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Abstract

A partial differential equation model of a cantilevered beam with a tip mass at its free end is used
to study damping in a composite. Four separate damping mechanisms consisting of air damping,
strain rate damping, spatial hysteresis and time hysteresis are considered experimentally.
Dynamic tests were performed to produce time histories. The time history data is then used along
with an approximate model to form a sequence of least squares problems. The solution of the least
squares problem yields the estimated damping coefficients. The resulting experimentally
determined analytical model is compared with the time histories via numerical simulation of the
dynamic response. The procedure suggested here is compared with a standard modal damping
ratio model commonly used in experimental modal analysis.
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I. Introduction .
This paper examines a variety of damping mechanisms of a quasi-isotropic pultruded composite
beam. The approach taken here is a physical one. The beam is modeled by a partial differential
equation describing the transverse vibration of a beam with tip mass. The damping mechanisms
considered are all physically based rather then the usual modal models. In total, four possible
damping mechanisms are considered, one external and three internal. They are:

- viscous damping (air damping)

- Strain rate damping

- spatial hysteresis

- time hysteresis
In addition, various combinations of these mechanisms are considered. These physical damping
models are incorporated into the Euler-Bernoulli beam equation, taking care to adjust the boundary
conditions for the various damping forces. The resulting partial differential equation is
approximated using cubic splines. The time histories of the measured experimental responses are
then used to form a least squares fit-to-data parameter estimation problem. The mathematical
details for this procedure are complete and imply convergence of a sequence of parameter
estimates obtained from finite dimensional models to a set of best fit coefficients of the partial
differential equation model. The least square estimates of the various different damping
parameters are then used in the partial differential/integral equation to numerically predict the
response of the system. This numerically generated time response of the estimated system is then
compared with the actual experimental time histories. These comparisons allow several
conclusions to be drawn regarding the physical damping mechanisms present in the composite
beam.

In particular it is shown that the spatial hysteresis model combined with a viscous air damping
model results in the best reproduction of experimental time histories. The results agree well with
the physically intuitive notion that air damping should play a more significant role in lower modes
while internal damping plays a more significant role for higher modes. It is also shown explicitly
that the proposed damping models listed above cannot be modeled with any degree of success or
consistency by using standard modal damping ratios, as the traditional modal analysis approach
completely masks the physics of damping mechanisms.

II. Basic Beam Model
The beam considered here is a pultruded quasi-isotropic composite beam constructed for use in the

proposed space station.] As such, the configuration of interest is a cantilevered beam with a

mass attached to the free end. The beam is constructed of a biaxial (0°/90°) fiberglass roving held

in place with knitted polyester yarn with an equal volume of fibre in both orientations. An

isophtalic polyester resin system was used as the matrix. This material provides an alternative to

aluminum which is lower in cost, has higher specific strength but is dynamically similar. As is

;lllusqrated here, this material also has interesting damping properties - dissimilar to those of
uminum.

The equation of motion for the flexual vibration of a beam is easily calculated from considering the
equilibrium of forces acting on a differential segment of beam (see for instance Reference 2). In
this formulation, damping can easily be included by adding the appropriate force or moment to the
equations of equilibrium. A general partial differential equation model of the beam with general
damping is of the form

N
) + Liset) + Lotes) == +[ E-;ifl Upr X, z)] = ftx, 1) 1)
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for x € (0, 1), t > 0, subject to the appropriate boundary and initial conditions (taken to be
u =u, =0att=0). Here p is the mass density (mass per unit length) of the beam, Ais the

cross sectional area of the beam, EI(x) is the spatial varying flexural stiffness of the beam, the
subscript indicates partial differentiation with respect to the indicated variable and u(x,) is the
beam displacement in the transverse direction. The function u(x,t) is assumed to be smooth
enough so that all the appropriate derivatives exist. The term Lyu,(x,r) + Lou(x.r) forms the
subject of this paper. The nature of the operator L, is determined by the external damping
mechanisms while the nature of the term L, u(x,t) is determined by internal damping mechanisms.

The boundary conditions of interest here are those for a beam clamped at the end x = 0 and with a
free end at x = I. Also at x = I, a mass of mass my and rotational inertia J, resides. The fixed end
requires that the displacement and the slope of the displacement both be zero. This yields:
u@0,)=0 ()
u(0,H=0 3)
The free end requires that the sum of the moments at x = / and the sum of the forces acting atx =/
must both be zero. For the case of a tip mass at the free end, these boundary conditions become
EI(Dug (L0 = - J uyy(l,?) @)
[EI(Du(1,0)]x = myuy(l,1) (5
as long as only external damping is present.

