THE THERMORHEOLOGICALLY COMPLEX MATERIAL

Ronald L. Bagley¹ Air Force Institute of Technology Wright-Patterson Air Force Base, OH

ABSTRACT

An approximate quantum mechanical description of molecular energy transitions leads to fractional order time derivative descriptions of linear viscoelastic stress relaxation in polymers. The resulting fractional calculus stress-strain constitutive laws are mathematically compact and suitable for rheological and engineering analyses. The mathematical form of the models suggests a modification to the thermorheologically simple material that enables the description of temperature-dependent changes to the shape of curves representing a material's modulus in the transition region. The fractional calculus models are seen to be extensions of the traditional exponential models of stress relaxation.

ACCEPTED FOR PUBLICATION IN THE International Journal of Engineering Science, 1991

¹Professor of Mechanics, Department of Aeronautics and Astronautics, Air Force Institute of Technology, Wright-Patterson AFB, OH 45433, (513) 255-3517