 AL

With these substitutions the linear lateral-directional trim equations become
3 -

W4> + q"s [C,;SG80 *Cyy, 0t Cyﬁﬁ] * By, Rut ( Py cos 8, - o sin3 IR, = O

bg '<M

(gt By ¢+ q*Sb[C 80+ C"8r8r+c"BB]
bG S .
+ [;.LyM w3 (p.xR-p,‘L)] Ry + ! ;.Lchos N-prssnSN) lNRN = 0

b

M ¢+ q*sb [GESGSa + clsrar + caBB] -p,MhRM—tpchosSN—p,NsinBNmRN= 0
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where the variable coefficients of friction u define the drag and side loads on the
gear, For the nose gear, Hxp and FyN include loads due to 3y; see the gear=
force discussion preceding. For the main gear, the maximum linear lateral force is
reached when either wheel starts skidding; with wings level the maximum lateral

force is }LYRM. The equations apply equally well for a tail-wheel configuration;
then x,, 1s negative, positive, The equations hold as long as bank angle, gear
side loads, and control deflections are within limits; the ground path is straight;
R;» Rps and Ry are all non-negative; and the aerodynamics remain linear. The deriva-

tives should include ground effect where applicable, Extension to the nonlinear case
is apparent,

The three equations in many unknowns ( ¢, da, 3, B, BN,/.LxR,or My rete; at
a given airspeed, q* is known) can be solved for equilibrium in terms of one unknown
when others are specified, For example, stated braking action and nose-gear steering
angle allow solution for ¢, Sa, and &r in terms of 332 V_ /v,

As a useful simplified example, consider the case of:
(1) Wings held level

(2) No brak:l.ng (’Lxﬁz ’LL*L = }_LXN: IU'K ; I’LLYM = fu'YN = P«_y)

(4) Negligible C and C

¥ 3a n3aq

The first three of these assumptions permit a unique solution for Sr, Sa, and iy
as functions of S ., The simpler of the forms given below apply when the nose gear
is off the ground, or approximately when the nose gear trails,

. Cys, ©n
a*sCyg cnSr B B8
My =~ R ] x R x R \C
(MM NN
! ( b R' b R )c,.
i Br |
[ C, Cl‘lg ]
q*Sc, 1= cna cy
: - R‘B 1ch ¢ when p, Ry 0
M | MY, N
| Oy
[ Ry , *y R Sy |
5 Cng "7 R*?R /)T p
4 = cnSr |- .I-E..R_M- !N RN 0y
b RO R Ty
r —
- | Xy Cy -
c -7
n n
: B B B when g Ry 0
Cn c y
Sr [ — m Yy,
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CESr h Cy x R xR, Cp Cy
- B - M M, NN Sr - Sr
S = - CZB Cna‘rCnB+ b(CYB Cns, CnB)+( PR R)(‘CKCYB _C_B__S_;CEB)
C
- Eﬁlfﬂﬂ. :ﬂﬂ_RN wBr
cﬂSa[' (ER+ 5 r) C“Sr]
C c & g,
C, — Src h Va KM Sr
iE n + Cy - Cn + — a[c _ C
. 43 ns, B b( B CnSr 13) b (Cn8 n t;é;ge)
IM Cy
C‘SCI (I - _b_ n ‘ )
Sr
when
#VN RN 0
where R = RM + RN. For a 90-degree crosswind,
B = tan 'V /V)
¢ = Lptviev

In this simple case the gear side loads and the control deflections to maintain a
straight ground path can be calculated easily for a given combination of V and V..
When the wings can no longer be kept level with maximum aileron deflection, or
where the vehicle is banked into the crosswind, the more complicated equations
involving ¢ must be used for any analysis,

Control forces can be estimated by the method of Section IITAZ,

D, CONTROL WITH ASYMMETRIC THRUST

Military requirements (Reference 15) are placed on controllability with ailerons
only and with both rudder and ailerons. At and above the minimum control speed it
must be possible to maintain steady, straight flight with asymmetric power using
only ailerons to bank and sideslip; and also to control the transient motion upon
engine failure to achieve and maintain straight flight with a bank angle of less
than 5 degrees, Civil aeronautics regulations (References 24 and 25) require a
"reasonable" excess of directional control to remain in straight, wings-level flight;
and the ability to execute 15 degrees or 20-degree banked turns in either directiom.
At high speed the tail load associated with the dynamic sideslip excursion and
rudder deflection (manual plus automatic) can be critical,

Compliance with the dynamic requirements should be shown by time histories
calculated with the equations of Section IV, The static conditions in straight
flight, found by a modification of the equations in Section IITA, are given below
(Ordinarily the effect of aerodynamic damping in a 20-degree banked turn will be
minor)., With AT negative for an engfine failure, G = W/q*S, radian angular measure,
and both rudder and aileron control, 1
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n

Be — °ﬂ8u°“8 8 " IS Cf-aa Cesa 0y

c C C
_ saia_r_) ’8(_ "Sa !3) Yo )
8 (I uy, g, | T\ Ty Tag ) T, \C”B c“a R

_[CL¢+Cy(AT)]( _&_ﬁn) _QL[C (ATI( 2_8;15_5_) " Cngq C¥8q Cnar)]

-6 ¢+ 2 [catam - % ¢yt am)
- ; Sa
C ———-—cya' G ( | - 3, A )
VB Cnsr e sta CnB

Slipstream effects can cause significant Cg {AT); while a canted engine thrust line
or, on some configurations, aercdynamic interference can produce a C, (AT). Values
used for the derivatives should account for any alteration to stabiﬁty or control
effectiveness caused by the partial thrust loss. The approximation holds when

c
"Sa s,
Cﬂso Cngr
and Cy (AT) = Cys : 0, Thus, given ¢ we can find 8 4 or conversely., Once 3
a

and ¢ are known, the control deflections can be found:

<< |

G

Cy
80
-Cp ( t__-c-@)ﬁ-cnm‘rn Tg. Calam
8 = B QSG B 30 L

Cos G
& (._ _&q_&)
B s, s,

Qs 2
80 ) —(%B-_Q;C“B)'G-CQ(AT)*C_{:-:—
- “sa 2
r
Cls“(l ) C03q C“Br)

CqlAT)

Alternatively, [3 corresponding to maximum Sr can be found from the relation above,
Simplifications when Cn Sa =0, Cf, ( AT) = 0, etc, are obvious. The control forces

can be estimated from Section IIIA2,

0f course, Sr and Sa are the actual control-surface deflections. In straight
flight rate feedback will have no effect, but any augmentation involving 83, ¢,
8a—-8r, or 3r —3a must be accounted for in finding the cockpit-control deflections.
Equivalent derivatives can be found as in Section IITIA and substituted in the equations
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above, as long as augmentation authority limits are not exceeded, Lateral-
acceleration feedback gives effective C, ~and Cy , not accounted for above, but

a solution can be found from the steady-state equations as in Section IIIA, With
tab control it is necessary to check both tab and surface deflections (See Appendix
II1), Control forces can be found as in Section IIIA2Z,

A suggested general procedure to find the minimum control speed is to calculate
the control deflections at three speeds and interpolate., Some cases, however, are
so simple that an explicit formula can be written, Using the approximations indi-
cated above, and further assuming that C, (AT) = -ypAT and Cy (AT) = 0, and that

the derivatives are invariant with angle of attack, if rudder control is critiecal
the minimum control speed is

y
0873l Wse T —J%I _LBB c&B. -.0373 (w/s)
o1~ Ty %)
VMC = IT2 cy Cn kt EAS
B 8!‘ -C ar
Ch CEB Yar|  mOx
C (l———é‘l—-«-)
e cﬂaqcnﬁ

with ¢p = 5 degrees in the failed-engine-up sense, (For ¢ = 0, delete the W/S term
in the numerator.) Then the corresponding 3 and 3 a can be found from simplified
versions of the Or and Ba equations above.

1. Rudder Free

To calculate the steady-state conditioms, take

» Ch'
C C —_ Cc
YB !B Chr !3,
Sr
chr
Cp® = Cpp- C
"B "3 ChrBr NS¢
Ch

O
|
™
1
)
o
™
(9]
L=
o2
-

Then (with no stability augmentation)
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“03a (]— G Er%)
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These relations hold for rudder deflections within the linear hinge-moment range:
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SECTION IV
DYNAMIC STABILITY AND CONTROL
A, GENERAL REMARKS

Approximate relations are presented here to desribe aircraft motion in conven~
tional flight (at suborbital speeds where the vehicle is supported principally by
aerodynamic 1lift rather than by thrust). Thé approximations being based on Reference
8, the same assumptions generally apply: linearity; constant coefficients; small

perturbations from steady level flight; no steady wind; neglect of Xﬁ, Xq, 2, Zq,

ete, All coefficients and derivatives are to be evaluated at the operating point,
The body-fixed stability axes used here are aligned at the operating point with the
projection of the vehicle velocity in the plane of symmetry. Therefore, in general,
the motions do not correspond exactly to those measured by instrumentation aboard
the airplane {See, for example, References 6 and 20), 1In the exceptional case
where engine gyroscopic effects are strong enough to alter the motion, References

31 and 32 give a simple method for including them, For treatment of a large moving
mass, as In tilt-wing VTIOL transition, see Reference 18. For additional terms that
arise in perturbations from steady curved flight, see References 6 and 32 and
Appendix IIX,

In practice the linear equations have proved more useful than one might suspect,
Still, there are times when nonlinearities cannot be ignored., The analytical com=-
plications are formidable: the very character of the motion can depend on amplitude,
there are different concepts of stability, solutions cannot be superimposed, the
transfer-function concept may not be valid, etc. Analysis techniques are still
rather primitive; the interested reader can consult References 10 and 11, Systems
of equations with slowly-varying coefficients can probably be handled adequately by
"freezing" the coefficients; other available analysis methods are summarized in
Reference 12,

The rolling pullout is often a critical maneuver for stabllity as well as flight
loads, Nonlinear inertial coupling may be involved, If not, the combined longitudi-
nal and lateral-directional linear equations can be used with proper consideration
of initial conditions and any derivative variations with a and u.

Requirements can be given in several forms., Conversion relations are given in
Table II and Figure 11, taken from Reference 4, for roots of the form s = ¢ + jw.
Times are scale time; seconds, if the equations are written in terms of real time,

While present requirements specify only the characteristics of the free motion
{for example, period and damping), research has shown that other response parameters
are also important (See, for example, References 33 and 34), For that reason, and
to aid in other aspects of analysis, a number of approximate aircraft transfer
functions are tabulated for control and gust inputs., No control-system dynamics
are included, Artificial stabilization is not considered explicitly, but may be
included by using modified derivatives that include its linear effect or by applying
servo analysis techniques. (See, for example, Section II, Appendix IV, or Reference
8 or 9.)
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TABLE 1II
DYNAMIC STABILITY PARAMETERS
I
¥ cps f = — w
requency (cps) .
Period T o= L 2T
erio = - =
2 2
Undamped natural frequency Wy, = '.-_.J/-v«/|—§E = VoS 4+ oo
Damping ratio t; 2 -0/ Wy
Time to 1/10 (or 10x) amplitude T, .0 (or:Tj0) = - belo . Loi0
{See Footnote 10) gcun
1 1/10 (or 10x) c (or C. ) el S
Cycles to or X or =z
amplitude 1/10 10 2w
{See Footnote 10)
Logarithmic decrement (of S ==-0oT= ;wn'r . 2ml
amplitude ratio per cycle) ../" _ gz

The approximations have been developed for perturbations from straight, level
flight and assume small i,. The stability derivatives must of course be evaluated
at the correct center of gravity. Changes to derivatives caused by a shift in
center of gravity can be determined, for example, from Reference 20,

The transfer functions have the general form, where o is the output, & the
input:

ols) _ Nis)

Yis) = 5(%) _ A(s)

Most characteristics of the free motion are determined by forming A {s) = 0, the
characteristic equation. Responses in terms of time, for particular inputs, can be
found readily from tables of Laplace transforms such as the one in Reference 17,

1, Initial, Steady-State, Maximum Values

The steady-state response o(t) of a stable linear system to a step control input
[ S() =8, (s) = B/s ]is given by the limit value theorem (Reference 17}:

limolt) = lim s--—ag-Y(s)] = SlimYl(s)
t ~m L s—~0

10positive nunbers indicated damped motion; negative numbers, divergence,
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Figure 11, Damping Ratio of Oscillatory Transients as a Function of Subsidence
Ratio for Second Order System
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Figure 11. Damping Ratio of Oscillatory Transients as a Function of Subsidence
Ratio for Second Order Systems
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Of course, by definition, if one reasponse (say 9 ) is finite, its integrals and
derivatives will not be finite (Gh,would then be infinite; am » Zero)., Similarly,
the initial response to a step input is

lim olt) = 8 tim Y(s)
t—0 $—™

giving, for example, the maximum value of 8 for a control input, With a rate-
limited control, &(s) = Snwx/sz until maximum deflection is reached, and peak

angular acceleration normally will occur at about t1 =3 /98 .
max’ —max

When the damping ratio { of a characteristic mode is small, maximum values
(of 8 , for example) can be somewhat higher than final values because of overshoot.
One can often separate out that oscillatory mode, adjust its maximum response ac-
cordingly, and add approximate values of the same output quantity in other modes
at the time of maximum response of the lightly damped mode, in search of a higher
maximum response value,

B, STICK~FIXED DYNAMICS

The material in this section i{s larpgely a reduction of relations from Reference
8 to nondfmensional notation.

1. Longitudinal Motion

Although exceptions occur, the longitudinal motion normally involves two
oscillatory modes well separated in frequency. The discussion below is limited to
well~separated short-period and phugoid modes, except that the "full" longitudinal
equations presented under "Phugoid Mode" give the total motion in any case, When
the two modes are not well separated, Reference 8 can supply a more general treat-
ment, Some of such flight~test cases are analyzed in Reference 35,

{(a.) Short-Period Mode

These transfer functions for the stick-fixed case hold fairly generally. The
derivatives dT/da,CLd, and C; are assumed to have negligible effect, and the short-

period frequency should be at least several times as great as the phugoid frequency.

The vertical gust velocity, wg, is positive downward.
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The approximate short-period linear equations of motion, in terms of accelera-
tion derivatives (& and for perturbations Aq,AB, -:) are given below for
initially trimmed, straight near-horizontalll flight:

s - Zg - Aa z z

Q
% .- R
“Mgs=Mg s-Mq || sAB Mg M, Va
where
2
I 9z VoS i AM PVoSE
z = - (C +C.) M
a mVo oa 2m LG D Q I)‘ dg 4Iy mq
2
Moo= L OM PVoST s = t_8z _ _PYS
a I, da ZIV My S m A d 2m La
-
Moo= L OM PV, ST c Mo = —l oM P\nfoScC
- - m = m
¢ 1y dd 41, M4 8 1, 03 21y 3
<98z ,_FSE L1l 9Z . |_PSE
|Zd| lmvoa [= | an CLdl<<l lqu-lm‘,o , [= | 4mCqu<<t

. - st
The quantity CL1 is defined as W/q*S, (Rekevewce 3 hes & more Cigemws Arantusnk= o€ Just Tespomse )

Control dynamics can be represented by a third equation, the control law, or
by multiplying & by the control transfer function, Neither is done here. Solution

of such linear equations is discussed somewhat more fully under "Phugoid Mode" follow-
ing.