Equations (1) - (5) describe the transverse vibration of a beam satisfying the Bernoulli-Euler
assumption that the bending wave length is several times larger than the cross sectional
dimensions of the beam, and that only lower frequency excitations are applied to the beam. It is
also assumed that rotary inertia of the beam, shear displacement of the beam and axial
displacements are negligible.

If the tip mass is not present, the boundary conditions of equations (4) and (5) change
accordingly. In addition, the nature of the damping operator L, will effect the boundary
conditions. For the case of L; = Ly =0, the vibration analysis problem is very simple as is the
inverse problem addressed here. The nature of the damping mechanisms drastically changes the
nature of the solution to the vibration problem and hence controls the response of the beam. The
following section discusses several possible choices for modeling the operator L in equation (1)
and hence the damping mechanisms.

III. Damping Models

As mentioned in the introduction four models of the damping mechanism are examined. Two of
these are time independent proportional models lending themselves to modal expansions, the other
two are er:émproportional hysteretic models. Various combinations of these models are also
considered.

Viscous Air Damping The most straight forward method of modeling the damping of a beam (or
other object) vibrating in air is to use a viscous model proportional to velocity. In this case the
operator L; becomes

Ly=vl, ' (6)
where I, is the identity operator and 7 is the viscous damping constant of proportionality. The
physical basis of this approach is a sample model of air resistance. As the beam vibrates it must

displace air causing the force yu,(x,?) to be applied to the beam. Mathematically, this form of
damping is used because it is proportional and easily treated using the same methods of analysis
used for undamped systems (see Reference 3 for instance). Both experimental modal analysis and

GDC-3

Confirmed public via DTIC Online 02/02/2015



From ADA309666 Downloaded from Digitized 02/02/2015

theoretical modal analysis depend on the validity of these models. This form of damping is often
called external damping.

Kelvin-Voight Damping Kelvin-Voight damping, or strain rate damping as it is sometimes called,
is damping of the form
o3

=cql
Ir=cq dx40t @

where [ is the moment of inertia and c, is the strain rate damping coefficient or strain velocity.
This model also satisfies a proportional damping criteria and hence is mathematically convenient.
This model is compatible with theoretical modal analysis and is also widely used in finite element
modeling along with viscous damping. Physically, this form of damping is referred to as internal
damping and represents energy dissipated by friction internal to the beam.

Unlike viscous external damping, inclusion of this form of damping affects the free end boundary
conditions because it is strain dependent. The strain rate dependance results in a damping moment
Mp of the form '

d3u

Mp=c,l
D =cal®) ox20t

®
which is included in the derivation of the equation of motion2 and hence must also be included in
any boundary conditions (such as a free end condition) depending on the moment.

The full equation of motion and boundary conditions for the linear viscously damping case
becomes

2
pu;, + %—2- (ETuy ] + cqlupy + Y =fx,8)  x€(0,)), t>0
u(0,)=u(00=0, ¢>0 &)
Elu,(l,t) +c41 > u(t) =-Juy (), >0

ox20t

O B+ 2= oy lug )] = mpug(l), 50
ox ox

Here, note that the tip mass is present in the boundary conditions as well as the damping moment.
The total damging mechanism used in (9) is the analog to proportional damping i.e., a linear
combination of mass (/) and stiffness. :

Time Hysteresis Hysteretic damping terms are most commonly associated with sinusoidal
loadings. The generic idea of including a mechanism in the beam vibration constitutive equation
indicating that stress is proportional to strain plus the past history of the strain can be
accomplished by introducing an integral term of the form

0

[e@urtx t+5)ds (10)
Y
where the history kernel g(s) is defined by
(s = gﬁ
8 Vs (1)
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where o and P are constants. Since the introduction of the heredity integral occurs in the stress
strain relationship, the boundary conditions must also be modified. In this case the boundary
value problem of interest becomes

2 0
puy(x,t) + 82— [Elu,x - [ g(S)uyy (x,t+s)ds:| =f(tx),xe(0,1),¢t>0

x2 -y
u@©,) =u,(0)=0 >0 (12)
0
Elu,, (1) - | g(S)uyy (t4+s)ds = Jug(l,t), >0
Y

0
9 l:Equx (e - | g(Duyy (l,t+s)ds] =mqUy t>0
ox -y
Note again that the inclusion of a damping mechanism in the equation of motion also effects the
boundary condition.

