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This paper presentsthe development of a curved triangular element
for the analysis of doubly~-curved shells, This element satisfies the
the compatibility requirements for the normal displacement w and the
slopes w < and w v by assuming a complete (third-degree) polynomial

for the displacement function. The membrane displacements u and v
are also represented by complete cubic polynomials, A second, less
refined, element is obtained by removing some of the degrees of
freedom of the first element, Two examples demonstrate the con-
vergence of the solution and show that, for a cylindrical shell, the
accuracy is hetter than that obtained with flat elements, while, for a
clamped hypar surface, the results are similar to those given by
rectangular curved elements,
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SECTION 1

INTRODUCTION

Although the finite element method has been well established for several years and has
been used successfully to solve a large variety of problems, a satisfactory curved triangular
element, highly desirable for the efficient analysis of shells of arbitrary shape, has not yet

been introduced, Such an element is presented here and is shown to lead to excellent results,

Finite elements have beenapplied successfully to plane stress (References 1, 2, and 3) and
plate bending problems (References 4, 5, and 6). The method has been extended to shells of
revolution with the use of conical segments and curved meridional elements (References 7, and
8). Comparative studies have indicated that the curved elements lead to considerably better

results,

Shells of arbitrary shape have been analyzed with flat triangular and quadrilateral elements
(Reference 9). The rectangular elements are particularly convenient for translational shells
with rectangular boundaries, but the flat triangular geometry is more powerful since it can
be made to represent a general shell surface. A triangular element has been developed and

used by Clough and Johnson (Reference 10), and by Carr (Reference 11),

The obvious geometrical errors introduced in representing a smooth curved surface as
an angular assembly of plane elements, tend todecrease as the size of the elements decreases
but, for highly and moderately curved surfaces, the number of operations required to arrive
at a satisfactory solution may make the approach unrealistic and too time~consuming, even on
the most modern computers. A curved element which would, for a given accuracy, permit a

wider pattern and therefore require less unknowns appears highly desirable,

Connor and Brebbia (Reference 12) have introduced a curved rectangular element
which, when applied to a clamped hypar shell, gives better accuracy than finite differences,
Utku in Reference 13, proposed an element stiffness matrix for shallow curved triangular
elements using linear functions to represent displacements, Expecting this last approach, no

significant work on curved triangular elements has been reported so far,
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The development of such a curved element is reported herein, The stiffness of the element
is derived from the theory of shallow shells and the formulation is such that full compatibility
is ensured for the bending state of stress while almost complete compatibility is obtained for
the membrane state of stress,

The element is applied successfully to the analysis of shells of zero and negative Gaussian

curvature and the results are shownto be slightly better than those obtained with flat elements,

SECTION @I

STRAIN ENERGY FORMULATION

The stiffness matrix of the elements is derived from the principle of minimum potential
energy, using the theory of shallow shells, which is more than accurate enough for the relative-
ly small size of the elements considered,

DIFFERENTIAL GEOMETRY FOR A SHALLOW SURFACE
A set of orthogonal curvilinear coordinates ( £ L 3 o) 18 chosen on the middle surface of
the shell, the normal coordinate being represented by § 3 This is shown in Figure 1, along

with a right-handed cartesian coordinate system (X, Y, Z),

According to Reissner (Reference 14), the differential surface element is expressed as

dA = a, a, df d,

where ——
o =(§—r- Sr)z(;',‘_,?:'i)
i 8€i 8§£ ’

and T( &€, €£,) is the position vector of a point on the middle surface,
8y &y
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The tangentand normal vectors 1, -_'t; n aredefined on the surface and the curvatures
are obtained from:

— -
| | FT

a. a i
i) L
T on) (g oRe)
n = d X A
a, I a, 2
The assumption of shallowness implies that:
z ,2 << |, z,2 <<
X ¥

R“ TXX
it}
L.,
Ras 87
.. _
Rz o'xy

STRAIN-DISPLACEMENT RELATIONSHIPS

The strain-displacement relationships for thin shells as givenby Reissner are simplified
for the shallow shell and expressed as follows in cartesian coordinates:

€y =ey t £ Ky
ey:ey + C Ky (2)
ny=exy+ c K
where

e, = U,y Zyx W

€y T Yoy Tlayy ¥ (3)

exy = Vi +u,y —Zz,xyw
Ky = W1 xx
Ky & ~w.yy {4)
ny= = 2Wixy

and C is the thickness coordinate normal to the middle surface,
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The strain energy of an isotropic linear elastic shell is given by Reference 15

