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ABSTRACT

An automated general purpose system for analysis is
presented. This system, identified by the acronym, "MAGIC III"
for Matrix Analysils via Generative and Interpretive Computations,
1s an extension of the structural analysis capability availlable
in the initial MAGIC System. MAGIC TII provides a powerful frame-
work for implementation of the finite element analysls technology
and provides diversified capabllity for displacement, stress,
vibratlion and stability analyses.,

Additional elements have been added to the MAGIC element
library in thls phase of MAGIC development. These are the solid
elements; rectangular prism, tetrahedron, triangular prism, sym-
metric triangular prism, and triangular ring (asymmetrical load-
ing). Also included are the symmetric shear web element and a
revised quadrilateral thin shell element. The finite elements
listed include matrices for stiffness, mass, prestrain load,
thermal load, distributed mechanlcal locad,pressure and stress.

The MAGIC III System for structural analysis 1s presented
as an integral part of the overall design cycle. Considerations
in this regard include, among other things, preprinted input data
forms, automated data generatlon, data confirmation features,
restart optlons, automated output data reductlion and readable

output displays.

Documentation of the MAGIC III System 1s presented in
three parts; namely, Volume 1: Englneer's Manual, Volume II:
User's Manual and Volume III: Programmer's Manual. The subject
document, Volume I (Engineer's Manual) 1s an extensilon of the
primary Technlcal documents., Included are the theoretical develop-
ments for the additional finite elements included in the MAGIC IIT
System as well as a dlscusslon of newly added computatlonal

procedures.
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SECTION I

INTRODUCTION

The MAGIC IIT System for structural analysis is an extension
of the MAGIC I and MAGIC II Systems reported in References 1 to 6.
A1l capabilities available in the original systems have been

retained and improved upon. Extension of the MAGIC System has

been in the following areas:

(a) Incorporation of four (4) solid elements

(1) Rectangular Prism

(2) Tetrahedron

(3) Triangular Prism

(4) Symmetric Triangular Prism

(b) Incorporation of a Triangular Cross-Section Ring which

accommodates asymmetric mechanical and thermal loading.

(c) Incorporation of the Symmetric Shear Web element.

(d) Incorporation of a revised Quadrilateral Thin Shell

element which reflects high aspect ratio usage,

(e) Incorporation of new equation solvers into the

MAGIC III System,

(f) 1Inclusion of additional computational procedures to

support the analysis process.

The work reported herein is a discussion of the extensions

listed above. The discussion encompasses three volumes of which
thig is the first. This Volume, Engineer's Manual, (Volume I} is

an addendum to the technical reports

and as such should be used in
effectively utilize the MAGIC
Manual, Reference 7, includes
preparation of input data for
this third version of MAGIC.

given in References 1 and 4

conjunction with these references to

ITIT System. The second
detailed specifications
the additional elements
The last volume, Volume

Volume,

for the

included
ITT,

User's

in



Programmer's Manual, Reference 8, presents information on the
organization of the MAGIC III System as well as its operational

characteristics.

Section IT of this report presents the theoretical basis
of the additional finite elements and gives explicit expressions
for their characteristic matrices. These elements are:

a) Rectangular Prism

b) Tetrahedron

¢) Triangular Prism

d) Symmetric Triangular Prism

e) Triangular Cross-Section Ring (Asymmetric Loading)
f) Symmetric Shear Web

g) Revised Quadrilateral Thin Shell

Figures I-1 to I-3 depict these newly added elemenls au well
as previously existing elements of the MAGIC System.

A discussion of new computational features incorporated into
the MAGIC IIT System 1s given in Section ITII. Included are a
discussion of the ANALIC (Analysis In Core) Module and the out-of-
core variable bandwidth equation solver based on Cholesky
triangularization,

The body of the technical report is concluded with a
general retrospective discussion in Section IV. An overview of the
MAGIC III System is presented.
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SECTION IT

ADDITIONAL FINITE ELEMENTS

A, INTRODUCTION

The MAGIC III System incorporates seventeen finite
elements. Ten of these elements; namely frame, shear panel,
triangular cross-sectlon ring, toroidal thin shell ring,
quadrilateral thin shell, triangular thin shell, trapezoidal
cross-section ring, quadrilateral plate, triangular plate and
incremental frame were available in the initial MAGIC and
MAGIC II Systems and are described in detail in References 1
and 4.

Seven additional elements; namely rectangular prism,
tetrahedron, triangular prism, symmetric triangular prism,
symmetric shear web, triangular cross-section ring and a revised
quadrilateral thin shell element have been incorporated into
the MAGIC IITI System, Characteristic matrices have been derived
for these elements and include stiffness, stress, prestrain load,
pressure load, thermal load, and consistent mass matrices., The
derivation of these matrices for each finite element is presented
in the followling sections.

B. RECTANGULAR PRISM ELEMENT

I. Introduction

The formulation of an element stiffness matrix
for the rectangular prism discrete element was first documented
in Reference 9, and the approach used here is one of three
suggested therein.

The rectangular prism element is a powerful tool
for the analysis of so0lid structures, thick plates, and beams.
It can he used in conjunction with the triangular prism and
tetrahedral discrete elements for the analysis of arbitrary solid
geometries, or with plate elements for the analysis of built-up
regions.



An appropriate mathematical model for the
rectangular prism dlscrete element is formulated on the basis
of the varlational princliples of continuum mechaniecs. From an
admissible assumed displacement function only, algebralc expres-
slons for various element matrices whlch descrlbe the mathematical
behavlor of the element are derived by use of the Lagrange varia-

tional equation.

Conslstent with the state of the art, the discrete
element representation for the subjJect element 1s taken to consist
of algebraic expressions for the followling matrices:

a. Stiffness [K]
b. Stress [s]
¢. Prestrain Load {Fg}
d. Thermal Load {FT}
e. Consistent Mass [M]
f. Pressure Load {FP}

These matrices arise as coefficient matrices in
the generallized form of the Lagrange equations. The form of these
equations, necessary for the complete element representation listed

above, are:

—Fr _/ =0 (1)

where:

q. rth generalized displacement

v rth generallized velocity

=)
4

total potentlal energy

g
c

total kinetic energy



IT. Geometry
Figure II-1 deplcts the geometry of the rectangular

prism element. Also shown are the local and global axes systems;
namely, local x, y, 2 and global X, ¥, Z. The local axes are fixed
at the centroid of the element. Use of vector analysls permits
definition of the dimensions of the prism to be:

a =1/2 |r| (2)
b = 1/2 |r'y| (3)
c =172 |5, (4)
Where:
1/2
7 = 1Ey=Fgl = [mxg)® 4 (1y-¥g)® 4 (2,-2)%] (5)
1/2
5,1 = Ipp-rgl = [(Xp-Xg)? + (¥,-¥g)% + (2,-2)7] (6)
- - - 1/2 (7)
7, = lEg-Tgl = [(XS-X8)2 + (Ys'YB)E + (25-28)2]

The quantities ;4’ 55, FT’ and Fé are vectors emanating

from the origin of the global axes to prism grid points
b, 5, 7 and 8. The vectors fx, Ey’ ?Z form a mutually

orthogonal set (see Figure II-1).
A rotational and translational transformation

matrix from local to global coordinates is formed using these
vectors. This transformation 1s given below.



v,V

|
be
=

FIGURE II-1

S—~—-2b

RECTANGULAR PRISM GEOMETRY



N\
_ (g)y_ (g)
(x(%)3 = [ngl{(x }-{x .} }} (8)

where:

(x0T L§(£)’ y(ﬂ)’ Z(EEJ are the local coordinates

{X(g)}T = [E(g), Y(g), Z(gzj are the global coordinates

T
{Xc(g)} = [ﬁég), Yég), Zég{] are the centroidal global

coordlnates
i o
[ng] = r_téxl, exe, ex3
1s the matrix of
eyl’ eye’ ey3 direction cosines

= L - = L (y,- = L (zy-zp)
exl - 2a Xy - Xg)» ex2 55 (Yy~Yg)s €y b8
1
_ 1 (X-Xg), e, = —— (Y,-Yg), e = (Z,-Zg)
eyl = 5 778 Yo 7 y 2b
1
- 1 (Xe-Xg), = 1 (y ‘YB): e P _
ezl = S (X5-Xg) ez2 2 23 2c  (Zg-Zg)

The transformatlion matrlx [ﬁggj is used not only for coordinate

transformations but defermation transformations also.

10



ITT. Assumed Displacement Functions

A structural element is mathematically dis-
cretized into a finite number of displacement degrees of free-
dom by the assumptlon of displacement mode shapes. For the
simple geometry of the rectangular prism element, trilinear
Lagranglan interpolation formulas are constructed. The dis-
placement 1s given by

6 (x,y,2) = 1/8abe [-r. F r.6. B4 pprs W) pr Fs (3D

1"2°37°1 1°2°3"2 1"2°373
- - i 3
(1) + £,£,£.6
+ f1f2f3 8y 1727375
s (J) L 7 o5+ ) _ 25757 (D
-flf2f366 + f1f2f367 - flf2f368 ] (9)
where
£y = (x+a) £, = {y+b) f3 = (z+c)
F = (x-a) £, = (y-b) 53 = (z-c) (10)

and a, b, and ¢ are the half-dimensions of the prism as shown
in Figure II-1.
Note that ﬁéj), k=1,2, ... .8 are the

grid point displacements where j = 1, 2, 3 corresponds to the
u, v, and w displacements.

Equation (9) can be written in matrix form as

§¢3) - | BJ {Géj)} :+ 8 abe (11)
where
(83T = L=y F,05, £1£,85, ~£10,8,, fl§253,‘f1“f2f3, -F,£,15,
Fyfofg ~T1fo05 (12)
and

T
{%(C:I)} = &89, 52(;1),53(3),6“&1),55(3),56(3),57(3),68(3)_1

(13)
11



It 1s iInstructive to examine the nature of these
assumed displacement functions by considering the allowable de-
formation of each face of the prism. For example, the displace-
ment of the planes x = a, y = b, and 2 = ¢ can be written for
X =2

5 (a,y,2) = (eyyz + Kkyy + kyz + k) (-6§3) 4+ 6,000 53(J>

for y = b

s (x b,z) = (ky Xz + ky X + kg% + ku)(ﬁz(‘j) -8,

EETACRIEE SRR (15)
for z = ¢
G(J)(x,y,c) = (kl Xy + k, x + k3 y + ku)(-él(j) + 52(3)
v 5. 305 (o) (16)
5 6
and similarly for x = -a, y = -b, 2 = -¢c. It ls noted that
the kl are arbitrary constants. Referring to Figure I1I-1,

it 1s seen that the displacements on these planes are functions
only of the displacements of the gridpoints defining the planes.
Hence, the assumed functlons are admissible in that they satisfy
the requirements of displacement ceontinuity along interelement
boundaries, Due to the assumption of linear interpolation
formulas, the edges of the prism remain linear 1n deformation.

A direct consequence of the above observations is that although
a single element maywarp under a force-couple, 1t may not bend

under any conditlons.

The foregolng assumed displacement functions
lead to three translatlonal displacement degrees of freedom
at each of the eight corner gridpoints; thus the complete
element deformation ls described by twenty-four displacement

degrees of freedom,

12



The definition of assumed displacement functions
permits the derivation of the straln-displacement relationships.
The element strain components are expressed as functions of the
assumed displacement modes by

. 35 (1)
fx T %,x 9X (17)
(2) 35(2)
By T 0y T oy (18)
‘2 fz } oz
AN S N I TG 3s'?) (20)
Xy s ¥ # X 3y 2%
(2) + '3 | 5@ (3)
egg = S, T Ty 7 AT, 38 (21)
9z 3y
(1)
e, = sl + 553) _ o387, 363) (22)
28 3z x
Performing the necessary differentlations
on the displacement functions ylelds:
(3) _ 1 i (3} (23)
8 = ———— |[D j{6
% 8 abe xJ k
= 1 (3
(3) = ID_J{8
G’y 8 abce yJ k (24)
1) = e 1Pl (25)

13



where

and

T _ - - -
{p 1} = L—f2f3, f2f3, .73, Fofs, fofs, -f,1,
£,T5, —f2f3J
T_ - - - -
{Dy} = erlf3, £1f5, ~f1f5, £1f4, £1F5, =f T,

173

T_ -
{(p,}" = [-r,f,,

i

1f0s

{slij)}% Ls$d?,

6,000, 6,80, 5. () 5 (D),

5., 6,0, 5,

These equaticns are assembled inteo a single
matrix expression relating the strain components to the dis-

placement degrees of freedom,

where

1
abe

(o] (643703

T
{e}” = ‘I.EX’ Ey: €y Eyys €

xy? fyz® Fzx|

T _ (1) (2) (3)
{G(J)]’ = L‘Sk » Gk ) 61& _]

14
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(27)

(28)

(29)

(30)

(31)

(32)
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[p]
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IV, Potentlal Energy

The potentlal energy of the element is

@p = U-W (34)
where
{e}
U = [‘f Lde] {o} av (35)
v Y{0}
W are external work contributions (36)
te3l = e, enene e, .| (37)
X* Ty Tz} Txy' Tyz? TzX

{o)T (38)

o )

lpx’ Uy’ Ip» Oxy’ vz’ sz

Linear elastic materials behaviour 1s assumed from an
initial state of strain {€} to a final state of stress {o}
and strain {e}. From the generalized Hooke's Law,

@ = t21te) - @ (39)

where [E] is the symmetric matrlx of elastic constants
which, for three-dimensional ortheotropic material, can be

written
[ ]
Ex(luvyzuzy)’ Ex(ny + UZvaz)’ Ex(vzx+vyxvzy)
[E]=1/A s By (1=, vip)s Byv, o+ vn v ) 0, 0, 0
s By (l-vy v 0, 0, O
AG 0. 0
-Symmetric- » Mgy Yo
,BG 5 0
,AGZX

(40)



where

A =1 - v (41)

VoV - Vv v - v__V -V -
Xy yXx ¥z zy ZX XEZ xyvyzvzx vxzvyx zy

and Vij ls deflned as the resulting strain in the jth

direction due to a stress in the ith direction.[E] can be
expressed in more conclse form as

— —_—
Ell E12 E13 0 0 0
E22 E23 0 0 0
E33 0 0 0
(E] = (42)
Euu 0 0
E55 0
Symmetric
- “66_|
Substitution of Eguatlon (39) into tha
strain energy function and integrating yields
U = f (1/2 [e][E] {e} - |e| [E] {efav . (43)

v

This 1s the desired form of potential
energy ¢p

17



V. Element Statlce Matrices

5.1 Introduction

To effect the discretlization of the
element the assumed displacement functions are introduced
into the potentlal energy function which in turn is substi-
tuted into the Lagrange equatlions to yleld element matrices
with respect to grid polnt displacement degrees of freedom.
An exception 1s the element stress matrix which is derived
from strain-displacement and stress-straln relationships.

5.2 Stiffness Matrix

The energy contribution to the linear
elastic stiffness 1is given by

0, = 172 f le) [E] (e} av. (44)
v

Recalling the straln-displacement relations

1
8 abe

[D] {G(J)} (30)

{e} =

and substituting these into Equation (44) ylelds

2
o, = % (o) f]_c(-j)j[D]T (1 () (68hav . (45)
v

Performing the matrix multipllecation, and noting that the
grid point dlsplacement degrees of freedom are not functions
of the local coordinate system, the potential energy function
may be expressed as shown by Equation 46. Taking the first

18
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variation of the potentlal energy function wilth respect to
displacement degrees of freedom (as shown by the first term
of Equation (1)), ylelds the element stiffness matrix [%]
referenced to local grid peint displacements. Thils matrix
is depicted in Equation (U47).

The matrix products appearing as integrands in
Equation (48) lead to integrations of the following general

form,
abe
iy {[I (x+a)" (x-2)" (y+0)P (y-0)9 (z+c)T (z-¢) dzdyax
-a ~-b -c
(49)
Since the limlts of integration are constants, Equation
(49) can be written equivalently as’
a b
I, = [(x+a)m(x-a)n dx f (y+p)P (y-b)? ay
-a -b
C
f (z4c)T (z-¢)® dz (50)
-c

These definite integrals are readlly evaluated by integra-
tion by parts and the [Iij] matrices are expressed in
Equatlons (51) = (567.

21
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The potentilal energy function given by
Equation (46) 1s referenced to local gridpoint displacements.
These displacements must first be reordered to be compatible
wilth the MAGIC III ordering system and then be transformed to
global displacements. The former 1s accomplished through use of

the transformation glven below:

1689y =y 1349y

(57)
where

(3T La,(l),62(2),61 (3) 4, (1252(2),52(3)

53(1),53(2), 63(3).|
n
o 1
—_— 1
— 1
ma 1
— 1
— 1

(r] = [— 1
1
— 1
— 1
— 1
| 1
— 1
1
| 1
.1
— 1
1

. 1
_ 1
- 1
L 1
suRRERERER Rt




The transformation from local to global
deformation 1is derived through the use of Equation {(8), thus

30y 2 ¢
{897} = LTgﬁl {a} (58)
where
(a)T = [Us. Vi Wis Uss Voo Wau vun, Uss Voo We.

The U, V, W deformations are defined in Flgure II-1.
Also,

- —
[Tg,l = r. ]
L g,
”‘u
[ngl
s
[TEQ]
r"\;
[Tgkl
mf\.u
[ngj
[ng]
[T
gL N
[ngj
i N

4
The [Tg£] matrix is defined by Equation (8).
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Use of Equatlions (57) and (58) in the
potential energy equation, Equation (46), ylelds

v
- 1 7 1T 13T )
o, = ; (mﬁqmgﬂ] (717 (K] [rIlr,, ] {al, (59)

Taking the first variation of the potential energy with
respect to the displacement degrees of freedom {A} (as shown
by the first term in Equation (1l))ylelds the element stiffness
matrix [K)referenced to global gridpoint displacements. This
matrix is depicted by Equation (60).