Spatial Hysteresis Another type of damping proposed by Russell4 is based on interpreting the
energy lost in the transverse vibration of a beam as resulting from differential rates of neighboring
beam sections causing internal friction. This is modeled by the expression

1
2 [ Jh(x,&){ux,(t,x) - ux;(t,i)}di] (13)
ox | o
where the kernel A(x,E) is defined by
hE) = —2= e “O-E)125 (14)
b\ 2=r

Under these circumstances the equation of the beam vibration becomes

02
Py + FY) [Eluyy] + Y4y

!
] %[ojh(x,i){uxz(x,t) - uxx(ﬁ,t)}dg] =fx,),xe(0,)), t>0 (15)

u0,0) = u,(0,0)=0, >0
Eluxx='1ux“ t>0,x=l
l

0
a[Equ"] - [oj'h(x,l‘,){ux,(x,t)‘ - ux,(ﬁ,t)}dx] =mqu, t>0,x=I
where again the damping mechanism changes the boundary conditions.

In total the various models represented by equations (9), (12) and (15) represent four possible
sources of damping presented in various combinations. The approach taken here is to attempt to
fit each of the combinations of damping models listed above to experimentally measured data. By
examining each model's ability to numerically reproduce measured data, a best model is chosen
from these as being most representative of the cantilever quasi-isotropic beam. As is discussed in
section V, these models all admit reasonable mathematical formulations.
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IV. Problem Statement .

The various damping coefficients introduced in the preceding discussion cannot be measured by
static experiments. Thus, the damping constants ¥, ¢4, o, B, a, and b must all be estimated based
on measurements taken from dynamic experiments. The procedure suggested here is to estimate
various groups of damping parameters such as indicated in the three models of equations (9), (12)
and (15). Once these coefficients are estimated they are used in the model to produce a numerical
simulation of the response of the structure under consideration subjected to identical experimental
inputs. The analytical time response (with the estimated coefficients) is then compared with the
experimentally measured time response. The model with the damping mechanism that best agrees
with (predicts) the experimental response is then considered to be a valid physical model.

In particular, several vectors of parameters, q, are defined one for each model of interest. For the
three cases discussed here they are:

q =[El c4I 7] (16)
which delineates the first dJamping model as defined by equation (9). Here ¢ is the internal strain

rate damping coefficient and yis the linear air damping coefficient. The second model considered,
as defined by equation (12), is characterized by the parameter vector

qQ@=[El o P] (17)
where o and B characterize the time historetic damping term. The last model considered contains

a combination of linear air damping, defined by the coefficient y, and spatial hysteresis defined by
the constants a and b. The parameter vector for the third system defined by equation (15) is

. q3=[El Y a b] (18)
Other combinations of the four damping mechanism are possible but were dismissed as discussed
in the later section on results.

Note that in each case the parameter vector contains the flexural stiffness constant EJ. For most
common materials EI is tested, tabulated and well known. However in this case the material is a
prototype composite with unknown material properties. Thus EJ is also estimated. Because of
the relative size of the air damping coefficient c4, the term ¢ is estimated.

V. Results
First the problem q; is addressed by experimental modal analysis methods. In this case the

coefficients of q; are estimated by fitting the parameters of q; to the measured damping ratios, {,,

and natural frequencies 0)?l using least squares. The results given by Cudney and Inman’
illustrate clearly that the air damping dominates the dissipation in the lower modes while strain rate
damping dominates the response in higher modes. The modal model, which depends on knowing

the analytical expression for the systems eigenvalues (of a cantileverd beam in this case) give
consistent results in a frequency range of up to 750 Hz.

The modal equations for the problem q; are given by
. Y a4 El o4
HD+| —+ D+—P a,(t)=f(t 19
(1) (M pAB,,]a,.() =P a0 =1, (19)
where B: are the eigenvalues of the stiffness operator with respect to the appropriate boundary
conditions and must be known analytically for the modal approach to work. The coefficients of
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A
a,(?) and a,(r) are compared with the measured modal damping ratios € », and natural frequencies,

3)’2' A least squares fit is then made between the measured modal data and the analytical

coefficients using
4 El A2 Y cd 4 A
—= @, and —+ =20, ® 20
n pA n pA pA Bn en n ( )

The results for a number of impact tests are given in figures 1 and 2.

Table 1 lists the analytical expressions used for the eigenvalues B; for the first 9 modes as
tabulated by Gorman for the beam parameters given in table 2. Figure 1 illustrates the modal
estimate of the elastic modulus which is basically constant at E = 2.68 x 1010N/m2 with a variance

of 6N/m2. Figure 2 illustrates the consistency of the damping estimates over the mode number for
a weighted least squares fit to equation (20). Reference 5 contains the details. The dashed line

indicates the analytically determined damping coefficient 2{,®,, based on the estimate of y (=
1.75 N-sec/m2) and ¢4 (= 20,500 N-sec/m2), versus mode number (1-9). The solid line

A .
corresponds to the measured values 2 8 p ®, versus mode number. The results are fairly
consistent, however not in exact agreement. The disagreement motivates the search for a more
exotic damping mechanism such as the hysteresis term considered next.

