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ABSTRACT

An overview of an experimental program for determining the
dynamic flexural constitution of materials is presented. This
program entails the development of a fully-automated flexural
apparatus, its calibration, and studies of structural damping and
dynamic flexural modulus of a variety of materials. Furthermore,
Graphite/Aluminum laminates, [+f]g, with # ranging from zero to
ninety in fifteen degree increments, were tested. Classical lami-
nate theory and the work of Ni and Adams was found to adequately
predict both the modulus and the damping. It is demonstrated that
the attachment of an end-mass (to vary the resonant frequency)
does not contribute to the measured damping.

KEYWORDS: Damping, modulus, composite material, flexural, struc-
tural, dynamic, experimental, logarithmic decrement, vacuum.

HCA-1

Confirmed public via DTIC Online 02/02/2015



From ADA309666 Downloaded from Digitized 02/02/2015

SYMBOLS USED

A = cross sectional area of beam, amplitude

Cp = specific heat per unit mass at constant pressure

Dij = components of the flexural modulus matrix for a laminate

E = Young's modulus

f = frequency (cycles/second)

h = beam thickness

I = gecond moment of area of beam

ke = transverse thermal conductivity (in thickness direction)

L = beam length

m = end-mass, cosine of ply (fiber) orientation

n = sine of ply (fiber) orientation

T = absolute temperature

t = time

w = beam width

W = maximum elastic energy stored during a cycle

AV = mechanical energy dissipated per cycle

X = coordinate along the length of the beam

y = amplitude of transverse vibration

a = linear coefficient of thermal expansion, eigenvalue

B = elgenvalue

§ = logarithmic decrement

= accuracy of experimental damping measurement

= £ = damping ratio

loss factor

eigenvalue

density per unit volume of beam material

relaxation time

¢ = phase angle by which the applied stress leads the resulting
strain

w = frequency (radians/second), 2xf

wo = resonant frequency of beam without an end-mass

¥ = damping = AW/W

()! = real part of a complex quantity ()

()" = imaginary part of a complex quantity ()

€
¢
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1.0 INTRODUCTION

The design of any structure requires the quantitative knowl-
edge of many parameters pertaining to the material of which the
structure 1is built. Two parameters of importance in the analysis
of structures subject to dynamic loads are the dynamic modulus
and damping capacity. The measure of these entities, particularly
damping, depends on the type of dynamic loading applied. Intrin-
sic, or material damping, i{s defined herein as the dissipation of
energy within a material through the excitation of internal
defect phenomena by the application of a homogeneous strain
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field. Structural damping on the other hand, is composed of both
intrinsic (material) and extrinsic (structural) components, and
is defined to be the dissipation of energy produced by the appli-
cation of a non-homogeneous strain field which is determined by
specimen shape and structural application. Hence, a specimen sub-
ject to uniaxial tensile or compressive loading deforms and dis-
sipates energy under a homogeneous strain field and therefore
yields a measurement of intrinsic material damping. However, the
strain field in a beam of the same material subject to flexural
oscillations varies in the thickness direction and with position
along the beam; this variation depending on boundary conditions.
Therefore, energy dissipation within the beam will also be a
function of thickness and position along the length of the beam,
and will give a measure of structural damping. An example of such
damping is the transport of thermal currents across the thickness
dimension of a beam (Zener or thermoelastic relaxation).

Many experimental techniques have been proposed and developed
to measure the dynamic constitution of materials. The technique
described herein determines the dynamic properties in flexure
with speed, automation, and measures of accuracy and precision.
The experimental apparatus consists of a beam specimen mounted
under cantilevered boundary conditions and vibrated in first-mode
flexural resonance. Data acquisition and reduction techniques
entail accurate determination of the resonant frequency, and a
measure of the rate of decay in free-vibrational amplitude using
a logarithmic decrement method for ascertaining the dynamic flex-
ural modulus and structural damping, respectively!.