1 2

T T (o
(K] = (g ) [T [T17 [KY IT) [Ty, 0. (60)

5.3 Stress Matrices

The element stress matrix follows as a
direct consequence of the strain-displacement and stress-strain
relationships. Recalling that

(o} = [E}{{e} - 1eR (39)

where {€} 1s a column of either mechanical prestrain or
thermal prestrain or both. Also recalling that

1 (J)
= (=———) LD § ; 0
te} = (g [DI (30)

it follows that

to} = (g (] (0] 6490y - (E) &) - (BDGE™r . (6D

Use of Equations (57) and (58) in Equation (61) yields:

(o} = (g——) [E] [D] [T] [T, (a} - [E) {¥} -[EJ(£(62)
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The dlistributlion of prestrain throughout
the element is assumed to be of the same functional form as the
displacement mode shapes; l.e., an lnterpoclation between grid

polnt prestrain components. Thus,

v —
=) o 1) 8] {E(J)},k =1, 2, ..., 8 (63)
8 abe
with J = 1, 2, ..... 6 corresponding to €_, Ey, €, _xy’
£ €

yz? "zx .

The vector {e} now becomes
- . 1 -(3) '
{e} (8 2bo )y [B] {¢ } (64)
where

(81 = ]B]

hd

LB

z? exy’ Eyz’ Eng

R | R R G BT R D O e8]

27



The vector {£°}, the prestrain due to thermal effects, can
be wrltten as

1 ‘ 4"
{e%} = ( ) [B] [al {aT,} (65)
abe
where
v, — T
el =f o [T]
I N
&y (1]
a, [I]
— —
[I] is an (8 x 8) identity matrix and
Ay s ay, @, are coefficlents of thermal expanslon,

T _ _
{aT, }" = LTk - TOJ, k=1,2,3 .., 8

Tk 1s the temperature at the kth grid point and TO is the
element reference temperature.
Equation (62) can now be rewritten as
follows:
1
{o} = [8]1 {a} -~ {s} - {s} (66)

Each term in Equation (66) has a particular significance.
The matrix

_ 1
{s] = (g*ggg) [(E] [D] [T] [ng] (67)

yields the element apparent stresses due to displacements
of the element and 1s referred to as the element stress matrix.

The matrix

1 = (D
ts} = (g==) (8] (B] (6.0} (68)
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ylelds stresses due to the prestrain state within the element
and 1s referred to as the element stress matrix due to pre-
strain. The matrix

(s } = (gaps ) [E] [B) [G] {ar)) (69)

vields stresses due to a temperature gradient within the
element and 1s referred tc¢ as the element thermal stress
matrix.

It 1s noted that the assumption made in
Equation (63) 1s invalld for a constant temperature gnd prestrain
distribution throughout the element since thils assumption pro-
duces zero prestraln and zero thermal forces. Thus for a
constant prestrain and temperature distribution, the following
equations replace Equations (68) and (69).

{s} = [E] {&} (684A)
(s} = 87, [E] {a} (68B)
where
T + T, + ... T
= . - 1 2 8
AT ve. = Tave., ~ Tos Tave. = 3

(9T = lag, @ o) -

5.4 Prestrain Load Matrix

The prestralin contributlon to the potential

energy functlon is

o = f]_e_\ [E] {e} av (67)
A

Substitution of Equations (30) and (64) into the above yields

1 2 f T __(J) 68
o * (g ) 4 L1 o1 B1 (8] (g, 7Y AV (68)
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Performing the multiplication and integration gives

TN & D T
o, = [8707] {F,} (69)

where
2

N B 1 - (D
{F.} = (3 abc) [Pl {g 7"}

Ell [IXB]J E12 [IXBl’ El3 [IYB], Enu [IYB]’ O, E66 [IZB]

[p1=|E1o [Iypls Epp [Iygls Egg [Tygl, Eyy [Tyg 1, Egp (1,351,010 (69a)

E137[IzB]3 E23 [IZB]’ E33 [IZB]’ 0: E55 [IYB]’ E66 [IXBl_

[IXB] = ‘Ili} “ﬂ dv = a [Ixxl
v

[Iyg]l = I{DY} |B] av = b [Tyy]
v

[Izpd = {Dy} [B] av = c (1,,]

Transformation of LS(J{J to global gridpoint deformations
through use of Equatlons (57) and (58) and differentiation
of the result with respect to the gridpolnt deformations
ylelds the prestrain load vector

- T T (%
(Fg) = (7,0 (117 (F,). (70)
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For a constant prestraln throughout the element

o0 = (—1 ) J[Lﬁ(J)JWD]T [E] {e} 4V (71)
E 8 abce v
Thus:
~ ~ .
{F_} = [P] {&} (72)

n
where [P] is given by Equation (69B) and the load vector

is given by Equation (70).

5.5 Thermal Load Matrilx
The thermal lcad matrix is a special case
of the prestralin load matrix. Substltution of the thermal

strain

u L7
{eéj)} = [allaTy) (73)

into Equation (69) deflnes a load matrix

5 L % tpr] 131 (o) (74)
Fod = oo i 7
where _
By [Ixgls Eqp [Iypls Ejg [Iypl
('] = | Eyp Ogpls By, [Tyds Eng [Typd

L. —_—
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1- - | To 7] 1] T T- | -]
1- T 0 - - -
I- T 0 T T T
I- 1- 0 T T T
T I- 0 1- - -
T T 0 I- - 1-
T T d oo T 1 T
|1 0a%9% cLy-_toeS%gl o _| | 1] aeff3 | 1 _Jaeblm Lt Jaetly
_ . - - + R - —
0 T- -} 1~ T- T-
0 T- I- T T T
0 T - T 1 T
(969) 0 T - T- 1- T-
0 1- T - - I-
0 - T T T I
0 T T T T T
0 _ L1 LaeShgel 1 | ooqhfg “f 1ot ol | 1-_oe®lm | 1-] oelly
- 0 -] 1] -] -
- 0 T - - -
T c T I- - T-
T 0 T- I- - 1-
1- 0 I- T T T
T- 0 T T T T
T o T T T T
1 | ae??3 Lo - Joea 1 Joa®Ta <l 1 Joa®ly <l 1 ]oq'lm
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The final thermal load matrix is given by

T

= T
{Fa} = [T .1 [T] {Fa} (75)

gl

For a constant temperature distribution
throughout the element, the thermal stralns are given by

o
{e} = AT, . {a} (76)
where Alave, = Taye.” To
Tave. = Tl + T2 T + T8

Thus, substitution of Equation (76) into Equation (71)
defines a load matrix

(¥} = ar [F'] ({a} (77)

ave.

v
The [P'] matrix is obtained by taking only the first three
columns of the [P] matrix.
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5.6 Pressure Load Matrix

The pressure load matrix 1s derived on
the basls of constant pressure on each face of the rectangular
prism element. Thus, the total work Wp due to the pressure
loads 1s the sum of the work done on each face.

wp = w123u + w5678 + ... + w3u78 (78)

The subscripts denote a face of the prism (see Figure II-1).

Now

= (1) I
A

Recalling Equation (11), Equation (79) can be written as

a b n (1)
= 1 {s } dxdy
Wia3y = f[ 8 abe [B] 9, (80)
-a -b :

Performing the indlcated integraticn ylelds

_ (3) (1) 1 1
Wio3u = Piagn Pe |80, 82770, 8100, 6. ' o)

Additional integrations of the form shown by Equations (79)
and (80) for the remaining faces ylelds

347

:
Wyger = Poger 2 ¢ L2 (F), 65030, 6,(2), 6, (DL (83)

Wiusg = Prusg 2 ¢ 16102, 63, 65020, 6,21y (84)
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3 3 3
W1256 = P1o5g ab Lot 7, 606,00, &) (85)

1 (1) (1) (1)
5678 = P5gg PO L§E )’ 86 67 §s | {1} (86)

Equations (81) to (86) are combined to yleld total sork

v

W= L5, L 1) = o) tr 17 (r1" (R (87)
through use of Equations (57) and (58) and

N T
{F} = |[Fy Fy F1 Fy F, F, F, F» F3 Fy, F, Fy
. 2 3 ] ] 3 >

2 3 3 r >

]

Fa, Fo, F,, Fy, Fg, Fg, Fg, Fg, F5, Fs, Fg, FEJ

3 Ll

Where:

Fi1 = pi2sw be, F, = pseze bc, Fy = Piuss ac

FU{ = Paszg7 ac, F5 = Pi125ss ab, FS = Pauis ab

Taking the first variation of Wp In accordance with
Equation (1) ylelds the pressure load matrix

_ T T
{Fp} = [TEE] [T1" {Fp} (88)

35



VI. Klnetic Energy - Mass Matrix

The kinetic energy for a discrete mechanical
system, assuming a constant mass density p, can be written

o =os2 [ 1) 0 ta) av (89)

v

where [1J 1is an identity matrix and where {q} are generallzed
velocities which, from the assumed dlsplacement modes, are:

" L)y (2 (%)
@ =18 ,s8 , 68 | (90}

Substituting Equation (90) into Equation (89) yields

oy = p/2f 150, 5, sON g [ av
.r 2
v §¢7) (91)
.73
e
or
(1), 2 +(2 )¢ < ( 2 av (92)
¢K=p/zftca RGN R
v
Recalling the displacement mode shapes
(3 _ _1 8] (sl (11)
8 8 abe L&) k
and differentiating glves
(3 o 1 s 44N (93)
S 8 abe = k
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Thence,
(304 _ 1 NN ED. (] ¢35 (J) , "
(647 (s abc) 18, ¢ 6,7 (94)
where

4" ny v
[m] = {B} |B]-

Substituting Equation (94) into Equation (92), for
J =1, 2, 3, ylelds

2 S S(2) - (3), o (1)
= (—1 2~f1 §C°) 8 8
T e PEJ LT e e i) ()
v M av. - (95)
o 15 CD)
[m]
- A
or
. o
o = —g— 15497y 1 (50 (96)
where < _
) e 1
= (m) p (¥ v (97)
v n,
(m]
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Performing, as previously, the integratlon indicated in
Equation (97) gives

1
2 u
8 abe . |1/2 1
=, (—1 ) f[m] av = (—2°)p
(] = ¢ 5 me J[- 27 /4 172 1 SYMM.
v 1/2 1/4 1/2 1

1/2 1/4 1/8 1/4 1

/8 1/2 1/4 1/8 1/2 1

1/8 1/4 1/2 i/4 1/4 1/2 1

“E/u 1/8 1/4 1/2 1/2 1/4 1/2 1

(98)

hence
[l —
[M] = [:m]) 0: 0 .

0, [m], O (99)
0, 0, [m]

Reordering and transforming to global deformations through use
of Equations (57) and (58) permits the kinetic energy to be
written as:

; T (oqT :
o, = _lgl_ [Tged” (717 (81 [0 (T,,] {4) (100)

Taking the first varlation of ¢Kiwith respect to velocities
and differentiating once wilth respect to time, as shown 1in
Equation (1), yields the desired consistent mass matrix
referenced te global gridpoint displacements. Thus,

AV
[M] = [Tged” (717 [M1 [T [Tgyl . (101)
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C. TETRAHEDRON ELEMENT

I. Introduction

The stiffness matrix for the tetrahedron element was
first derived and presented in References 10 and 11 respectively.
Later these relationships were reviewed and a consistent
mass matrix was reported in Reference 12, These formulations
have peen extended in MAGIC TIII to include stress [S] R
prestrain load {F] , thermal load {FT} , and pressure load {FP]
matrices. These matrices were formulated on the bhasis of the
variational principles of continuum mechanics. The material that
follows summarizes the derivation of all the element matrices

mentiocned above.

A linear polynomial is assumed for each of the
three displacement modes. These mode shapes lead to a total of
twelve undetermined coefficients for the element which are chosen
to correspond to three translational displacement degrees of
freedom at each of the four vertices of the element. The nature
of the assumed displacement modes is such that the strains
throughout the element are constant.

The tetrahedron element can be used to analyze
solid structures such as thick plates and beams. It can also be
used in conjunction with the rectangular prism and triangular
prism solid elements and in fact is used to generate the

triangular prism element.

II. Geometry
Figure II-2 deplets the gecmetry of the tetrahedron
element, The local axes system x, y, z, and global system X, Y, Z
are also shown, The local axes are fixed at element gridpoint one
with the positive x axis directed along side one-three as shown.
The global coordinates of each grid point are given as
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FIGURE II-2

TETRAHEDRON GEOMETRY
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Input from which the volume of the element 1s obtained

1 Xl Yl Z1
1X Y Z
1
vV = _g__ 2 2 2 (1)
1 X3 Y3 Z3
1 Xu Yu Zu
The face areas of the element are gilven by
) 7 o X7 .2 Xy 2 1/2
Aygp = [Ay5) ¥ (Ah3,) + ( 1131) ] (2)
1/2
2 2 2
_ XZ XY
1/2
2 2 2
_ XZ XY
By = (62 + (A3)) + (A7) ] (4)
5 - 5 5 1/2

The subscripts refer to an element face and the superscripts
refer to area projection on a global plane. The components of

the face area are given by:

By3p = 3le ] Au32 = 3v|1314 11 ALBE = 3V|B6’1| (6)
W17 Xz _

31 = 3VIBp ol Alzy = 3VIBy | Augl = 3V|Bg ,l (7
AfZ = 3viBy .| ASE. = 3V|By, .| AJL, = 3V|Bg . (8)
Ayoz 1,30, 421 4,31 421 6,3

YZ X% ~

A3p1 = VIBLsyl Agpy = 3VIBy A3y = 3VIBg (9)
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The terms |B; .|
3

of elements (1,1) and (1,2), ete. in the [B] matrix which relates

strains to displacements as shown in Equation (19) of this Seetion.

s |B1,2| , etc. represent the absolute value

A rotational and translational transformation
matrix from global to local coordinates 1s formed thru definition
of position veCtors emanating from the origin of the global axes
system to element grid polnts 1, 2 and 3. This transformation

matrix is

- (g)
{X(R')} = [ng} {{X(g)} _ {Xl 23 }E (10)
where

{x(z)}T = Lx(ﬂ), ytg)‘ z(g)j are the local coordinates.

x (81T 2 Lx(g), y(8) 7¢8)| are the global coordinates.

z£8)J are the global courdinates
of gridpolnt one.

3

{Xl(g)}T - Lxl(g)’ y, (&)

v 7 - 11 €12 €13
g4 g ° EN S
2] €22 €23

—‘I— 1] ‘ 3 -

521 'l-ézl |ez|

€31 , €32 , €33

CEY |es | |83 |

h2



EN

€30 €13 7 €10 ©330 €pp T €11%33 T €31%130 €537©31%157%11%3

= (Y3-Y1)(22ﬂzl) - (Y2-Y1) (z3-zl)

_ 2 2
= [e3l + €35 + e33]

(X,-X;) (23—21) - (x3-xl) (zg—zl)

(X3=X)(Y=¥p) = (Xp=Xy) (Yg=Y))

2 ? 2 1/2
[Lll + e12_+ e13]
1/2
2 2 2
[e21 + e, + e23]
2 1/2
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IiT. Assumed Displacement Functions, Strain-
Displacement

The assumed displacement functions in the
global coordinate system are

= X

U, Cy +C, Y+ c3z + Cy (11)
= +

Uy 05x CeY  + CTZ + Cg (12)

u, = ch + CygY + C 2 + Cyy (13)

where Ux’ Uy, UZ are the deformaticns of the element
along the global X, Y, and Z axes.

Evaluation of Equation (11) at the four gridpoints yields:

{UK Y= [["] {C} (14)
i

where
}T
i 1

(v,

1" = Loy, €,y Cgy €yl

1 Xl 1 Zl

1 X, ¥y 2

1 X3 Y3 Z3

1 Xﬂ Yu Yi.

£rd

2

hme

Thus (C} = [PM]7% v} & U = 11, x, ¥, z] [I‘]'l {u,} (15)
1 1

Likewise, u

, = Lt %oy, 2] et wy 3 (16)

u, = |1, X, Y, z] [I‘]':L{Uz }o- (17)
1

Equations (15) to (17} are used to derive element matrices.
Note that the displacements functions are written in fterms
of global coordinates and displacements.

hYy



Definition of the assumed displacement
functions permlts derivatlon of the strain-displacement
relatlons. The element strain components are

€x BUx/ax
au_/3
Ey y/ y
Ez BUZ/BZ
{e} = Yey | = 3U,/dy + BUy/ax = [B] {U} (18)
Yyz 3U,/az + 30, /3y
L'YXZ BUZ/BX + BUx/BZ

The [B] matrix is constructed from the [T1™) matrix as follows:

- —
Row 2 of [T] 1, ~————-Zeroes -
~—Zeroes —Row 3 of [I‘]')lﬂ-—~-ﬁ~ Zeroes - =
-1

Zeroes --————--——-———w=Row 4 of [T]

(5] =|Row 3 of [T1™, Row 2 of [F1™} ,Row 3 of [TI7H| (19)

Row 4 of [I‘]—];-‘——— Zeroes -——sRow 2 of [I‘:l-1

e
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Iv Potential Energy

The desired form of the potential energy is

U= S (3 |e) [E] {e} - [e] [E] {e}) av (20)
v

which was derived 1n Section II-B.IV of thils report. The matrix
[E] 1s defined in that section also.

\' Element Matrices

5.1 Introduction

To effect the discretization of the
element the assumed displacement functions are introduced into

the potential energy function which in turn is substituted into
the Lagrange equations to yleld element matrices with respect

to gridpoint displacement degrees of freedom. An exception is
the element stress matrlx which 1s derived from strain-displace-
ment and stress-straln relationships.

5.2 Stiffness Matrix

The energy contribution to the linear
elastic stiffness is given by

o = —;-‘5 le] [E] {e} av. (21}

Substitution of the straln-dlsplacement relationship,
Equation (18),1in this energy contribution yields

1 (- T
oy = *Ei lu} 81" [E] [B] {U} av, (22)

Since matrix [B] is not a function of the global coordinates
the Integration can be performed directly and

% = ¥ |u] (817 (£] [B] {U} (23)
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The displacements {U} must be reordered to be compatible with

the MAGIC III ordering system. Thus, the following transforma-
tion i1s defined:

{u} = [T {0} (24)

where

o' -, v. v, vu. U U ..U U U]
1, Y1, %1, Xp, Yo, Zp, X, Yy, 2y

The [T] matrix is defined by Equation (24A). Substitution of
Equation {24) into Equation (23) yields Equation (25).