1]'Nhem the operating-point flight path is not horizontal, a suggestion of the phugeid
motion creeps in, The quantity in the upper right corner of the square matrix
5in
becomes —(l - -g—\—,;—szq—) » For small y, (such that sin y,= ¥,, cos ), = |}, gravity

effects on the short-period motion per s€ are normally negligible but begin to
appear at extremely low speed. At large| Yo | density changes during the motion can
make the coefficients time~varying, and also modify many of the transfer=function
coefficients by quantities proportional to (g siny, )/Vo. In perturbations from

steady turns, additional terms proportional to the steady angular rates appear in
the equationa; see Appendix IYI and Reference 32,
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TABLE I
SHORT-PERIOD DYNAMICS, CONTROLS FIXED
Ia.lcmﬁiy Form Coefficients
2 2 - | 1
Bsp s+ 2Lups + w, 2wy 37 (ong z_m,‘lc'"q“cma’l
(Nm = maneuvering neutral point 2 g
Cm w' = ———Cy, (N_-cg)
_ - [+ S % T n Ng m
Nrn ¢ (CNa -'-'4].:.l mq) 00 cLle%
K | g .
S s T CLKyE ™y M Mgty cLKyE S
CN Cnes
L 1t (Na™3 cm"cLa)e L
TP omy g tmgy 2T N
. cm
9 a 1
N K K= ———¢C —_— == C_ .
O, CL Ky € Na Cng %M '“ﬂ)
A S
Nas Kis + T} K 27 CLS
1. % (Cm§+ ¢ )___V%_c_'“s
T 2 m -
Kye ‘CLg 4 T4 Ky ¢ CLg
. . ¢ ' Q
ApproximgtionforC, = O: K K 2 C
Ly cL Kz ™3
vy
- |
Na Kis + ':%.-) K = 2T CNa
“g i v, Cn i 2viw )
T it me) oy
2 - .9
N°z Kis"+ as + qay) K = T CLS
]
uftcontrol:~K(s+LT)(s--.l-r-) a, or 2Cwn-— lelcmq'l' Cmd}
y
c Cc
. 2 2 -| 2_ g ms m
fwd control: Kis +2§w“s+ Wy ) uo,—T? orw, = P "a(_c-f_;_ cNa)
y
Approximation for C, =0:K’ K'= --(i-)a ! c
La CL| Ky & Nﬂ m8
[ . -9
Ng, Ks(s + <) K = ?L-cua
ag l
1 -1
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55




AFFDL-TR-65-218

To convert to other variables, for our rigid airframe

*» - . - _ » - - ’
a, = W -V xq = gt‘_‘».nz
at a distance x ahead of the center of gravity (An accelerometer measures the
difference between inertial and gravitational acceleration: oi-gcosC)COSQD »
modified by structural deformation),

yt) = 5, - [—‘!i,‘:-——’-aam] : yo—:l—offazdr; yls) = —L—%—%l}
0

qlt} = dBsdt; qls) = s8(s) or Bls) = %[ 90 + q(s)]

w = Gaa, wg = - Voaq

hit) = Usin8 - Wcos8 = Vo[sinyo-*lcos)alﬁy] or h=Vsiny

t .
Ahlt)= Vo[{sin)s)|+(oosy°)£ )'rdt]; Anls) = VO[—sl-—nSgQ—- +(cosy°)y($)]

Note that all variables of interest are linear combinations of the wvariables in the
equations of motion.

It is seen that the required positive maneuver margin (Njp - cg > 0; see Section
I1Cl1) guarantees a stable short-period motion, This motion will generally be oscil-
latory, but for a very small maneuver margin it becomes aperiodic with time constants
Ty and T9. This occurrence is signalled by £> 1; with the decreased separation
between short-period and phugoid modes then, these approximations are suspect,

(b.) Phugoid Mode

The classical long-period longitudinal (phugoid) motion occurs at constant
thrust and constant angle of attack (M, = 0). Except at low speed, density variation
with altitude has a significant effect on the phugoid motion; at speeds above half
the orbital speed, earth curvature also becomes important, Reference 1 derives
corrections to the simplified two-degree-of-freedom (V,f) equations. When stability-
derivative, thrust, and moment variations with speed (Mach number, etc,) are
negligible

2 ’
z 9 v, 2, P13
h, fvo [I T =F") P] rad/ sec
where
F* = ¥R <1
R = height above earth's center (R >21x 10% 1)
F = dp/dh, s!ugs/ft‘
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Neglecting the density gradient and earth curvature makes the quantity in square
brackets unity. The two results are compared in Figure 12, The simple classical
solution holds at landing approach speeds and is a fair approximation at all sub=-
sonic speeds, but it is totally inadequate at supersonic and hypersonic speeds, even
in the absence of compressibility effects,

Similarly, the damping of the "classical" phugoid is given by Reference 1 as

’ |
. CD '[(p/p) +T.‘;-]V°+(20/V°)
2(8wylp* = Cp + 2 5= . n n
L —{p7p)n+t2/l=)+[|= /n-r-')]

with the same assumptions and constant (or zero) thrust. The last term gives a
correction, inversely proportional to L/D, for density gradient and earth curvature
effects. Note that Cj is here

& w _ =2
C = -a1q;(| F~)
while 0
CD= a*s

is independent of thrust level, The correction is inconsequential except at hyper=-
sonic speeds,

5 - 2.0
c
[,Ja_" Yo g -2+ at2twy,
> af 60 9 >
5 o= 15
£ O
= =
r »
o Corrected 810
2 -
® 2 - Ei
o p/p = -(22,000f) X
- <
s R= 2l x 10%¢t q 05
o _ 2 Jjo
5 g = 32.17 ft/sec J
0 | l ) _i 0 l §
o} 5 10 1S 20 o 5 10 15 20
V,x 103 ft/sec | V,x 107 ft/sec

Figure 12, Phugold Characteristics

The simplified theory gives phugoid frequency and damping adequately when
stability derivatives and thrust are independent of speed and when w , <<<uns *

However, when that is not so or when transfer functions are desired, the pitching-
moment equation should also be considered, Another limitation to any linear,
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constant-coefficient equations 1s that, of course, F‘o = Vo Yo must be small so that
the aerodynamic derivatives (that depend on p ) can be considered non-time~varying
during the course of the phugoid motion,

In the "full" development next presented, earth curvature is neglected (See
Reference 1 or 36), The aerodynamic derivatives are defined to include thrust
effects., For completeness we include certain derivatives that are usually negligible:
Xg » Xq, 24 » Zq, dT/da , etc., The operating point is straight, steady flight

with flight=-path angle y; « The first three equations are given in terms of real-
time "angular" acceleration (F/mV o? M/Iy) derivatives with variables

(u/Vy), Aa 2 (wr V), AB, (Ah/T), AS.

The last equation is the kinematic relation among these variables,

s-xu -x&s-xa -)(q:;-i-—3;::057;J -Xh ’ u/vo ‘
-2, (-Zg)s-2, —(1+Zg)s+ —3;sin)6 -z, || Aa
- My ~Mgs - Mg 8 - Mys -my || A8
Vo o Yo Y
___-"5'9'5'"76 Z 8% ~ C08 %o s-J \ Ah/E |
0 28 ""Zu
= + a3 + ug/Vo * -
0 Ms - My
v, sinl
Yo §In %
2 —5 j | o o |

(CeSaremce 3 has awpie TlgWesf krgakineat of 4ust t’e’f(’M»Sf_)
where, initially, u= Aa = A8 = Ah = 0O, u, is positive in the direction of
flight, and the derivatives are defined as follows:

= —l— ax = -_I.. _Y_Q_acD | oT
Xu T NG Aurvg) = (%+ 3 52) + W gy 08 €

e 29X Lo - o1
Xa * mv, oa . 2T(CDG CLr# mvV, da cos §

. A% -
¢ * 7V aa ~ °

N EY - S
o * w0 " ° .

. X _ -% ¢ Cp dp  9CpiM,q,R) z AT
*n * WV, AnE” 2 ( p an T 3n )"‘ e el 13
Xe = Lo OX_ . -l ¢ or cos & OT

8~ m¥% "33 2r D3 mV, 93
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.9z _ -l Mo 00y _ 1 o1
Zy *® mVp dlu/Vg) T (CL+ 2 6u) m Ju sin{

N -4 - =L - T
2a* g 3a - v 'OLd Cp)T WV da S 3

= L9 = -
24 * mV, da 4‘u.|cLa
Za = .__L..az = —-I C

9" mV, a9 4u, “Lq .
; = 82 . _-% (&2,, ""L"‘*""-‘”)w T O e
h mV, 3(h/g) 2t P dh ah m¥, 2h
ya = _I_a_% = _-2-I—CL- or ﬁ_%

5 mVy 9 T -8 mV, 9

_ 1 _OM__ __2g Vo 9Cmy _ 227 (Vo T
My * Iy 0(u/Vp) ~ cLleaﬁ( 2 du ) Iy (T 2 37)

= —-!-——L-M =
Mo ® 1) Toa CL KZT ‘ma

LM . 1
Ma * 1, da arkg Cmg

[ M |

Mgs 5+ 59— = ——5 C

q 1y Jq 2 “m
. —r- M. 4TKy a%m(M,q‘:R)_ 2 € (I_.‘.’ﬁ_ﬂ)

z
M8= -..I.._ aM H gT Cm or _.I...%
Iy 28 CL Ky E 3 Iy d

E : atrim + iT

Thrust data are needed for the specific installed propulsion system, but it
may be helpful to note general trends. Thrust of a fixed-pitch propeller varies

about linearly with dynamic pressure: T 2 Ts tat 1c-kq*, A constant-speed propeller

tends to deliver constant power (TV ), while a turbojet engine tends to give thrust
invariant with speed. Thrust depends on mass flow, which (for unsupercharged engines)
varies with altitude as the free-stream density, p. These direct thrust changes

are in addition to the induced effects of thrust on derivatives such as Cma (See,

for example, Reference 21). 3 1s a generic control deflection: it can represent
elevator, engine, flaps, etc, Control dynamics can be incorporated by multiplying
A8(s) by the control tramnsfer function. For example, A8 /(T s + 1) could

represent thrust lag when BT is throttle deflection., Although X Se and Z Se are
commonly neglected, this practice can occasionally lead to error, An example is

the calculation of minimum approach speed of a modern fighter by the method of
Reference 33,

A solution for u, Aa , A8 , or Ah is obtained by superposition, adding
golutions for easch combination of the left-hand side with an element of the right~
hand side, For example,

) Nyols) . Ny§ts) NuEg(s} ugs)
uts) = v | aer Ay Ot TR Vg ]
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where A is the characteristic determinant, N is the determinant formed from the
uo
game matrix by substituting

0
0

v. ©
\ & siny

for the first column, N,§ is the determinant formed by substituting

X
Z

=
o 7 O

for the first column, etc,

The transfer functions Yij(s) are defined by the alternate statement

ug(s)

uts) = Vo[ v ots) + v, 5188050 + Yaug'®! T+]

Analysis by hand is lengthy; machine solution is recommended, Note that the equa-
tions yield both phugoid and short-period characteristics, and an extra mode related
to A h as well, Normally the inverse time constant of this last mode is negligibly
small, compared even to the phugoid frequency., The other modes are usually oscilla-~
tory, but may become aperiodicj for example, transonic "tuck.,"

In several instances, immediate simplification is possible., The classical
analysis indicated regions where the density gradient effect 1is negligible, A quick
check will give the speed above which it is not rational to consider nonzerc initial
flight-path angle in a constant-coefficient analysis., Requirements are usually
stated in terms of level-flight trim. On the other hand, effects of small y, are
not negligible at low speed and high Cy, {as might be found high on the back side of
the thrust-required curve) but, neglecting the density gradient, are generally
negligible at any-higher speed, lower (;.

Solution of the equations above is recommended for accurate analysis, but it
may be worthwhile to develop approximations for specific cases, A few simplified
phugoid results are presented in Table IV as a guide, All apply only when 7y, = O ,
the phugoid and short-period frequencies are well separated, and any thrust deriva-
tives are subsumed into the nondimensional aerodynamic derivatives (for example,
following the definition above of X gubstitute

ac

p _ cos& T
du a®S du

fordCD/au.)
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TABLE IV
PHUGOID DYNAMICS, CONTROLS FIXED.
Quoantity Form
Bp €+2Lw,s *+ wo or (s+-|—l(s+l—)
K To1 4 Yo 9%m)
(20w, or (-'-+ L) p* —'—[C v % (CD“ cDranE}( a*T_2_a ]
n'p T TI*D" 2 u CNg {(Nm-cq)
(CL 3 3CL)
"2 du A
2/.L,CN (N -cg)l 2t 27 {CL™Cp }Cmq A Cma] (zcwn)sp(“’n)p/("’n sp T
Cmy
x PSY_ 1 TIT Vo dqm Smay Vo 0N1. .9 ( CNQ)
(w } or { ’Tzlp m (N -cg)[ﬁc{-Z Bu CN (CL 2 )] 2‘ Nm-cg
the tatter approximation for negligible Cmu- CLu’zT‘ and smallf.
{ I
Kls +2 )l s +=)
Afs T T . . | [
when C) .= C = 0 oand =—>> —
dels) Ay Bgp L8~ D3 T2 T
- 9
K CL KEE cmse
ey 0CD
Lo 1 o TN - L
T 2t [cNa +2(CD+ 2 du )] T 2T CNG
1:% Yo oCp Yoy,
T 2¢% (o255 )Cua“(cl-* 2 3a) (€L Cog)
Asp: See Table I, Short- Pericd Dynamics.
|
Kis + =)
Ayts) T : s
when C( .= Cpg= 0
Sels) Dphgp 3 3
K =
2rc|_|<,’e' "‘3, )
L.
2 2
Ayis) Kis" +2Lwys + w, ") when 92— : M. 4
81’(5) Ap Asp 681' gT

als)
3Tis)

L Vo 8C X
K- = ?(CL 'Eq )rnVo 5T

2lw,= - 4_r_|<_,’(c'“q + cmdl

(TZT_VO aCm)
2: _ 9 g g Se 2 Ju_
“n 7 CLleEE “Ng C|~..|,..l L Vo OC ]
2 &
K Z s
5—5‘: when %-— a%b.!r- =0
¢ = L2
maST
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These approximations do not account for density-gradient effects, but may be
useful in establishing trends even at high speed. Where derivative changes with
speed (Mach number, etc,) are small, it may be valid to apply the corrections given
above for the classical theory to phugoid period and damping. Similar corrections
could be derived for transfer-function numerator coefficients,

When interested only in frequencies well below the short-period natural
frequency, one can substitute

w? & ‘——E—}—- Cy (N_-cq)
nsp CL|KyE Nd m

for A.s where the latter occurs and keep only the constant term in any numerator
factor not of interest per se,

The preceding auxiliary relations for a, ¥ , q, and w hold here, but when
considering small speed changes the altitude change is given by

h =Vsiny = Usin8 - Wcos8

Vsiny, + (Vg cosy,)AG + (Vgsin 70"35 - (Vycos p)Aa
in the stability axis system,
2. Lateral=Directional Motion
Current requirements, where quantitative, relate Dutch-roll damping to the ratio

of bank-angle and side~velocity amplitudes in the Dutch-roll mode,|4)|/ |ve| (See
Figure 13) and bound the permissible spiral divergence.