. E 2 2 I 2
v [f sty Lty teve, 6+ )yl | dLaxay (5)
A Y,
where

t = thickness of the shell
v = Poisson’s ratio

E = modulus of elasticity

After substitution of Equations 2, 3, and 4 for €, €, ny in the above expression and

integration with respect to £ , the strain energy can be separated into the membrane energy

Um and the bending energy Ub .

v =Um +Ub

’m =2(|— zlff [ + o) vave e v gamn ] axoy (6)

- + — —v
“b 24(|- i) .U [ x tKy F20 K Ky + o 1=v) Ky | dx gy

The potential energy is then written as:
$-u-w

where W represents the work done by the external load system,

In the finite element method the total potential energy of a shell is expressed as:

n
-2 4 (7)

where‘f’k is the potential energy of the kth element,
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SECTION III

FLAT TRIANGULAR ELEMENTS

PLATE BENDING ELEMENT

A detailed bibliography of finite elements used to study the bending of plates is given by
Clough and Tocher (Reference 6), A fully compatible element has been introduced by these
authors, who satisfy the interelement compatibility requirements by imposing that, along

an edge, there be a linear variation of the slope of the deflection surface normal to that edge.

In the development reported here, the normal deflection w is represented by a com-
plete (ten-term) third-degree polynomial:

2 2
LA +c2x +c3y +c4xy+c5x +csy (8)

3 2 2 3
+c?x +csx Yy +caxy +c|oy

In order to satisfy the compatibility requirements stated by Melosh (Reference 4) a given
triangular element is first divided into three triangular subregions, as shown in Figure 2,
which point ‘‘¢’’ is assumed fo be located at the center of gravity of the triangle. Three
additional nodes are then located at the mid-points of the bounding sides of the triangle. A
total of twelve degrees of freedom arethenassigned to the triangle; three at each corner node

and one (normal slope} at each mid-point node,

The normal deflection w isexpressedineachsubregion by an independent ten-parameter
polynomial function. The displacement function for the complete triangle then involves 30
parameters, 18 of which are used up to satisfy the compatibility requirements hetween sub-
regions, while the remainingl2 correspond to thel2 degrees of freedom of thecomplete
triangle, The process of reduction from 30 paramsters to 12 to obtain the 12 x 12 stiffness

matrix is similar to that employed by Clough & Tocher (Reference 6),

It may be noted that there is no restriction here as to the choice of ccordinates for each
subregion, The actual orientation of the axes has been chosen such that analytical integration
over the subregion is possible, The midpoint node may be eliminated, and the element con-
sequently reduced to an HCT element, if the normal slope at a midpoint node is made equal to
the average of the normal slopes at the two bounding nodes of that side,
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Figure 2, Projection of Curved Element on Local Reference Plane

MEMBRANE ELEMENT

The plane stress problem may be considered to be a special case of the membrane
problem, and the corresponding element will be referred to as the membrane element for

convenience.

Turner, Wilson, Clough and Johnson, and Felippa, (References 1, 2, 10, and 3) have
used the displacement components u and v forplane stress problems, A more refined element
is studied by Carr {Reference 11) who introduces higher-order displacement components ( u, u,

X
through flat elements and has obtained results better than those of Johnson et al,

u, Vv, v, v,y ). Carr has employed this better representation in analyzing curved shells

In this paper, thetangential displacement components aredefined by u, W, u,y, A\ and

v,y and are represented by independent complete third-degree polynomials for u and v :

2 2 3 2 2 3
u= al+azx +c|3y+u4xy +05x +asy +o7x +aex y+a9xy +a|0y

{9)
2 2 3 2 2 3
v-b|+b2x+b3y+b4xy+ bsx +bsy +b7x +ba" y+b9xy +bl°y
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The procedure by which the 24 x 24 stiffness matrix is obtained for this membrane element
is identical tothat used previously forthe bending element, Sixdegrees of freedom are assigned
to each corner node, and two ( U, Ve ) to each midpoint node at the complete triangle
(Figure 3),

Figure 3. The 36 Degrees of Freedom Element
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SECTION IV
CURVED TRIANGULAR ELEMENTS

In the analysis of shells by flat elements, a significant shortcoming lies in the impossibility
of coupling the in-plane strains with the normal deflection within an element; the expressions

used for strains are

€x 7 U

e = {10}
y ~ "y

e“ =V + u,y

The membrane and the bending stiffness matrices aredetermined separately and are then

superimposed to give the total stiffness matrix of the element, as illustrated in Figure 4a,