1
DRRREREENEN
[ 1
| )
1
- - ! (2u)
— 1
M 1
| 1
1
B 1
L 2]
bp =L LB} [0 (817 [E] (8] (1) (D) (25)
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Taking the first variatlion of the potential energy with respect
to the displacement degrees of freedom {U} yields the element
stiffness matrix [K] referenced to global grid point displace-
ments. Thls matrix is glven below:

(x] = v (1T 81T [E] [B] [7] . (26)

5.3 Stress Matrices

The element stress matrix follows as a direct
conseguence of the strain-dlsplacement and stress-straln relation-
ships. Recalling that

(o} = [£] {te) - 3} (27)

where {£} 1s a column of either mechanical prestrain or thermal
prestraln or both. Also recalling that

{e} = [B] {U} = [B] [T] {u} (28)

it follows that

{o} = [E] [B) [T] (U} - [E] {&} - [E] (T, ©(29)

The vector {Eu}, the prestrain due to thermal effects, can

be written as

{e*} = AT {al}; {a}T = Lax, ags Gy 05 O, o]} (30)
where
AT = Tove = Tos Tape, = Tp + Ty + Ty + Ty
Y

and To is a reference temperature.

Equation (29) can now be rewritten

{o} = [S] {i}-{s}- (s1} (31)
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where:

(8] = [E] [B] (T]
{s} = [E] {¥€}
(&'} = aT [E] {o}

5.4 Prestrain Load Matrix

The prestrain contribution to the potentilal

energy function is

o= = leJ [E] (€} av, (32)

Substitution of Equations (18) and (24) into this equation
ylelds

J 0] trat te1T [E] {E} av
v 18] tm1* 81T [E] {2} = T {F} . (33)

P
€

or &~
€

Differentiation of Equation (33} with respect to the global
gridpoint deformatlion yields the prestrain load vector

trz} = v 717 (817 (ED (&) . (34)

5.% Thermal Load Matrlx

- The thermal load matrix is a special case of
the prestrain load matrix. Substltution of the thermal strain,
Equation (30), into Equation (34) yilelds:

(F } = awviT]” (817 (E] (o} . (35)

5.6 Pressure Load Matrilx

The pressure lcad matrix 1s derived on the
basis of constant pressure on each face of the tetrahedron
element. Thus the total work, W,, due to the pressure loads
is the sum of the work done on each face.

Wy = Wanq # Wygq + Wygp + Wypy

b9
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The subscripts denote a face of the tetrahedron (see Figure
II-2). Each work term is initially derived in a special set of
local coordinates placed 1In a face of the tetrahedron. The
resulting work term 1s then transformed to the global coordinate
system. Thus

Wipq = -J[m P3aq M, dA (37}
A3a1
where the negative slgn accounts for direction of the

pressure P and Kk = sgn Z) -

321
The deformation u, can be expressed 1n terms of the assumed
displacement functions and local coordinates x, y as

S T S TP U B IV P
v, T_;T 2’ T2y’ Tz3’ Tzy Al
28 (38)
3
Ay
where |y| = |x2y3zu|

Ay =(_y2Zu X +(X=X3) zyy + (Xayy=X,¥y + Xu¥, = X3¥,)7

* X3Y2Zu) + |Yl
A, =(x3zuy - x3yuz)% |v|

Ay =(ypmy X - X2y + (xpyy = xyy,) @)+ |y

Au =(x3y22)+ iYI
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For purposes of integratlon, a triangular coordinate system
is defined as shown in PFlgure II-3 below:

{/,//

n=o

e m=constant

£ =1
FIGURE II-3 TRIANGULAR COORDINATE SYSTEM

The transformation from (x,y) to (£, n)} coordinates is
accomplished by using the following:

X = X2 E - (xz_x3) En

y = y,(1-n) &

dxdy = |J{x,y)|dgadn (39)
: _| 3%x 3y 3x 3y |-

|o¢x,y) |= ’ T 5% I l—x3y2g|

Substitutions of Equations (39) and setting z = 0 into
Equations (38) ylelds

b T B taye vep ¥y ] (1 —f | (40)
l-n) £
En
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Use of this relationship in Eguation (37) and performing
the integration yields the result

1 .
= - = A 1
Wao1 T 7 3%P321 f321 fup su, o ow, oy |
z,’ 2, Z, " 1 .
(41)
l
0
The work due to pressure on face 431 is given by
wu31 = = j pj431 u§' dA (uz)
Rysa
where ui is the deformatleon parallel to the pressure
vector, {(See Figure II-4 below.)
»H, E,l—lé
8 4
Py33
1,3\ - .V, Uy
¥ qu—
FIGURE II-4 PRESSURE LOAD - FACE 431
As above, the deformatlon py.can be expressed as
—_ = - - - - 1_.
by = Lig s Mg, s g s ug Og
4
En (43)
(1-n)E

which 1s wvalid for y = 0. Thus, substitution of Equation
(43) into Equation (42) and Integrating yields
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—---:-L— A v 3 Bg s BT o BT
Wy3p = - =3 Pa31 Tasl Luyl ¥ M5 uqu

(44)

H 2O M

The Mg i=1, 2, 3, 4 deformations are transformed into
i

tetrahedron local deformatlons using

- = - )
uyi uyi cos 8 uzi sin 6 (45)
where
y .
8 = tan—l( 4 )
2y
- _
- X X
Xy . 4 11
y = Y Y
2y Zy 2y

Use of Equation (45) in Equation (44) yilelds

1

Wu31 = = 5 pu3l cos © Luyl, }Jyzs Uy3, Uqu 1
0 (46)
1
l_l
1 L _J 1
+ — sin © H s M ’ '} s H *
3 Py31 Zq Zn 24 zZ) .
1
1
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The work due to pressure on face 432 is
given by

wu32 = - f Py32 “"5; dA (47)
A1132

where u; is the deformation parallel to the pressure vector,.

{See Figure II-5 below).

Y
L ZoMy
> n
X 5 Uy 4
uai//’
+~——Py3p
1
;;;I 253
X5, Y
FIGURE 1I-5 PRESSURE LOAD-FACE 432
The deformatlon U§ can be expressed agaln as
v = Y N v, 4" —O )
u Lmyl, uyz, uy3 uqu
En (48)
1-¢
(1-n)¢

which is valid for ¥ = 0. Substitution of this expression
into Equation (47) ylelds

= - L N w " "
w432 = 3 pu32 A“32 Luyl’ Uyzs Uy3: Uqu

(49)

= P O
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g0 i=1, 2, 3, 4 deformations are transformed into

tetrahedron local deformations using

The v
My

{pﬁ} = [Tl] {u 1} (50)
where
eyt o= ey, own , W, Wy
it = AT 2 Mg My s By s By s Mpos My s Mg
1Y 1 2 ¥ 2 3 3
B, o, M T
Xyt Ve T2y
1 I —
(7,1 = %] €515 &5, %23, 0, 0, 0, 0, 0, 0, 0, 0, O
2
0, 0, 0, ), ¥,5, €,5, 0, 0,0, 0,0,0
Ny
0, 0, 0, 0, 0, 0, &5y, %22, %23, 0, 0, O
4V ny Y]
0! O, O! O’ OJ O’ OS 03 0’ egl, 8223 623
¥ = Voo
m —
€hp = zu(x3 - xa)

LY
e

a3 = Volxy - X3) - yylxg - x3)

2

= 1/2
1¥,1 = 1)) +

SN NV
(e22) + (e23) ]
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The local coordinates are cobtained from the transformation

._x e '-—_— - _ -._
1 50 [ %
vy |= [Tgl] Y- Yy ' (504)
7 vA
! 1
., Ky

- i=1,2,3,4

Use of Equation (50) in Equation (49) gives

_ 1 . = Tra

11
i (51)

1!

L1

The work due to pressure on face U421 13 given
by
wliEl = - fp)-ml yodA (52)
Aoy

where u.° is the deformation parallel tc the pressure vector.
(See Figure II-6 below).

y Lz’uzp
Z LU e ‘ /x,l-‘x
3
———Pyosy
) .
3\-
A VP 1,2

y
Xo,pxo

FIGURE II-6 PRESSURE LOAD - FACE 421
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The deformation uyo can be wriltten as

by = L”yI, Myos MY s uyqj En
1-£ (53)
0
(1-n)E

which is valld for y° = 0. Substitution of Equation (53)
into Equation (52} and integrating ylelds:

_ 1
wu21 - = § p}.\l31 Au31 Luyos uyos uyos Uyo 1 .
1 P 3 y 1
(54)
0
1
the uy” , 1 =1,2,3,4 deformations are transformed into
i
tetrahedron local deformations using
{ugol = [T,] &} (55)
: T
where fuyo} —IPY?: Myozs Myoss ”yOuJ
‘e§1’ 952, e§3, ¢, 0, 0, 0, 0, 0, 0, 0, O
0, 0, 0, €%y, €55, €53, 0, 0, 0, 0, 0,0
[T ]= 1 © © o
2 leal 0, a, 0, 0, 0, O, €515 €pps €335 0, 0, 0
0, 0,0,0,0,0,0,0,0, ey ébz, ezs
eZl = YoPy, el =-x,z er. = XV -X,¥
> T22 29y =23 294 T4 2
ey _ p,e \2 o 2 o (2,172
le5] = L(e5)° + (e5,)7 + (e53)°]
Use of Equation (55) in Equation (54) ylelds
Wyoy == 2 o oA a)rT,1t .
3 Puo1 “y21 2
(56)

P o A
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The total work done by a uniform normal
pressure on all sides of the tetrahedron is obtained by substi-
tuting Equations (41), (46), (51) and (56) into Equation (36).
Thus:

[~ , -
W =
D U_Uxi_la Luyi_{s LUZiJJ 0
0
0
0
1 _
- =D A cos 061 1
3 4331 “h31 0
]
L1
1 y - ) -
- = P321 ‘!!‘321'< 1i+ L p’43lALl31 sin 0]y
3 3
1 0
1 1
_0 1
_1/3 Ayao L) 073507 - 173 pyoy By0q Lil [T,0T 17
Puzz 432 1 421 “u21 2
1 1
1 0 (57)
1 1
The local deformations u, , u., , H
X y pA
i 1 1
must first be reordered to correspond to the MAGIC III ordering
system., Thus:
— T
J_Ux_!, L]Jy _]: LUZ _}J = LU_I [T] {(58)
i 1 i
In addition, these local deformations are transformed to
global deformations through use of
—_ g T
] = Lyl [T,,2 (59)
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Substitutlon of Equations (58) and (59) into Equation (57)
and taking the first varlation of the result with respect to
global deformations ylelds the flnal result:

- T T (5 T (5 T =
Py} = [T, {[T] {F b+ 1,1 {Fpl} + [T,] {Fpe}}

N ", T
where: [ngj = [ngl
A
[ngj
n
[Tg£]
[T .1
- gL
{Fp} =| 707
0
0
0
- 1/3 qul Au3l cos B
- 1/3 P3py Agoax |}
1l
1
0
1
1
1
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o= o

+ 1/3 Py3 AM31 sin ©

b= =173 pyoy By

(60)

H O =

e |




VI Kinetic Energy - Mass Matrix

The kinetic energy for a discrete mechanical
system assuming a constant mass density, p, can be written:

by = 2 f[ﬁj F11 {i} av (61)
v

where [1l] 1s an identity matrix and {{} are local velocitles
of any point in the element.

el = Luys wgs vyl - (62)
Thus

_..2"[ +<u>2+<u>1dv. (63)
V

The velocities ﬁx’ ﬁy and ﬁz can be expressed in terms of

local grid point velocities through the use of the assumed
displacement functions. Thus

- A . -— _ A = —
ux N Hx s My T Lg% uy1
6V M 1 .
X Uy
oe 2 (61)
X3 .
My H
L Y Y3
_uyﬂﬂ
_olal T -
UZ - 6V ]:!Zl > LAJ I_Als A2J 3: AL,__I
u
ee
pz3 (65)
Uzu
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where:

and

Thus

1T Ygpfy X ¥p3 2y ¥y (x3yu-xuy

+ Xo¥g - x3y2) z + 6V

k=g
|

o = TYEyX X Zyy o+ (Xyyo-xgyy) 2
Ry = ypzy X - X2,y + (x2yu—y2xu)
AM = (y2x3 - x2y3) Z

y

32 © Y37Vo s Xp3 T Xp T Xg

the products in Equations (63) are given by

~~
=
—r
n
il

i lﬁxij {a} |A] {ﬁxi}

. 2 . ;
(uy) Luyij {a} |A] {uyi}

The kilnetlc energy now becomes

0 s

61

37XV Ty

Z B I"]:lZiJ {A} LA—' {ﬁzi} L i-= 132339}4

r__[{A}LAJ avy, 0o , O
v

0 ,_Y{A}I_AJdVJO
v

(66)

s Siayjalav
v

—




or

o = = Loy M1 (i) (68)
where
[M] = [T®3, o, o |;(A] = E/'{A} lajav . (69)
0, [M], 0 v
0, 0, [m)

The local grid point velécities in Equation {(68) must be
reordered for use in MAGIC ITI, This is accomplished
using Equation (5B) in Equation (68). Thus

o = — L] (71" (M) (T2 () (70)
where
Lu] = Luxl, uyf uZ£ Hy,s oo “qu :

In addition, these local grid peint veloclties must be
transformed to global grid point velocities. Equation (58)

in Section B of this report is used. Thus the kinetic energy is

I R T T 3 ,
oy = —5 |U] [Ty 1" [T1" [M] [T] [ngj {u} | (71)

Taking the first variation of @K with respect tec velocities
and differentiating the result once with respect to time
yilelds the deslired mass matrix referenced to gleobal grid

point veloeclties.
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T

T “~
(M3 = [T, 1% (1% [HD (70 [7g,] . (72)

It now remains to evaluate the matrix [m]
of Equation (69). For purposes of Integration, a tetrahedral
coordinate system wlll be used. Let local coordlinates x, ¥y,
2 be defined by the transformations

X

xﬂ(l_f) + x3§f - (x3-x2)§ﬂ3

b
I

= yu{1=-%) + x,85 - (x3-—y2)5°‘$’ (73)

<]
|

= Zu (1—f)

av = axdyaz = |7(Fla2) |aganas = 6v €% dedndf .

Using these relationships, the A terms in Equation (69) become
Al = (1*§)f, A2 =§'ng, A3 = (1—')1)53 , Au = 1_5 . (7,4)

Thus the integrations are performed simply and the [m]

matrix is

(75)

H o= =™
I R
H O
N e e
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D. TEIANGULAR PRISM ELEMENT

I. Introduction

Three tetrahedrons are assembled as shown in
Figure II-7 to form a triangular prism element. When this
approach 1s taken, element matrices for three tetrahedrons are
computed and assembled automatically within the MAGIC III System.
A considerable reduction in input 1s realized which leads to a
corresponding reductlon In the possibility of input error when
large scale analyses are performed., The input required for one
triangular prism 13 identical to that for one tetrahedron cxcept
that six ncode points deflne the prism instead of four which
would define the tetrahedron.

II. Element Static Matrlces

2.1 Stiffness Matrlx

The stiffness matrlix for each tetrahedron
which makes up the triangular prism element is computed in
accordance with Equation (26) of Section C of thls report.
Recalling that

o, = 1/2 U] [x] (O} (1)

or for each of the tetrahedrons:

I T o S S e
0p = 172 |Bg, By, 85, Byil Ky Ky Kig Kpy | 8¢
I I I (2)
Koo Ka3 Koy i| 22
I I
X33 Kau | %3
(Symm.) T
_ Sy | 44
Where Ag =] < |
U 6 for example. The superscript I
Ye
Uy
L 76 ]
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refers to tetrahedron number one. Also

IT I _II _II 17|
p T /2 g Ay Ay 8] KT Ky K3 Kyy |4
11 ,II 11
Koo Krg Koy |28s
- . (3)
I
K33 K3yl |4y
(Symm. ) IT
Kyy | | 2y
__ i
IIT  _ 111 ,III IIT i)y,
0pT = 172 |Bys Ags b5, Ay] [KYTT KT KymT KiT[{A,
IIT . IIT III
Koom Koz Koyl dg
g1IT  gIITH, ()
33 34 5
(Symm. ) ITI
K A
L J—“-\l_J _l}__.

The total strain energy of the prism will be the sum of the
energles of the tetrahedrons. Thus, assembly of Equations (2)
to (4) yields:

of = 172 |aF) (xF1 aF) (5)

p.T
where {A"} = LAI, Bos Bgy By, Bg, A6J

and the superscript P refers to prism quantities.

[KP] is the deslred stiffness matrix shown in
Equation (6).

66



KHH + K

II
33°

2

I
Keu +

I
22

+ Kll

(Symmetric)

ITT

II
K23,

II
22

K

K

I 1
34
I
23

II
K3ﬂ

II
Koy

IT

.2 Stress Matrices

Recalling that

g a5

14

117

{6} = [s] {U} - [E] {€} - AT {E] {a}

I1
K&3

I1I

K3H

KIII.
33

i + K

KI N IT |
1y Ky
I II
12 12

III
+ K12

13

IT IIl
Kjy + Koy

KIII
23

+ ki1

I
K 11

11
11T

(7

Equation (7) can be used for each tetrahedron to give

to1y = s 1t - 81 (2 1y - At [E] {o}

tot1y = sy (uIlo el (8T1)- a7tl [E1(IT)

foty o [sIIT (uII

67
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Neglecting the prestrain and thermal strain for the moment,

Equations (8) to (10) can be rewritten as:

I, _ I I I I -
{co}—[sl,s2,s3,s3] iy
b2
11
8, (11)
Lyl
- -
I1, _ 1T IT 1T IT ./, —
{00}—[51 s S, » 83 s 8,771) de
Ay
AL (12)
|24 ]
IT11 111 111 11y 11T -
{o 77 = 0777, 8, s 83 > Sy AT
As
Ay
Assemblying Equations (11) to (13) yields the desired
relationship
T I [ I 1 1 I a0,
o, Sll 82 83 0 0 S1 LY
GII=SIISII 0 SIIO SII Az
o 3 2 4 1 )
111/l 83 (14)
1Ty 11T ITTY I11 S
LUG | —-{_J Sl 0 Sj—l 33 2 A
1 as
or, more compactly; A
L.
{0} = 1873 afy . (15)
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The contributlion to the stresses from

prestrain and thermal loads can be written as follows:

to. 7} = [B] {&%), to .11y = [B2EM), (o MTTy= (e1 ETM) (16)

or
R REA o | [tel) ]
7 =0 B] o ||z
(17)
{UEIH} 0 o &1l | ™Y
or
(18)
to.f1 = .51 &N
Likewise
{UuI}=ATI (E] {al}, {cil} = artl 8] {a1l}, (19)
{GGIII}= ATIII [E] {GIII}
o - - - - =3
cé ATI [E] 0 0 {aI}
031 - 0 ATII[E] 0 _{aII} (20)
aiII 0 0 ATIII[E] {aIII}
_* 4 L L _
or
(og} = (E,51 {a”} | (21)
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Combining equations (15), (18), and (21) yilelds:

¥} = 1871 7y - (821 &7y - (D) Ty - (22)

2.3 Pre-Strain Load

The work energy is

o, = v [0] (71" (81" [E] (&} = (0] (F;) (23)

where

(F b= v (71T 81T (E1 (&} .