Results pertaining to the flexural modulus and structural
damping of 6061 aluminum and a symmetric four-ply metal -matrix
composite composed of pitch-55 graphite fibers in a 6061 aluminum
matrix are presented. These results are compared with those pre-
dicted by Euler-Bernoulli, Zener (thermoelastic), and laminate
theories and show good agreement. End-masses were used to vary
the resonant frequency of the test specimens?. A brief overview
of the end-massed beam analysis and experimental results is pre-
sented to show that the addition of an end-mass only alters the
resonant frequency of the specimen and does not contribute to the
measure of damping. Damping results are presented in the form
P=AW/W, where AW is the energy dissipated during each loading
cycle and W is the maximum energy stored. Calibration of the can-
tilevered configuration for apparatus losses was carried out in
two steps. First, the damping of fused quartz, a material pos-
sessing negligible damping, was measured in a free-free appara-
tus!. This yielded a determination of the free-free apparatus
losses. Second, flexural damping data for annealed 6061 aluminum
obtained from both free-free and cantilevered configurations were
compared. Results showed that, within the range of experimental
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scatter, both configurations provided the same measure of damp-
ing. This agreement of the data justified equating the cantilev-
ered apparatus losses to those of the free-free configuration.
Accuracy of the experimental dynamic flexural modulus values was
dependent upon the measurement of the resonant frequency and spe-
cimen parameters. An estimate of accuracy was obtained by compar-
ing the results of -the present study with those of an experimen-
tal study using ultrasonic wave propagation®. A These procedures
determined accuracy of the modulus and damping values to be 0.1
percent and ¢ -3.Ox10‘4, respectively. It is noted that ¢, is a
systematic error and ¢ . Statistical analysis of all experimen-
tal data ascertained the precision to be 0.1 percent and 5x10-

(one standard deviation), for modulus and damping, respectively.

2.0 SPECIMENS

A variety of specimens were tested including annealed 6061
and 6061T6 aluminum alloys, magnesium-0.6%8 zirconium alloy,
magnesium-1% manganese alloy, leaded and lead-free brass, fused
quartz, and three metal-matrix composite laminates, one compris-
ing continuous pitch-55 graphite fibers (P55Gr) in a matrix of
6061 aluminum (P55Gr/6061Al1), the second P55Gr fibers in a matrix
of magnesium with 0.6 percent zirconium (P55Gr/Mg-0.6%2r), and
the third was constructed of P55G6r fibers in a matrix of magne-
sium with one percent manganese (P55Gr/Mg-1%Mn). The P55Gr/6061Al
specimens were cut from a four-ply, balanced, symmetric, lami-
nated plate at angles ranging from zero to ninety degrees in fif-
teen degree increments; in a zero degree specimen, the fibers are
aligned along the 1length dimension of the beam. The
P55Gr/Mg-0.6%Zr and P55Gr/Mg-1%Mn specimens were cut from a zero-
degree, eight-ply laminate.

The P55Gr/6061A1 diffusion bonded laminated composite beam
specimens were constructed of four orthotropic, unidirectional
lamina oriented at specific angles to the longitudinal beam axis
and symmetrically disposed to the midplane of the laminate. Dur-
ing the fabrication process Gr/Al precursor tows each containing
2000, 10 pym diameter fibers were consolidated between 0.089 mm
thick 6061 aluminum face sheets at the angles appropriate to the
particular laminate layup. The laminate was processed at 588°C
and 24.1 MPa for 20 minutes, yielding a composite plate of 50%
fibre volume. Two specimens of each laminate orientation were
tested. Specimen dimensions for the 6061 aluminum and metal-
matrix laminate specimens are given in Table 1.
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3.0 EXPERIMENTAL APPARATUS

A schematic diagram of the experimental apparatus utilized in
this research is presented in Figure 1. This equipment determines
the dynamic properties in flexure with speed, automation and mea-
sures of accuracy and precision. The apparatus consists of a beam
specimen supported under cantilevered boundary conditions and
vibrated in first-mode flexural resonance, a Wavetek Model 164
frequency generator, a Bruel and Kjaer electromagnetic trans-
ducer, a power amplifier for increasing the signal received by
the transducer, a Micro-Measurements BAM-1 strain bridge, a Data
Precision Model 6000/611 waveform analyzer, and a Hewlett Packard
9000/217 computer connected to the Data 6000 by an IEEE 488
{nterface. To isolate the system from the effects of air damping,
the specimen was mounted in a vacuum chamber connected to a Cenco
Hypervac 25 vacuum pump capable of drawing a hard vacuum of 0.013
Pa.

