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ABSTRACT 

Complex damping theory is a useful tool in analysis of energy 

transformations among modes of a vibration system. Based on this theory, 

there are many applications and improvements in the areas ~f system 

identification, vibration control and damper optimization design. 

This paper presents an application of the theory in regard to finite 

element model corrections. First, a common shortfall of usual correction 

procedures is analyzed. In order to deal with this problem, a correct 

correspondence rule is then proposed. ~ith the help of complex damping 

coefficients, improvements to certain correction procedures are discussed. 
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INTRODUCTION 

The dynamic performance of a structure may be characterized by different 

mathematical models . Among them, the modal model and the physical model 

are most frequently seen. A modal model whifh consists of a · set of modal 

parameters is often used in harmonic-related vibration control, in dynamic 

behavior analysis, and in physical model modification. Since a modal model 

is essentially a dynamic representation of the physical model in the modal 

domain. The transformation of physical coordinates into modal coordinates 

is always accompanied by a certain loss of information, a modal model is 

generally considered to be a weak model but relatively easy to obtain. 

A physical model consists of three coefficient matrices: The mass, 

damping and stiffness matrices. If such a model is known, all the modal 

parameters can be calculated. Conversely, a physical model can not be 

determined in general from a modal model. In this regard, a physical model 

is considered superior than a modal model. 

In engineering practice, a physical model ls not always available because 

not all the coefficient matrices can be directly measured. The measurable 

quantities are often the various dynamic responses and modal parameters of 

the structural system. Based on these data, we can typically generate an 

approximate model - an analytical model, using the finite element method 

(FEM). In most cases, the analytical model is inaccurate and requires 

various adjustments or corrections. In the past decades, many attempts 

have been made to develop better algorithms to modify the FEM models. At 

present, the need to develop appropriate algorithms continues to exist . 

From the analytical model to the physical model, an important step is to 

perform model corrections. In a general model correction procedure, the 

goal is to obtain a set of coefficient matrices, mass M, damping C .and 

stiffness K. What we have at the beginning is the analytical model data 
Cal · K , along with some dynamic parameters of the physical 

( ml model, such as measured response X and/or modal parameters: Undamped 
(ml _(ml (ml 

natural frequencies Q , damping ratios~ and mode shapes p . In 

OCC-2 



each step of the corrections, we obtain certain corresponding matrices 

Mo> , c< 1 > and Kc 1 > as approximations to the real M, C and K. Then we 
( 111) ( ml 

typically compare the measured response X and/or modal parameters n , 
( ml (ml (I) 3 and P , with the calculated response X , and/or modal parameters 

0< 1 >, 3< 1 > an~ p< 1
> from the revised analytical model . If the discrepancy 

between the two sets of data is less than a certain preset level, then the 

revised analytical mod~l is accepted as the physical model. Otherwise , the 

correction procedure is continued. 

In such a correction procedure described above, a number of factors can 

influence the final result . There are many existing algorithms that do not 

converge in general . For those that converge may have problems in 

targeting the correct M, C and K because the comparison criterion used is 

not sufficiently comprehensive . 

In this paper, we propose an alternative judgment on the effectiveness of 

model corrections . Our discussions will be restricted to finite element 

models and their corrections under the assumption that the models are 

linear, time-invariant and have lumped-masses. 

RESPONSE-FITTING 

One of the simplest model correction methods is the time domain response­

fitting. In order to carry ·out this method , a time history (or transfer 

function) of the testing structure must first be recorded . The time 

history can be a free dec~y response with an initial input such as sine­

burst, white noise-burst, impulse, etc . Or it can be a forced response 

under an excitation such as sinusoidal, sine-sweep, sine-dwell, pseudo 

white-noise or simulated seismic ground motion. In~ carefully conducted 

experiment, the measured response is considered "noise-free" . Thus it is 

ready to be used as the correction reference . Once the reference is 

available, corresponding samples are collected from a calculated response 

of the analytical model with same initial phases and time intervals . Then 

by using certain mathematical techniques such as the least-square method 

or the maximwn-likelihood method , a cost function is generated to measure 

the discrepancy between the two responses . Equation (1) gives a least-
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square cost function (Natke, 1988). 
P n 