Equation (23) can be rewritten as

2,1 (24)

351

1251

where, for example:

5. = :
Then for each tetrahedron
(1) ~ —(I)

. = oz, By, Bo, AL F.,

£ 6 2 3 1 11 (25)
Fg=l
F3,1
Fi2.1
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ptI1) o
E

S(IIT) _
£

'.A6s Azs Als Aql

I.A29 A6: A5: A)_LJ

1°1
Fosq
301

| Fiooy

{11)

(26)

(I11)

(27)

Assembly of Equations (25) to (27) ylelds the deslred matrix:

_ [ AP P
o = [27] (P}

(28)

where the prestrain lcad matrix is given by:

P}

__Figzl * F?,l(II)
Fiizl ¥ F8,§II)
Figzl ¥ F9,§II)
Ry Py
F5Ei) + Fu’gll)
F6,§_I) + F5,1(II)
o

71
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(1)

Fg 1
(1)
Fg )
g (1D (II1)
10,1+ Fyq g
(11) (I11)
F11,17 *Fan
e (II) (I1I)
12,1+ Fi2,1
(I11)
Foi1
(I1m
Fg 1
(I11)
Fg,l
(1) , p (ID
1,1 1,1 +
I II
F2fl) * F2,§ '+
(3) (I1)
F3,1 + F3,1 +

2.4 Thermal Load Matrix

T
Fufl )

(I11)
Pl

(II1)
6,1

(29)

The prism thermal load matrix {FQP} will be

in this vector are given bhy:

{F ) = VAT rr1T 81T [E] {a} -

Equation (30) 1s evaluated for each tetrahedron.
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2.5 Pressure Load Matrix

The prism pressure load matrix {FPP} will
be of the same form as {FEP} in Equation (29). The force entries
in this vector are given by:

rpt = (2 1M e)? Fpy o+ 0oy T {ﬁPl} + [TEJT{%PE}} "(31)

Equation (31) 1s evaluated for each tetrahedron.

IIT, Kinetic Energy and Mass Matrix

The kinetic energy for each tetrahedron 1s glven

by:
(1) T

0 1/2 |be, Bo, As, &1) M TV 7de ks, hs, Au)” (32)

¢éII) = 1/2 |Ae Az, bu, Au | rnID) g Lde b2, &, 21T (33)

¢§III)= 1/2 LAZ,AB, As, Au_J [M(III)]Léz,ds’ As’ A“JT (34)

The mass matrix for the ith tetrahedron can be

written as:
— —
My My, Mg My

Masd My 5 My 5 Moy

ml)y = ' (35)

My 3 M3y

My1 Moy Maay My oy

The total kinetic energy of the prism will be the sum of the
kinetlc energies of each tetrahedron. Assembly of Equations (32)
to (34) ylelds:

oL = 1/2 [AF) Py 4Dy (36)
where

{AP}T = th, b2,83, Au, As be ]
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E. SYMMETRIC TRIANGULAR PRISM ELEMENT

T, Introduction

The symmetric triangular prism finite element shown in
Figure II-8 is a special case of the full, triangular prism element
discussed in Section D. This element was developed to eliminate
conditioning problems inkerent in the analysis of thin symmetric'
sections., As an example, in the analysis of aircraft wing or tail
sections, the element can be used very effectively to model full-
depth honeycomb core constructions which are used for shear
transfer between the top and bottom skins. The use of this element
allows the analysis to be performed using either the top or bottom
symmetric half of the structure.

Appropriate boundary conditions are applied at the
element level which specialize the full-depth prism into the
symmetric element. The procedure employed in the reduction is as
follows. Six tetrahedron elements are automatically assembled within
the program with the three on the lower side of the plane of
symmetry being the mirror images of the corresponding three
tetrahedrons on the upper side, This approach assures that
symmetric and antisymmetric modes will uncouple when the element
is specialized to a symmetric representation. Appropriate symmetric
and antisymmetric boundary conditions are imposed on the plane
of symmetry at the element level. Based on these conditions,
the degrees-of-freedom associated with the bottom symmetric half
of the structure are expressed in terms of the remaining degrees-
of-freedom. Thus, a transformatlion between deformations on the
full prism and symmetric prism is derived which is used in a simple
fashion to generate the desired matrices.

II. Flement Matrices

The transformation discussed above is
(1)

(aF} = (71 (a°F)
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where
{aFyT

by = LUxi, in, Uzij, i=1,2,3
WSHT = a0 8a 2
A 1P O N B
!
B 1
1
1
- 1
i' 1
B 1
1
B 1
_ 1|

The superscripts P and SP refer to prism and symmetric prism
respectively.
2.1 Stiffness Matrix

Use of Equation (1) in the straln energy,
Equation (5) of Sectlon D yields the stiffness matrix for the
symmetric prism.

(k15% = 317 kP71 (71 (2)

2.2 Stress Matrlx

The stress matrix for the symmetric prism
is given by use of Equation (1) in Equation (22) of Section D.

(%) = 1sF1 011 0%y - (B3 (EF) - (ed) D) (3)

17



2.3 Prestrain, Thermal and Presssure Load Matrices

Symmetric prism prestrain, thermal and pressure
load matrices are given by use of the transformation equation in
Equations (28}, (30), and (31) of Section D. Thus

(7> = (117 (FD) (4)
7,51 = (277 (7 T (5)
7> 1 = (117 (7,5 (6)

2.4 Consistent Mass Matrix

_ The mass matrix for the symmetric prism is
obtained simply by substitution of the transformation equation
in Equation (36) of Section D. Thus

eSFy = 7% Py f) - (7)

. SYMMETRIC SHEAR WEB ELEMENT

I. Intrecduction

The symmetric shear web element shown in
Figure ITI-9 was developed to conduct analyses of the type dis-
cussed In Sectlon E. Appropriate symmetric and antisymmetric
boundary conditions are Imposed on the centerline of symmetry
at the element level. Based on these conditions, element
matrices can be readlly derived only using the two upper grid-
points as reference points. The assumed displacement method
is utilized to derive the stiffness and stress of the subject
element.

1I.  Geometry
Figure II-9 depicts the geometry of the shear
web element. Alsc shown are the lcocal (x,y,z) and global
{X,Y,Z) axes systems.The local axes are fixed in the Xz plane
of the element as shown In the figure. Element length, L,
is glven by the simple expression
2 2 /2
L = [(X2—Xl) + (Y2—Y1) ] (1)
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where Xl, Yl’ X2 and Y2 are the global coordinates of the two

grid polnts which define the element.
The transformation from local deformations u, w
to global deformations U, V, W is gliven by the following:

(I} = [T, 7 {0} (2)
where
_ T
Yy = [, wy, u,, w,|
(G = (U, Vo, W, Uay Vo, Wl
1* "1 12 Y23 "o T2
[ng] = F;os @ siln 8 O 0 0 0
0 0 1 0 0 0
0 0 0 cos B8 sing O
0 0 0 0 0 1
- X=X y2_yl N
cos B = 2 1 3 sin 8 = -_—-]:_

ITITI. Assumed Dlsplacement Functions

The assumed displacement functions in the

local coordinate system are:

u = (al + a2x) Z
- 2 3
w=1b, +b,x+ b3 x° + by X (3)
dw _ - 2
H = WX = b2 + 2b3}l + 3bux
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Evaluation of Equation (3) at gridpolnts 1 and 2 ylelds:

L
ul z
wl 0
w 1 0
Xl =
1.12 Z
Yo
Wx2 0
. el —
or
where
{u}t
{art
Thus

0 0 0 D
0 1 0 0
0 o 1 0

0 0 0
2%5

{u} = [] {a}

1
0 0] 1
0 0 0
22 x222 0
0 0 1
0] D 0

(A} = [(r1~t

81

0
0

—

(4)

(5)



where: 2 0 0 0 0 0
2
-1 0 0] 1 0 0
x221 XEZE
- 0 1 0 0 0 0
[r“} t] 0] 1 0 0 0
0 -3 -2 0 3 -1
x° X5 x?2 X
> )

0 g 1 0 -2 1

X XE 3 ]

2 5 X X5

2 e

Definition of the assumed displacement functions
permits derlvation of the strain-displacement relationships.
The element straln components are:

e} = [e, ] [o wox T [0 2z o o 0o o e
as
e, | - 3 wldz -0 o o0 o 0 0 (b
b2 | (6)
2ib
sz 5 u(az+ W/ 3x _} X 0 1 2x 3§~ b3
L | 1 ‘s
or {e} = [B] {a} (7
where
0 Z 0 0 0 0
[B] =0 0 o0 o0 0 O : (8)
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Iv, Potential Energy, Stiffness Matrix

The potentlal energy is

o = _l_.fl_cj {e} av (9)
2
v
Now:
{c} = [E] {e} (10)
Where
T
[E] =[E, E, o ] .
E B 0
ZX Z
_0 0 ze—

Use of Equations (5), (7), and (10) in Equation (9) yields

T
by = 1/2 fLuJ rr™t1” (83T [E] [B] [P1] {u} av (11)
v
Ny
¢ = 1/2 |u] [X] {u} (12)
where
w 1.7 T -1
[K] = f[l" ] [B]" [E] [B] [™] 4V .
V

Substituting for the ["], [B] and [E] matrices from above

7 Exz in the tripile

product [B]T [E] [B] ylelds Equation (13) after integration.

and dropping the bending terms Ex’ E
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Cae+'nyte  Cralo)n- T29- 2 T, Z 29 (Cz+zh) =
B (°z9-T2) 7= —
T
¢ Z
Conely) =2 20 Ty o
(%z+'2€)12 | 29~ (“Zf+"2) 7= 229 (°z-T29) —
2o 1oy 1 2, T
Z+ 7)) — ¢ T
( ) gEK “2€+722) —g (Z24T2) mmn (Zzz + Tzg) —
(°z€+12) M| (°z€+ 72) 9- (Mz+°2) 18
ety T Paz v Taey —
("2+°2) ﬂ 9=
O TI3ouikg
1z
e

L™,

(°z + Tzg) T

-l.IOlWI“ﬁMu
ZXH7
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The deformations {u} and element

matrix are now rearranged to give:

where
tayt
_  tGxw
[Kll] T T 60
[Kyy1 = (¥,
tGxz
(K01 = =%5

P

p = _%"UH

Ky1

12

K

21 K

22
—

5L

= (32, + I,

)

[%1] {1}

= Luls wls u23 wz: WX s WXEJ

1

)

=5 (3zl+2zz)
21

5L (2,+Z,)

212,

6

(3Zl+222)

1 2

17 -

1

——

t GXxz
0

2L (321 + 22

36 (Zl+22)

L

=6 (22,+3Z,)
Z,

-36 (Zl+22)
L

L
1

=L (4z,+2,) 624

A

)

stiffness
(14)
Symmetric
”5%(21+322)
Z
2
_g_(221+322) _;g (Zl+Z2)
Z2 L ]
:Q_(Zl+uzz) —622
Zp
-L _
bt =} (21-622) | 6z1
Zp

2L(zy +32,)
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The transformation matrix [y] 1s formed which
eliminates the L and W degrees of freedom
1 2

{ul = [yl {u} (15)
where [yl = [I]
[%,,17% [K,,]
(817 = Lpl, Wis Uy, w2J and [I] 15 an identity matrix.
Substitution of Equation (15) into Equation (14) yields:

= T _
o, = _;: |G] [KR} {u} {167

The reduced stiffness matrix [KR] is given by
Equation (17).

"] P —_——
(K] = (v17 (K1 [v1 = acf 1 N
i o ymmetric
=22, 14 z, 2
L L [
Z i 2;
1 -2212 ( 2y | (17)
. _ |
2 ,.LZE ) 22 j ,
+2% 2 17
1 » 2, 2| 22 M‘Eli
L T LZ., ! (L /
—
where
. . t Gyy
1 60(11Z.2 + 382.Z.+ 117.°)
1 192 2
_EIE— (2, + Z5) (2,7 + 82,2, + 2,7)
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It 1s now necessary to transform the local
deformation {{} to global deformations. This is accomplished
by using Equation (2) in Equation (16). Thus

b = Y Lﬁj [K] {u} (18)
P 2

where the final deslred stiffriess matrix for the symmetric
shear web is

_ 2T
(K] = [T,,3" [Kg] [T,,1 . (19)

V. STRESS MATRIX

In the absence of prestrain and thermal strain, the
stresses are given slmply by Equation (10).

{o} = [E] {e} (10)

Use of Equations (5) and (7) yields:

{¢} = [E] [B] [T1°% {u} - (20)

The deformation vector {u} is reordered to be compatible
with Equation (14) through the transformation

{u} = [le {u} (21}

where

[T

O o O O k- O
o o P o o O
o P O O O O
o o O +H O O
H O O o O O

IOOOOOI—-'I
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Use of Equations (21), (15) and (2) in Equation (20) yields:
{o} = [5] [ngj {0} (22)

where for x = L/2 and dropping the bending terms gilves:

2 2y p— ]
[E] i G, (6Zl + 482122 + 625) [ o 0 0 0
2 2 .
(1121 + 382122 + 117,7) 0 0 ) 0 (23)
1 -1 1 1
221” L 2z, L

G. TRIANGULAR RING ELEMENT (Asymmetric Loading)

I. Introduction

The formulation of the friangular cross-section
ring element described herein 1s derived from, and ls mathematically
consistent with, the formulation described in References 13, 14,
and 15, This ring element provides a powerful tool for the analysis
of thick-walled and solid axlsymmetric structures of finlte length.
It may be used to ldealize any axlisymmetrle structure taking into

account:

1. arbltrary axial variations in geometry,

axial varlation in orientation of material
axes of orthotropy,

3. radial and axial variations in material
properties,

4, any asymmetrlc loading system including
pressure and temperature, and

5. degradation of material properties due
tco temperature,
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The discrete element technique was first
applied to the analysis of axisymmetric solids by Clough and
Rashid(16).
was extended by Wilson

The formu%ation of the triangular cross-section ring
17)

to include nonaxisymmetric as well
as axisymmetric loads.

Wilson's formulation for the asymmetric case

(18) to include orthotropic material

was extended in Reference
properties with variable orientation axes. Thls extended develop-
ment is presented here as well as a more precise means of effect-
ing the integration of the straln energy over the volume of the
ring., Thermal and pressure load vectors and mass matrlces are

also developed.

Thus, the discrete element representation
presented conslsts of algebraic expression for the following

matrices:
1. Stiffness , LK1
2. Pressure Load s {Fp}
3. Thermal Load s {FT}
¥, Gravity Load > {Fgt
5. Centrifugal Load s {CG}
6. Stress » L8]
7. Mass , [M]

The matrices arise as coefficient matrlices in
the Lagrange equations for the element. The appropriate generalized
form of the Lagrange equation 1s

B¢;+ d (B®2)=0

qu dt qu
where
4, = rth generalized dlsplacement coordinate
®; = total potential energy
$, = kinetic energy
q, = rth generalized velocity coordlnate
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Various quantities in the following develop-
ment will be expanded In terms of Fourier series. The set of
unbarred amplitudes which make up these series are referred to
as the A serles coefficlents and the barred guantltles are
referred to as the B serles coeffliclients.

I1I. Displacement Functions for the Triangular
Element

The element generalized displacements (see
Flgure II-10), can be expressed in Fourier series form.

u(r,z,8) = uo(r,z) +j£l uj(r,z) cos j8 +ng uy (r,z)sinje (1)

v(r,z,0) = vo(r,z) + 5 Vj(r,z) sin Jo + T v {(r,z)cos jo (2)
j:l ,j=1 J

W(r,z,8) = w_(r,z) +J£l wJ(r,z) cos jo + §=l Wj(r,z)sinje (3)

Linear displacement amplitudes (in the r and Z directions)

are assumed.

u, = Bi,j t By TF 833 Z (H
Wy = Byy % Bgy ™t Byt te)

Note that continulty of displacement across element boundaries
is preserved. A transformation from generalized coordinates to
grid point dlsplacement coordinates is effected by wrlting

A (7)

Uiy = Byg * Boy Tyt Bay 2y

Vig = Byy * Bgy Tyt Bgy 2y

Wiy = Byy ¥ Bgy Ty *oBgy Ly
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The generalized coordinates, {Bi}, can be expressed (on the

harmonic level) in terms of grild point coordinates {qi} as

(8,3 = [; 1 fay (8)

J Bg

where

T _
{qj} = l-Ui.j’ Vi,j’ wij’ U2js ngs ng: U3Js V3J: w?)JJ (9}

(By) = 1B1ys Boyo Byys Bugs Boys Beys Brys Pgys Boyl (10
From Equation (7), with reference to Figure (II-10)
r T
1 ry Zl a 0 0 0 0 0
0 0 0 1 ry Z1 0 0 0
0 0 0 0 0 0 1 ry Zl
r q - 1 1, Z, 0 0 0 0 o 0 (11)
Ba
0 0 0 1l r, 22 0 C 0
0 0 0 0 0 0 1 r, 22
1 r3 23 0 0 0 0 0 8]
0 0 V] 1 r3 Z3 8] Q #]
I 0 Q 0 0 0 0 L r3 Z3~

which is non-slngular.

91



e
L9
P
m%
n
Ul
[
o]
a0
et
W
,

FIGURE II-10 TRIANGULAR RING ELEMENT (ASYMMETRIC LOADING)
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#
Defining {qj} as follows,
*
{qj} = LUJ, vj, wjj (12)

Equatlons (4) thru (6) can be expressed in matrix form
as shown below

{q;} = [8(r,2)] {8y} - (13)

Substituting Equation (8) into Equation (13), an expression
relating the generalized element dlisplacements to the element
nodal displacements {(on the harmonic level) can be obtained.
This relation is given by Equation {(11)

{q;} = [A3 {qy) (14)

where

(] = [B(r2)] [T - (15)

fA] can be expressed in explicit form as followss

ll 0 0 A2 0 0 13 0 0
'l 0 Al 0 0 Ag t] 0 A3 0 (16)
_O 0 Al 0 0 12 0 0 A3
where

AL = (P223—z2r3~(z3~28)r + (r3—r2)z)/|A|

Az = (erB_rlZB'i-(ZB_Zl)r ._(1"3._1"1) Z)/[AI (17)

Ay = (Tyzy-2yTh=(2ymzp)r + (15-ry)2) /A

|a|=]|T 2y + Tz, 4 zlr3— 22r3 - T zZy - sz, |
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III. Potentlial Energy

The total potential energy 1is derived as the sum of
strain energy and external work contributions.