4.0 THEORETICAL BACKGROUND

To preserve the succinct nature of the paper only the final
results of the Euler-Bernoulli, logarithmic decrement, thermo-
elastic, and laminate theories entailed in these studies will be
given here.

4.1 Dynamic Flexural Modulus

Let ' be the frequency of a cantilevered beam made of an
isotropic anelastic material, and E’ be the real part of the
Young’s modulus. By the use of the Correspondence Principle of
linear viscoelasticity*¢, and the Euler-Bernoulli theory of fle-
xure, the relationship between E' and w' is given by:

2 '
o -5 [ B @

where ()' denotes the real part of a complex quantity, a is the
eigenvalue, which for the fundamental mode of a cantilevered beam
has a value of 1.875, E is the Young's modulus, I is the second
moment of area, p is the density per unit volume, and A is the
cross-sectional area. This analysis assumes that the free vibra-
tions of low-loss viscoelastic materials are approximately har-

monict.

4.2 Logarithmic Decrement

The logarithmic decrement technique entails measuring the
rate at which the free-vibration amplitude decays with time. An
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expression for the damping is given by:

AW 4xln(A(t))/A(E)]
y= yg=- we[to-t1] (2)

where w, 1is the resonant frequency, and A(ty) and A(ty) are the
peak displacements at times t; and tj, respectively. In accor-
dance with equatibn (2), In[A(t;)/A(ty)] was plotted against
(ty-t1), the least squares method was used to fit a straight
line, and from the slope, m, of the straight line, the damping
was calculated from:

¥ = bnm/oy (3)

Several other definitions of damping currently appear in the
literature. For the convenience of the reader, their inter-
relationship is documented here:

$ = 2xtand = 2nn = 4nl = 4nf = 20Q°L = 27E"/E'= 4ww" /0! = 2§

4.3 Thermoelastic (Zemer) Damping

The variation of damping with frequency due to the transport
of thermal currents as determined from Zener theory® is given by:

) S
¥ =¥ [1 + w’r"’] (4)
ZEngI 2
wher - and -
ere ¢° pcp T gzkt

Equation (4) describes the damping in a beam produced from the
transport of thermal currents across the thickness dimension.
This form of energy dissipation is dependent on the structural
configuration and is produced by a non-homogeneous strain field.
It is therefore a form of structural damping. This equation has
been used in calculating the curves in Figures 4, 6 and 7.

4.4 Laminate Theory

The following expressions for flexural modulus and damping
for a balanced, symmetric, laminated composite beam were derived
using general plate theory of laminated composites’ and the
studies of Ni and Adams®, respectively. It is noted that this
laminate theory is based on the theory of linear elasticity and
does not include thermoelastic effects. The coordinate system of
the lamina (on-axis, principal, [1,2,3]) and laminate (off-axis,
[x,y,z]), and the laminate ply counting sequence are shown in
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Figures 2 and 3, respectively. The effective flexural modulus in
free-flexure, where bending-twisting coupling is not constrained,

is given by:

12
Ef = n3pj, (5)

Although it is obvious that the boundary conditions used do
not constrain bending-twisting coupling (except at the clamped-
end), this constraint was investigated for confirmation and com-
pleteness. The constrained flexural modulus, termed pure-flexure,

is given by:
12Dé6
Ep = (6)
h3[D’' D' -(D' 2
[ 11 66 ( 16) ]
where Dij' are components of the laminate flexural modulus mat-
rix.