11

{deq) t time -~

181
) S57.3vy

Ve T4 time —=
(deg)

Figure 13. Definition of Ighl/lv,]|

Quantitative gpecification of adequate lateral.directional dynamics is difficult; a
number of interrelated parameters are involved (See, for example, (Reference 33),
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jiince the importance of a parameter depends upon the values of other factors, it is
igain appropriate to present more-or-less-general equations of motion and typical
ipproximate transfer functions,

It is possible (for example, with large dihedral) for the usual roll and spiral
wodes to combine into another oscillatory mode, as shown in Reference 8., There is
1o essential difficulty in analyzing that case, just the conversion from

(s +-.:.—s)(s +-.I|.—R) to [sz + (28wq)gps + wnzSR]

in the characteristic equation. However, the flying qualities of such a vehicle
would generally be unacceptable, For that reason attention is restricted te distinct
spiral and roll modes. Similarly, the approximate factors consider only oscillatory
Dutch roll motion., However, the equations of moticn below apply in any case, The
equations represent lateral-directional motion uncoupled from longitudinal motion,
They assume small perturbations of a stability-axes system at constant speed and
unity normal load factor. Sections IIIB and IVF discuss large-amplitude rolling.
Nonlinearities, including nonlinear inertial coupling, are neglected below as are
engine gyroscopic effects. The effect of constant normal acceleration, ignored
here, 1s to change those derivatives that vary with angle of attack, and to add
often-negligible trim and perturbation terms proportional to the steady rates P,, 0

Q7
and R, (References 6 and 32) and Appendix III), At supersonic speeds, aerodynamic
stiffness in yaw tends to decrease with increasing angle of attack, Mach number, and
dynamic pressure.

The linear small-perturbation equations can be written in terms of real-time
acceleration derivatives

= L 9L 2 L ON I I A
Li- Ix di ! Ni Iz FYE Yi mvoai s B,p.r,So,Br,

modified to include the effects of I,; in the derivatives:

I I
Liq-_..&!_Nl N, + =2
: I, , T P
Ly ® S Ny = 3
I I
| - X2 | - _Txz
T I I,

With this nomenclature, for no airemass motion (implying that v = ¥ sin 83 3 v, £)
and zero initial conditions on f(3,¢,y, and their time derivatives,

s - Y3 ~Yps - %o- cosy, (I-Y,)s- vq-o- sin yj B ‘l'8 YB

’ ’ 2 ¢ ' - 4 4 e
-Las-Lg s=Lps -Ls $ |= L§ 3+ Lg B,*
_Nbs- N'B -Nps o~ Ns ¥ Ng NB

where 3 = 8a, Or or any specified combination (the equations being linear, the
principle of superposition applies), B 1is v/V,, and ﬁg is ‘Vg/vo' {Referpce 3
Ws & weore faorcas dveakmook of  guet Cesponya N
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A detalled analysis should start with at least these equations, but insight can
often be gained more simply from the approximations below, based on Reference 8.
These approximations neglect Yps Yyrs NB, LB' » and y, . Additional assumptions for

estimating the characteristic determinant A are:
| Cygn, =5 Capll| < 4z | Cag]
yg“ne ZK: np -8y Ha2 ng
leypea | << am, ﬁ:lc; I
B *r K, ' B

when CQ'B is not negligible itself

. K,
[pteng gtz il = S|

o
|—¢£€ tc:,p --ZCL'K:)I <«< |c}lp|

and [ 4 < 0,2. (Reference 8 indicates correctionms when { 4 is larger)., The
approximation for (wn2)¢ involves assumptions that:

lc,Bc;,J <« 4p.z|C,',B|, ICYBCM «< ap, ]céﬁ | when CiBis not negligible itself

L4

. 2 ,
|c,,8{c‘lr - F&ﬁcn”ﬂ <«<ap, |c,8|

when C!'B or Cia is not negligible. Again defining CLl = W/q*S, the approximation

for B; uses the assumption that
’ . ’ ] ¢ ’ 1 ! ! 2
‘cystc,pcnr— Ca R, )| << 4, | Crel 2, Gy Cny * 2L, K

As used in this report, primed nondimensional derivatives are the counterparts of
the primed acceleration derivatives; that is,

I I
—XI ¥4
’ cli + Iz Cni ' Cni + -!: Cﬂq
Cp = —=5— Cp, = 2 ,
| [ - Ixz i | - Ixz
I 1, Iz

i = B, ptb/2v), r(bs2v,}, 8a,3r, - - -

Derivatives with respect to & should be consistent with the input: 8a, &r, or
a specified combination. (One or twe of CI;S R Cy8 ’ Cﬁ's may be negligible.) For

side—gust inputs, substitute B derivatives in place of § derivatives,
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TABLE X
LATERAL -DIRECTIONAL DYNAMICS, CONTROLS FIXED

aio = (seg)oeg)[s" +2unys + oy ]

Lo: =] [c' - == (Ch - 2KZC )]
T a4l LT Tgn -
C4
1. 9 Be _¢
T | R AV,rKZ (c;,B Ry n,)
2 . g »
: —3. ¢
Yng® T kZb “B
L| z 2 Ci
. z l 4
: . X 48, c
‘Zgwnd [CyB + — ZKZ nr xz an ( ZK: np)]

Ngpgls)= Kgs [ s + (20wn)gs+ {wn )¢] = K¢y s+ Kepsy ¢ Zgwn)¢s+l(¢éw:)¢

. g ’
K & —Lor ¢
3 cL e Iy

2} L 9 c' ( | - C';B céB)
(wy ¢ CLlezb "B CRS CnB o
C“B y

s | _ -
R et

8 ]
c —2 ¢
la_ﬂ) Cis, 13]
Nggls) = 8 S+ B, s + B;s *+ B,

By = 2—TCy8
g ! [ f Kz ! L 9
B, :— ——3—|Cha * 7—CyalCp, + —5 C : - c
2 CLKz°b [ 3 Au, ’8( T okE )] C KFD "
g . ' ) 2
B £ Ch Cy ~CglC, ~2Kic, )
| 4rCLKZK2b["S"D Ls 2 L.]
] g ’ J
: —— 57— (CnaCp - CRyC
B BTéKSKS D "3 2, “Ry*n
. 0] ‘
R, :{ —2=—¢C
3 CL;Kzzb n3
g CosCh — CholCl + 2K2 Cy ) + 2K Cy,
Re ar c, K, Ky b [ s Lo’ “TX My x Oy’ B]
2 9 neCor~ Co Chd + Cyo (Cp Cr-ChnCh)
R Bric,, K, Kb [C’B‘C"SCEP %5 Cnd * Cog! CagCp™Cig 1o
gz . Il F) ]
z ~ (CpCnp- Cnelin)
Ro = ¢ oL KexkZe 3R 'EiB
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Oy = V(B +r)

A lateral accelerometer x feet ahead of the center of gravity of a rigid air-
frame will sense (See References 4, 6, and 8)
ay = VotB +r) - gl pcosy, + Aysiny )+ xr
A yaw-rate gyro mounted rigidly in the vehicle will in general be inclined to the =z
stability axis at an angle, say 8., that varies with angle of attack., Such a gyro
will sense a rate

w = rcosB, + psinf,.
Similarly, a roll-rate gyro will generally sense a component of yaw rate:
w = pcosf, - rsinf

where Bp 1s the inclination of the roll-gyro axis to the x stabllity axis. See

Reference 4 for a more comprehensive discussion of instrument readings, and of axes
transformationa in general.

Stability augmentation involving simple feedbacks of 3, p, and r with negligible
lag can be accounted for by using equivalent derivatives {(See Section IIIAl, for
example) in the approximate factors above, In any case one can always solve the
equations of motion simultaneously with the control laws or use the method of Refer-
ence 9 to find the characteristics of the augmented airframe., It may be more
convenient to use axes aligned with the senasor axes, accounting explicitly for
product of inertia and initial Z velocity (for example, Reference 8), The results
will be valid for motions that do not call for control-surface deflections beyond
the limits of augmentation suthority or rate.

2
The ratio (wn¢/wnd), of interest for aileron control, is approximately

Wy 2 Cn Cp
(Wni)amé ' - c;,aa ¢ .
d Sa nB

A general expression for the Dutch-roll roll~to-sideslip ratio, wvalid for any
input, is

18] v, [p.oea.| [Nggisa?| v, 5
IS R B L) ™

where

sq is - (Lw 1y + Jug /0 a—§: or ~{8wply - ;m,,d,/u-;’.
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When the input is a pure yawing moment, a fairly simple form results. Again
neglecting Yp, Ypy N3, Ly , and y,, in terms of the dimensional acceleration

derivatives there results

l_‘_f_’l . -, 84 +(L'B+Yﬁl:f)

|B| sdz"L'psd' %;L'r

When I-{%—ﬁr|'<<lﬁ:|,upon substitution for sy, the magnitude of the quantity becomes

lpl [ (Lg + YU 2 + 20wy )g L'y (Lg+ Y3 L) + twglgliy)’ ]"2
181

tw [ (U? + (28wyig Uy + twedly |

When this expression is simplified to the full degree of approximation used in
deriving the transfer functions,

i . 1z
2 Cj Cy
l |+ K Cﬂ@ 2 | 2, 2
4 | -——|C X ;z
|¢I . K:GEB 4’1-2[ Yﬁ.‘- 2}(12 cI"lr Kx B(Cl...|| ZKZ pﬂ BFZK:( cﬂB) %
181~ 2, | K: K2 CaB i K2 (Cip)
b = —— i ! Dz | ‘p z p
R Aa Ky [c’B+ ZKZE Cor K2 c"'B(cL' gKf “p) cnﬁ +e,12|<;' C"B }

Note that ||/ |3 is not quite zero when CB'B =0,

C. STICK~FREE DYNAMICS

Requirements are stated (for example, Reference 15) on dynamic stability with
the cockpit controls free., Vehicle response to pilot-~force Inputs is also of
interest, since pilot feel is usually related more to force than to deflection.
From the material in this section can be found vehicle transfer functions for control-
force and gust inputs, as well as general characteristics of the controls~free motion,

With an irreversible control system, the effect of freeing the pilot's control-
is generated only through the artificial feel system (including detent, friction,
etc. effects). A bobweight can affect the vehicle response (See Appendix IV), but
a simple spring feel system will merely tend to move the controls to their force-
trim position or keep them fixed there.

In the presence of friction, the effect of freeing the controls is liable to be
highly nonlinear at all amplitudes, A positive detent will reduce limit cycling,
but at the expense of higher breakout force., A simple limit-cycle residual oscilla-
tion can be analyzed by several methods: phase-plane, describing~function, etc,
(See, for example, References 10 or 11,) In view of the many places throughout the
qgntrol and stability augmentation systems where nonlinearities conduclve to '

sidual oscillations can exist, it seems impractical to present detailed nonlinear
analysis methods here. Reference 16 analyzes a simplified longitudinal residual
oscillation caused by friction.
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To gain a little insight on controls-free dynamics, however, we will consider
only idealized cases with no nonlinearities, We will further assume that control=-
system dynamics (excluding feel) forward of the surface themselves are negligible
(Appendix III). Aside from residual oscillations, actual controls-free dynamics
will generally tend to fall between the controls-fixed and the idealized controls-
free cases, the characteristics varying with amplitude.

Stick-free motion with a reversible control system involves all the force,
moment, and hinge-moment equations developed in Appendix III, although decoupling the
longitudinal and lateral-directional sets is still generally possible. Separation of
the longitudinal motion into simpler short-period and phugoid equations is also often
lepitimate. Aeroelastic deformations can be Important, but here we neglect them.

It is common practice to ignore the control-inertias-and=-damping coupling terms
in the vehicle force and moment equations, leaving such coupling only in the hinge-
moment equations (Appendix III notes an exception), Often the control-surface
natural frequencies will be far enough beyond the controls-fixed vehicle frequencies
that surface dawping and inertia can be ignored even in the hinge-moment equations,
In that case equivalent stability derivatives can be formed to use in the controls-
fixed equations, so that the hinge-moment equations are entirely eliminated,

1. Longitudinal Motion, Stick Free

Consider first an irreversible control system. A bobwelght near the center of
gravity, for example, will change the stick-free maneuvering neutral point, Né; the
effect on short-period frequency is immediately apparent. As can be inferred from
the discussion that fellows, such a bobweight has no effect on total short-period

damping, (2w, )sp'

A bobweight far removed from the center of gravity, however, adds a new term
in the z~force equation proportional to pitching acceleration, This term changes
the form of some transfer-function numerators (Appendix IV); the equations of motion
are then a simplified form of those shown next for the reversible-control case, For
linear control force, a bobweight contributes

88 # =i (%‘})B [Vig-ar-2gd]

in near-level flight,

For a reversible control system in straight, level flight with a nonstatic~
balanced bobweight, elevator mass unbalance, and a downspring, we have for force
trim

Fp = 0 = —g— [ q"Se%aCh + Hp - Wei"e] + (_g_r?')B
or
oF,
C, *;rs'l'—e-—.[wﬁe"HD - '%' (-a_nl)a]

vhere W, is the weight of the elevator; Te is the distance, normal to the hinge line,
of the elevator center of gravity forward of the hinge line; and Hp is the downspring
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hinge moment, From Appendix III the dynamic hinge-moment equation can be written in
terms of angular acceleration derivatives (hinge moment + Ia):

1 -

-- Pr m. 7.V, .

S+ £ '—J————°°(a-}éH—%+HAa+H-d+Hq
(cosAe Ig )q Ia 9 u a a 9

. B aFe . . 8
+ HgAB + HeB + EI_;(W)B[“BC'_V(G @] oI, fe
vhere (C, is given above):

2
Vi Set V, aC
Hy = im(ch+ _g._n)

I, ou
M. = 9"SeTe c
a IB hC!
onseaea - ac
Hg = G i Cp, 7 ac, 72 (- o)
V,S5.E,C T
= PY¥o%°C - ac
Ha al,  Chg ' g T % 13 (5%,)
e =
q™ Sgce
"5 1e ch8
. _ PVoSeCel -1
at +1 =£xrdm=i+m!? -fonAf ly |7, dm, slug #1°
cosde R, e cosle ee ele e’

I, = elevator moment of inertia about its hinge 1inel? slug £e2

-Ae = gweepback of elevator hinge line

]

12These should be considered effective values for the elevator control system. Refer-
ence 37 gives the effect of a control stick near the vehicle center of gravity
for an unswept elevator hinge:

H o= 104 +8)-mgrel Vold-a) - £ed] + Glﬁs[ls(elzs 8-4) + Hyla-al

where I, my, and T, are for the elevator alone, Ig is the control-stick moment of
inertia about its pivot, and Hg is the mass moment of the control stick about its
pivot: positive when it tends to move the stick forward,
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£ = distance along the x reference axis from the center of gravity forward
to intersection of x axis and elevateor hinge line, ft

r, = distance normal to elevator hinge line, positive forward of elevator hinge
line, ft

Yo = e distance from elevator hinge line forward to elevator center of gravity,
ft

Xp = x-reference-axis distance from the center of gravity forward to bobweight,
ft

m_, = mass of elevator12

o s slupgs

This equation can be solved together with the others (Section IVB1),

The small 3 coupling terms in the Z and M equations (See Appendix III) are
normally neglected. Even so, elevator mass underbalance {or a large bobweight) and
close aerodynamic balance (See, for example, Reference 21) can introduce a severe,
detrimental coupling between short-period and elevator modes. Such coupling is to
be avoided, but can be analyzed,

More commonly the coupling is weak, with the frequencies of the two modes well
gseparated, It can then be assumed that (neglecting friction) the elevator follows
the vehicle motion perfectly, Then the S and & hinge-moment terms can be neglected,
This is done in the following simplified analyses.