The strain energy denslty 1s defined as

U’=f@q {o} (18)

where

{E}T = £ €

L Err’ Ezz’ e Fxz° reg? SZBI (19)

}T

{g o o

Lorr’ 9222 %88° Txz° %rg OZGJ ’ (20)
Linear elastic materizal behavior is assumed from
the initlal state of strain {ei} to the final state of

stress {o} and strain {e},

™y = 50y frey - gefmil (21)

where the superscript (m) is used to indicate that the
elastic modulus matrilx [E(m)] ls evaluated in a coordinate
system defined for the materlial that may be different than
the r, z system (see Figure II-10).

The matrix of elastic constants for an orthotropic
body with respect to cylindrical coordinate axes is

Er(l_vezvze)’ Er(wzr + Uzever)’ Er(ver T Ve Voz)s 05 0, 0
Ez(l““rever)’ EB(vBZ * Yre Vzr), 0, 0, 0
[E(m)]=~%* Eg(l-v_, vzr), 0, 0, O (22)
AGrz’ 0, 0
Symmetric AG 0
ros
AG
- 9“ zB8 .




where

A= VngVer ez 20 VarVre T VroVezVzr T VrzVerVze . (23)

From symmetry

Erver N Ee“re; Ervzr = Ezvrz; Ezvez= Eﬁvze . (24)
Poisson's ratlo, vij’ is deflned as the ratioc of the strain
in the J direction to the strain in the i1 direction due to a
stress in the 1 direction,.
Equation (22) i1s more conveniently wrltten in the following
manner:
{m) (m) (m)
E11 E12 E13 0 0 0
(m} (m)
E22 E23 0 0 0
{m}
E33 0 0 0
(m) (™ o o (25)
[E 1= Ly
(m)
E55 0
(m)
| Beg

Substitution of the assumed constituitive relations into the
strain energy density, and the 1lntegration,yields

o = 12 €T B M) o T ™ (™ 26

If the material axes {r(m)} are oriented at an angle ¥y
from the element geometric axes (see Flgure II-10), a trans-
formation must be introduced

(e™y = 177 (e} (27)
o™} = (7,7 {0} (28)
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[T

e0

]

B 2
cos"y sinzy 0 2siny cos ¥ 0 g 1
sinEY 00327 0 -2s8iny cos vy 0 0
_ 0 0 1 0
- N D
-8iny cosy siny cosy 0 cosEY-singY 0 0
0 0 0 0 cosy siny
i 0 0 0 0 -3iny cosgy
Substituting back into Equation (26) and integrating over
the volume of the element, we obtaln
7 T T rp
U= (1/2 {e}” [E] {e} - {e}” [E] {e,}) av (30)
where
- T rp(m)
[E] = [T 41" [V [T 1 . (31)

Equation (30) 1s the desired form of the potential energy.

The stralns, Equation (19) are related to displacements
as follows In a cylindrical coordinate system.

T,
{e}” = [U,, W,, U/r + Vo/r, U4W , 1/2(Ug-V)+V_,V +1/7W | (32)
where
_ du
U, = —— » Ete. (33)

Iv. Stiffness Matrix for the Trlangular Element

In order to effect the discretization of the element,
the assumed displacement functlons are introducted into the
potential energy functlon. Substitution of the total potentilal
energy function Into the Lagrange equations ylelds the element
matrices with respeet to gridpoint displacements. Stiffness
and mass matrices, as well as load vectors, are derived in
this way. The element stress matrix ls derived from the straln-
displacement and stress-strain relatlons.
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The energy contributlion of linear elastlc stiffness
1s, 1n terms of strains,

o, = 1/2 {e}T [E] (e} av (34)

In recognition of the fact that the generallzed dis-
placements were described in Fourier series form, the strains
can be described as shown in Equation (35}.

{e} = fe } *5 TCJJ{EJ} +351 [C,] (&4} (35)

th

For the A serles, ]~ harmonic {EJ} 1s expressed as follows,

T _
{EJ} = LFPBJ, €,z + €gg ¢ Epy » E

(36)
] 3 3 T8y €gp .

J
and the Matrix rbjj 1s a dlagonal matrix which appears as

given in Equation (37).
rcjj = [cos j8, cos 36, cos jo, cos J6;7 sin j6, sin jo] (37)

Matrix [Eﬁj is given by Equation (38).

[E&J = [sin J6, sin j@, sin j6, sin ], cos J6, cos JQJ_ (38)

Expressing the strains (on the harmonic level) in terms of the
generalized coordinates using Equations 4, 5, 6, and 32 yields

{EJ} = [Dj] {Bj} (39)

where

{g,}* = LB1J - BBJJ
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and

0 i 0 0 0 0 0 0 0
Q Q 0 0 0 0 0 0 1
1/r 1 2/r 3/r ] Jz/r O 0 0
0 0
1 0 0 0 0 1 0 (40)
-J/r -J -J2/ir -1/r O -Z/r 0 0 0
|0 0o o 0 0 1 -j/r-j -j2/r
where for the B serles ] assumes the value of -J in Equation
(U0). fThe differentlial volume 1is
dv = r d6 dz dr . (41)

Substituting Equations (35) and (41) into Equation (34),
and integrating with respects to & ylelds

3 g S[ﬁJJ{E]{EJ}rdzdr
=1 ¥ %

$, = 2ﬂ’g S leo [E] {eo} r dz dr + =
i=

K
rz

(42)
+ ﬂfizb Sg LEJJ[E] {EJ} rdzdr -
=13

It can be seen that the energy term represented by Eguation (34)
uncouples harmonlcally (Equation 42) due to the orthogonality
conditions which exist mathematically for the triangular ring.

th th

The energy component for the A series, J harmonic 1s

q;kj = “SS LEJ_‘ [ET {EJ} rdzdr (43)
rz

and by substituting Equation (39) into Equation (43)

"’kj = “rg S LBJJ [Dj]T [E] [DJ] {Bj} r dzdr ., (44)

Z
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Noting that the generallzed coordlnates are not variable
functions of r and Z, we can write

o = 183 1§ § 200,37 (ED (0] azar ) (8,) (45)

) S

where the triple matrix product r[DJ]T [E] {DJ] is glven by
Equation (46) on the following page.

By inspection of the matrix in Equation (L6), we see
that all the integrals 1in Equatdon (43) are the type

Gij =Sri zd azar . (47)

The Iintegratlon is carried out over the interior of
the element, shown in Flgure II-10. The lntegration 1is
performed 1ln two parts:

1) Between the lines 1-2 and 1-3, i.e. between

z =k r + m and z = k r + m13 from ry to r3.

12 12 13

2) Between the lines 1-2 and 3-2, i.e., between z = k5

r + m12 and z = k32 r + m32 from r3 to r2.

where

o %ym2y v e rlo=Tply

12~ . o 12 T -r
27T 27"
Z3'Zl _ r123~r321 |

K3 = o Ms= - - (48)
r3-rl 3 1

. ) 22-23 M _ r322—r223

3 To=T3 3 TomT3
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The potential energy component for the specified harmonic

th

(A series, J  harmenic) is related to the stiffness matrix

-~
for that harmonic, [Kj], referred to generalized coordinates
as follows

- (61T %
by = 181 IR)D (eyd L (49)

—~
[Kj] is recognized as the integral in Equation (45}. Its terms
are evaluated by substituting the appropriate Gij integrals

(see Equation (47))for the powers of r and Z in Equation (46)
as well as the substitution of the appropriate harmonic number j.
The result is presented on the following page in Equation {(50).

Introducing the transformation to gridpoelnt dlsplace-
ments, Equation (8) of Section II, and taking the filrst variation
with respect to the displacements, we obtaln the element
stiffness matrix

(K] = iYgg}T [K,] [ (51)

Be ]

Through a Judiclous cholice of displacement functions,
the essentlally three-dimensiocnal character of the ring changes
to one inherently two-dimensional in nature. Thus, an essentlally
three-dimensional problem (asymmetric loading on a solid of
revolution) can be solved by undertaking a seriles of two-dimen-
sional applications of the stiffness matrix given by Equation (51).

V. Load Vectors for the Triangular Element

5.1 Distributed Load Vector

The external work potential for a system of distrib-
uted loads (see Figure II-10) acting on the element face can
be represented in the most general form as follows:
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Vg = %X la*] {P} r do as . (52) .
s8

The most general distributed load system which could be
appllied to the element 1s expressed in the foliowing Fourier

series relationships:

P, (r,z,8) = P (r,2) +j£1 Prj(r,z) cos jo
+ ? 1-§rj (r,z) sin J®
Pe(r;z,e) = Pe(r,z) + §=l Pej(r,z) sin j@ (53)
+J§1 Eej(r,z) cos J6
P (r,z,8) = P _(r,z) +J§1 PZJ(r,Z) cos J8
+J°E°l P,y(Ts2) sin 1o
If typically for the A serles, Jth harmonic
(p 37 = LPrys Pays Poyl (54)
and
rCSJ = [cos j8, sih j6, cos ]6] (55)
[GOJJ = [sin J6, cos 38, sin j&] (56)
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Then {P} and {q*} (see Section II, Equation (13)) can be

described as follows

- o« o o = 0 _

{P} = {p} +J-El [c°,) ()} + 3:=1ch | 1By (57)
¥} = T 0 # b [C ojr=*

{a*} = {q}} *I rCJJ CHE §=1 rCJ J{qj} . (58)

Substituting Equatlons (57) and (58) into Equation (52),

the feollowling result is obtalned

* Lot #*
vy = 21§ la] Py} r as +J-§-1% layl{Py)e as
8 .

8
(59)
PEonCE 6
3=1 HSLQJ_] {Pj} r ds .
8
It can be seen that the external work potential due to
the applied distributed loads uncouples harmonically as
dld the Internal energy term ¢k; In Section IV. For the Ath
serles, Jth harmonic
I_*J {P,} rd (60)
= r
ve = 1§ lagl (7 s .

J S

Relating generallzed element displacements to element nodal

displacements in Equation (60) via Equation 14 of Section II,
Equation (60) can be written as follows:

J

S
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Noticing that the generalized nodal coordinates are not a

function of ds, Equation (61) can be rewritten as follows:

= ‘T V

5

(62)

Substituting Equation (62) into the Lagrange Equation, it can

be shown that generalized equivalent nodal loads {F_} can be

defined which act on the generalized nodal coordinatgs and which

represent the mathematlcal equlvalent to the applied distributed

load system.

{Fp } can be defined as follows
J
} = B
w, Y DIF i as
1<)
where
T ir 4 18 2z .26 _3r .3z
{F_ 1}~ = |F Fr2, F2° F<T, F F F F
p'j pJJ pj pJJ i ] pj, p'j’ p'j’ pJ’

expressing the feollowing relationships,

where

and where

Z = K12 r + M12
K = — Zl
12 _
™y
- I,z
My, = i-ig
2 1
ds = dr2 + dz2 = dz
sin &
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p,

(64)

(65)

(66)
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it can be shown that the matrix of egquivalent nodal forces

represented by Equation (63) can be expressed as follows

[ ifw
:ij’
: iz
FpJ

,F

{7E]

FEZ

pJ

28

ij

3r
pJd

3z
pJ

F

¥

38
§)

The constants Ai and Bi are defined

1
Al T
A =
2 |a
1
A, = ——
3 2|

po—

(
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Prj{(A1+ClM12) §1 + (By + C;K ,)8.}
sz{(Al+ClM12)61 + (B1 + Cl Kle)ﬁz}
0
Prj{(A2 + C2M12)61 + (B2 + C2 K12)62}
PZJ{(A2 + 02M12)51 + (32 +C, Klz}sz}
0
PZJ{(A3 + C3 M12)61 + B3 + C3 K12) o1
0
as follows
RN B B. = 2 {(Z.-2.)
273 7273 1 |AI 2 73
— (z.r,-T.Z,) B, = — (2 .,-2.)
1°3 “173 2 |A| 371
(r. .z, .~z 7.) B, = — (z,-2,)
el e Ml Rl 3 N 172

—

(68)
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where

| 4| =[r223 + TyZ, + BT-2,Ty - Tp,Zy - ToE

8, and &8; represent the following definite integrals

2
(S= = 2_ 2
1 g r dr r, rl
rl 2
and r
2 3 3
5. = 5 o ¥y
2 = r dr = .
3
ri

A special case is obtained when r, = ry.

the formulation must be changed. For this speclal case,
the eguivalent nodal lecad vector {Fp } can be shown to be

J
equal to Equation (73).
P, (22 - Zl) ry
J
P, (22 - Zl) ry
J
0
{F_} = > -
pJ 4 Pr {22—Zl)r1
J
PZJ (ZE—Zl)rl
0
0
0
0
L J
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In this 1nstance
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The load vectors represented by Equatlions (68) and (73)
do not account for a distributed loadlng acting tangentialily

(Pe) to the element face. The loading system has been

speclalized from the original complete representation (Equation
(53) to account for varying distributed locads which act parallel
to the r and 2 axils (Pr and Pz) respectively. These can be

combined to medel a varying pressure load. Both these loading
conditions can admit complete circumferential asymmetry.

5.2 Prestrain and Thermal Load Vectors

The prestrain load vector is constructed assuming
uniform distribution of prestraln across the element. The
prestraln contribution to the total potential energy 1s

o =S{e}T [E] {61} av , (74)

It can be shown that Equation (52) when appropriate substitu-
tlons are made and an integratin with respect to 0 effected,
takes the followling form

9 = engg Le J[E] {e; Irdzdr + 1 mlgg LEJJ[E]{eiJ}rdzdr
r z

o o J=
(75}
+ 11z E d .
3218% |EJ|[ ]{eij}r zdr
Yy 2

Typlically, for the Ath series, jth harmonic we have

q;sj = H&S LEJJ[E] {eij}rdzdr . (76)
r z
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Substituting Equation {(39) of Section IV into Equation (76)

yields
6 = {g,}7" H&S[D 1T rdzar [E] {e, 1} (77)
EJ J j i 7
Ty j
Let
~o T
(5,1 = HSS [0,1" r dzdr (78)
r zZ

Which may be written in terms of the § Integrals, as

13
© 0 0 8 0 -3 8 0 -
0,0 0,0
6 0 8 0 -3 6 0
130 10 J 1,0
0 0 8 8 -3 6 0
0,1 1,0 "3 9,1
i 0 0 38 o0 0 =854 0
EDJ] =
0 0 J 61,0 0 0 0 [79)
0 0 3 89,1 0 -80 1 510
0 0 0 0 0 ~38, o
Ll
0 0 0 819 O -18y o
| o 5.0 0 0 0 -380,1

Transformation of Equation (68) to gridpoint dis-
placement coordinates and substitution 1nto the Lagrange
equatlon yields the prestrain load vector.

T N
[rg 17 {D,] [E] {ey (80)

F_} 3

J q
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Where the load components are

T _ yplir 1z gle 2z 28 _3 3z 30
{F. 1= = |F F F per, F°°, FeY  wd¥, F3%, Fo|
€j €] » E:J’ £y° £ € Ej € Ej €5

and the prestrain components are

T _
o= Ly €9 €y s O

{e.
1 30 18y 3

The thermal load vector is a special case of the pre-
strain load vector. Define a matrix of thermal expansion

coefficlents as
T .
{a}” = Lqr, Ao, O,y 0]

AT is the asymmetrlc temperature rise above ambient
to which the element 1s subjJected and which represents the
average of adlJacent gridpoint temperatures. AT can be
expressed 1n Fourier series form as follows:

AT, cos 36 + E ATJ sin jO
J J:l

it 8

AT = ATO +J

The thermal lecad vector for the jth series, Ath harmonic

appears as follows

T
{FTJ} = I [PBq] [DJ] [E] {a} ATj

5.3 Gravity and Centrifugal Load Vectors

The external work done by the force of gravity on the
displacements can be written as follows:
v, = (o cw av

dv. = r 4@ dr dz
G = Acceleratlion of Gravity
p = Mass Density

= Agsumed Displacement Functlon
in Z direction
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(84)
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Substitutling for W into Equation (86) and integrating
wlth respect to 8

Vg = 21 pG S & WO r drdz (87)

y oz

Express Equation (87) in matrix form as follows,

Vg = [Bro, Bgo> Bo9] 2nm3§§ 1 rdrdez (88)
r
r ¥

2z
The vector of forces on the generalized coordinate is in
terms of the integrals defined by Equation (87) of Section IV.
Then
}T

{F b = 2lpg [0, 0, 0, 0, 0, 0, 8,,, 850, 612]  (89)

This forece 1s specifically a force which 1s present only in
the zeroth or axlsymmetric harmonic. The vector of gravity
forces on pridpoint coordinates 1is

_ T g
(g ) = g 17 (Fg 3 (90)

The external work done by centrifugal force due to spin about
the axis of symmetry can be written as follows

2
Vg =S pw rudv (91)

where w 1s the spin rate and p is the mass density, assumed
constant throughout the element. Substltuting for u into

Equation (91) and integrating with respect to 8 gives

2
vV, = 20 puw S g U, r® dzdr (92)
I 4
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Expressing Equation (92) in matrix form

1
s Bag| 20 pw2 g & { r }r° dzdr (93)

Vs = mlo’ B
r z &

20

The vector of forces as the generallized coordinates appears a

T
(F_ }

2
= 2l pw L_520: 30, 5215 O, 0: O, 09 03 QJ (9”)
and the vector of centrigugal forces on grldpolnt ccordinates is

T

{F_ Y =(r, 1 {F,} (95)

S0 Iqu
Again {FSO} represents a force which acts only on the

zeroth or axisymmetric harmonlc.