J = t I: a: 
1=1 J=l IJ 

( 111) (a) )2 
X - X 

I J I J 
(1) 

where, <111> d 
X an 

IJ 

(a) th 
x are the i samples of measured and calculated 

I J 
th 

responses from the j node respectively. The total number of samples from 

each source is p and the number of nodes is n. a are weighted 
lj 

coefficients. In general, at certain nodes, samples are measured more 

accurately than at other places, the weighted coefficients of these 

samples will then be assigned with greater values. Conversely, the tail 

of a free decay response is thought to have poor signal-to-noise ratio, 

the weighted coefficients of samples from this portion will be assigned 

with smaller values . 

The value of J indicates whether the analytical model ls close to the 

physical model . When the response of the analytical model does not flt the 

response of the structural system, J will assume a large value. Corrections 

to the analytical model will then be made to reduce the value of J. 

Due to several reasons, response-fitting ls often considered unsatisfactory 

in terms of its model correction effect. First, when a given excitation 

with a nearly straight spectrum, the structural response should 

theoretically incorporate the influences of all modes of the structural 

system. However, lower modes are usually associated with large percentage 

of the total energy involved, these modes have dominate influence to the 

response. In fact, most engineering applications only require to consider 

the first mode. Therefore, information from the higher modes may be lost 

in the response. 

Secondly, despite the measured response being assumed noise-free, noise 

can not be completely eliminated. The commonly used noise-reduction 

techniques in response-fitting are essentially pre-treatments such as 

averaging the noise in the frequency domain. Since the participating 

factors of higher modes are relatively small, these modes give poor 

signal-to-noise ratios. The existence of these modes can hardly be 

identified in a response function. Consequently, the order of the 
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reference can not be determined by the response-fitting method unless more 

sophisticated time domain modal analysis is used . It is conceivable that 

without prior knowledge of the reference order, response-fitting is more 

likely to accept a degenerate model with only the first few modes of the 

real structural system. 

Thirdly, the higher modes decay faster than the lower modes in a free 

decay response. This may also induce the problem of losing information 

from the higher modes in a recorded response. 

ExAKPLE 1: Figure 1 (a) shows a five story structure. This model steel 

frame is considered to have at least fifteen degrees-of-

freedom. A free decay time history measured at a point on the 

third floor of the frame is shown in Figure 1 (b) . Two other 

responses are ·also given here . They are calculated responses 

from two analytical models one with 2 DOF the other with 3 DOF. 

Although the 15 DOF structure should not be treated as a 2 or 3 

DOF system, by using response-fitting, we could have accepted the 

2 or 3 DOF analytical model as the real physical model. 

FREQUENCY-FITTING 

Frequency-fitting is another commonly applicable method for model 

corrections. The reference in this method is the measured natural 

frequencies which are either obtained directly from vibration test or 

extracted through modal analysis. The two ways give damped and undamped 

natural frequencies respectively. The number of the natural frequencies 

collected in the reference corresponds to the order of the structural 

system. So there has no problem in determining the number of modes in the 

system. The cost function is given by 
n 

J = L ex (w(ml - w(a ) )2 
I I I 

( 2) 

1=1 

where w<ml and w<al are the measured and calculated 
I I 

undamped natural 
th frequencies of the i mode respectively. ex are the corresponding 

I 

weighted coefficients . Since this method utilizes information from all 

relevant natural frequencies, which have been accurately measured, it has 
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better overall performance over th response-fitting method. Especially, 

frequency-fitting is suitable for correcting models with many higher modes 

Equation (2) can be further modified by including both the natural 

frequencies and the damping ratios in J. 
n 

J = l: a: (w(m) _ w(al )2 + /3 ( ~(ml _ ~(a) )2 (3) 
l=l I I I I l , l 

where ~~- l denotes the 1th damping ratio of (m) or (a). This improved 

Equation (3) is suitable for correcting models demanding high accuracy for 

both natural frequencies and· damping ratios. 