(a.) Short-Period Mode

The short-period equations then become, upon substitution for & ,

Z
_ ¢ _& ’
(1-25)8 -2, -1, Ha""+ZQ' Aa 3\ .
= —Fe
Mg ‘ Hyle ©
~Mjys - Mg (1= g IntsMq| | a Mg
where
' g * .
7% z - =8y , i® a,da,q
1 1 HS 1
Mg ¢
ME M- —2H i*ad,q
1 HS i
t q*S, &
a8 ave
Ha- Hu- Te Cha
2 RH. - =2 = (%) - z _— - h
He® Pa I.[Gq(dn 5~ me%e ] I, 2V, chg” M’
v oF, *s [
T2 o B (%ey . +1. 3
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PO QP el G .
A cosAe Ig Glgg \ dn /g
oF
4 8 (9%
Pn P SaCqC Gg (an )B Me rﬂ]

The characteristic equation has the form

KA&(sl = KA[sz + 2‘5%5 + wi] =
and the transfer functions are
KN (s)
KAA(s)

When In # 0 (this differs from the usual definition of mass balance, T = 0)
the equations become much simpler, Still neglecting effective C;,_  and ch'r s the

approximate elevator-force transfer functions can then be interpreted in terms of
the (controls-fixed) elevator-deflection transfer functions previously given, with

S  replaced by —e—t—— o~ [ R - [AFe)feaI]

q*SeTeChe ©
d
c
.-
cNa replaced by (CNa Cha Chu)
Cma replaced by ( c""a Cha)
C
C replaced b [c -—m-§—(C = h
mg 'eP Y [Cmy hg ™ Mo}
8
Cmq replaced by [Cmq - Ch (Chq"'hn‘]

N replaced by Nm', the stick-free maneuver point,

Generally, the major effect of freeinpg the elevator is equivalent to changes in

Ctrlcl and Np. In this simple case a bobweight near the center of gravity does not
change the stick-free (2Cw )sp but increases the stick-free ( wg ) for an aft

control surface (See also Appendix IV). For forward control the bogweight effect
is the same because G 1s then negative, but the mass-unbalance effects are reversed,
The normal elevator floating tendency (negative Cha and ChS )}, on the other hand,

decreases stick-free CNQ and gives positive increments of stick-free Cmq and c‘“d
for any control-surface location.

Control-gystem friction can introduce a limit-cycle oscillation, controls free.
This nonlinearity is discussed in Reference 16 for simplified vehicle dynamics.
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(b.,) Phugoid Mode

With control force trimmed in straight, level flight, substitute A3 obtained
from the hinge~moment equation., Then the three simplified longitudinal equations,
neglecting density-gradient effects and control-surface dynamics, can be written

¢ ’ ! xs 2 ’ 7] u
s - X, ~Xq s ~Xq —T-I—S—Ins ~Xqs t KA Vo Xs
‘ ’ ' Zy 2 d 1 B8
-2y (1-Z3s-Z 4 ——Hélns -+ Zg)s bda = | Zy Asl, <
[ ’ ’ MS 2 ) 6
-My -Mgs — Mg (i*ﬂglﬂs-qu A MS
b -

’ X +
vhere X, = X ———ﬁli and the rest of the terms are as defined previously; H+ =H .
i i HS i u u

In the absence of stability augmentation, it can be shown (Reference 3, for
example} that freeing a mass~balanced elevator has negligible effect on the classical
constant - @ phugoid motien, For the usual oscillatory phugoid, well below the short-
period frequency, & , 8, and & contributions are negligibly small.

The major effect (beyond that noted for the short-period motion) 1s the modifica-
tion of the u derivatives, M, in particular, through Cy The bobweight, mass under-

balance (negative r,), and downspring each contribute negative Cj, or smaller negative
Xy and Z,; and, for either forward or aft control surface (negative or positive G),
the bobweight contributes a positive incremental M. A downspring would have to

become an upspring for forward control, and mass underbalance (T <0) contributes
positive M,, for an aft control, negative M,, for a forward control,

As can be seen from the stick-fixed phugold approximate factors preceding, a
bobweight increases (W 2)p through positive AM, but the effect is reduced when

CLB is gignificant, The bobweight decreases (2§h+)p through smaller -X,, and positive
AM,.
2, Lateral-Directional Motion, Stick Free

The result with both ailerons and rudder free is quite cumbersome, but the
equivalent derivatives given below may be of some use in simpler problems where
many of the modifying terms are lacking, For that purpose we neglect S and 8 ternms.

In the hinpe-moment equations of Appendix III, taking

e R = Bb b pb
Hr- q Srcr(ChrﬁB+chrB-'W° Chr Zvo Ch pav + Chva Asr,
- Bb rb
Hg= "*su‘-‘a‘ch B Chy Bavo ha, 2V, +Ch 2\5 Ch AB"’

carefully match the reference dimensions to those of the data used. Some, if not most,
of these derivatives will be negligfble, Substituting into the hinge-moment equations
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and the controls-fixed lateral-directional equations {(with the product-of-inertia
terms retained explicitly), we get for a straight-and-level-flight operating point

+
t + . | t . | T g , t
(¢ - B-2-c B-Yd-=C, d- =d-vi+icC--C )
4#?_!3 2t CYB I¢ 4, VD‘ﬁ V°¢) m 4!_;,2 Yy
Cc
2s  ¥8q Bg s s B
mVoSaZa Chy. Ca ['Z'm';’fea]* VS(Er Ty Cr [F (AF}fee!]
r
where
v | m ST, Sy
c - - m SrEr Chf
Sr
hq A Ch, A
C.; = Cy GBCY -—-r—BCy
B B Chy. Y8a O, b
gﬂ Sr
c
d e oy (1- B2 1B 3y
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where

and
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It will be noted that:

(1) Rudder mass unbalance adds terms proportional to bank angle in the
rolling and yawing moment equations and alters the <¢ term in the side-force
equation,

(2) Freeing the ailerons adds a rolling acceleration term to the side-force
equation. Free allerons also modify the coefficients of ¢> in the rolling

and yawing moment equations; one effect is to modify Iy, only in the yawing-
moment equation., This last effect limits the accuracy obtained by substituting
modified derivatives into the controls-fixed transfer function approximations.
Also, modification of the equations to eliminate Iy, is not as convenient

when ailerons are free,

(3) Terms heretofore neglected (Yp, Yrs» N3 ,e04) can at times become
significant when modified for the effects of free controls,

In practice, control-system nonlinearities can cause a limit-cycle oscillation when
the controls are free,

D, RUDDER USE IN ROLLING MANEUVERS

In entering a turn, perfect coordination can require fancy footwork. Analysis
of large-amplitude transient rolling is complicated by the nonlinear (sinuscidal)

variation of the gravitational side force with bank angle, and possibly by nonlinear
inertial coupling as well, Within the limitations of linear analysis, characteristies
with aileron control only should be examined. If sideslip anpgles developed during
aileron rolls are marginal or excessive, servo analysis techniques to get modal re-
sponse coefficients (See Reference 31) can be used to determine acceptable gains of

a proporticnal ailleron-rudder interconnect and other stability augmentation or pileot
action., Obviously, increasing Dutch~roll stiffness or damping should help. Alterna-
tively, the interconnect gain can be found that will introduce no Dutch roll or no
gideslip bias,
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The sideslip transfer function for control deflection is, from Sections IVB2
and IIIB,

Bis) . Y353+BZSZ+B|5+BO sta+8is + By
3(s) (s + _TI;)( g+ —_I:la)[sz-p 2(Lwply s +(wn3}2] g(s +T|—R)[52+ { 2§wnjds + “’n:]

In the approximation, according to the limit value theorem (References 17), prolonged
aileron application leads to continuously increasing sideslip unless B, = g/Vv *

x(N'S L;_-Lé Ni-) = 0, Thus, step alleron deflection will eventually result in a con-
stant sideslip only at high speed or when (Né/Lé) = (N]:/L;). The linear 3 time

response, then, is a2 combined logarithmic and oscillatory approach to a sideslip

angle that is either constant or steadily increasing with time as long as lateral
control 1s held in.

Reference 28, for example, shows that Dutch roll in rolls is approximately zero
when w, ¢/wnd = 1, where

N’ Y
F - ¢ ’ : ' 8 o N ’
wn¢ = NB+YB Nr—?g(LB+ YEL._)"'—'L.SiNBLr-LIQNr)
wnzd 2 N'B + g N,

., a8r ,
bs " Lso™ 330 3

' - L as L

Ng = Ngt asra Ns,
. 25

Ys * Ysq*t 385 o

It was assumed in developing the lateral-directional dynamics that| YB L'r | << | L'BI.
Then it can be shown that the Interconnect gain must be

adr . “N§g Ug * Yso't, NN, L'g)
asu = ’ _ ’ £ g
NSe Lg T Y5 Lk Ngm NiLig)
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Paralleling the assumptions already stated, assume that

4

Ivr(L‘rN -N LY <<

INS UL |
3 B "B 3r B
{Note that when Ln 20 ____S__aar = - YSG ) In most cases Y is negligible: even
B ! a Q Y * 80 g g *

r
when it is not, one would normally expect IYSGI not to be much greater than |Y8r[.

Then with fairly wide generality the gain

' c + Laz c
28r . _ Nag . . "8 Ix %3
380 Nar

I
Rt .+ 28
cnSr * Iy CﬁSr

will keep the Dutch roll from appearing in rolls, This gain is similar, but not
identical, to the steady-sideslip gain of Section YIIAl, It can vary widely with
angle of attack, since the product of inertia and possibly the derivatives, too, are
functions of a .

Where a step lateral control deflection produces steady sideslip,

0 T
o . R[_,- +_ 9 ‘o conl N ]
S nad[ LSth v)+N8Lp+Y8(LDNr NpLYy)

which gives the interconnect gain for zero steady sideslip:

] r q . ¥ . R ] 1] i
8¢ _ _Tt3oMNp~ W) +Ngglpt Yo (LpNr ~Nply!

' ) g s 4 F ’ ’ '
08a  -Ly (Np- 1) + Ng Lp+ Y5, (Lp Ny = NpLY

This corresponds to our previous result to the extent that, in a particular case,
¥8q 0 Yy, » and (Np' - g/Vv) are neglipible (As in Section IIIB, the g/Vv term is

incorrect at large bank angles), That is, it may prove quite feasible to reduce both
ogscillatory and bias sideslip in roll entries by proportional rudder, Again, the
interconnect ratio can vary greatly witha and M, lad- lag aekwecks aun shape e

VepornHe .
In a steady, level, coordinated turn, the side force is zero:

- | rb .
= = (Cyy 80+ Cy  Sr+Cy ) =0
B %3 YSq y§,° T VW 2y
r=gvsmq5
Cp' Sa+Cpl S +¢cp L2 :
£5s0 T Oyt T, 5y T O

' ’ + rb .
Cn3080+ CHSrSr M C"r ev 0
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yielding the control deflections for coordination:

Cel _ CESI’ nl
Sa ¢ -gl; sin ‘o Cny T
4 ’
avicgs, . "8a “fb
Cﬂéu Cngy
s
[ - c it
n ’ 2
5, = -gb sind ' CﬂSu ’
2vic, Cngq L,
' T Cﬂ’ga C"’Br

vhere ¢ = cos-l(lln). See References 3 and 21 for further discussion,

Phasing of the yaw and sideslip in rolling maneuvers can be investigated by
using the transfer functions of Section IVB and their inverse Laplace tramsforms,
The initial side acceleration for a step input is zero (neglecting Y ). The initial
vawing acceleration is

Iy

' Q*Sb(cn8+ T ces)

E. PILOT-INDUCED OSCILLATIONS

Based on NACA research, Reference 15 requires that the force in sudden pullups
be not less than that in steady pullups to the same load factor. The requirement is
an attempt to prevent pilot—-induced oscillations (PIO) but, as noted in the reference
cited, many other attributes of a flight control system can make a vehicle PIO~prone,
High short-period damping and controle~gystem damping and inertia help satisfy the
requirement. Reference 38 notes that in a reversible control system small (. and
small positive Cha , or a bobwelght, gives lower forces in abrupt maneuversj although
large negative Cha and Ch8 can give initially high force followed by a reversal in
abrupt maneuvers, These reversible~system extremes have generally been avolded for
other reasons as well (See Section IVC),
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More generally, PIO tendency Is related intimately to control system nonlineari-
ties and to the form of contrel adopted by the pilot, Causes are still somewhat
controversial and cures are laborious, but Reference 39 and articles and comments in
Reference 40 by Richardson and A'Harrah, Levi and Nelson, Ashkenas, and A'Harrah
summarize the present state of knowledge and give additiomal references, Among the
factors to be considered are vehicle response characteristics, control-system inertia
and damping, friction and backlash in various places, cable stretch, actuator dynamics
(including nonlinearities such as rate limiting), stability augmentation dynamics,
pilot arm inertia, pilot time delay and neuromuscular lag, form of pilot control
(normal acceleration, rate of climb, pitch attitude), variable gearing and force
gradients, etc,

As noted for example in Reference 26, linear coupling of pilot and vehicle can
produce a PIO; in that case a lateral-directicnal oscillation attributable to
favorable aileron yaw, A bobweight not far forward of the center of gravity causes
loss of anticipation, while pitch rate or pitch acceleration feedback can improve it.
Reference 41 describes these longltudinal effects in a specific configuration,

F, INERTTIAL COUPLING

Linearization of the equations of motion and separation of longitudinal from
lateral-directional motion require neglect of inertial terms involving products and
squares of the time-varying components of linear and angular acceleration (Appendix
III pives a complete statement of the vector acceleration on a particle with respect
to a moving reference frame). Trends in both ailrcraft and missile design have
sometimes led to violent motions caused by these usually-neglected phenomena, in-
volving large excursions, high structural leads, or both., Observed motions have
been duplicated analytically by incorporating these gyroscopic terms, and by repre-
sentations of the gravity force that hold at large angles. Reference 42 gives a
number of analyses in more detail than can be presented here. The motion has
essentially five degrees of freedom, with only forward speed reasonably constant.