The total flexural damping is given by:
¥ =¥ + ¥ + Y12 (7

LW AW
- W b2 - Wl

where ¥ = W ¥

n - , - , - ,
L = m?(Q1D11 + Q2D12 *+ QeD16)
3 kel
2D,y + mnDyg) (h3 - h3
(m?D71 + mnDyg) ( ' k-l)

n _ , - , - ,
¥g = —= = n?(Q1Dy1 + Q2012 + QeP16)
3Dy kel

n2D{1 - mnDq hd® - hs
(n*D13 | 16) ( e k_1>

Ypp B o o s
¥12 = —ET T mn(Qq3D11 + Qu2P12 + Q6P16)
3D’ k-1

11 ', o 2.n21D. S _ hl
(2mnDq 1 [m2-n2]Dyg) (hk hk-l)

and m=cosf) and n=sinfy. The above relations were derived
assuming negligible shear deformation and rotary inertia (Euler-
Bernoulli beam theory) which holds for length-to-thickness ratios
greater than approximately 30°. The length-to-thickness ratio for
the composite specimens tested was of the order of 100,

HCA-7

Confirmed public via DTIC Online 02/02/2015



From ADA309666 Downloaded from Digitized 02/02/2015

5.0 EXPERIMENTAL PROCEDURE

Vibrational motion of the beam specimen was induced using an
electromagnetic transducer driven at the resonant frequency of
the specimen. As the specimens were non-magnetic, a small, high
permeability disc was attached to the end of the specimens to
provide coupling with the transducer. The cyclic signal repre-
senting the motion of the specimen was obtained via a strain gage
attached near the root. This gage was connected to the direct-
current strain bridge, whose analog voltage output was passed to
the Data 6000 acquisition device. When the specimen reached
steady-state, forced vibrational motion, the resonant frequency
was recorded by the computer. The current to the excitation
transducer was then interrupted and the specimen went into free
vibrational decay. The steady-state and the free-decay motion
were recorded in digital form by the Data 6000 where the voltage
of each positive peak of the waveform was determined and passed
via the IEEE 488 bus to the computer,

In order to study the variation of dynamic flexural modulus
and structural damping with frequency, an end-mass was attached
to the end of the specimen to facilitate the variation of its
resonant frequency?. The dynamic flexural modulus was calculated
using equation (1) and the experimental values of resonant
frequency and specimen parameters. Structural damping was deter-
mined using equations (2) and (3).

6.0 EXPERIMENTAL ERROR

Calibration of the cantilevered configuration for apparatus
losses was carried out in two steps. First, the damping of fused
quartz, a material possessing negligible damping, was measured in
a free-free apparatus!. A reported damping value for fused quartz
is 1.2x10°6 10, The value measured using the free-free vibra-
tional apparatus was 3x10°4. As the cited value is negligibly
small, 3x10-% is determined to represent apparatus losses, and is
denoted ¢,. Therefore, the measured value of damping of any
material using this apparatus can be decomposed into the thermo-
elastic (Zener) and intrinsic damping of the material plus appa-
ratus losses:

free-free free-free free-free

measured = ¥Zener + Yintrinsic + €y (8)

Because it is impractical to measure the damping of fused
quartz using a cantilevered apparatus due to the required clamp-
ing pressures and the fragile nature of the material, a compari-
son between measured damping values for annealed 6061 aluminum in

HCA-8

Confirmed public via DTIC Online 02/02/2015
| e i




, From ADA309666 Downloaded from

Digitized 02/02/2015

both free-free and cantilevered configurations was carried out.
As shown in Figure 4, results displayed a negligible difference
in the mean damping values obtained from the two techniques. The
standard error for the least squares curve fit of all the data
was 5%x10°%. In an analogous manner to that used for the free-free
apparatus, the measured damping value of a material can again be
decomposed according to equation (8):

cantilever cantilever cantilever
Ymeasured = ¥Zener + Vintrinsic * €y 9

As the intrinsic damping of a material is a constitutional prop-
erty, and the thermoelasic (Zener) damping is the same for both
configurations, as comparison was made at the same frequency
using specimens of the same dimensions, therefore:

free-free cantilever

Zener = ¥YZener (10)