A useful variation of the above method is the less accurate FRF curve­

fitting technique. Similar to Equation (1), the cost function in this 

case is 

(4) 
p 

J = l: a: (f(ml - f(al ) 2 

l l l 
l=l 

(. l th where f is the i sample taken from the reference FRF (m) or the 
l 

analytical FRF (a). pis the total number of samples. Selection of weighted 

coefficients is empirical. If the FRF samples are collected from a forced 

response with a feedback controlled excitation whose input spectrum has 

been kept a straight line, then a: are the same for all i a 1, ... , n. 
l 

In using Equation (2), a correspondence between the referential and the 

analytical frequencies must be established first. One such correspondence 

is described below. 

Consider the two sets of natural frequencies 

{ w: ml I i = 1, n } and { 
( 11) 

I j 1, n } . ••• t w = ... , 
J 

First, arrange them by a linear ordering 
C ml (ml (ml 

:S :S 
(ml 

w :S w :S w .... w 
l l l l 

1 2 3 n 

(5) 
(al 

:S w (a) 
:S w (al 

:S :S 
(a) 

w .... w 
Jl J2 J3 J 

n 

where the subscripts are some permutations of 1, 2, . .. , n. Then the 

frequencies are paired according to the ordering. With this one-one 
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correspondence, Equation (2) can be restated as 

J ( (m) (a) )2 ( (ml (al )2+ + ( (ml (a) )2 =ex w -w +ex w -w ... a w -w . 
1 1 J 2 1 J

2 
n I J 

1 1 2 n n 

Such a correspondence has the nice mathematical property that it gives the 

cost function J the smallest value when the weighted coefficients in 

Equation (2) are the same. 

There are some problems with response-fitting method too . This can be seen 

from the following example . 

EXAMPLE 2: A 4 DOF structure ls shown in Figure 2 (a) . Its physical model 

and an analytical model have the generalized damping and stiffness 

matrices as given in Table 1 (a ), (b) respectively. Figure 2 (b) 

gives two FRF's, in which the dotted curve is from the physical 

model and the dashed curve is from the analytical model . 

Table 1 (a) 
- 1 

Generalized Damping Matrices , M C 

Physical Analytical 

27 . 3598 -19 . 2436 -22 . 8993 24 . 2555 6 . 3384 -1.3278 -1.2976 0.6308 

32 . 2713 1. 7445 -23 . 1446 3 . 1574 -0.7730 -1. 1894 
' 43.2177 -32.4571 3. 1408 -1. 6335 

49. 1511 2.5634 

Table 1 (b) Generalized Stiffn~ss Matrices M- 1K 1,000 X 

Physical Analytical 

8.3284 -2 . 7139 -2 . 6032 2 . 3111 8 . 3130 -2 . 7085 -2 . 5973 2.3056 

1.8560 0 . 1289 -0 . 8413 1. 8549 0. 1266 -0 . 8398 

2 . 3377 -1. 5225 2 . 3361 -1. 5209 

1. 4619 1. 4607 

It is clear that the generalized damping matrices of these two models are 

quite different . In fact, the physical model is non-proportionally damped 

whereas the analytical model is proportionally damped . ( most finite 

element algorithms only generate proportionally damped models) . 

Consequently, the mode shapes· of these two models are different . The first 
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model has complex-valued mode shapes but the second has only real-valued 

ones. Such differences can not be detected in a single pair of frequency 

response functions . Therefore, curve-fitting FRF or frequency-fitting is 

inadequate for correcting errors in such category. This is seen in Figure 

2 (b), where, in spite of the aforementioned differences between the two 

models, the two FRF still appear to be close. 

COMPLETE HODAL-FITI'ING 

A more sophisticated fitting method is developed by include the mode shape 

influences into the cost function, namely 
n 

J = I ex (w(ml _ w(al )2 + f3 ( ~(ml _ ~(al )2 
l l l l l l 

l=l 

+ ( (ml (al)H r ( (ml (a)) 
pl - pl l pl - pl (6) 

where p<.l is the 1th mode shape, and r is a diagonal matrix _which consist s 
l l 

of weighted coefficients . A simplified version of Equation (6) is 
n 

J I (w(rnl (al) 2 = (X - w 
l l l 

l = 1 

+ ( 
(m) (al)H r (ml ( al ) (7) pl pl l pl pl 

Since the complete set of modal parameters is employed in Equation (6), it 

is called the complete modal-fitting. However, complete modal-fitting does 

not always give a satisfactory correction to an analytical model. One 

problem is related to the mode shapes. For example, the error in a 

measured mode shape could reach as high as 500¾ . (Liang & Inman 1988). 