While a full analysis, including control motions and significant aerodynamic
nonlinearities as well, i{s absolutely necessary with vehlcles suspected of being
prone to inertial coupling, insight can be gained by a simpler analysis., The
method presented here 1s a modification of supplementary notes by Schmidt, Bergrun,
and Merrick of the (then) NACA Ames Aeronautical Laboratory. Assume, for a start,
that (= 5= R=QF R," ®0= ®0= \I’0=O,13 and let @, be the initial inclination of the

0
principal x axis. The principal axes (I,, = 0) used here are slightly more convenient,

P ——

laAs the requirement of Reference 15 states, other entry conditions must also be
considered, Here, because of the necessarily limited scope of the approximations
presented, such consideration has not been given, See References 32 and 42 and
Appendix ITI for appropriate modifications to consider motion from turns, pushovers,
and pullups,
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provided that the derivatives are available in that system. The equations of motion
can be written In two notations:

B4y - =9 A

Btr-plagtal = <-sing + Zr(CvBB+ Cy, 2V + CY—E—-!-CyS 80+c,8r8r)
3.
Vv

sing + YBB +Yr+ Yo + YSOSG + Y8 Sr

- f-Y
_B+r-p(ao+a) = r

; + 9 -1y - at qE
. a 9
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9 o Qg Totg eV o "%, Ev 15, s

p + lqr = BB+ LBB+er+Lpp+L80+L8r

where a , 3,8, ¢, p, q, r, and the 8's are perturbations (with p, ¢ , and 3
possibly large) from operating-point (trim) conditions. For accuracy, significant
nonlinearities such as Cn{f3, a) or Cm(3) should be incorporated. One way to express
the gravity vector in full is with direction cosines (Reference 41), Machine solu-
tion is indicated in any case. It 1s important to analyze recoverles as well as

the rolls themselves, and a range of elevator and rudder inputs.

The formidable equations above can be linearized by assuming a steady roll
rate p,, that is large compared to the other motion components. Then ¢p= 0, ¢p = p_t,
and the degrees of freedom are reduced from five to four; the assumption is similar
to that in the two-degree-~of-freedom (Y, [3) Dutch-roll approximation; it holds
when |4)/;3|d is small, or when the Dutch roll motion is not significant. This
approximation, then, should yield the steady-state response fairly accurately. The
forced motion with constant control-deflection input will now Iinvolve steady angles
of attack and sideslip, upon which is superimposed a sinusoidally varying gravity
effect. (At the high speed normally required to get a high roll rate, the gravity
effect should be minor.) The characteristic equation differs, of course, from the
product of the approximate short=period and Dutch roll characteristic equations be-
cauge of the inertial coupliing terms retained, Typfically, as roll rate, Py, is in-
creased the short-period or Dutch-roll natural frequency decreases until a divergence
occurs in angle of attack or sideslip.
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At this stage of analysls the expressions for the steady-state conditions are
still fairly messy, so further simplification is indicated. Engine angular momentum
normally causes a small difference between left and right rolls, Neglecting that,
Ps Zd . Zq, Yr' and the gravity effect, the constant term in the fourth-degree

characteristic equation is

: 2 2 2 2 2
a, = lwnsp‘I|Pm’Wnd“Ist’ + (I, Yg + MgNIsZy + N py
using the uncoupled short-period and two-degree-of-freedom Dutch-roll approximations:

2

wnsp 2 - Ma - Zan)
wng * Ng*+ YgN

The divergence boundary is defined by a, = 0. Negative a, indicates divergence.
Calculating the change in a, with available roll control (pa)) is a fairly simple,
yet fairly accurate, way to estimate the degree of roll coupling tendency. The
method is useful in defining level-flight conditions for which a more detailed
analysis is needed. Extension to other initial conditions is possible by using
appropriate values for derivatives, etc,, but then the accuracy cannot be attested,

The steady-state incremental angles of attack and sideslip are Qg bolao,
I%n::co“h where, neglecting Yp and Y, as well,

. 4 3 _ 2
bo* ~ 81 13Pp = Y1, I3 '[ ao(Mqu Il‘Yﬁ) + NplMg+ IiY’BH' I M+ZI'YBl] Po

2
~[N(Mq+r,YB) + Y(MgN, - I,Nﬁi]pm- (ZMg - M) wq

. 3 2 - 2
Co ¥ 11[ Np-I3lazZy- Z]]pw + T (N-YI,Z Ipy, + [ ta N, + Np)w“sp

2
“MULZg* N + ZUMg* MON Jo - (N + YN wps

The underlined terms contribute even when the control input is a pure rolling moment.
The remaining terms represent: '

= _l. + 8r)
Y Zthysa&u c’Br
N
Z = 27 CLSeSe
me OSE ¢ 8¢ + Cr. Sa)
*IY TSe M3
q"Shb
N = {(C, Sa + ¢, Or)
I, "Sa NS¢

Where lateral~directional characteristics vary with @, calculation of @ allows
iteration to refine the a, calculation.
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Directly from the force equations come the steady-state solutions
% Polp = Zg = Z

pla +a+Y)+YaB . +Y :
: Po% " %0 pT BFw .
® " =Y, * Pt ag)t Y[:'s’Bc:o"'Y

The rollingemoment equation then gives a check on the applied moments assumed:

Sa * —L—'-[LSrSr + Lorp* LB,BOO+ Lppm]
Sa

For a stable steady-state solution to exist, the necessary conditions are
(1) a5 >0, and (2) increased 8a must produce increased Py 3 that is, dpa)/dsa >0,

It can be seen that the steady-state excursions and the inertial-coupling
contribution to effective aileron deflection tend to remain small until p, approaches
a critical value (giving a, — 0). Typical steady-state responses illustrating
inertial coupling are shown in Figure 14, taken from Reference 43, in terms of
principal axes,

6
Q | .
ﬁ; 3 5“' /
! $ af ,
S
ao 1 1 i A | I -g 3— /
q 2 |3 5 6 L ey
a, - Py  rod/sec) R -
i - o]
ao “\ 80

p—

Figure 14, Imertial Coupling Trends with p_ = and Sa

Inertial coupling may increase adverse yaw in rolling pullups and favorable yaw
in rolling pushovers, A possible result is a large, rapid change in "steady-state"
roll rate, Engine gyroscopic effects also vary with pitch rate, Stability augmen-—
tation possibilities include feedback of nonlinear quantities such as pa , pq, or pr,
in addition to the feedbacks and control coupling used to augment the linear response,
As the equations of motion imply, accelerometer measurements include nonlinear-

coupling components, Linear acceleration at a point other than center of gravity
is complicated even more,

G. SPINNING AND SPIN RECOVERY
Spin recovery must be demonstrated by flight test only for relatively small
aircraft, For example, Specification MIL=-S-25015 (USAF), Military experience

indicates, however, that for flying safety the spin and spin-recovery characteristics
of any piloted flight vehicle should be determined before the first flight.

82



AFFDL-TR=65~218

Spin characteristics can be determined analytically through six-degree-of-
freedom dynamic analyses with large high~speed digital or electronic analog computers
(Reference 44), but determination of the aerodynamic data needed for the analysis
requires both static and dynamic wind-tunnel tests to extreme angles of attack, The
computer analysis may nevertheless be quite worthwhile for unusual configurations or
those which show evidence of critical spin or recovery characteristics, and for
analysis of incipient spins, other post-stall gyrations, or flight-test results,

Spin-tunnel tests provide usually accurate estimations of characteristics of
fully developed spins and recoveries (Reference 45), Incipient spins often are not
critical if steady~state spin and spin-recovery characteristics are satisfactory
and not unusual, The two spin tunnels in the United States are on a standby basis-
one at the Air Force Flight Dynamics Laboratory, Wright-Patterson AFB, Ohio, the
other at the NASA Langley Research Center, Langley AFB, Virginia. Problems may also
be investigated by drop or catapult tests of dynamically similar, radio-controlled
models,

Occasionally, flight tests show completely different spin and recovery charac-
teristics from those found in the spin tunnel, The discrepancy may result from
failure to simulate the spin entry, or perhaps from inadequate simulation of Mach
number or Reynolds number when Froude number is matched,

In preliminary design, the spin and spin~recovery characteristics can be
estimated to a fair degree of accuracy by comparison with similar configurations
of known characteristics.

Spin entry is sometimes difficult, but Murphy's Law applies generally; if there
is a way, someone will find it, For that reason, launched-model tests and flight
demonstrations at times will have to encompass all conceivable entry techniques,
These include the normal rudder kick at the stall and falling out of maneuvers
such as turns, loops, and zooms.

1, Developed Spin

Spins can be steady or oscillatory, depending on vehicle characteristics, Some
alrcraft have exhibited two distinct modes of spin, one steep and the other flat,
References 45 and 46 together give a good qualitative and amalytical picture of the
steady spin, See also Reference 20, The use of rotation~balance wind-tunnel data
in dynamic spin analyses is discussed in Reference 46; apparently the spin axis was
through the model's center of gravity.,

Spinning is associated with stalled flight, which differentiates it from the
inertial coupling in roll of Section IVF, To avoid an infinity of spin investigations,
standard contreol positions are generally specified: full pro-spin rudder, full nose-
up (away from the ground) elevator. In a steady spin the flight path is a vertical
helix, with centrifugal force balanced by the horizontal component of the resultant
aerodynamic force. GCenerally lCYl<<"'é§ + Cg, so the airplane nose points down
and roughly inward, through or toward the spin axis. Commonly the wings are nearly
level in a steady spin, sc the pitch angle ® is approximately -'%:+ @ and the
generally small sideslip angle is approximately sin~l(-{lR/V )} +A [ where R is the
radius of the spin helix and {) the spin rate., The balance of vertical forces gives

-2{W/S)
PSCph plCycosa + Cysina)
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Combining this result with the balance of horizontal forces, we have

q & - 9 (stinQ-CzCOSﬂ ) : g
Q° Cxcosa + Cpsina .Q,z tana

the last approximation holding when, as usual, | C,|>>]Cyl.

The body-axis rates p, q, ¥ in a steady spin can be found from the Euler-angle
rates V=), =P=0, Then the principal-axes nonlinear moment equations of
Section IVF can be shown to reduce in the steady state to

L1}

2
FPVSBCy = i I~ I,) 0% cos’ @ sin 2® 1,11 Q%sina sin 20

| — 1 .
-iszSch.f i, -1, 1022 sin2® cos D - —|2-( IZ-I,)QZ sin 2a cos @

5 PVISbC: - (1 - L1 0%sin 2 @sin®

> < 11,-1)Q%in2a sind

2

A steady spin requires a balance of aerodynamic and inertial moments and stable
variation of aerodynamic-plus~inertial moments with spin rate. One can consider an
oscillatory spin to consist of oscillations about a steady spin; then the moments

are never all nulled at once, but may average out in time. With I, generally greater
than I,, the spin rate is determined by the magnitude of the nose-down aerodynamic
pitching moment:

- pvistcpy
(I,-1,)sin2a

Qs

Airplane_nose-down elevator thus tends to increase the spin rate, up elevator to
decrease it, The aerodynamic yawing moments vary with a as well as with 8, &r, =,
etc, A potential spin (with wings approximately level) exists at the g for which

rb

Cp = 0 (in the simplest case, where Cﬂrif_'i -CnSrSr). The rolling-moment equation

is usually satisfied easily by finding the appropriate sideslip angle; this does not
upset the yawing-moment balance very much because Cnﬁg is usually small at the spin
angle of attack,

Aside from a few generalities, the only value of a steady-spin analysis when
the actual spin is oscillatory is to furnish a starting point for further analysis.

2. Recovery
The most natural spin recovery procedure is anti-spin rudder, The yawing moment
gives the proper r to bring r to zero, terminating the spin. Except where I, = I,

the yawing-moment equatfion indicates that the gyroscopic yawing moment can also be
used for recovery:

sin 2a sin® .
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When I, is much smaller than Iy or I,, the most effective recovery technique thus
may be to bank into the spin (right aileron in a right erect spinla). Allerons
normally remain effective, but spollers gemerally do not because they are blanketed
at high angle of attack. Some configurations, then, inherently require an auxiliary
spin-recovery device, In any case, emergency-recovery parachutes or rockets are
required for military spin demonstratioms,

3. Aerodynamic Factors

At the normal low sideslip angle in a spin the rudder remains unstalled, but
its effectiveness Is reduced by blanketing at high angle of attack, at least in erect
spins. The tail-damping power factor (TDPF) assesses the remaining rudder contrel:

Fr® (R R

TDPF = >
5{b/2) S(b/2)

— 2,

Relative wind
{assumed at 45°)

Fipure 15, Tail Damping Power Factor

A rough measure of the fuselage contribution to aerodynamic yawing moment can be got
from the side-area moment factor (SAMF).

1AIn an inverted spin, pilot orientation must be considered. A right spin as viewed

by an upright observer is a left spin to the pilot who is inverted. To depress
(toward the ground) the retreating wing then requires, from the pilot's viewpoint,
"right" control deflection in the inverted "left" spin,
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All,

SAMF = W

ﬂl,ﬂa measured from
center of gravity to
@ N centroid of A and A,

respectively.

Qe—t—n 1,

Figure 16, Side Area Moment Factor

These parameters can be used to get a rough idea of spin and recovery characteristics

I
in terms of the inertia yawing moment parameter ._3__3rli
b
Figures 17 and 18 summarize NASA spin-research data on the steadiness or
oacillatory nature of spins and on recovery procedures. Although these charts may
be used for preliminary estimation, it is recommended that a similar configuration
of known characteristics be "carried along" for comparative purposes,

References 44 to 49 contain a number of analyses and test results that may be
useful in solving design problems.

1.Oor
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Figure 17, Influence of Mass and Side-Area Distribution on Nature of Spin
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Figure 18. Control Required for Satisfactory Spin Recovery

A spin energy factor Eg can be defined (Reference 46):

| 2
E = E-Iv51 : Iy Cm
2 5 2 - !
s "IZ'PVR Sb (I,-I,) sin 2a

wvhere I is the moment of inertia about a vertical axis. Generally, the hipher the
value of Eg, the more difficult is the recovery.

Model-testing techniques to simulate full-scale boundary-layer transition are
discussed in Reference 45, Use of rotary-balance and oscillatory-balance data is
described in Reference 46, which also treats the rough estimation of spin rate,
vertical speed, and angle of attack from wind-tunnel data,

Nose strakes, canards, and changed fuselape nose cross sections on occasion
have improved spin and recovery characteristics, As noted earlier, spoilers are
often Ineffective roll controls during a spin. Differential horizontal-tail deflec-
tion has been suggested in that case. Engine thrust {(if available at high a ),
leading-edge slats, and other factors tried as a last resort have saved a few
airplanes.
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SECTION V

SPECIAL TOPICS TREATED LIGHTLY

A. STALLING AND PITCH=-UP

Analysis of the stall is still an aerodynamic art, generally beyond the scope
of thig report. As an introduction see References 50 and 51, which describe the
effects of wing geometry on straipght and swept wings, respectively, Reference 52
shows the effect of vertical location of the horizontal tail, The effects of power
and flaps must be considered. Controllability, including pilot force, is also an
important factor. Icing, or even deicer boots, can influence stall characteristics,

1, Stall Warning

Wind-tunnel tests at high Reynolds number may indicate the angle of attack for
buffet onset, Tuft studies can give clues to areas where local geparation might be
triggered to cause wing buffet before the stall, or wake surveys could aid in
horizontal-tall placement, Beyond that, the designer is on his own., Getting
adequate margin and intensity of warning fq;\gll required combinations of power, flap
setting, gear position, etc, is quite trickggy. See, for example, Reference 53,

When artificial devices are resorted to, it still may not be simple to find a
good sensor location for all configurations, or even a sufficiently rugged, reliable
unit, Military and civil aeronautics specifications differ on acceptability of warn-
ing form (aircraft or control shaking, aural, visuval, etc.) and on speed margins
between warning and stall, but all specifications agree on the need for stall warn-
ing. Obviously, the poorer the stall characteristics, the greater is the need for
warning.