VI. Stress Matrices For The Triangular Element

The element stresses on the harmonic level for the A

th

series, J harmcnlc are glven by

{oj}=[E] {ej} - [E] {Eij} (96)

The stresses are evaluated at the centrold of the cross-section,

i.e. at

e
i

1/3 (rl +r, + r3) (97)

[ ]
i

1/3 (zl + oz, + z3)

112



[D

In Equation (96), substitute for strains in terms of
displacements

(ogh = [E1 [0, 3 [Fgqd tagd - (8] {ey ) (98)

where, from Equation (U0) of Section IV

ro 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1
V=|1/ry 1 Zomy d/vy 3 3T /ro O 0o 0 |(99)

0 0 1 0 0 0 0 1 0

-j/vy -3 -ji /vy -l/r O -z /v, 0 0 o

- 0 0 0 0 0 1 /vy =3 =32./r

Equation (98) is used to evaluate elastic stresses on the
harmonic level. The matrix {gl represents a set of harmonic
level stress amplltudes. To arrive at actual stresses for any
circumferential position around the element, the wvarious sets

of amplitudes which arise during an analysis must be recombined
in a set of appropriate Fourler serles. Thermal stresses are
obtalined by multiplying thermal strains by the matrix of elastic
coefficients, Equation (31) of Section IIT.

VII, Mass Matrix for the Triangular Element

The kinetic energy of the element is

o, = J‘é_gp (u® + V24w?) av (100)
Where u, v and w are the components of radial, clrcumferential
and axial velocity. Substituting for U, v and w, integrating

with respect to 8 and utilizing Equations (8) from Section II,

QV can be cast In the following form,
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¢y = 1 la ] [Pﬂq] (M ] [FBq] {a}

il @ T ¥ .
- quj [Tgqd™ M1 [rg 1 {ay} (101)

tug

+
1=

- T * .
930Trggd" DN [rggy (3,

5
J=1

Where for the A series, Jth harmonic
[m]
m
[M*]} = p "
(m] (102)
QY]
(m]
and

10 24 11

[M]

[}
(=]

390 21 (103)

| Symmetric 12

Then the kinetle energy component for the A series, jth

harmonic can be written in the followlng Matrix form

[ ] A °
¢Vj = quj [M] {qj} (104)

th

where for the A series, J harmonic

”~

[Mj] = 11 [M¥] (105)

and for the zeroth harmonic

[ﬁ;] = 21 [M*)] (106)

The typlcal harmonic level mass matrix referred to
gridpolnt coordinates 1s

- T i
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H. MODIFIED QUADRILATERAL THIN SHELL ELEMENT

I. Introductilion

The modifled quadrilateral thin shell element (Entry number
38 1in the library of finite element representations incorporated
within the MAGIC III System) is described in this section. This
finite element differs from the present finite element (number 21
of the MAGIC II System) only in the approximation of in-plane
behavior. No difference other than the identification number is
evident to the user,

This additional finite element representation, 1ls included in
the MAGIC III System for use in the idealization of membrances and
plane-strain sections that require elongated finlte element shapes.
Thls circustance is frequently encountered. One important class
of applications requiring high aspect ratio finite elements 1is
the stress analysis of structural joints. A rule of thumb that
may be applied to gulde the choice of element type for such applica-
tilons 1s to use the modified quadlateral thin shell element for
those finite elements whose aspect ratlo exceeds six. This guide-
line derives from experience with the IBM 360/65 computer.

The approximation of in-plane behavior embodled 1in the modified
guadrilateral thin shell finlte element differs from that in the
original finite element in two respects. Firstly, the subdivision
of the finite element inte four triangular zones deflned by the
diagonals of the guadrilateral 1s avolded in generating the modified
finlte element. This avelds the lntegratlons over triangular zones
that were Judged to be the principal constralnt for accurate genera-~
tion of finite element number 21 at high aspect ratio. The other
distinguishing feature of the modified finite element is that it
embodles a relatively simple discretization by direct interpolation
of the displacement values of the eight gridpoints. The original
finite element number 21 on the other hand involves the assumption
of polynomials whose coefficients must be determined 1In terms of
the gridpoint dilsplacements by a matrix inversion. The accuracy
of this operation which is carried out for each of the four
triangular subdivision deterlorates with increasing aspect ratio.
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The development and evaluatlon of the original finite
element is presented in Pages 113 to 162 of Reference 1. The
development of the modified finite element, number 38, parallels
that of the original finite element except for the central portion
of the representation of the in-plane behavior. Therefore, the
develcpment reported herein is confined to the representation of
the in-plane behavior. The interface of this development with
that of Reference 1 1s clearly defined and a common notation is
employed. All features of finite element number 21 such as
material eorthotropy, midpoint node suppression, ete., are main-
tained in modified finite element (number 38),.

The implementation into the MAGIC III System leaves the
program-analyst interface unchanged. The user documentation
for finilte element number 21 applies to the modified finite
element which 1s designated finite element number 38. The inter-
face between finite element library and the surrounding framework
of the MAGIC IIT System 1s identical for finlte element numbers
21 and 38. The new calculations are confined entirely within
that portion of the finite element representation that generates
the basic in-plane behavior representation.

Numerical results are presented that compare the original
and the modified finite element representations at ordinary and
at high aspect ratios. For ordlnary aspect ratios, the per-
formance of the modified finite element is found to be satisfac-
tory although generally less accurate than the origlinal finite
element whlch 1s constructed as an assemblage of four subelements.
However, for high aspect ratios the performance of finite element
number 38 is shown to be superior tc finite element number 21.
This conflirms the successful completion of the effort to provide,
in the MAGIC III System, a guadrilateral membrane finite element
with relaxed constraints upon permissible aspect ratioc.
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IT. Basi

The
illustrat
original

¢ Relationships

geometry of the quadrilateral finite element is
ed in Figure II-11{(a). At the branch point from the
segquence of calculations to the modified computation,

the following information 1ls known:

a. (

b. ¢

c. [

d. |

X s ) - coordinates of each of the eight
g E gridpoints.
m - effective thickness of the membrane.
E(g)] - material stiffness matrix for either
plane stress or plane strain as
appropriate.
E(g)} - prestress vector arlsing from prestrain,

temperature load or dlrect prestress.

Using the foregolng information, the relations that underlie
the formulation of a representation of the quadrilateral membrane

are given below,.

a.

The

tion consists of the assumption of approximations for u

v(g) and

Strailn-Displacement Relation (Eg. 285, Ref. 1)
Bu(g) Bv(g) au(g)_F Bv(g)

3 3 7 g ax
X Vg Ve g

T
8y o (1)

Stress-Strain Relation (Eq. 280, Ref. 1)
(@) = 2@y - ) (2)

Potential Energy Functional (Eq. 279, Ref. 1)
< (g)
) =St (; 18] (58] (o(8))_ ol (B} )an (3)
m m\ 2
A
construction of the desired finite element representa-
(&) ana

the substitution of these approximations into the above

relations. Then, integration of Equation (3) yields the basic

membrane

finite element representations, as:
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el
2
6
(X 3 y ) -
gb> “gb 5 (ng’ yg5)
3
1 X_,
(xg3,0) z - g
1
(xgl,O)
7
(Xg7s Y1) 8 ,
*e82 Vg8
4
(Xgu, ygu)

FIGURE II-11(a) QUADRILATERAL ELEMENT IN PHYSICAL SPACE
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u
A Xg(%,l)=x

6 =
xg(o,1)=xga 6 (1 g xg(l,l) ng
3\ & g E’"’l)'xg*S,f2 Voli,0)=y,,
yg(o,1)=yg3 (o,1) (£51) (151)

Xy (159)=x

1y
xg(u,?}—xg g5
(L 1 5
(0 L 7\1(0,2) (o) (1,2);’” yg(l’f)=yg5
Vgt 0227 Vg, ’
xg(o,u)=xg (0,0) (%io) (150) n
y s / { -
yg(o,o)-yg“ 8 1
L = =
xg(z,u) X Xg(l,o) Xo
R = =
yg(z,u) ygs yg(1,o) ygl

FIGURE II-11(b) QUADRILATERAL ELEMENT IN TRANSFORMED SPACE
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_ (g) ,
¢, = 1/2 I_(ng_l [k =71 {agm} - Lagm {F_3 (L)

(g) (g) (g)
A L M LT e
wherein,

{Ggm} 1s the vector of in-plane grildpolnt displace-
ments 1In the (xg, yg) coordinate system (Eq. 255,

Ref. 1)

[Km(g)] is the element membrane stiffness matrix stated
with respect to the {ﬁgm} displacement degrees

of freedom.

{FE (g) is the element membrane prestrain matrix stated
with respeet to the {Ggm} displacement degrees
of freedom.

{N(g)} is the vector of sets of membrane stress resultants
aligned with the (xg, yg) coordinate axes.

[s (g)4 1is the element stress matrix stated with respect
N to the {ﬁgm} displacement degrees of freedom.

{SN(g)} is the vector of sets of membrane prestress
resultants aligned with the (xg, yg) coordinate
axes (Eq. 351, Ref. 1).

Equations (4) and (5) serve to define the information
that the present development must provide at the point of
return into the original sequence of calculations performed
in generating finite element number 21, Specifically, the
matrices [Km(g)], {Fs(g)} and [SN(g)] must be provided. The

vector {sN(g)] is unchanged by the modified calculations.
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The present obJective 1s to develop explicit definitions
for the [Km(g)], {Fg(g)} and {SN(g)]. Once these have been

obtained, the orlglnal sequence of calculations is reentered
and Equations 257, 261, 262, 263 and 265 of Reference 1 are
employed to obtalin the elemenet stiffness and load matrices
in terms of the components of dilsplacement empleoyed for
asgsembly. This sequence of transformations can be denoted

symbolically by:

{85} = [¥1 (q} (5)
wherein {ql} is the final set of gridpoint displacement

degrees of freedom. The final form of the finite element
representation 1s obtained by substitution of Equatlion (6)
into Equations (4) and (5) and adding to the corresponding
representation of the flexural behavior in the manner described

in Reference 1.

III. Transformation of Coordlnates

It is clear from Equation (3) that the construction
of a finite element representation involves the integration
of functions (usually polynomials) over the interior region
of the finlte element. Because the performance of such
integrations 1s awkward for the quadrilateral shape defined
in the (xg, yg) coordinates of Flgure II-11(a) a coordinate

transformation 1s Introduced. Speclfically, the gquadrilateral
element is mapped onto the unit square of Figure I1I-11b using
mappling transformations deflned by Reference 20:

i}

% (n,u) |E (n,u)] {’ig} 0<n,u< 1 (6)

1l

~
Y (n,u) |5 (n,u) ] {y,? O<n,p< 1 (7}
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whereln:

L}

A 4T
{xg} L?gl’ Xgos Xg3s Xols Xpps Xpgs Xu7s xqu (8)

G = |y y y y g y y y (9)
g gl’ “g2® g3 “gh, Sg5° Tgb* Jg7° gB_l

{H} = ﬁ(l—u) {(+2n - 2p - 1)
nu (+2n +2u =3)
(1-n) v (-2n + 2y - 1)

(1-n) (1-p) (-2n =-2p + 1)

+4 nu (1-u) (10)

+4 nu (1-n)

+4 (1-n) u (1-i1)

+4n (1-n) (1-u)

_J

Given the (xg, yg) coordinate values of the eight grid-
points, these relations map the physical (xg, yg) space,
point-by-point, onto a unit square in the transformed (n,u)
space. Functions defined in the physlcal space are expressible
in the transformed space as expliclt functions of the trans-
formed coordinates, 1l.e.,

f (Xg, yg) = f (xg (nyu), Vg (ny,w)) = £ (n,u) O<n,u <1 (11)

For example, for the components of dlsplacement aligned with
the (X - axes:
( o yg)

&) - () (n.u), Je) o (&) (n,u) 05 nyu <l (12)
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Derivatlves of functions in the (xg, yg) coordinates
are expressible in terms of derivatives in terms of the
transformed (n,u) coordinates. Using the chain rule of
differentiation obtain

-
3 ax 9y 3f
51’1 an w an 9x
= Ix 3 & (13)
af £ Ie af
3 9 -
M o Bu 3 g

The inverse relation follows by direct calculation, 1i.e.,

—

aF aY 3y 9f

X, 1 du an 3n (14)
3 = To 9x ax af
9y Ju an U

g _

in which the coefficlent matrix 1s denoted by [J] and

The elemental area in the physical space is related tc that
of the transformed space by:

da = dxg dy =J_ d_d (16)

Fquations (6) through (16) are sufficient to permit
transformtion of the basic relatlons of Eguations (1) through
{3) Section II to expression in terms of the (n,u) coordinates.
The form of the strain-dlisplacement relation becomes,

&y - 11 () (17)
whereln () (&)
ooy = | WE W gle) 4y(®) (18)
mu an U n 3 "
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_ _
3
[Tu] = 7 Jll s J12: 0 » O
o]
O 5 0 Jyys Ty (19)
J
21 % g, J
i 220 Y110 7,

Equation (17) is a different mapping than that employed
in deriving finite element number 21 buf takes a symbolic
form identical to Equation 299 of Reference 1.

As a direct consequence of Eguation (17), the trans-
formed stress-displacement relatlon of Equation (2), Section II
is given by

(o(8y = gl8) [T, {8} - a8y (20)

The potentlal energy functional of Equation (3), Section II

ls transformed to expression as:

11 1 |
O = 5-5 (5 lag,) 1,0 ta v _ 1A, 4T, Pan au (21)
o 0

whereiln
- T ro{g)
[Tod = Tdo [Ty [EX=7] [T, (22)
ey = ¢ g 1r 1" isl8), (23)

This result is the symbolic equivalent of Equation 305
of Reference 1 although the mapping employed 1s different.

The potential energy functional, as given in Equation (21),
is now in a form that readlly admits Integration over the
area of the element for the limits of integratlion on n and u

are constants.
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IV. Discretizatlon

The formulation of the finite element representation is
carried forward by approximating the displacement functions
u(g) and v(g) and integrating the potential energy over the
interior reglon of the finite element. - Polynomials, defined
in the transformed space, are employed to approximate the dis-
placement functions. The symbolic form of the approximations

is given by:
w8 () = B (n,u)] (648 (24)
v(8) (n,w) = |H (n,u)] {58y (25)

The vector of mode shapes {H} 1s the same as that
employed to transform from (xg, yg) to {n,u) coordinates.
These mode shapes Interpolate the dlsplacement functions
within the interior region of the element on the basis of the
associated sets of gridpolnt displacement values:
(8T ul(g)’ u2(g), u3(g)’ u"(g), us(g), u6(g)

b

uT(g)’ u8(g)

3

(25)

(g) (g) (g) (g) (g) v6(g) VT(g)’ v8(g)

vl 3 V2 L) V3 E] vu s V5 )

-

e’ "

b

(26)

Discretization of the basle relatlons 1s accomplished
in two steps. FPFirst, the displacement approximations are
employed to obtaln {Amu} of Equatlion (18), Section III as:

(ag,} = [D;] (6,3 (27)
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wherein:

(D] = o |5, o]
an
218, o
ay
o , _»& [#]
an (28)
o] ., _3 |H]
- dy -

6 17 - ‘Eﬁ(g)J, Lg(g)J_' (29)

g

Now, using this extended symbeollc notation the basic
relations are discretlzed. The stress-displacement relation
of Equation (20),Section III becomes:

0 [2@] [T] [Pn] gnd- (8 (30)

The potential energy functlonal of Egquation (21}, Section III
1s discretized using Equation (27) to obtain:

*mo= 172 Lang k(83 16gn) = L‘ng {Fe(g)} (31)

wherein the stiffness [K(g)] and prestrain load {Fe(g)}

matrices for the gquadrilateral membrane finlte element are:

[K91=11 (.17 (1,1 (D 14da (32)
\f j mi m n u .

m

o]

o]

(0 1T {r__} d.d

ff m me”~ Tnu {33)
o] [}
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Two principal steps remaln in the development of the
finite element representatlion. C(onsideration must be glven
to the particularization of Equation (30) to specific points
within the finite element and the integrations indicated in
Equations (32) and (33) must be carried out.

V. Calculatlon of the Element Matrices

It 1s convenilent to invoke numerical quadrature to obtain
numerical values for the finite element matrices. All quantities,
in the 1integrals to be evaluated to cobtaln the element matrices,
are functlons of the assumed mode shapes {H}! and the gridpoint
values {?g} and f§g}. Thus, to obtaln the values of the inte-
grands, as 1s required in the numerical quadrature calculation,
it is necessary to evaluate the mode shapes {H} at the sample
peints, Then, wlth these, numerlcal values can be calculated
for all terms in the integrands.

Gaussian quadrature 1s employed. For the interval of
interest (0% §£1) the set of sample points {p} and weights
{w} for one dimensional quadrature are:

2-point
T
{p} = |0.21132487, 0.78867483] (34)
fwr T = jo.5 , 0.5 ] (35)
3-point
tp)T = [0.11270165, 0.5 , 0.88729811] (36)
wiT = |0.27777777, 0.444L4NLL, 0.27777777 (37)

These one-dimensional sets of sample points and weights
permit the construction of two-dimensional sets. Let I
(n,u), for example, denote an integrand deflned on the two-
dimensional domain 0 £ n,u £ 1. Furthermore, let the sample
polints P, and welghts W, along the n - coordlnate line be R
in number. Similarly, let there be S sample points Pg and
welghts w_ along the u- coordinate. The Gaussian product
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formula for this two-dimensional integration follows as:

(pspg)

1 1
R S
g 5 I (n,u) dn du =i E w,ow, I (n, u) (38)
=]l s=1
) 0
The guadrature problems posed by Equations (32) and (33)

Section IV involve integrands expressed in terms of {H}, {H,n}
and {H,u}. Therefore, 1ln preparation for quadrature these

vectors are evaluated at the quadrature points. The collective

results are given symbollce definitions as:

D I L
LH.J21= LHJQQ, Loy I_H_l253 (393

LI;JRl’ Blgos +--vs [Hlgs
lLH’“—lll’ L L AL TP
{H,m}T = |—H_’T‘-J21’ P PP lH,nl o (40)
gy ol oo Lonlgg]
[oudys Doulyp, oo, LAIEC

{H,U}T = LH.:UJ.QI: [_H,U__'22, ceey LH,]J,J25, {41)
LH’u_IR:L’ LH,]J_]st Teay I_H3U_|R5—|
wherein:
{H}r,S = {H (n,u)}| (42)
(p.> pg)
H,nd,, = 37 (H(n,u)}] (43)
\ (p,s Pg)
(Baud,g = 2o (a(n,m}] (41)
{(p.» Pg)
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The foregolng relations specify the gquadrature operation
completely. Using the evaluated mode shapes, the element stiff-
ness [K(g)] and prestrailn load {Fe(g)} matrices follow from
Equations (32) and (33), Section IV by direct calculation, 1.e.,

[K ] = w, w, (D 17 {I .} [D ]l
(45)
(46)

R S
(F (@)} =Y 3w, wg [0 17 {1,
r=1 s=}

{H’n}rs’ {H’“}rs

The stress-dlsplacement relation of Equation (30),
Section IV provides the means to recover values for the
stresses at any point within the finite element. Thils rela-
tion ls particularized to a set of five display points similar
to that employed In the original, number 21, membrane finlte
element, e.g.,

I e (47)
whereln:
() = relg)
[y 8’11 = [E'8)] [, (1,00] [D,(1,0)] (48)
(501 = 81,00 (49)

The stress vectors at the other points (n,u) = (1,1), (0,1),
(0,0) and (%,%) follow similarly. The [SN(g)] and {SN(S)}
matrices are the matrices of Equation (5), Sectlon II which
complete the specliflcatlion of the modifications made to the
original thin shell element (number 21) to obtain the modified
thin shell element (number 38).