Under this circumstance, the weighted coefficients r must be assigned 
l 

with very small values. Therefore, the modification effect from mode 

shapes is limited. 

VEAKNESS OF AVAILABLE CORRECTION METHODS . 

In the preceding sections , we briefly reviewed some commonly used model 

correction procedures . None of these methods is sufficient in terms of the 

correction effectiveness . There are certain types of errors in the 

analytical model that may not be eliminated through the model corrections. 

r:cc-8 



One of the shortfalls is that the cost function J is based on numerical 

judgments of some necessary but not sufficient properties of the model. 

Therefore , no matter how small the value of J could be reduced to, the 

correction effect stil l may not be greatly improved . In addition, there 

exist possible experimental errors as well . So it is necessary to 

establish more suitable criteria for evaluations of the correction effects. 

The goal of model correction is to obtain the correct M, C, and K matrices. 

However, in many engineering applications , it is the properties of the 

structural system that are of our interests . As described at the 

introduction section, using the M-C-K model we can calculate these 

system's properties . On the other hand , when some of the properties the 

systems are known such as the order of the system, they may be used in 

model corrections . Following this line of thought, we can consider and 

treat model correction on the basis of its ability of preserving system 

properties in addition to its ability to satisfy the prescribed numerical 

criteria such as cost function J. Since there is no single property 

of the system that is strong enough to guarantee the correctness of the 

physical model (at least it is the case at present) , the best analytical 

model is the one that preserves most properties of the system. 

CORRECT CORRESPONDENCE AND ITS INTERPRETATION IN HODEL CORRECTIONS 

Consider again the 5-story structure shown i n Figure 1 (a) . A diagrammatic 

finite element representation generated according to the real measurements 

is shown in Figure 3 (a) . In Figure 3 (b) and (c), the modal deformations 

of the first and second modes of the structural system are illustrated . 

Figure 3 (b) shows a simple translational mode and Figure 3 (c) shows a 

simple torsional mode . In more complicated situations, modes of the 

structural system may not be as simple as the ones given in these figures. 

Nevertheless, they possess distinct modal deformations, which are the 

most basic dynamic performances of the structural system. Since the 

structural system for testing is also the object for finite element 

modeling, the modal deformations of the modes obtained from the two 

approaches should be essentially the same , despite of numerical 

disparities due to the errors of measurements and calculations . Based on 
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this observation, we investigate in the following some possible model 

correction methods that make the revised analytical model preserve similar 

modal deformations as the real structural system. 

The invariance of modal deformations for the modes in both physical and 

analytical models can be characterized by the correct correspondence 

between the modes (system eigenvalues and system eigenvectors) of the two 

models. Conceptually, it is easy to understand that such a correspondence 

should relate the modes with similar deformations to each other. To 

establish such correspondence however, we have to define the correct 

correspondence in terms of model elements. In usual, the stiffness Kand 

the mass M of the analytical model are obtained with more accuracy than 

damping matrix C, a correct correspondence can be obtained easily between 

the stiffness eigenvalues of the physical and analytical models. Since 

each individual mode is dominated by an unique stiffness eigenvalue, we 

can achieve the correct correspondence of modes of the physical and 

analytical models by first numbering the modes in each model with respect 

to the given subscripts of the stiffness eigenvalues in that model, and 

then relate the modes according to the correct correspondence between the 

stiffness eigenvalues of the two models. 

Examine the governing equation 

MX +ex+ KX = F (8) 

where M, C and Kare mass, damping and stiffness matrices respectively. 