Note that solving the second of equations (20) for the damping ratio {,, yields

I S
Cn= 20, + S50 ®, i 1)
This states explicitly that the viscous air damping (external) is most dominate at the lowest modes,
n =1, 2, and that the strain rate (internal) damping mechanism dominates the decay rate at the
higher modes. This agrees with physically intuitive notion that the low frequency modes are
pushing more air than the higher frequency, lower amplitude modes. In fact, for a free-free

configuration it is claimed by VinsonS that this effect can be subtracted.

The modal approach is not capable of examining hysteresis effects. Hence, spline inverse
procedures are used. These time domain procedures are not limited to modal damping ratios or
assumptions of time invariance and allow for spatially varying coefficients. Hence, they are used
to estimate and compare the three models suggested in section IV. This procedure, described in
Reference 7, uses cubic spline approximations to each set of differential equations and forms a
sequence of least squares problems minimizing the difference between the analytical and
experimental accelerations (for velocities, if so desired). The sequence converges to the best value
of q for a given set of data. The functionals minimized are of the form

A .
IN(Q) = Zll(e;x), @) - U (1) 22)
where # denotes measurements at time t; and point x; (at the tip in many cases), and where the

summation is over the number of discrete time measurement, i. The superscript N denotes the
order of each term of the sequence of approximations as discussed in Reference 7.
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Problem q; was solved again using a slightly more complicated cantilevered beam with a tip

mass. The stiffness parameter (elastic modulus) E was estimated to be 2.71 x 1010N/m2, in good
agreement with the modal estimation results above. Estimates of air damping by itself or strain
rate by itself proved to be inadequate in reproducing time histories matching those of the
experimental data, indicating a poor model. The difference between the numerical solution for the
time history of the acceleration u,(x;f) for the analytical model with the estimated parameter q;

and the experimentally measured accelerations define the residual which is generally small.8 The
analytical time response is plotted along with the measured time response versus time in figure 3.
"While the agreement is fair, the residual is larger for some time intervals, warranting further
modeling. '

Next, the temporal hysteresis model q, is considered as a possible candidate for modeling the
damping in the composite. In this case, the estimation procedure produces (i.e., consistent with
our previous methods for estimating q;) a good value for E but drives the air damping coefficient
to zero. The residual, however, is better than that for model q;. Figure 4 illustrates a plot of the
measured acceleration versus time as well as the acceleration predicted by the estimate. The
difference between the measured and predicted value of the time interval of interest is almost
negligible. Because this model drives the air damping coefficient to zero violating physical
intuition, a third model (q3) was considered.

The last model considered is based on a concept of spatial hysteresis as defined by problem qs.
Again the resulting estimate of the elastic modulus E is consistent with those estimated previously.
The values estimated for the spatial hysteresis (a = 1.040394, b = 0.064362) and air damping

coefficient (Y = .090189) produce an excellent match between predicted and measured response as
indicated? in figure 4. However, the external damping coefficient v, differs from that estimate by
the q; model (y=.0315).

V1. Conclusion and Discussion

Three different models of damping have been presented to account for the experimentally
description observed dissipation in a composite beam. A spline based inverse procedure (SIP)
which relies on the distributed parameter nature of the damping mass and stiffness parameters was
used to estimate the form of the proposed damping mechanism. External air damping, strain rate
damping, spatial hysteresis and time hysteresis models were considered. The spline based
method was also compared to a standing experimental modal analysis (EMA) approach. The
EMA approach is not applicable to the various hysteresis models, nor is it applicable to systems
with spatially varying parameters in general. Both the SIP and EMA approaches yield consistent
values for the elastic modulus (E) for all three estimations models. This is consistent with the fact
that frequencies are much more robust to estimate than damping quantities are. Both hysteresis
models produce better results than the strain rate damping mode. However, the spatial hysteresis
model allows for the air damping term which time hysteresis does not. Since air damping is
obviously present the time hysteresis result is less satisfying. A comparison of the hysteresis
models is given in reference 9. However, the physical explanation of spatial hysteresis is equally
unsatisfying. Hence, further analysis and modeling is required before a critical decision can be
made among the various models.
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Table 1. Theoretical eigenvalues of a clamped-free beam.

Mode Number Eigenvalue (B))
- 1.875

4.694

7.855
10.996
14.137
17.279
20.420
23.562
26.704

WWOOITAWNEWN

Table 2. Beam parameters.

ngth (meters) (I) 1.0
Moment of Inertia (meter?) (/) 1.64 x 10
Density (kilograms/meter3) (p) 1710
Area, cross section (meter3) (A) 0.597 x 10-3
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