Since the measured values of damping obtained from two different
techniques agree over the range of frequencies and strain ampli-
tudes studied, it follows from equations (8), (9) and (10) that

free-free cantilever

€ -y (11)

Therefore, from equation (11) and the agreement between the
experimental results shown in Figure 4, the apparatus losses of
the cantilevered configuration can be equated to the measured
value of extraneous losses in the free-free apparatus; that 1is,
for both configurations, the accuracy in the measurement of damp-
ing, defined by €p is 3.0x10°%4. An additional point of interest
obtained from Figure 4 is that the value of Zener damping, which
is strain amplitude independent, lies within the range of 1inter-
cept of the least squares best-fit straight line and the lines
specifying the standard error. This adds credence to the measured
data, and also demonstrates that, for the particular material
tested where intrinsic damping is very low, an accurate measure
of the intrinsic damping cannot be determined from the flexural
damping as it lies within the range of experimental scatter. How-
ever, one may 2 put bounds on 1its magnitude; that 1is

°<¢1ntrinsic<531o-4~

Accuracy of the experimental dynamic flexural modulus values
1s dependent upon the measurement of the resonant frequency and
specimen parameters. A measure of the accuracy and precision of
the modulus data was determined by calculating the modulus from
thirty independent tests in which the resonant frequency was dis-
turbed by attaching different end-masses to the end of a speci-
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men?; this will be discussed further in the next section. Evalua-
tion of the dynamic flexural modulus from the thirty different
experimental values of frequency, and the corresponding eigenval-
ues determined from the end-mass used, resulted in a mean value
of 69.376 GPa + 0.1% (one standard deviation). This agrees within
0.1 with the value of 69.439 GPa * 0.1% obtained from an inde-
pendent study using ultrasonic wave propagation®,

Thus, the accuracy of the measured modulus and damping values
presented herein are 0.1 percent and 3.0x10'4, respectively.
Precision of the experimental data was ascertained to be 0.1 per-
cent and 5x10°% (one standard deviation), for modulus and damp -
ing, respectively.

7.0 RESULTS AND DISCUSSION

For continuity the essential results pertaining to the
attachment of an end-mass to a beam specimen to facilitate the
variation of resonant frequency are reproduced from?. This tech-
nique was wused to determine the frequency dependence of dynamic
flexural modulus and structural damping for the specimens tested.
The data, covering almost two decades of frequency, were obtained
using five different beam lengths and six different end-masses.
The length, mass and frequency matrix is shown in Table 2.

The relationship between the frequency and end-mass is given
by equation (1)2? where now the eigenvalues, a, are the solutions
of the transcendental equation:

1 + cosacosha -
a(sinacosha - cosasinha) ™ pAL (12)

Figure 5 shows the normalized frequency as a function of normal-
ized mass for annealed 6061 aluminum and Justifies the applica-
bility of Euler-Bernoulli beam theory in the analysis. Further,
each experimental data point is an independent measure of the
dynamic flexural modulus since the eigenvalues are specified by
equation (12) and vibrational frequencies are experimentally
determined. Thus, the modulus can be calculated via a rearrange-
ment of equation (1). It is emphasized that each data point pro-
vides an independent determination of the modulus as all parame-
ters in equation (1), except the eigenvalues, are experimentally
measured. Evaluation of the dynamic flexural modulus from the
thirty experimental data points resulted in a mean value of
69.376 GPa * 0.1% (one standard deviation). This agrees very well
with the value of 69.439 GPa + 0.1% obtained from an independent
study?.
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Figure 6 shows the normalized damping as a function of nor-
malized frequency for 6061 aluminum. The vertical arrow points to
the frequency common to five of the reference beam
length/end-mass combinations (11.19 Hz), These five measurements
lie in the range y=0.81x10°2 % 0.02x10°2 (+2.58). It is important
to note that this observation of precision agrees well with the
value of 5x10-% obtained from the independent study of compara-
tive damping values for the free-free and cantilevered configura-
tions. The experimental program was designed to cover a broad
range of frequency values on either side of the Zener relaxation
frequency wr=l1 and, as shown, experimental results follow the
Zener curve very well. Figure 7 displays the normalized damping
as a function of normalized mass for four nominal frequencies,
namely, 8, 11.19, 16, and 20 Hz. Clearly, within the bounds of
experimental error, the damping is insensitive to the end-mass.