2. Roll-Off

There is no good way to analyze the severity of rolling tendency at the stall,
except by comparison to vehicles of known characteristics. Reference 54 shows a
relation between full-scale rolling moments measured in a wind tunnel and pilot
rating, but viscous effects and model inaccuracies can mask results of less—ambitious
wind=tunnel tests, The best recourse is to design carefully for a stall that starts
inboard and lateral control that remains effective,

Configuration variables such as wing planform and horizontal-tail vertical
location can lead to an unstable pitching=-moment break associated with development
of the stall. This phenomenon sometimes occurs at angles of attack well below the
full stall, Control-stick gearing nonlinearity and rapid speed reduction through
the range of transonic aerodynamic-center shift can also contribute to pitch-up not
necessarily related to the stall, Emphasis here i1s on the first-mentioned charac=-
teristic, illustrated in the sketch,
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CL»

At any altitude, pitch-up makes pilot control difficult, At low altitude, high
speed, there is danger of structural failure during pitch-~up or recovery, At other
flight conditions, angles of attack may be reached where lateral-directional stability
and control become unacceptable or the airplane is prone to enter a spin., Even if
pitch=up is followed at higher angles of attack by a stable moment break, there
then exists a second stable trim angle of attack., Since control effectiveness is
often reduced in and beyond the pitch-up range, recovery can become impossible from
such a flat descent,

Thus safety considerations limit the teolerable amount of pitch-up. The accepta-
bility of lesser degrees of pitch~up is a matter of pilot opinjon related to the
mission and use of the vehicle, Reference 55 gives pilot ratings of six aircraft
that exhibit pitch-up, while References 56 and 57 describe analytical comparisoms of
other airplanes to these six, Starting at a constant initial rate of normal ac-
celeration to the pilot's threshold of perception, estimated at g = .15 deg/sec,
an 0,4~second lag is assumed before the pilot begins to move his control forward at
a constant rate, The analysis uses two-degree-of-freedom equations of motion with
pertinent nonlinear forms of Cm(a,S), accounting for aeroelasticity where necessary.
Simplified nonlinear equations that account for speed changes, also, are given in
Reference 58,

Pitch=up often is most severe at high subsonic speed. Important overshoot
parameters to evaluate are angle of attack, normal acceleration, and £light loads
during pitch~up and recovery. The severity of pitch-up is influenced by entry rate,
degree and extent of nonlinear pitching moment, and recovery-control rate, Control-
effectiveness parameters suggested in Reference 56 for comparison are:

aM/aSHmk
angle of attack - —_—
Iy O max
oad factor - W OM/98gtici
y “max

where 8Z/0Q 1s an average value in the unstable pitching-moment range. Increasing
control effectiveness helps decrease the overshoot up to a point, but may increase
tail loads even more,
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These preliminary design methods should be supplemented, if a problem exists,
by pilot evaluations In simulators and finally by thorough flight evaluation,

Fixes, in order of preference, have included one or more of aerodynamic changes,
stability augmentation, and automatic recovery {stick pushers), Anything much short
of eliminating the instability will generally limit the useful flight envelope to
some extent and fall short of completely eliminating the hazard,

B. DIVE RECOVERY

The flight envelopes required by Reference 15 are bounded at high speed, low
altitude, by the need to recover from a dive to level flight without ground contact,
Also, civil aeronautics requirements specify that no unsafe flight conditions result

during specified upsets or recoveries,

Surming forces along and normal to the flight path, in a vertical-plane maneuver

v g(T(:mt";'-D

W - sin)f)

y = %tn - cosy)
Also,

h Vsiny

In a pullout, minimum altitude is reached when y becomes zero. Combining the
equations above,

- !_ siny
o =3 (n-cos y) dy
i v Tcosé-D _
v = (n-cosyl( w - smy) dy

Now we need, in general, other equations that specify stick and throttle action,
p(h), T(h,v, Sthrottle}’ n and (from Sections ITA and IIC) Cy and @, Step-by-

step integration from ¥ = ); to =0 can then yield the altitude loss.

For a constant-n, constant- ¥ pullout, however, only the dh equation is needed
and it can be integrated explicitly:

I

where Yy, 1s the initial dive angle,

An incremental altitude loss should be added to account for normal-acceleration
lag in response to recovery control. At constant y ,

dh = V sin y dt
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For a nominal two-second response time (gsee sketch below),

) EQUIVALENT
g
A8 t ASSUMED
1
H . :
O0 | 2 3 t —-

a Ah = (Vvsin y; ) (1) should be added. Then for constant load factor and speed,

2 n - cos
lanl s Y fa (—228) 4 Vlsing,|

In pullout charts for pilot's handbooks, a 25-percent safety margin may be added,
C. FUEL SLOSH

Thorough analysis of the dynamic effect of sloshing liquids involves the com-
bined equations of elastic and ripgid vehicle motion, Such treatment is beyond the
scope of this report, Further, such analysis for stability and control normally is
needed only on vehicles that have large tanks (relative to vehicle size), are very
flexible, or both., Commonly the liquid is represented by spring-mass—damper com—
binations. See Reference 59 for an example, Reference 6 for some data, or Reference
60 for a bibliography. In aircraft, large fuel motions are usually limited by
baffles., Smaller motions, for example in a tip tank, can chanpge effective stability
derivatives by modifying elastic modes.

Some configurations are liable to significant center-of-gravity shifts because
of longitudinal acceleration, In at least one case, the resulting trim change and
instability have been embarrasing during, for example, a balked landing. The shift
in center of gravity can be calculated easily for the worst case.

D. FLIGHT CONTROL SYSTEM DESIGN

Design of primary, trim, augmentation, and automatic control systems is a field
in itself, beyond the scope of this report, Reference 61 is a representative flight
control system specification, Normally, somewhat idealized characteristics are
assumed in preliminary design. The important factors at that stage are the accept-
ability of the concept; necessarily rough estimates of maximum hinge moments, friction,
required surface rates, reliability, etc; and functional assessment of normal and
emergency operation. Successively fuller treatments follow, up to a complete im=-
plementation of the actual flight control system in an "iron bird," with wvehicle
dynamics supplied by an analog computer, before flight. This procedure has been
found necessary for "debugging" the design of powered flight controls, and extremely
valuable in aiding the flight test program.

The discussion here is general, far from exhaustive, hardly indicative of the
depth of the subject. The practical problems of synthesis are themselves thorny.
The material presented may serve as a brief overview, with mention of a few current
developments and problems,
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1, Normal Operation

Authority limits are generally set by performance considerations., The primary
control and trim systems must in a broad sense allow full utilization of the flight
envelope, 5Stability augmentation authority is usually a compromise between large~
amplitude stabilization and hard-over failure considerations., Interrelations among
the flight control subsystems can be important. For example, consider a control
surface actuated by both the primary-control and stabilization systems, To augment
stick-fixed stability requires that augmentation not move the cockpit controls;
therefore, the primary and augmentation signals must be in series., Then, when
primary control authority is set by a stop at the surface, full primary control
deflection allows no further deflection in that direction for stability augmentation,
Such interactions can influence control-surface deflection limits, Other Inter-
relations involve failureée considerations discussed farther on,

Primary and augmentation-system maximum rates depend on vehicle dynamics. The
control rates should minimize additional lags in vehicle response to cockpit=-control
inputs of large amplitude, such as in landing flare or full-aileron rolls, A dis-
tracting interaction analogous to the one discussed above can arise when primary
control rate command "bottoms" the actuator valve, Then series augmentation signals
may cause unwanted control-stick movement,

Slow aileron and rudder trim rates are acceptable, but selection of longitudi-
nal trim rate is touchy: the firnal choice is best made in a piloted flight simula-
tor. Control forces, the time they are held, their frequency of occurrence, and
their variation over the flight envelope must be balanced against fallure-transient
considerations.

Other nonlinearities, elasticity, etc. can have important effects on the
acceptability of a flight control system, See, for example, Sections IVC and IVE,
Vehicle aercelasticity can assume prime importance in gust-alleviation control
systems,

2, Falilure Considerations

Specifications govern both transients upon failure and system performance after
fallure., Resulting trim changes are specified in terms of allowable pilot force or
equivalent normal acceleration, roll rate, etc., These quantities, as well as
stability, maneuverability, and trimmability after failure, can be estimated by the
methods of this report., Control authority, rate, or integrity can be affected by
a flight~control, hydraulic, electrical, or secondary power system failure, Failures
can be of several types, including hard-over, soft, and oscillatory. Other subsystems
such as fuel transfer or engine inlet control have important flight-control ramifica-
tions in some designs,

Pilot force can be assisted by adding a proportional supplementary hydraulic
force, This boost has the safety advantage of retaining a direct mechanical connec-
tion between stick and surface, but at higher boost ratios the extremely high pilot
force after boost failure renders that advantapge meaningless., A fully powered
primary control system with artificial feel then becomes easier to mechanize; it can
be made redundant to the degree necessary for safety., Some aircraft with completely
dual systems have been lost, ejection or ballout hawving been relied upon for ultimate
crew survival, Modern techniques show promise of sufficient reliability even for
commercial operation with triply redundant, self-monitoring, fail-operational, second-
failure-soft, powered flight control systems, Electrical signal paths can improve
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response, incorporation of artificial stabilization 1s simple, and a mechanical path
can be retained for backup, Ingenulty has also increased the flight spectrum over
which boost or powered systems are unnecessary, through artful aerodynamic balance,
tabs, etc,

Primary and trim systems in series can result in inability to maneuver, to
maintain l-g flight, or even to recover, descend, and make an emergency landing follow
ing a trim failure if trim authority is too large a portion of primary-control
authority, Runaway trim is a prime consideration in setting maximum trim rates,

A major design goal has been to have a flyable vehicle without augmentation, so
minimum flyable levels of unaugmented dynamics have generally been maintained., There
has commonly been little need to augment static stability electronically, although
reliable mechanical devices (springs, bobweights, etc.) have been used extensively,
Normally, sufficient authority has resulted without exceeding structural limits 1if
a hard-over failure should occur. There is clear indication, however, that these
practices cannot always be followed for some advanced missions. In those cases it is
necessary to design (and prove) commensurate levels of authority, reliability, and
safety in the augmentation system as well, References 9 and 14 indicate how the
problem can be attacked, considering all reasonably and remotely probable combina-
tions of failures,

A pilot, after percelving an augmentation failure, can adapt his control
characteristies rapidly to the new situation. Danger exists, though, that he will
not immediately detect an unexpected soft failure, In some cases his consequent
failure to adapt can result in a rapidly divergent pllot-vehicle response, even
though both the vehicle alone and the closed-loop system after adaptation may still
be stable, In failure analyses, the techniques of Reference 33 can be used to
establish probable pillot characteristics in normal flight, That pilot model can
then be used to determine closed-loop stability before adaptation to an augmentation
fallure., In simulator evaluations the pilot can be given occasional random failures
to cope with, spaced out to minimize his alertness,
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APPENDTX I
AN TLLUSTRATION OF AEROELASTIC EFFECTS

The analysis of aeroelasticity is a field in itself (for example, Reference 62).
The intent of this appendix is only to give an uninitiated reader a little insight
and to Indicate the kinds of changes that aeroelasticity causes,

Two kinds of aercelastic loads distort the structure and thus modify the aero-
dynamic coefficients and derivatives: air locads and inertia loads. To illustrate
the mechanism, consider the effect of wing torsion on

- _ q¢ ac
CL ® CLla-a,) * & Gy + o, Fu

The static aeroelastic effect is to change the local angle-of-attack distribution
over the wing. In many cases this amounts to changing the section angle-of-attack
distribution along the wing span. The local angle of attack can be envisioned to
comprise contributions from the rigid vehicle, from airloads, and from inertia
loads in linear superposition:

_ R A I
a, = ag + Aas + z}.as { See Footnote 15)

With the kinematic relation

9 . e .
y ("-csy) =y =q -a

we have
Ac‘sI = 9;;;' b [";—(q-—ﬁ)‘l-costa-a)] ?;n:
so that
O !::cﬂﬁu 9 ) dy * ch jé%" +C?.a’%'\§r'
: %I::cﬂac{“‘ as':+ &a?(a =Q) + :‘:ﬁ a+ i‘éa( :Ev - g$)+ cosl@-a)]%':!-} dy
——

15( )g refers to section characteristic; ( )R and ( )E to rigid or elastic value;
( )A, ( )T to airload or inertia load contribution, The section lift-coefficient
slope is cﬁa , and the local wing chord 1is c.
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It 1s apparent that the static aercelastic effects on 1ift can be represented by:

. . E _ R A I
(1) Change in a: a, = a, + Aa, *+ Aao
£, b/2
or aE . - CL (Q-O)z -1 f c[ R A )
0 E E “4q -dso+Aas(a-0)

A I
dag as

+ + J ]d
da © an O Y]W

Airload, redistribution at zero overall lift coefficient and deflection under
the vehicle's own weight cause this change. Thrust from an engine below the wing

A
for example would similarly cause a change in a, . (aas / 0a and similar terms
are to be found by separate analysis,)

¢ E
. . E . L R
(2} Change in cLa' cLa ( cLaR) CLa
E /2 A
where (CLQ )= =xl ¢ R _l_fb e ¢ s dy)
CLaR CLf\ “ta S Iz ta da
for small y.
c, E
, E L R
{3) Change in CLq: ch = ( c qR )CLq
L
q
h E /2
where (CLQ) : zvz fb cp © aus dy
E
(4) Change in C ,: c, E = c, B
¢ L4 Lg ( CLg® ) La
E
whera (CLC',); o 2V2 J,tn':! dasx )
CLE q SECLE Joso B Ton Y

[Note that the integrals in the first, third, and fourth effects are identical, and
that (CLq + CLd)is not affected by deformations under inertial loading. ]

(5) Change in Cp,s since the aercelastic effect on CLa » through dasA/da,

varies as 1/2 p\l’z. Cross=-plot CE versus ¥ at constant ¢ and zero pitch rate
to get the correct CLu.
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(6) Change in wing downwash, which will affect a tail,
Moments, as well as forces, naturally are affected by aercelastic distortions.