In the curved element, the presence of curvature introduces the desired coupling of the
in-plane strains with the normal displacement; this can be seen in Equation 3, The total
element stiffness matrix is then obtained as shown in Figure 4b, We note that, for a shallow

shell, the influence of membrane displacements on the bending strains is negligible,

ELEMENT GEOMETRY

The corner nodes of the curved triapgular elements are located on the middle surface
of the shell according to the desired patternand the planar triangular projection of an element
is defined by the straight lines joining these nodes,

The actual geometry of the elements is then specified by assuming constant curvatures
within any element, that is the actual middle surface of the shell is replaced, within the
element, by a quadratic surface

z(x’y):hlxz+hzya+h3xy +h, x +hgy +hg (i
The six parameters hi are determined by making the assumed surface coincide with the true
surface at six points determined as follows: three of the points are the corner nodes them-
selves, while the other three are points on the true surface whose projections on the global
X-Y plane are the midpoints of the projection, on the same plane, of the triangular base of the
element (Figure 5). Although this representation does not ensure continuity of slopes and
curvatures between adjacent elements, it is accurate enoughin this first stage of the develop-
ment and simple touse, The stiffness matrixof an element is referenced to its local coordinate
axes o-x and 0-y, located in the plane of the base triangle ‘*1-2-3*’ with point o at the center

of gravity of the triangle; the z-axis is taken as pointing outwards from the surface.

1t is noted that both the local and the global coordinates are right-handed cartesian
gystems,
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STIFFNESS MATRIX

The displacement function used here for u, v and w fully satisfies the compatibility re-
guirements for flat elements. For the curved element, however, the inclusion of all rigid body
displacements, a necessary conditions for full compatibility, could be obtained only if the dis-

placement functions were expressed in terms of surface curvilinear coordinates.

For the shallow element, expressed in terms of cartesian coordinates, the displacement
functions for u and v do not include all rigid body displacements and complete compatibility
is not obtained, But, as pointed out by Connor and Brebbia (Reference 12), Stricklin et al
(Reference 16) have shown that this simplification is permissible, and the solution will gtill
converge to the true solution,

Curved triangle . 3

- 2 2
Z(x,y) *h, %" +h,y +hoxyt hyxthgythg

tocal coordinates bose triangle

giobal coordinates '

Figure 5, Element Geometry
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SECTION V

ASSEMBLY OF ELEMENTS AND SOLUTION

COORDINATE TRANSFORMATIONS

The total stiffness matrix of the shell is built from the stiffness matrices of the finite
elements but, before assembly, the matrices of the individual elements must be transformed
and expressed in terms of a common coordinate system. In general, this common system can
be:

(a) global coordinates (X Y.Z)

() tangent plane coordinates

It is emphasized that for the curved element the stiffness matrix, which relates quantities
defined on the surface, is inherently expressed in terms of a common coordinate system, the
surface coordinates. It is then possible, with an appropriate choice of local coordinates, to

avoid the coordinate transformation completely,

For flat elements, the tangent plane transformation is used, The components of displace-

ment are rearranged as follows:
y 'lezi ulx 1 v'ly i ‘ny

where Bx Wy By T -W,, 91 (v, —u,y)/z

);:y =Y + u,y

For convenience, the in-plane strains u, v,y, yxy are kept in the local coordinate system,

SOLUTION

The flow graph methods (Reference 17) are applied to obtain the required solution, The
complete stiffness matrix is automatically assembled from the element stiffness matrices,
It is then modified to include the prescribed boundary conditions; this is done by striking
out appropriate rows and columns, It must be noted that the elements of the complete matrix

are, in general, submatrices which may correspond to a node or a set of nodes,
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The flow graph methods* make it possible to take full advantage of the topological pro-
perties of the matrix and so reduce the computation time storage requirements, A given
matrix may be composed of banded matrices and sparse matrices and the computer program

used here makes use of these properties to minimize the solution time,

SECTION VI

NUMERICAL RESULTS

The accuracy and adequacy of the curved elements is established by applying them to the
analysis of two shells previously studied by other researchers by both the finite element and

the finite difference methods and comparing results,

As a corollary, results obtained for clamped and simply-supported plates using the flat
triangular element with midpoint nodes are compared with corresponding results given by
the HCT element (Reference 6) (Figure 6).