129



A careful calculation of the gridpoint loads that are
equivalent to a specified distribution of boundary loading
should be based upon work equivalence rather than static
equivalence. Such a calculation is not presently provided
within the MAGIC 1II System for the membrance slituation and must
be made manually. An illustrative calculation is included to
encourage the use of work equivalent gridpoint loads.

Conslder an element side of Length L. For a coordinate
o0 8 L along the element side, the assumed dlsplacement functions
employed in finite element numbers 21 and 38 are gquadratic, i.e.,

u(s) = ~55 (s-1) (s- 3) u
L

4
- ® (s-L) up ,, (50)

O

2 L
t —5 s {g=- 5) u

L L

Let the tractlon component assoclated with this component
of displacement have a specified distributlion, say quadratic,
E.8uy

p(s) = —2—-2— (s-L) (s- %) p

L o}

]
- ? 5] (S"L) pL/2 (51)

L
. 22 s (s- 5) P1,

L

The external work of assoclated components of boundary
traction and displacement 1s given by:

L
W = ju(s) p(s) ds (52)

o}
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This energy functional is specialized to the 1llustrative
example by.substitution from Equations (50) and (51), i.e

-

L
C 2 (aord(=- L7112 L bk 2_ gy 7
W j v .‘.% vl 5 (s-L)(s- 3 L;» (3-L)(s= 30, = =5 (s-L)s, &5 8 (- S, l de  {53)
o]
- H_ & {S"L) pL/?
Lé Pr
+ 5 s (s- %
—L .l
The result of thls integration is,
P L o . o 8, 4, =2 Pq
W= L“o’ WL uLJ p © g0 o’ L2t L 4, 32, 4 (54)
L/2 » 6 PLs2
PL —23 “4, 8 l_pL
from which the vector of gridpoint loads is obtained, as:
P 8, 4, -2 P,
P = & y, 32, 4 -
L/2 €0 > 3% Prs2 (55)
Pr -2, &, 8 Py,

This result permlts convenlent manual calculation of the
gridpoint loads that correspond to a quadratle distribution of
boundary traction speciflied by its intensity at the element
gridpeoints.

131



VI. Convergence

The example chosen to 1llustrate the convergence
characteristics of finite element number 38 1s the parabol-
lcally loaded membrane shown in Figure II-12. This same
problem was conslidered previously in evaluation of the
original finlte element, number 21.

The membrane is constructed of isotropic material and
the distrlbuted loadling 1s replaced by work eguivalent grid-
point loads obtained in the manner ocutlined in Sectlion V.
Only one guadrant of the membrane l1s considered explicitly
In the analyslis. This quadrant 1s 1deallzed using square
finite elements. The i1dealization for the case of four
finlte elements is shown in Flgure II-13.

This example prolem was analyzed using ideallzations
of 1, 4 and 16 finite elements. Finite element types 21 and
38 were consldered as well as a bl-cubic element referred to
throughout as the COMEC flnite element. Addltlonally, a
sclutbn obtained by an alternative method of analysis is
included 1n the comparlson. The dlsplacement at the point of
maximum load, uq, and the total potential energy ¢ are taken
tc characterlize the predicted behavior.

The numerical results are presented in Table II-1. These
numerical results are given graphical interpretaticn In Figure
II-14. It is clear from Figure II-14 that the maximum dis-
placement 1s predlcted accurately by all three types of finite
elements., Moreover, the potential energy converges monotoni-
¢cally for each type of finlte element. Specific displacements
need not converge monotonically and indeed they do not for the
case 1llustrated 1n Figure II-14.
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FIGURE II-13
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TABLE II-1

PARABOLICALLY LOADED MEMBRANE CONVERGENCE RESULTS

Number of [Element Type No. D.0.P. | Pot. Energy |Digplace- Eu%
Elements T ment u_
=

EXACT - - 0,000492 |-

Magic Plug #21 10 -0.2138 0, 00ckg2 0.0

1 Magic Plug #38 10 -0,2147 0.000496 0.8

COMEC 16 -0,2162 0.000489 | C.6

Magic Plug #21 32 -0,2155 0.000492 0.0

iy Magic Plug #38 32 -0.2167 0.000492 0.0

COMEC 50 -0.2169 0.000493 0.2

Magic Plug #21 107 -0.2167 0.000492 0.0

16 Magic Plug #38 112 -0.2169 0.000492 | 0.0

COMEC 162 -0.2169 0.000492 |o0.C

D.0O.F. = Degrees of Freedom
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Displacements M, X 103 1in.
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Magic Plug #21
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FIGURE II-14

Number of Degrees of Freedom

PARABOLICALLY LOADED MEMBRANE CONVERGENCE
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VII. Shape Sensitivity

The parabolically loaded membrane problem of Figure II-12
is employed to obtaln an indication of the sensitivity of finite
element number 38 to distortion of its shape at ordinary aspect
ratios. The baseline i1dealization is comprised of four square
finite elements as shown 1in Figure II-13. Ideallzations of elements
of distorted shape are obtained by moving the central gridpoint
(No. 5) to selected positions on the dashed circle shown in
Figure II-13.

The displacement uq and the potential energy are taken to
characterize the predicted hbehavior. The results obtained using
finite element number 21 are shown in Table II-2, together with
results obtained using finite element number 38 and the COMEC
finite element. Thls comparison is portrayed graphlcally in
Figure II-15,

Observation of the results of Table II-2 and Figure II-15
indicates that the considerable dlstorticn imposed does not greatly
affect the accuracy of the behavior predicted by finite element
number 38. It 1s concluded at this point that the new finite
element number 38 may be used in conjunction with the original
finite element number 21 without significant adverse effects upon
the predicted behavior. 1Indeed, the performance of the new simpler
finite element 1s nearly equlvalent to that of finite element

number 21.

VIII. Bending At High Aspect Ratio

It is useful to separate the evaluation of the performance
of finite element number 38 at high aspect ratios into two parts.
First, bending 1s considered. Subsequently, the type of deforma-
tion which predominates in structural jolints will be examined.

Consideration of bending at high aspect ratios 1s included
principally to emphasize the need for cautlon in applications
where shear deformations are relied upon to represent flexural
behavior. The example problem chosen to lllustrate the difficulty
of coping with behavior of this type 1s shown in Figure II-16.
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TABLE II-2

PARABOLICALLY LOADED MEMBRANE SHAPE STUDY RESULTS

CASE ELEMENT TYPE |POT. ENERGY | DISPLACEMENT E,
B
Uq

EXACT = 0.000492 -
Magic Plug #21| -0.2155 0. 000402 0.0
1 Magic Plug #38| -0.2167 0.0004g2 0.0
Comec -0.2169 0,000493 0.2
Magic Plug #21 0.000492 0.0
2 Magic Plug #38} -0.2164 0.000494 0.4
Comec -0.2168 0.000492 0.0
Magic Plug #21 0.000491 0.2

3 Magic Plug #38| -0.2165 0.000492 0.0
Comec -0.2166 0.000489 0.6

Magic Plug #21 0.000491 0.2

L Magic Plug #38] -0.2166 0.000490 0.4
Comec -0.2168 0.000492 0.0
Magic Plug #21 0,000491 0,2
5 Magic Plug #38| -0.2166 0.000490 0.4
Comec -0,2162 0.C00430 0.4

Magic Plug #21 0.000492 0.0

6 Magic Plug #38| -0,2166 0,000491 0.2
Comec -0,2168 0.000492 0.0

* L PINITE ELEMENTS
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X 103 In.

X

Displacements, U
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FIGURE II-15 PARABOLICALLY LOADED MEMBRANE SHAPE SENSITIVITY
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The cantilever beam of Figure II-16 is loaded with a
parabolically distributed shear load. Two elements, each extend-
ing over the entire depth are employed to idealize the structure.
A sequence of cases involving 1ncreasing aspect ratios of the
finite elements is obtalned by holdlng the depth and number of
finite elements constant whilile increasing the length of the beam.

The displacements, potential energy and reactions are
taken to characterize the predicted behavior of the cantllever
beam. These results are presented 1n Table II-3 for finite
element number 38. Corresponding results obtained from finite
element number 21, the COMEC finite element and beam theory are
also shown 1n Table II-3. Dimensional, nendimensional and error

values are lncluded.

Interpretation of these results is accomplished more
conveniently using the graphical representation of Figure II-17.
At a finlite element aspect ratio of unity, the structure is not
a slender beam but the finite element results are in agreement
with each other within a fraction of a percent.

At aspect ratios of two and four, the finlte element results
achieve reasonable approxlmations of beam results and, more
importantly are in satlsfactory agreement with each other except
for the anomalous 7.4% error in the reaction predicted using
finite element number 38. The difficulty of representing bending
behavior with membrane elements is more apparent for the increased
aspect ratio of 8.0. Whille this is not considered to be especially
high, the system stiffness matrix did not admit accurate solution
using single precision arithmetic on the IBM 360/65 computer. The
The reactions obtained using finite element numbers 21 and 38 are
grossly in error. Although not shown, for slightly higher aspect
ratios, the reactlon obtained using the COMEC finite element was

also grossly in error.
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DISPLACEMENT § = (U/L3)x 10°

—

-

i 1 1 |
T 1 v 1

1 2 4 8

ASPECT RATIC

A = MAGIC PLUG #21 (22 D.O.F.)
© = MAGIC PLUG #38 (22 D.O.F.)
B = COMEC (37 D.C.F.

D.0C.F. = DEGREES OF FREEDCM

FIGURE I1I-17 CANTILEVERED BEAM BEHAVIOR
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The point of special interest here is that the source
of the difficulty does not reside in the finite element deriva-
tions themselveg. The diffiqulty 1s 1n the conditioning of the
system stiffness matrix. Thus, the above example emphaslzes
the inappropriateness of this class of finite elements for bending
applications but does not constitute a meaningful evaluation
of the relatlve performance of members of this class at high aspect
ratlos,

IX. Tension-Shear At High Aspect Ratio

The results presenfted in prior sectlons have examlned
considerations that are subordinate to the evaluatlon of the
finite element number 38 1n the present context. In this section
of the report the performance of the modifled finite element 1s
compared to that of flnlte element number 21 for an l1ldealilized
structural Jolnt. Errors that arlse in generating the stiffness
matrix for high aspect ratlo shapes of finlte element number 21
have severely restricted attempts to analyze structural joints
uslng the IBM 360/65 computer. The success of the modification
of the quadrilateral thln shell element hinges upon the analysis
of a structural Jolnt uslng finite element shapes of substantlally
higher aspect ratioc than is possible wlith the origlnal finite
element,

The highly 1dealized structural Joint employed in this
evaluation is shown in Pigure II-18. Symmetry permits explicit
consideration of one gquadrant. A total of four ldentlcal finite
elements arranged as shown in Figure II-18 is used 1n each case
consldered in this parametric study. The total load, uniformly
distributed over the end, and the length of the Jolint are held
constant. The parametric variation of the aspect ratio of the
finite elements 1s accomplished by varying the thickness of the
Joint.
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The displacement uq on the centerline at the locad, the
potential energy and the reaction at the line of symmetry
cpposing the load are taken to characterize the behavior of the
joint. Of these, the reactlion is the most sensitive measure.
The results obtained using finite element number 38 are compared
with those obtained using the original finite element and the
COMEC finite element. Reference values are calculated consider-
ing the Jolnt as a tensile bar.

Two distinet series are presented corresponding to the
use of isotropic and orthotropic materlal properties. The
complete set of numerical results for the lsotropic series is
presented in Table II-4, The principal results are portrayed
graphlcalily in Figure II-19., It 1s clear from Figure II-19 that
the various predictions are 1n agreement at the outset. When
the aspect ratio 1s increased beyond & the origlnal finite
element representation leads to an unsatisfactory error. On the
other hand, the modified element representation performs satls-
factorlily up to a value of 64.0. Thus the modified finite
element exhiblts an improvement of a factor of 8 over finite
glement number 21. The relative accuracy of the COMEC finlte
element which involves polynomlals of higher order was unexpected.

The same calculatlons were repeated for the case of an
orthotroplc materlial. Table II-5 contalns the numerical results
and Figure II-20 presents the corresponding graphlcal 1nterpre-
tation. The original flnite element performs satisfactorily to
an aspect ratio of 16.0 while the modified finite element is
apparently satisfactory even beyond an aspect ratio of 128.0.
These results reinforce the factor of 8 improvement inferred
from the results obtalned for the isotropic series,.
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TABLE II~-4  ISQTROFIC LAP JOINT* - RESULTS
ELEMENT € (%)
ELEMENT DISPLACES POT. |REACTION]U @ i ¢ e, (%) F-R | e,(%)
ASPECT gre gde ® R
RATTO TYPE MEEE ENERGY R x 10-4 (n d,)
x 107"
ALL BAR - - 100. 0.8333 | - *0041T - -
MAGTIC PLUGC #21] 0.182 L00C91[ 99.993 1.82 |118. .0051 (118.2 | 0.007] 0.007
1 MAGIC PLUG #38) 0,158 .00094} 99,975 1.88 j126. L0064 J125.4 0.025| 0.025
(de=10.) COMEC G.180 .000911100.,007 1.80 116, L0091 [118.2 | -,007|-0.007
MAGIC PLUG #21) 0.209 ,00105|100.006 1.045] 25,4 ,00525] 25.9 | -.006|-0.006
2 MAGIC PLUG #38 0.212 .00106| 99.982 1.060] 27.2 ,00530| 27.1 | -.01B}-0,018
(dg=5+) COMEC 0.269 .00105]100.005 1.045] 25,4 ,00525] 25.9 | -,0051-0,005
MAGIC PLUG #21| 0.354 L00177} 99.885 .88540] .20 .o0kh 5.52| 0.115]0.115
4 MAGIC PLUG #38[ 0.358 L00179] 99.5943 L8950 7.4 oob48] T7.43| 0.057]|0.057
(4, =2.5 COMEC 0.351 .00179| 99.992 L8925 7.1 Lo0L48|  7.43| 0.008|0.008
MAGIC PLUG #21} 0.702 0.0035| 106.21 8775 5.3 .00439| 5.27(-6.210]|-6.210
8 MAGIC PLUG #38} 0,885 0.0034| 99,986 .8563] 2.8 .oob29| 2.88| 0.014] 0.01%4
{dg =1.25) COMEC 0.682 0.0034| 59,996 .B530] 2.4 .ophz6| 2,16| 0.004] o0.00L
MAGIC PLUG #21] 1.89 L00945] 178,47 ) 1.1813[ u41.8 0059 41.51-78.48]-78.48
16 MAGIC PLUG #38[ 1.35 ,00675| 101.0% LBU3Bl 1.3 L0042 LT2{~ 1.09)-1.09
(de=G.625) COMEC 1.33 ,00666( 99.985 L8313} -.24 L0042 L7214 0,005 .005
MAGIC PLUG #21
32 MAGIC PLUG #38]|2.66 .0133 | 99.68 8312 -.25 .opkp 72 0.32 0.32
(da=0.3125) COMEC 2.64 .0132 99.959 825 -1.0 L0041 =1.7{ o.ob1] o.L1
MAGIC PLUG #21
&4 MAGIC PLUG #38| 4.85 .0243 | 84,573 L7578 -9.1 .0038 -8.91 5.427|5.427
(d,=0,15625) COMEC 5.21 .0260 | 98,389 LBil1y -2.3 .ool2 +.72| 1.611]1.611
MAGIC PLUG #21
128 MAGIC PLUG #38{ 4.44 L0222 | 15.874 .3473| -58.3 L0017 | =59.2| B412618Y4,.126
(d=0,078125)| COMEC 10,3 0519 | g7.125 8oL -3. .0039 -6.5} 2.875| 2.875

* 4 PINITE ELEMENTS
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X, Summary and Conclusions

The modlification of guadrilateral thin shell element
number 21 was undertaken to relax the aspect ratio constraint
on the in-plane portion of the representation. Attempts %o
analyze structural Joints had proved unsuccessful in that large
reslduals (for instance, loss of load throughout the structure)
were obtained that were attributed to the unavoidable high
aspect ratlos of the flnite elements.

The development of finite element number 21 was examlned
and the use of triangular subdivisions was Judged to be the
limiting factor. Even at modest aspect ratlos of the quadri-
lateral, the ratios of the slides of the triangular subdivisions
are extreme ln comparison. Accordingly, the princlpal modifica-
tion in constructing finite element number 38 was the elimination
of the use of triangular subdlvisions within the flnite element.

The modification to obtain finite element number 38 is
presented in subsections I through V. A simple, low order dis-
placement approximation was chosen because sxperlence has shown
that the simpler approximations are generally better conditioned.
Addltionally, the gridpolints and gridpolnt degrees of freedom of
the final form of the finite element representatlon were stipulated
at the outset to be the same as those of finite element number 21.
The resulting membrane representation of finlte element 38 is
equivalent tc the quadratic "serendiplty" isoparametric finite
element representation,

The modified finite element representatlon 1s avallable in
the MAGIC III system as finite element 38. Thils new finite
element representation maintains all features present 1n finite
element 21. The program-analyst interface is unchanged. The
input data is the same. The displays of results have exactly the
same interpretation for the two finite elements.
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The results presented for the membrane at different levels
of grid refinement establish that the new membrane representation
i1s satlsfactory although somewhat less accurate than finlte ele-
ment number 21. Similarly, the results presented for ldealiza-
ticns of the membrane using distorted finite element shapes show
that the new element performs satisfactorily at ordinary aspect

ratios.