There also arise derivatives due to pitching acceleration, § or g . Ina
dynamic maneuwver a tail on a flexible aft fuselage, for example, will lag behind
because of its inertia. This lag gives rise to C,. and possibly C;, (though at least

q
the latter would likely be negligible), and similar lateral-directional derivatives
due to p and r, See Reference 63 for a short exposition on Cp,. An aeroelastic

analysis commonly includes also unsteady=flow effects as a function of the reduced
frequency, wt/ 2V, At and below rigid-body frequencies, unsteady flow usually can
be neglected, Other possible problems include static and dynamic coupling of
structural deflections with the flight control system,

The intent has been to show the effects that can occur. Naturally, the
insignificance or imprecision of some derivatives may obviate thelr aercelastic
correction, Another approach, using normal modes of aercelastic vibration, is
commonly used (Reference 3 has a short introduction), If structural and rigid-body
frequencies are fairly close together (say, well within one order of magnitude}, the
aeroelastic and rigid-body effects can couple in a more complicated way. Then aero-
elastic "corrections" are useless and a more-involved dynamic analysis must be under-
taken (Reference 64), 1In calculating aeroelastically-modified stability derivatives,
it is important to consider the effects of all structural modes, Reference 64 gives
a way to include the residual stiffness effects of higher-frequency structural modes,
Then 1if rigid and elastic modes are not closely coupled, and if aercelasticity
introduces no significant new derivatives, the metheds of this report can be used
directly with the modified derivatives,
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APPENDIX II
CONTROL TABS

Especially at subsonic speeds, tabs are useful in adjusting stick (pedal) force
levels, (Trans- and supersonic applications are limited because of transonic hinge~
moment variations, loss of effectiveness of the more common inset tabs at the higher
Mach numbers, and the general use of fully powered control systems anyway on such
vehicles.,) Control tabs can obviate the need for high boost ratios or fully powered
controls, even on gquite large aircraft,

As will soon be seen, there is an inexhaustible variety of tab mechanizations.
Some incorporate springs (sometimes preloaded) to keep forces high at low speed
while lightening them at high speed; some increase the stick-force gradient with
speed. A representative sample will be discussed, so that the reader can readily
analyze his own system 1f it is not covered here. See References 22, 23, and 65 for
more discussion and references. Tab flutter can be a problem, but 1t is not dis-
cussed here,

Two approaches are frultful in linear analysis; expanding the matrix represen-
tation of the static {or dynamic) equations of motion to include the tab degrees
of freedom and expressions for the linkages, or modifying the derivatives in the
relations presented earlier, Both approaches will be illustrated. Hinge moments
can be quite nonlinear at moderate-to-large deflections, as in rudder lock; and
linkages, springs, preload, etc. can contribute other nonlinearities, A tab may
have to operate in a region where separated flow is present or impending, as on an
aileron at the stall, The simple methods of nonlinear analysis given in this report
may be of use in a rigorous analysis, The basic action of the control system,
however, can normally be analyzed with fair accuracy over most of the flight envelope
by linear methods,

Pound-foot=-radian measure is used throughout these examples, As a result, care
must be taken with quantities that are often given in other units: angular deflec=-
tiong, linear dimensioms, spring constants, etc,

GEARED TAB

—— o
b
=y

Figure 19. Geared Tab
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The ratio &t /8 can be found by the simple graphical process shown. In this
arrangement the control-surface hinge moment is reduced more, proportionately, than
is its control moment, The effect is to modify the derivatives ChS and Cms (here

considering Cp 2 generalized moment coefficient: pitch, yaw, etc,):

Cm 8,81 = cmss + cmat?:f = (cm8 + nglcmaf b
c, (5,80 = ¢, 8 + c,_ B = (¢, + 8L )3
h hs S hs a5 "t
The force in the tab link is, of course,
s _ A"SyTy T
Fb z " [Ch*o + Chta la ~a,l+ ”+(C"t3+ E'&—chtafm]

The minus sign indicates a compression force for positive tab hinge-moment He,

LINKED TAB

" {ft)

l rc(ft}

r,(fﬂ

Figure 20, Linked Tab

Fc 1s applied at point C to an arm pivoted at A, the top of the control-surface
horn, The lower end of the arm, B, nominally on the control-surface hinge line
extended, 1s free to rotate about the upper pin at A, while the control surface
rotates about a fixed hinge line. This generalized arrangement of Reference 65 can
depict the essence of most any control tab arrangement with the addition of any
necessary spring or gear link, The relation between Fe and F. can be seen in
Figure 21 similar to Figure 4:

f (DR )iga = t—>Fg
2

_l:
£, CP=—_.—f——- BOOST i
¥ UNIT 3

e
B

Figure 21. Pilot Force Related to Fg¢
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Now summing moments on the arm about point B,

ﬁ: z H/rc b

Force balance on the arm then gives

Y
Fg = F - Bt w
¢ h "h'e
giving the tab hinge moment:
ror
et
=z - = — - ft
H,f "y FB T e H b - f

For this arrangement forward of the control surface,

b 2,

B[F _'(L\‘Fe)feell"“% 7

H Ib
¢ J'z's 5C

Defining C = - {38/ aAS)Sf rad/ft = ﬂz——:c (See Figure 4; the subscript &t here

denotes the tab held immovable}, we have in general

R~ (Afliger™ —5 H b

The control-surface and tab hinge-moment equations become, upon substitution of the
above relations,

: G Mg

(Cpy * K, c"fo) + (Cpg* KiCpy Na-ag+ -+ (Cpt chhtals +(Cpg * Kuch,at‘S' =0
where
o Tte 5%
K * T ST
e 't e‘e

Eliminating 3t from these two equations,

G =
=q Sat Ch Cha
- B~ %¢ —ot - -
| = =g, lien- 3 Chy,) * (Ong oy Chy - ads
K, chfai cth
+ lc"a"c?s'c"t 18]+ (AFy)teq b
t
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From the definition of Kj it is apparent that Kj = 0 corresponds to a "flying tab"
(see below), while K; = ® corresponds to pure surface control with a floating tab,

With a flying tab, Fe is applied at point B so that only the tab is controlled
directly; control-surface hinge moment is balanced by tab deflection. The stick-
force equation then degenerates; but analysis like that above gives an alternate
expression for the generalized linked-tab arrangement shown:

G

= 2t
Fe = B Ht + (AFe’feel tb
where
a3t &
G, = {3+ S rad / ft
t (665)8 QS l'el'f

Then, eliminating 3t as before, one can derive a single general expression for
Fela, -+ ,8)in terms of Gr. This is dome further on,

To calculate longitudinal trim conditions, for example, the elevator force
equation can be solved together with the pitching moment, lift, etc., equations,
Digital computer solution is quick, or the methods of this report can be used,

FLYING TAB

As discussed gbove, this 1s a speclal case of the linked tab where the pilot
controls only the tab directly. In turn, the tab deflects the control surface by
its aerodynamic moment about the control-surface hinge. Control-gsurface aerodynamic
hinge moments are set equal to zero, and with F, applied at point B we have directly

81]

e
t

= Gt =

vhere G, = ~(68L/das)8, rad/ft. (Watch dimensions throughout,) Combining this
with the control-surface hinge-moment equation to eliminate 3t ,

Ch C
_ _ Gy ow. . 18t hy )
£ - (BE) = o &S5 [(Chto— g, Oy —-—&chs Cp M@ - ag) +
t
t
+ig, - Cpg 18]
'8 ChSi 3

This is the same expression that would have been derived for the flying tab from
the general expression given for the linked tab, It is used, of course, in the
same way.
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LINKED SPRING TAB

Zk b/ ft

Figure 22, Linked Spring Tab

In the game manner as for the plain linked tab we have:

- 6
Fo = S H + (R
Fore = H
r
s &
el
Hy = - —2Lu + kr®5
h'e

The equations are the same as for the linked tab except:

(1) The coefficient of 3t in the hinge-moment equation becomes

(c + K, C Xe )
h t“h - *
3t s q
where
r.r ra
h'C t
K = -——w—'k
2 Te 't Sece

(2) The control-force equation with 3t eliminated becomes:

W =

- - 5 _ _
Ro:-=2 < [‘Chro KyCho! * (Chy o KsChq ! *
Chyt *KiChyo ~ g%
A + (Cp,_- K Cha!| +1AF)
htg "3 hs e'feel
wvhere
Ky, 2
chSt ’81’ t-t

102



AFFDL-TR=-65-218

SPRINGY TAB

With F. applied at point A the arrangement can become a "springy tab," useful
to improve the longitudinal stick-force gradient with speed, Then X3 = ®® , In this
application the spring is rather heavily loaded to move the tab trailling-edge up,
so that the spring force varies only slightly with tab deflection (See Reference 21).
The effect is to add only a constant tab hinge moment:

{spring force) ry

&Cht = - LETES

The l=g-flight equations might be written about the trim point:
Ch'a Chfs Chfo 0 Aa ‘&Chf
> _B 1
Chy ®hg  Chsr "G q*3eCe A% ) 0
Cmg Cmg  Cmy 0 ASt 0
c C C 0 AF, 0

N Na LS LS! ] e

The principal effect is found by neglecting CLSf and CmSt « Then only the
first two equations are pertinent (Aa:= A3 =0) and

S.%, Ch
AFe = 8 e C at(springforce)rt

RSy

which, neglecting compressibility effects, is independent of speed. At any speed,
the springy tab requires about the same incremental pull force to balance it,
Reference 21 shows that such a pull force increased speed stability, dF./dV . Also,
the springy tab acts like the downspring of Sectiom IVCIL,

SPRING TAB

A common spring-tab mechanization is shown below, The arm is pivoted on the
control-surface hinge line but is free to rotate with respect to the control surface.

The angle between the arm and the normal to the control-surface chord line is arm®

Figure 23, Spring Tab
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In expanded form the longitudinal trim equations might be written:

| +— 0 o 0 o-ﬂ w-Ti1
+-— » i Ak na
L' o' Gy gy ° ars
0 o S - L o
c c c rn K cose o o o 5 c
hg hg “h§t+ *s.c. Se%e t hy
r
t - _
Chfa Ch'8 chfS o Eggta O 0] Sarm = Ch*o
) 0 0 -rkk’oosg rg T O Fy 0
0 0 n ‘B o o0 o Fe 0
| o o o 0 0 -2 \ 2 / \ (AF) foq /
—

where G = - { 38 /dAs)Sf as before, Upon eliminating Sarm’ Fgs and Fc there results

T _ W-TiI
Tz
Cmg Cmg Cmgy 0 3 -Cmg- E"—Lse
rhrt k’ 0 8 C
Cc Cha.™ cose€ = -
hg Chy  Chgy ngze-ce Q% @ ho
c ¢ co - "Wk« L Bry . - ¢y
Ma htg by (Zgg at’ o> Crgatsyty e o
+
\ Gr q_"‘S T /
ge vt~

The effect of the spring is to modify chSt and Cht& as an inverse function of q¥*,
The last two equations can be combined to give

-Gr

- B % < _ - - -
F, = T Sfcf[(chto RCp,) Hchta RCp,la + +{|:htEs RChS)S] (AR )eq)
where
r2rcosly, v
Tk k
Chig,~ ] ) *)

ry ¥, COS€,
Cth _( r; ge Ce )(-:F‘)

This form of spring tab, it is seen, acts as a geared tab with gear ratic a function
of speed. There is also a marked similarity to the effect of a linked spring tab.
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TAB=-ON-TAR

Reference 23 gives the following example of using tabs to correct for an
aerodynamic nonlinearity., The C~133A rudder incorporated a simple overhang balance
which tended to overbalance at larger sideslip angles, As a result large, struc-—
turally unsafe sideslip angles could be developed with allowable pedal forces: with
its single linked tab system, tab deflection was approximately proportional to rudder
hinge moment, This problem can be solved by incorporating on the basic tab a subtab
which is linked to both the rudder and the basic tab in equal ratio, The subtab
increases the basic-=tab hinge moment due to rudder deflection and decreases the basic-
tab hinge moment due to basic~tab deflection. At zero sideslip, then, the two
effects cancel and no subtab deflection occurs, giving normal rudder control for
asymmetric thrust, At large sideslip angles the rudder is overbalanced, so the
bagic—-tab deflection is small, As a result, the subtab is moved much more by the
rudder than by the basic tab. The pedal force F,, proportional to basic~tab hinge
moment, is thereby increased as shown in Figure 24,

Rudder Rudder )
; Tab é EBoslcTab

D H [Subfub

cht Cht B0
B=0 £ Large 3
or Fp Large 3 or 0
Sr St

{a) Original Arrangement {b) Effect of Subtab

Fipure 24, Tab-on-Tab
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APPENDIX TIIX

CONTROLS=FREE EQUATIONS OF MOTION

This development is limited to the linear case, with no friction, breakout
force, ete, Only the control surfaces are treated in detail; the effects of the
rest of the flight control system are only indicated briefly. Stability axes are
used,

The acceleration a of a particle dm at a distance r from an origin moving with
linear velocity V and angular velocity w with respect to inertial space can be
stated:

T V+woxV+r +20 xr +wxr
where the dots denote time differentiation in the moving-origin coordinate system,
The linear acceleration of dm can be derived from this vector expression or written

intuitively from Figure 1. Take

Vo= (Uy Fudiob (V)] W+ w)k
w = (Py +p)i +{Qy+q)] +(Ry+r)k
T o= a7+ y?'-f zk

Po=Qg =Ry =V, =Wy = So = 03 and small dihedral, etc, For small perturbations
of a rigid vehicle with conventional control surfaces, the acceleration components
of a particle are then

o, = G+ 29 - yr
0y = v + Uy + xi - zp + re Sr
9, w- Ug - xq + yp - A Se - rq BOL + 1, Sag

where the control-surface deflections are positive in the sense shown in Figure 1
and the ry are measured normal to the hinge lines, positive forward,

Applying Newton's Second Law (for constant mass, dF --Edm) and integrating over

the vehicle or the individual control surfaces, as appropriate, when the origin is
the center of gravity there results:

mu

X {agero + gravity + thrust)

Y (oero + gravity + thrust) miv + Uyr) + mrF.,Br

‘ _ L
miw-Ug)- m.7, 3, + > marO(SuR—SuLl

Z (aero + grovity + thrust)
where my, “me, and my are effective masses of the rudder, elevator, and aileron con-

trol systems respectively; and the m:l.?i are positive for control-surface mass over=
balance,
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The applied moment is TxdF = Txa dm.

products of inertia, we have

L (gero + thrust) = [fr X d dm]
= ‘D—I r +Iyr

[f?x_a'dm]y

T 1,4 + I“eSe -

[f“r‘x‘u' dm]z

:]_'zr

Mlgero t+ thrust) =

N (aero + thrust) ¢

Hq ( aero + static

= —mgTe (W - Uyg)

Hr(aero + static unbaglance + feel) -

8
unbaiance + feel) - —==F,

mrrr(v + Ugr )y + I,

When the xz plane is a plane of symmetry,
[xydm = [yzdm = fe yredm = 0; then, upon substituting appropriate moments and

f(yu i { )dm
{S°R+ SaL)-Iz,Sr

= f(mn -xaz)dm
Ixru{ éuR ‘_.S.QL)

= f(xu, - yay ) dm
"Ixzb + Ixrr

Sr

Be = -'£ reuzdm
+ I,“.ti + IGSe
—G-r— = jr.rruydm

r - Izrrp + I,Sr

Bg
H. (aero + static unbalance + feel)—- — Fu fr a, dm
OR | UR R IURO.-
= 5 my Ty (W - qul+Iyr p + I, 30 "uq
HQL(aero + static unbalonce + feel)— GuLFaL -faLuu dm
: Lzma?q(w Upa) + Tyr, p+—-Iu30|_+ I"q
where
Iy = fxredm
€ e
I‘"r = fxrr dm
r
Izr.. e fzrr dm
r
I”u s fxradrn
IR
ryro = fyrudm
aq
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For conventional ailerons the two eguations indicated must be combined in terms of
Fg = FaR + Fa!..' To counteract adverse vaw or nonlinear hinge moments the trailing-

edge-up aileron is often designed to deflect more than the down aileron. It can be
seen that this practice introduces nonlinearity and aileron hinge moments propor-
tional to normal and pitching accelerations,

We will assume that, for these reasons, at least for small deflectionms,
Ga; = Gap = 1/2 G, and SaR = SaL = 1/2 §,. Extension to spoilers or elevons is

obvious,

For a symmetrical elevator surface with hinge line swept back at an angle Ae,
interpret Figure 25 for an elevator, Then

.
I = [xr,dm = | (& -lyltan A+ —& ) r, dm
Xrg .£e j; e 'Y e s, ©
1
= cos Ao + ml, 7, - ton Aeflyl re dm
s _Ie

+1
cos A, ~ Ay,

where .ﬂe is the x-distance {(positive forward) in the plane of symmetry from the
center of gravity to the elevator hinge line extended, (Note that in this formula-
tion y is the distance to the elemental mass itself.) At normal angles of attack,
the zero- g value can be used.