The dependence of flexural modulus and damping with ply-angle
for the P55Gr/6061Al1 metal-matrix composite laminate specimens
was investigated at fixed values of frequency (35 Hz) and strain
amplitude (55pe). Two specimens of each ply-angle were tested.
The experimental flexural modulus results and the curves defined
by equations (5) and (6) are shown in Figure 8. Locations where
only one symbol is shown indicate that agreement of the exper-
{mental data was within the size of the graphing symbol. The
variation of the wunconstrained (free) dynamic flexural modulus
with ply-angle, as defined by equation (5), is illustrated as the
solid 1line in Figure 8. This semi-empiricle curve was generated
using experimental values of the longitudinal and transverse mod-
uli, Poisson’'s ratio, and the resultant element value of the
laminate flexural modulus matrix, D’jq, calculated from a lami-
nate code. As the shear modulus was unavailable, this parameter
was varied in the laminate code to give the least-squares best-
fit curve through the experimental flexural modulus data. From
this routine a longitudinal shear modulus value of 16.5 GPa was
obtained. The curve for the constrained (pure) flexural modulus,
as defined by equation (6), is shown as the dashed line in Figure
8. Comparison of the two curves indicate that flexure is best
modelled by considering twisting due to the bending-twisting cou-
pling terms to be unconstrained, as expected.

Prediction of laminate structural damping, as given by equa-
tion (7), was calculated from the laminate code using the exper-
imentally determined value for Gyt (from the flexural modulus
curve-fit), measured values of ¥y, ¥, obtained from flexural
damping experiments on zero and 90 degree specimens, and curve-
fitting for ¢¥yr. The theoretical curve and experimental data are
shown in Figure 9. The curve shown was generated using an analo-
gous least-squares best-fit routine as that used to determine
Gyr. This resulted in a value of ¥ r=0.039. Experimental results
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indicate that within experimental scatter, laminate theory pre-
dicts the flexural modulus and damping in graphite-aluminum
metal-matrix laminates reasonably well. Tables 3, 4 and 5 provide
a summary of the experimentally determined mechanical properties
of annealed 6061 aluminum, continuous Pitch 55 graphite fibers,
and the P55Gr/6061A1 metal-matrix composite specimens tested,
respectively.

8.0 CONCLUSIONS

The cantilevered flexural resonance apparatus discussed
herein facilitates the measurement of the dynamic flexural modu-
lus and structural damping capacity of a material. The attachment
of an end-mass does not contribute to measured values of flexural
modulus or damping. Experimental values obtained for the flexural .
modulus and structural damping of annealed 6061 aluminum display
good agreement with Euler-Bernoulli and Zener (thermoelastic)
theories. Experimental results obtained from specimens cut from a
four-ply, balanced, symmetric, P55Gr/6061A1 metal-matrix compos-
ite laminate at angles ranging from zero to ninety degrees in
increments of fifteen degrees indicated that the flexural modulus
and structural damping varied with ply angle. The classical lami-
nate theory of Ni and Adams® adequately predicts this variation.
Accuracy of the modulus and damping values were determined to be
0.1 percent and ¢ -3.0x10'4, respectively. Statistical analysis
of all experimental data ascertained the precision to be 0.1 per-
cent and 5x10°% (one standard deviation), for modulus and damp-
ing, respectively.
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TABLE 1 - SPECIMEN PARAMETERS