CIRCULAR CYLINDER

The shell considered is an open circular ¢ylinder {zero Gaussian curvature), loaded by
its own weight, simply supported by diaphragms at the ends and entirely free along the sides

{Figure 7)., Double symmetry permits taking into consideration only one quarter of the shell,

Three different meshes (2 x 3, 4 x 5, 8 x 12) are studied for each element to demonstrate
the monotonic convergence to the true values, Results for these cases are presented in
Figure 8 along with data previously published by others,

* These methods have been used recently to solve a system of 10,000 equations on an IBM
360/40 with two work disks,
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2
w =d—~E—~(6—u {central load)
Values of g for deflection ot center
Clomped Simply supported
Mesh size
Central load Uniform Central lcad Uniform
2 x2 .004897 .00!160 .o1r280 .0 03695
4 x4 .005490 0012586 011515 003968
6 x6 .005580 001260 011604 .004060
Triangular element with mid-point nodes.
Exact solution 50560 001286 0116
Timoshenko ; 001 011860 .004086
Comparaison H.C.T.—-Trianguler element with mid-point nodes
2x2 .004610 001104 010388 .003490
4 x4 005312 .001222 011266 .003889
6x6 005472 001247 .Cl11443 .003994

HCT reproduced.

Figure 6.
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Figure 7. Circular Cylinder
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Element Vertical Mesh size
type deflection 2y 3 4% 5 8 x 12 Ref.18
Free _edge
% , 2.65 3.56 3.71
Curved A at midspan
Crown - -0.48 -0.524
Free edge
%| ot mi 288 3.78 _
Curved B ot midspan
Crown -0.529 - 0.537 —
Free edge
ot midspan - 3.61 3.663 3.696
Ref. Il
Crown _— - 0.517 -0.547 ~0.552
* .
A. Curved element with 27 degrees of freedom.
(midpoint nodes eliminated)
B. Curved element with 36 degrees of freedom.
W{inches )
‘ Free edge at midspan
4.0 T
Curved 36 degrees of freedom
37 Scordelis & Lo — R
Carr T
3.5 (A
Curved 27°
of freedom,
3.0
. Clough &
G Johnson
fa
2.0
mesh
2x3 4 x5 8x12 (2x18 size

Figure 8. Compariscen of Results for Circular Cylinder
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CLAMPED HYPERBOLIC PARABOLOID

A hypar surface clamped on all edges and loaded by a uniform normal pressure ‘‘p”’
(Figure 9) is analyzed with three meshes (2 x 2, 4 x 4, 8 x 8) with both the element with
midpoint nodes and the element without midpoint nodes. Results for both cases are given in
Figures 10 and 11, together with those obtained by Connor and Brebbia (Reference 12), and

compared to other solutions reported by Brebbia (Reference 19) and Chetty and Tottenham
(Reference 20),

For the two shells studied, itis seenthat the convergence is excellent and that the results
come very close to the best solution known fo date,
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mesh configuration (4x 4)

Figure 9. Clamped Hypar
Mesh
EgemeNe 2x2 ax 4 8x8
type
¥
A .0345 .0283
B .044 0275 0265
¥| A. Curved element with 27 degrees of freedom
B. Curved element with 36 degrees of freedon
Figure 10.

Vertical Deflection at Center
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Figure 11, Comparison of Vertical Deflection at Center
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SECTION VII

CONCLUSION

The results presented in the breceding article, though too few to permit general con-
clusions, clearly indicate that the curved element leads to results which converge mono-

tonically to the exact solution and is a promising improvement over the flat element for the
analysis of shells,

One slight shortcoming of the solution presented lies in the exclusive use of concentrated
loads instead of the consistent loading systems that could be obtained by energy principles;

the authors feel that correcting this omission, task, would permit attaining even bhetter results,

Another interesting consideration will be to examine the performance of the element in
terms of the prediction of stresses, which are of foremost importance in the majority of
engineering problems. In this regard the high number of degrees of freedom used for the
element will be of definite advantage since membrane stresses will be obtained directly in
terms of the unknowns W u,y, Voo and V’y’ thereby reducing significantly the computing effort
required to obtain stresses,

More important however, it is thought that the curved element presented here is only a
first step in the development of a more refined curved element that would permit cutting
the shell on a very wide pattern, with as few unknowns as possible, Such a large finite
element would be very useful for the efficient analysis of the usual single or continuous
shells, but is essential for the use of incremental methods in the study of shells made of

nonlinear materials as well as the dynamic and stability analysis of various shells,

There will always be abalance to be maintained between the time spend in determining the
properties of the elements and that spent in the actual solution, but it seems fairly obvious
that, with incremental methods, the fewer the elements, the faster the solution will be,
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