For a similar (but not symmetrical) rudder,

r
L = [aream = [ '
xr, / xr, dm A (ﬂr+ h, tunAr+ oo brodm

r

I
= md 7 + -+ f
rYr 'r COSﬁr tﬂnAr A hrrr dm

I
a r
H + 1
cos A, Lr,
’-_\Ar H. L.
dm 't
G‘ L e
] "
! J parallel to FRL
z i 1/ cos A (+)

2,t-} A——T h tan A (-)

Figure 25, Ixrr Calculation

108



AFFDL~TR-65-218

Iy = fzrrdm =j;(hr—xa)rr dm :

H
3
-
g'
-
-
a
3
Q
-
o
o
w
(=
pa—
+
—
L)
-

up

Similarly, for the ailerons

r
xrydm = f (0 -ytanA_ + —2 )y dm
xr _L. a a v} y a COSA Q
R R a
Ig |

H] TS-A-O'F?I‘T\OQQFG— fanA.o{Ryrqdm

t (_1a
— + I
2\ cosh 2"u)

-
n

up»

vhere ﬂ‘a is the distance (positive forward) from the center of gravity to the plan-
view Intersection of the x axis and the aileron hinge line extended.

Perhaps a word is in order to explain the relation of the Euler angles ¥V , ® ,
and @ to the body~axis rates P, (, and R, Customary aeronautical practice results
in about the simplest form, but known derivations can be misleading on the point con-
sidered here, Starting from orthogonal inertial reference axes X, Y, and Z, aligned
with the gravity vector and an arbitrary heading, the vehicle 1s rotated in turn
through a heading angle ‘1/0, a pitch angle ®0, and a bank angle $ o to the
operating-point attitude (orthogonal axes Xo, yo, and z,). Perturbations ¢ , 8 ,
and ¢ are taken from this x,, y,, and z, axis system in the same order as before,
so that in general the angles s and \I’o are not coplanar; nelther are 8 and ® o
or qb and 92 o+ In the equations of motion the initial, or operating-point, rates

Yo, 8o, and , 950 are taken about the operating-point axes z,, y5, X, respectively,
80 Yo=Rg, Bg=0Qy,and ¢, =Py, For small perturbations, then, with the
customary division

P=R*op Protal = Pot P
Q= Qt g 8 total g+ 8
R= Ry*+r Viotal = Yot ¥

and the readily-derived (Reference 4, for example) small-perturbation relations

P2 brotal = Viotai
Q2 iotal * Vieta ¢
R 2 Y iotal = & totat P
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there result

R =¢-’o P = cté’"RoB
Qo=éo qf 8 +R,¢
Ro = ¢b r= ¢ "Qo¢

When Ry = 0, g = 6 and p* <£ + When Qo =0, v = @'. Both of these assumptions
have already been made in developing the present equations of motion, so conversion

from p, q, and r to ¢, g y and  1is simple in our case., For a good derivation of
the pravity components, see Reference 4.

Substituting these expressions and the gravity terms into the equations with all
our assumptions, when o = Cpo =0 and ® o = Yo the aerodynamic~plus—~thrust
forces and moments are, in the linear range of vehicle and control-surface motion,

X -mgisiny, + 8cosy,) = mi
Y+mg(y siny, + ¢ cosy) = mv°(£§+ 1]'/) +m,?,§r
Z +mglcosy, -8siny,) = myyla -8 —me?ese

v . 2 I, .
qu) - IxzwI'P Iyru&:- [-Ihrr—d(m + Inrr)] Sr
1,8 +(—2— +1, )3e
y ( cosd g ’"e)

N: Ly -1,é+ I + 19, )8r

-
L1

z
"

8 cosA, o~ MedTs o5 ¥, .
_Bey. . T (. 4y, 9 ! e ;
He ge [Ee (AF;)feel]h‘ Ide ""e'e\'o[“"l 6) \fo@s'ﬂ % ]*(cosAe""Iﬁre)g

ol

o 1 - . . g
r — _ 9 :
¢ TG, [Fr-(aﬁ‘,feel] = I8 + (Hc—:-r.\_;rI: + [hr)l}f + "‘rrrvo[‘B""p A (¢>cos>6 +;ps|n-}6)]

[t o (o + 2] 9
| Ba ] | & "
ZHo" —G:[ AT }feellz TIQSU+ Iyra4’

All control-surface inertia coefficients are taken with respect to the hinge
lines, The control-system inertia, etec. "forward" of the hinge can be considered
to produce external forces and moments, or the inmertial-acceleration coefficients
can be modified to become effective values for the entire system, For example,
Reference 66 considers the effect on alleron hinge moment of a wgfel-tzpe Gsockpit o ot e
control that is influenced by rolling acceleration. (fmf_"““;‘.‘u\ e wu.u:“;f.’..xﬁ‘\ih i )

These linear equations are normally further reduced before use., The two sets
(X,z,M,H.) and (Y¥,L,N,H_,H;) are independent, provided that the yet-unspecified
aerodynamic terms introduce mno coupling. The control-surface coupling terms in the
force and moment equations are generally small, though massive control surfaces can
produce a "tail-wags-dog" effect through these terms. Often control-surface inertia
and damping can be neglected, The explicit Iy, terms can be suppressed by manipulating
the L and M equations (Sectiomns IIIBi, IVB2, and IVD), or by choosing principal
reference axes (Sections IVF and IVG).
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APPENDIX IV
EFFECT OF BOBWEIGHT ON ROOT LOCUS

As an introduction to one servo-analysis technique, consider a bobweight at an
arbitrary location. Assume a rigid vehicle with feel also proportional to control
deflection. Denote the load-factor response at the pilot's location by np, at the
bobweight location by ng. (These correspond to the a; of Section IV; for simplicity,
here we do not use A to denote the change in a quantity.)} The block diagram below
shows several of the vehicle responses schematically, Of course other response

g

. } 3(s) 8(s)
F (s) €(s) 5 ;
e (s} | his) .
-QS els) ] g(‘;)‘]‘_"‘ his )
;‘ll I"IP(S) (s)
o dis)| ! npls
& ngisl nols)
4’ f 8(5) l 8
L
K

Figure 26. Block Diagram with Bobweight

quantities such ag angle of attack are also present. Rather than form equivalent
derivatives for each bobweipght gain, we will express the vehicle transfer function
in terms of bobweight gain Kg., By sacrificing realism for simplicity, we will

neglect nonlinearities such as friction,

nB Control

This simplest case 1s representative of pilot control of normal acceleration
when a bobweight is on the control stick. To find the closed-loop transfer function:

n n
= ( =B)(3- - ¢ (B -
"B _( 3 )( € )(Fé KB"B} B ( Fe )OL(% KB"B)
where the subscript OL denotes an open-loop (K = 0) characteristlc[& oL” (A
(A

airframe)

l] +« Then the closed~loop transfer function is
control system

n
“_B_= (_F_S)OL _ (NnBFe)oL . Nnae |
Fe | + KB(EF%_)OL A0L+ KB(NnBFe)G. AOL 'l"KBNﬂBE
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since

n
(T-‘GE)OL - (N"BFe)OL/AOL

When Ky = 0, the closed-loop transfer function reverts to its open-loop counterpart,
as indeed it must, At any gain the numerator is composed entirely of open-loop
factors (presumed known), so the problem is reduced to calculating and factoring a
new denominator (which is generally a polynomial of the same order as for the open-
loop denominator) for each value of Kz. It will be seen below that these remarks
hold equally well for all response quantities,

np Control

Here again the pilot is controlling the normal load factor that he feels (or sees
on a panel-mounted accelerometer), but the bobweight is not necessarily nearby.
Proceeding as before, we find

np = (_"S_P_,)(%) (Fe—KBnB) = (—nFeE-)OL[

giving the closed~loop transfer function in terms of open=loop quantities:

w1
\
x
m
—
oalms
o
=)
e
—
o }
T
| SE—)

" (% )o Ng, Np
P - - € 'd
LR Ks(@a‘)(ﬁ‘)(%&)m BoL* KaNaNngg

This expression reduces to the one for np control when np = ng,

h Control

Rate of climb is another commonly-controlled quantity. In the same way as before,
we find

(%t)OL NS¢ Nhg

e I o e

o>

8 control

Similarly, the pitch-attitude transfer function becomes
(_.9_

8. oL V3, N5

o

e (ENRNEY, ot Keta Mg,

‘-—-/
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Gust Response

For a vertical gust, a block diagram can be drawn:

[
n_{s)
wg {s) w w.(s) /oL
E + 9
EL: ngls) +f
+ _elsy| Os) g B
Fols)— | €ls) S(s)

Figure 27, Gust Response with Bobweight

The controls-free (FB = 0) response is found by setting

"g * (ang')OL g - (_nga")(“%) Kg"s

giving the closed-~loop transfer function

I'IB _ (WnaB_)OL _ ASE (NnBWQ)OL
L T KB(%B)(%) BgL* KBNSeNnBS

=DB(S)

By substituting u, for wg, the horizontal-gust transfer function can be found,

Observe that all these transfer functions have the same denominator, and thus

the same characteristic equation,

Root Locus

A handy way to visualize the effect of feedback gain is the root locus, a

complex~plane plot of the denominator roots as they vary with gain.

A root locus

can be plotted readily by hand (using a "spirule" or similar device), but the plots

in Figures 29 and 30 were done with the aid of a computer,
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Some of the motion quantities commonly specified (Section IVA) are easily
discernible in a complex-plane plot such as a root locus., Fipgure 28 illustrates
these quantities for a real root and a complex pair. Poles (denominator roots) in

jw
s gt jw Cwn
w
Wn rsin_'f_.',
T o
-1/7

Figure 28, Properties of Roots

the left half-plane, where o is negative, are stable., Poles on the jw axis have
neutral stability, while right-half-plane poles represent instability,

As a numerical example, consider an airplane in level flight at 0.7 Mach number
at 35,000 feet, with the transfer functions shown below. Dynamics of the irreversible

control system are neglected, equivalent to assuming that control-system natural
frequencies are much greater than those of the vehicle., Then

Ois)/els) = Kg = =.0114 rad/1b
€

Initial level flight is assumed, The alrcraft is described by

[sa'* 2(.031X.0668) s + (.0668)2][52+ 20.312){ 1.00)s + |.oo]

o,

g([ﬁ‘;)} - ":(-:)6 (s +.0143 s + .289)

Sk:i,s}, - "A-‘Zj’ (s +.641)(s ~54.5)

_SQ% . ___._Oﬁ;"?s &+ 2(.0412X.0674)s +(.0674)2](s +63.4)
g‘:’ . 13{'5') (s - .00140)s - 4.27)s + 4.41)

_“gf_:% = -3%(‘5;’;- at the center of gravity

"8'2::: = e8s[s? + 2.036003.97s + (3.97)*](s - . 00140)
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at the cockpit, 2,62 T ahead of the center of gravity. In the steady state, the
unaugmented stick-force gradient is 3 1b/g.

A bobweight modifies the control-force transfer-function denominator (with Kg
1b/g from the bobweight) to

Ats) = AOL(S) + Kg {-.0114)(1.495)5{s-.00140)s - 4.27 )(s + 4.41}
with the bobweight located at the center of gravity, or to

Als) = DAy (s) + KB(}’-.or|4rst-|.79)[sz+ 2(.0369)(3.97)s + { 3.97}‘"‘](5—.0014)

with the bobweight on the contreol stick, In each case the gain is indexed along the
root loci of Figure 29, Since this is a linear—analysis technique, it does not
show the effects of any nonlinearities such as friction.l6

L]

16The interested reader can insert the zeros of the varicus transfer functions into
Figure 29 to get an idea of the change in magnitude the bobweight causes in time
histories of each ocutput quantity. When there are no repeated poles, we have from
Reference 17

m .
KIT (s+2z} n
ols) s — izl . KX k
ﬁ{ to.) k= | ‘(s+pk)
e
n —
git) = KT C,e Pt
k=l
where
] i
il;lliz‘_pk
|Ck| = 'n l l
1'=II P; ~ Py

o
(j#k)

sign of C, = +,even number of real roots to right of pg
k =-,0dd number of real roots to right of Pk

Ck, the modal response coefficlents, thus can be calculated from factors scaled

. from the root=locus plot, Thus one can trace the varying amounts of each mode in
the response of any output quantity as the feedback gain varies, Analytical de-
termination of the sensitivity of modal response coefficients is treated <in
Reference 13, '
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Note the similarity of the two cases., Iu our example the phugoid loci (shown
magnified ten times) are jidentical. For gains of interest, the augmented short-
period roots, too, behave similarly. The bobweight effect is about as predicted in
Section VICl: increased short-period frequency, anSp, with little change in damping

coefficient (Quqﬂsp. The phugoid frequency 1s reduced., The gross difference in

short-period behavior at larger gains has no practical consequence, since such high
gains would not be used here in any case,

Without the bobweight, short-period damping is marginal, At either location,
a bobweilght of given gain decreases the damping ratio about the same amount:

Kp sin’l gsp gsp
— “(scaled) —
0 18.5 deg. .32
1 1b/g 16.8 .29
2 14.4 «25
4 12,2 .21
8 10,0 .17

The value C = ,32 corresponds marginally to damping to 1/10 amplitude in one

cycle, the requirement of Reference 15, 1If a bobwelght is needed to get an acceptable
steady-state force gradient, further augmentation such as pitch damping might be
employed to regain the damping-ratio loss., With an irreversible control system,
augmentation signals in series with pilot inputs will not be noticed at the stick,
Then, according to the approximate factors of Section IVBl, there will be only a

small effect on steady-state dFg/dn, (A moderate increase in pitch damping magnitude,
|Cm | , slightly increases Wng s thus decreasing the steady-state gain a little; the

force gradient can be recalculated easily.)

Consider our example with a 2~1b/g bobweight on the control stick. The pitch-
rate transfer, as we have seen, is a combination of the denominator evaluated at
Kg = 2 and the open-loop numerator, as follows:

(9(5)) _ ~4.46s(s +.0143)(s + .289)
Bts) /oL [sz*l- 2(.025)(.0519)s + (.OSIQIZ][52+ 20253 1.18)s + (ua)z]

A pitch damper modifies this transfer function to

_ B(s) .

8is) _ ( S(s)lOL ) NBS

3i(s) 18ty Dot KgNg
'+ %5 (Stevloc 7%

Naturally, there is much more to consider in mechanization, but the gross effect of
a perfect linear pitch damper is shown in Figure 30, The device deserves its name,
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!
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|
Bobweight at cg 2___\ 1
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|
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“=1— gt Control Stick
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Bobweight at cg
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Figure 29,
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.02

04 .0l

-4.465(s +.014 s +.29)

(gé)oi [

8
5, @3],

*

kg

lKé =:§ 1 4 i 3 I128

&+ 2(.025)(.052)5+(.052a2][52+2(. 26X 1.18)s + ue)z]

)

- 1O -0.5

O Zero
X Open-Loop Pole
—— Closed- Loop Pole for Indexed Gain

04 .0

.02
Figure 30, Root Loci for Pitch Damper
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