Specimen L LW h P Er, v
ID m O om m kg/m3 GPa  AW/W
x102  x10?2 x102? x10% x102
0-1 13.10 '1.214 0.211 2.41 156.10 0.35
0-2 13.08 1.212 0.208 2.41 160.65 0.4
15-1 13.18 1.089 0.208 2.43 124.38 1.03
15-2 13,23 1.146 0.203 2.41 125.48 0.9
30-1 13.03 .0.955 0.208 2.43 74.39 2.0
30-2 13.20 1.143 0.211 2.41 72,81 1.8
45-1 15.21 1.217 0.208 2.41 47.09 2.35
45-2 15.24 1.212 0.208 2.38 45.78 2.1
60-1 13.13 0.957 0.211 2.41 36.13 2.6
60-2 13.51 0.955 0.211 2.41 35.51 2.7
75-1 15.47 1.212 0.203 2.43 37.37 2.25
75-2 13.59 1.214 0.203 2.43 36.82 2.35
90-1 13.18 1.146 0.203 2.43 36.68 1.6
90-2 13.30 1.140 0.203 2.43 36.47 1.5
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TABLE 2 -THEORETICAL VALUES OF RESONANT FREQUENCIES

FOR DIFFERENT LENGTH/END-MASS COMBINATIONS

beam end-mass (g)

length mg ms my, mj my m;
(cm) 91.17 40.09 19.96 10.34 4.99 0.17
L; 12.70 11.19 16.68 23.15 31.10 41.70 78.46
Ly 16.51 7.52 11.19 15.44 20.55 27.11 46.90
L3 20.32 5.49 8.15 11.19 1.4.76 19.20 31.15
Ly 24.13 4.26 6.25 8.55 11.19 14,90 22.19
Ls 27.94 3.39 4.99 6.79 8.82 11.19 16.96

width=1.27 cm, thickness=0.162 cm
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TABLE 3 - MECHANICAL PROPERTIES OF ANNEALED 6061 ALUMINUM

E G v P [ k c
GPa GPa kg/m®  um/m°K J/m°Ks J/Eg'K
x103

68.9 25.9 0.33 2.70 23.0 180.2 895.8

TABLE 4 - MECHANICAL PROPERTIES OF CONTINUOUS PITCH 55
CONTINUOUS GRAPHITE FIBERS

EL Ep G wvpp b a k
GPa GPa GPa kg/m® pm/m°K J/m°Ks
x103

379.2 3.4 17.2 0.41 1.99 -1.25 120.9

TABLE 5 - EXPERIMENTALLY DETERMINED MECHANICAL PROPERTIES
OF P55Gr/6061A1 METAL MATRIX COMPOSITE

EpL, Epr Gur wvir Vg ¥ ¥r ¥LT
GPa GPa GPa kg/m3

x109

157.9 36.7 16.5 0.33 2.43 0.5 0.004 0.0155 0.039

Vg: volume fraction

¥: AW/W
Note: Gpr and ¥y 1 were deduced from experimental results of

flexural modulus and damping, respectively.

HCA-16
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Figure 1 - Experimental Configuration
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[1,2,3] Lamina
[x,y,2z] Laminate

Figure 2 - Laminate Coordinate System
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Figure 3 - Ply Counting Sequence

HCA-18
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Figure 4 - Comparison of Flexural Damping Data from Free-Free and Cantilevered Configurations
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Figure 5 - The Effect of an End-mass on the Resonant Frequency of a Cantilevered Beam
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Figure 6 - Normalized Damping vs Normalized Frequency for 6061 Aluminum

Five beam lengths and six end-masses were chosen to produce the same
resonant frequency (marked by arrow). Within the errors of
measurement the measured damping does not depend on end-mass.
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Figure 7 - Damping as a Function of End-mass for Four Nominal Freguencies
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Figure 8 - Flexural Modulus vs Ply-Angle for Symmetric 4-Ply P55Gr/6061A1 Composite

Two specimens of each ply angle were tested - the experimental data overlap
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Figure 9 - Flexural Damping vs Ply Angle for Symmetric P55Gr/6061A1 Composite
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