The cantilever beam problem emphasizes that thls type of
behavior is not predictable using full depth membranes (or shear
panels) regardless of how accurately the element matrices are
generated. The problem class of Interest is represented by the
idealized structural Joint In which tenslon-shear behavior is

dominant.

The 1deallized isotroplc lap Joint suggests an improvement
of a factor of elght in the aspect ratic that can be employed
using the new finlte element number 38 in place of the original
finite element number 21. This factor 1s substantlated by the
analysls of the same Joint conflguration constructed of ortho-

tropic materials.

The permissible aspect ratio limit of finite element
number 38 relative to finlte element number 21 1is considered to
be reasonably well established by the examples presented. How-
ever, the permlissible absoclute 1limit on aspect ratlc depends
upon computer characteristlics, the size of the problem and the
amount of bending present. All results presented herein were
obtained using an IBM 360/65 computer. The problem sizes were
chosen to be small for economic reasons., Clearly, the detri-
mental effects of bending were negligible in the 1llustrative
lap Jjoint examples.

The new guadrilateral thin shell element number 38 1s re-
commended for use for elongated element shapes on the basls of
the numerieal evaluation presented herein. Its relative advan-
tage is clear. Guidance for Just how large finite element aspect
ratios ean be in specific applications must evolve from usage 1n

practical design.
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SECTION III

INCORPORATION OF NEW COMPUTATIONAL PROCEDURES

A. INTRODUCTION

Several new computaticnal modules have been 1lncorporated into
the MAGIC III System to support the structural analysis capability.

The first module 1s designated as ANALIC (Analysis in Core).
This module can be used to perform a complete llnear elastlc stress
analysis, selected portions of a linearlly elastic analysis or as
a general purpose equation solver. Four distinct equation solvers
are avallable in thls module and are descrlbed in the following
subsection. The abstraction Instructions required for this module
and detalled instructions for its use are dellneated in Volume II
of this document (Reference 7).

In addition to the ANALIC module, an additional out-of-core
equation solver has been added to MAGIC III. A varlable bandwidth
solver utilizing the square-root Cholesky technlique 1is available
for the decomposition of symmetric posltive-deflinlte matrices.

The theoretlcal details of the method are presented in a
subsequent subsection whille detalled instructions for its use in
the MAGIC III System are glven in The User's Manua1(7), Volume II
of this report.
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B. ANALIC (ANALYSIS IN CORE)

I. Introduction

ANALIC 1s a MAGIC IITI module which can be used to perform
a complete linear elastic stress analysls using in-core routines.
This module may alsc be used to perform selected portions of a
linear elastic analysls or as a general purpose equation solver,
The ANALIC module 1s capable of solving problems of approximately
175 reduced degrees of freedom with 18,000 words of working
storage, This module features "dynamic" storage which allows the

maximum-size problem to flt In core.

II. Equation Solvers In ANALIC

2.1 Method of Bordering

The procedure descrlbed herein determines the
inverse of a symmetric matrlix by the bordering methed., The given
matrix A 1s regarded as the result of bordering a matrix of order
(M-1), the inverse of whlch 1s assumed known., Thus let

a I
11 E :
a a ! A !
21 a2 ! - !
A = i = _9_1__$ _____ (1)
a31 a32 ! Yn }ann
T 1
Tnll ?E:laagzl__i __________
'
an,l n,?2 an,n-l ' ®nn
- t —
Then, by seeking A~ in the same form, we finally arrive at
—_ ) —_
!
- -1 T -1 !
An%l + fna nvnAn-l E
-1 1
S B I (2)
-1 1
“Vnfn_1 § 1
dn 1 & n
Wiickiinier ! —
_ -1 _T
where dn = ann-vnAn-lvn
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The algorithm used is a method of Inverting a matrix
by successlve borderings. The system locps on the order of the
desired matrix inverse and computes the inverse of a (1 x 1),

(2 x2), (3%x 3)y ..., (n xn) in turn by using the preceding com-
puted inverse. Each step of the process 1s accomplished on the
basls of Equation (2).

The followlng operations are to be carrled out in
order to find A;l:

(a) The computation of the row —vnA;il with elements

Ynla Yn2: . "_s Yn,n—l

{b) The computation of the number

= +
an ann ain Yni

(e} The determination of the elements ayp of the
inverse matrlx by the relationships

2

! Y ni
T

Y

nk

= k < -1

By " (k < n-1)

n
nn o oa

Storage for the subroutine used, conslsts of n (_E%l_) lecations

for matrix A (symmetric stored in the lower half by rows) and one
column of length n. The solution for displacements 1s computed
by multiplying the total load column by the computed inverse.
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2.2 Gauss Elimination

The subroutine presented in this section solves a
system of simultaneous linear equations with symmetric coefflcient
matrix by Gauss elimlnation. Consider the system of simultaneous
linear equations

A* X =R (1)

with symmetric m by m coefficient matrix, the upper triangular
part of which is stored by column in m* (m+l)/2 successive storage
locations, and an m by n right-hand side matrix R stored by column
in m * n successive storage locations. Solution is done by Gauss
Flimination with pivoting in the main diagonal of matrix A. If
matrix R is the identity matrix, solutlon X 1s the lnverse of matrix
A, Solutlon matrix X 1s placed in positions of the right-hand
slde matrix R and is stored by column also. Thus, the computation
of the solution requires no extra m by n array of storage. Only
an auxillary storage array named AUX with (m-1) storage locatlons
is necessary.

Explicitly, the given system (1) 1s of the form: *

— —_ I —_

al& aig a‘:_E§ .o alE X397 Xyp ere Xqp

801 2pp 893 e-e Epop Xo1 Xpp s Xop

- - - *

331 a§§ aii . a_3_E X3p Xgp  ees x3n

aml am2 am3 * agg xml e - an
r—— ————

Tyq Typ ee- LS

r r r

21 22 2n

(2)
a3 T32 ¢+ T3p
ml rm2 " rmn

+ Note that subroutine GELS requires only the upper triangular
part of matrix Ay that 1s, the elements a H 3 3
vasy, a_ . These eleméﬁ %%e unserlgﬁed in

. o 2o o
Equation (2}
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The first step ls to search the main diagonal of matrix A for the
element of greatest absolute value, say ajj’ and to select 1t as
first pivot (p = ajj)' The reason for pivoting only in the mailn
diagonal of A is that rest-matrices of A(k) (k = 1,2,...,m-1) must
remain symmetrical during the whole algorithm. With ajj’

generate the internal absolute tolerance for testing usefulness

of the symmetric algorithm in the followlng way:

tol = -8 (3)

a..
Jd
with a given relative tolerance & .

Suppose that pivot element ajj is equal to a1 If
it 1s not, interchange the first rows of matrices A and R with the
Jth and the first column of matrix A with the jth, and save column
interchange information by storing the difference (j-1) of pivot
column index J and step counter k = 1 [interchanging column 1

with column j means interchanging variables X1 with xlj (L =
1,2,.,.,n)] .

Now transform the elements of pivot rows in matrices A
and R by division with p, and the other elements by adding -8y 4 times
the new first rows of these two matrices to the otherv rows,
obtaining:++

a£%) = i&é (1 =1,2,...,m) (4)
D
rii) - f%i (L =1,2,...,n) (5)
1 1
a\’(l) = ay; -ayg - = 2,3, (6)

]

1
rv(l) v ~%va1 M1 e nnall (7)

,-,,
<
nn

++ DNote that transformation of pivot row in matrix A destroys
pivot column, which is, due to symmetry, stored In the same
locatlon. As pivot column is used unchanged for transforma-
tion of rest of A and R, it has to be saved iIn auxiliary array
AUX before transforming pivot row.
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As column interchange information is saved in the first position
of the main diagonal, the result of the first step is the two

matricqii
iy o e e
0 aéé) aéé) e aéi) and
A - (1) L(1) (1) i
0 332 aii . ainl
0 a[(n:é) al’g’é) . a(@l]i)_
e -V .
1 1 1
L(1) _ CUBIE UK
AN DL )
KRR

It is easily seen from equations (4) - (7) that the rest of the
matrix A(l) -- that is, matrix A(l without the first row and first
column -- is symmetric and that actually only the underlined
elements must be calculated and stored, Therefore, the range of
index 1 in formula (6) reduces to L =y, y+ 1, ..., m.

This procedure 1is now repeated m-2 times, starting
at each step with the matrix A(k) of the step before without the
first kK rows and first k columns, and the matrix R(k) without the first
k rows. The total result after m-1 steps 1is the matrices:
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(jl-l) agé) agé) .o agi)

J(m-1) 0 (Jp-2) 23 2l
0 0 (33—3) . agg) and

0 0 0 (3pp-m)

_ —

P

o SR B

S

NI 0

Now work backward and set:

el il A - ) aeLe
SRR ey R e B I

(8)
R U EUR
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After each step of back substitution, rows of solution matrix

X = R(m) have to be back-ilnterchanged according to interchange

information 1n the corresponding main diagonal element of matrix
-1)

plm-1))

column elements corresponding to the sequence of left-hand side

in order to get the correct sequence of right-hand side

row elements.

The only case in which the procedure described above can
fail to give a solufion occurs when at any step all elements in
the main diagonal of the rest-matrix of A(k) become zero, and no
pivot element can be found. In this case, the procedure is by-
passed and the error message ier = -1 is given, This may --but
not necessarily--mean, that matrix A is singular. Possibly
subroutines GELG or DGELG (which are working with complete pivoting)
will be able to find a scolution in cases where subroutines GELS
or DGFELS fail. Actually, because of rounding errors, a further
check of the absolute wvalues of pivot elements is performed by
the procedure. If at elimination step k this absolute value
becomes less than tol (see Equation 3), 1t is likely that there
was loss of significance in the computation of the diagonal
elements, But as this may not necessarily be the case, and as
this test depends highly on the choice of the relative tolerance
E'+, the procedure gives only the warning jier = k-1, which indicates
that there is a possible loss of significance in the results
computed by the algorithm.++ But here it 1s also possible thas
subroutines GELG or DGELG will give better resulis. If there
is only one equation to solve (m=l), the test on loss of significance
is suppressed,

+ For_subroutine GELS, a relatlve tolerance between 10_6 and
10'?418 suggesged; and for subroutine DGELS, between 10
1071% ang 10-16,

++

For example, € = lO'5 and warning ier = 3 mean that there is a
possible loss of about five or more significant digits in the
initial values of elimination step i,
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2.3 Cholesky Triangularization

Given an n by n symmetric positive definite matrix
A, compute an upper triangular matrix R such that

A = RR

The elements Tik of R are computed using the
following recursive relationships:

rip = alk/r11 _ k=1,2,3,...,n
J-1
T = (1/rjj) (ajk - E rijrik) J=2,3,...,n
gy k=j,i+l,...,n
n 2
The determinant of A is det(A) = m Ty
i=1

The given matrix A is assumed stored columnwise in
compressed form, that is upper triangular part only. MFSD
stores the solutlon R in the same locatlons as A.

If any calculated radilcand rik (k =1,2,...,n) 1is
not positive, further calculation is bypassed, and the error
parameter IER is set to -1. Thils means that A is not
positive definite, possibly due to roundoff errors, IER is also
set to -1 if the input parameter n is less than 1.

Let all radicands be positive and let rik be the

first radicand which is no longer greater than the internal
tolerance TOL = IEPS akkl‘ The subroutine then gilves the
warning IER = k-1; however, calculation 1s continued. The
warning indicates that there may be loss of significance

at factorization step k due to loss of significant digits in
the calculatlon of rik.
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Given a general matrix A and a nonsingular upper
triangular matrix T, the subroutine MTDS will perform one of the
following six operations, depending on the wvalue of an input
parameter IOP:

TOP=1: A is replaced by T 14,
I0P=-1: A is replaced by ar~L,
10P=2; A is replaced by (T_l)TA.
TOP=-2: A is replaced by A(T"l)T.
I0P=3: A is replaced by (TTT)"lA.

I0P=-3: A is replaced by A(TTT)_I.
With the above information available:

(1) Calculation of X=T"1A is done using backward
substitution to obtaln X from TX=A.

(ii) Calculation of Y=(T'1)TA is done using forward
substitution to obtain Y from TTY=A.

(111) Calculation of Z=(T'T) ‘A is done by first

solving TTY=Arand then solving TZ=Y.

The remaining three operations are reducible to the
above three.

This particular module may also be used to compute
the solution of a system of equations BX=A with symmetric positive
definite coefficient matrix B, The first step towards the solution
is the triangular factorization of B. The second step, which may
be repeated for different sets of righthand sides A, is the
calculation of (TTT)_lA. Another useful application is the

computation of the product ATB'lA with symmetric positive definite
B and arbitrary A in only three steps and without additional

storage requirements:
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(1) Replace B to T where B=TTT.

(i) Replace A by C=(T ) la.

(1i1) Replace B by clc,

2.4 Gauss Wavefront

This method uses a modified Gauss solution algorithm.
A wavefront approach is used to manipulate the data and solve
the symmetrix matrix of linear equations. The routine is a
modified version of the method described in Reference 20, .

Given:
Kin %o Uy Py
- - - (1)
Kio Koo Us Py

where U, are prescribed displacements and P1 are given forces,
From (1) we can write:

K1aUp + Kol = By (2)
We can decompose Kll as
K., = L,,DLY 3
11 T *11UMa (3)
where Lll is lower triangular

D 1s diagonal with dii = lii

T .
L11 is Ll1 transpose

and the elements of L are given by
i-1 Anjd ni
lij = kij - 2:: (1£3) (4)

n=l n,n

11
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Substituting into (2) we can write:

L13DL1yUp = Py - Kp0, (5)
Now setting

v = DLElUl (6)
we write

L1p¥ = Py - Kp00; (7)

and solve for y by forward substitution. Finally we obtain the
unknown displacements U1 by using backward substitution in
Equation (7).

The stlffness matrix is stored in wavefront format which
contalns columns consisting of the flrst non-zero row to the
diagonal element. The subroutines in ANALIC operate on the data
in this format. Subroutines are called in turn to convert the
symmetric matrix to wavefront format, decompose the matrix, perform
forward substitution, and finally back substitution,.
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IV CONCLUS IONS

It is concluded that the MAGIC III System is a logical and
consistent extension of the MAGIC I and II Systems, and that
the additional capabilities realized with MAGIC III have met
or exceeded the reguirements of Contract No. F33615-71-C-1390.
The satisfactory achievement of the overall objectives is
given substantiation by a number of subsidiary conclusions.
Specifically, it is concluded that:

(1) The addition of the solid finite element represen-
tations to the MAGIC III System provides enhanced
capability to predict general three dimensional
states of stress in structures of arbitrary profile,

(2) The addition of the triangular cross-section ring
finite element which accommodates asymmetric
mechanical and thermal loading on axisymmetric
structures provides capabllity for the analysis of
thick-walled and solid axisymmetric structures of
finite length.

(3) The addition of the modified quadrilateral thin shell
element provides enhanced capability for the
prediction of structural response of membranes and
plane-strain sectlions that require elongated finite
element shapes.

(4) The addition of the ANALIC {Analysis In Core) Module
provides an in-core equation solution capability
designed for "moderate-sized" applications. Four
equation solution techniques are provided.

(5) The out-of-core variable bandwidth equation solver
utilizing the square root Cholesky technique has
been provided for the decomposition of "large order"
positive definlte symmetric matrices,
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The MAGIC III Agendum Library has been expanded and
includes computational procedures for the following:

a. STATICSASYM (Linear Elastic Displacement and
Stress Analysis, Triangular Ring -

Asymmetric Loading)

b. STATICS {Linear Elastic Displacement and
Stress Analysis)

c. STATICSC (Linear Elastic Displacement and
Stress Analysis with Condensation)

d. STATICS2 (Linear Elastic Displacement and

Stress Analysis With Prescribed
Displacements)

e. STABILITY (Linear Elastic Instability Analysis
Using Cholesky Triangularization)

f. STABILITYA (Linear Elastic Instability Analysis
Using Matrix Inversion)

g. DYNAMICS (Vibration PFrequencies, Mode Shapes,
Generalized Mass and 3tiffness for
Supported Structures)

h. DYNAMICSF (Free-Free Vibration Frequencies,
Mode Shapes, Generalized Mass and
Generalized Stiffness for Unsupported
Structures)

i. DYNAMICSC (Vibration Frequencies, Mode Shapes,
Generalized Mass and Generallized
Stiffness with Condensation for
Supported Structures)

J. DYNAMICSCE (Free-Free Vibration Frequencles,
Mode Shapes, Generalized Mass and
Generalized Stiffness with Condensa-
tion for Unsupported Structures)

These computational procedures listed above enable
the conduct of linear displacement, stress, and
stability analyses in the presence of general prestrain
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(7)

(9)

(10)

(11)

and thermal loading as well as distributed and
concentrated mechanical loading. Additionally,
vibration analyses for free-free or supported
structures can be employed with or without the
use of condensation technigues,

The versatile MAGIC III System finite element
library, which is composed of sixteen finite
elements, enables effective ideallzation of most
linear structures.

The stability analysis procedure provided in the
MAGIC III System enables the prediction of
critical load levels for general built-up shell
structures,

The preprinted input data forms facilitate the rapid
and reliable specification of problem data as
evidenced by their wide acceptance wlth the

original MAGIC I and II Systems.

The output provided by the MAGIC III System is
oriented to the engineering user, is consistent with
MAGIC II, and facilitates clear and concise
interpretation of output parameters.

The computer program organizatlon of the MAGIC III
System is logical in design and is well suited to
generalization,
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Additional elements have been added to the MAGIC element library
in this phase of MAGIC development. These are the solid elements;
rectangular prism, tetrahedron, triangular prism, symmetric
triangular prism, and triangular ring (asymmetrical loading). Also
Included are the symmetric shear web element and & revised guadri-
lateral thin shell element. The finite elements listed include
matrices for stiffness, mass, prestraln load, thermal load, distri-
buted mechanical load, pressure and stress.

Documentation of the MAGIC III System is presented in three
parts; namely, Volume I: Engineer's Manual, Volume II: User's
Manual end Volume III: Programmer's Manual.

DD |F~%R:‘.u1473 Unclassified

Security Classi fication




KEY WORDS

LINK A LINK B

LINK €

ROLE

WT ROLE wY

ROLE l wT

Structural Analysis

. Matrix Methods

1l

2

3. Matrix Abstraction

L. Digital Computer Methods
5

. Finite Element Techniques

wU.S.Government Printing Office: 1972 — 759-488/250

Unclassified

Security Classification