Vectors X, X, X and F denote the acceleration, velocity, displacement and 

forcing function respectively. In free vibration, Fis zero. Equation (8) 

becomes 

MX +ex+ KX = o (9) 

Applying some matrix operations to Equation (9), we obtain the following 

D-A model 
k 

IY +DY+ A Y = O 
k 

where I is an identity matrix, and Y = QTM1
/

2 X 

and 
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Q is an orthogonal matrix. This is called the canonical vibration model ( 

Liang et al 1990 ). Its advantage over the general vibration model (9) lies 

in the simplification of Mand K matrices. With A diagonal, the stiffness 
k 

eigenvectors in this model are always e ( the unit vectors ) i = 1, 2, 
I 

n. Now we discuss how to number the modes with respect to subscript i. 

In the case of a proportionally damped system, it is known that Caughey's 

criterion (Caughey, 1976) 

DA= AD 
k k 

( 11) 

is satisfied. Using Equation (11), we can find an orthogonal matrix R. By 

applying R from the left and the Hermitian transpose of R from the right 

to Equation (10), we have a canonical model with both RDRH and RA RH 
k 

diagonal. Such a system is completely decoupled. There are n separate 

single OOF equations each of which corresponds to a mode of the system. 

The numbering is easily determined in the way that the eigenvalue of the 
th i equation, 

is assigned with subscript i. 

.. 
y + d y + w y = 0 

I I I I I 

Let A, A, ... , A denote the system eigenvalues and p, p, ... , p 
1 2 n 1 2 n 

denote the mode shapes of an canonical model. A recent result by Liang et 

al (1990) offers another convenient way to obtain the numbering. The result 

unfolds the following property 
- 2 A A = w 

I I I 

of a proportionally damped system 

i = 1, 2, .. . , n (12) 

where w2 is the i th 
I 

eigenvalue of the stiffness matrix. The subscript i in 

(12) enumerates the system eigenvalues such that it gives an one-one 
2 correspondence between the system eigenvalues A and eigenvalues w of the 

stiffness matrix. Since the inverse of this result is also valid, a system 

satisfying (12) is automatically proportionally damped and possesses the 

desired numbering. 

Using complex-damping coefficients, the above numbering can be justified 

in terms of the system energy relations. By definition, a complex-damping 

coefficient is a generalized Rayleigh quotient 
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T 
q D p 

I r 
ex =a+bj= 

I 1 I 

I 
i = 1, 2, ... , n 

where q is an eigenvector of stiffness matrix, p is 
I , r 

a system eigenvector. 
I 

imaginary parts of cx
1

• For a and b are the real and 
I 1 

a different numbering 

of the system's modes, we usually get a different set of corresponding 

complex-damping coefficients. Otherwise tne generalized Rayleigh quotients 

are not defined at all. As reported by Liang and Lee (1990), there ls one 

correct set of complex-damping coefficients which can be used to describe 

the energy transformations among the modes of a vibration system. In their 
I 

report a complex damping ratioµ is defined as 
I 

µ1 = (Xi / 2 WI ~~I+ j ~l 
th th where w is the i undamped natural frequency and ~ is the i damping 

I l 

ratio. The · ~ is a ratio of the energy transformed in a cycle over the 
l 

total energy stored before the cycle in the 1th mode. If~ is zero, µ 
l l 

has no imaginary part. Thus there is no energy transformed into or out of 
th the i mode. Consequently, such a mode can be decoupled from the system. 

By this theory, the set of correct complex-damping coefficients for a 

proportionally damped canonical vibration model is a set of real-valued 

scalars, because in such model every mode can be decoupled. This condition 

is satisfied by the complex-damping coefficients calculated with the 

numbering described earlier. In fact, this numbering is the only one that 
. T 

satisfies the requirement q
1 

pr~ 0, for complex-damping coefficients. 

For non-proportionally damped systems, the correct numbering is also 

associated with the correct set of complex-damping coefficients, which 

describe the energy transformations among the coupled modes. Although a 

natural generalization of the numbering discussed for proportionally 
2 damped systems, namely relating a stiffness eigenvalue w with a closest 

AA, is not correct in general for non-proportionally damped systems, (see 

Tong et al), given the correct set of complex-damping coefficients, the 

correct numbering is shown to be unique (see Tong et al). Therefore, we 

can search the correct number-ing from the complex-damping coefficients. 

~-12 



By using the correct correspondence of modes in model corrections , 

individual modes in the corrected model pr eserve their deformations . In most 

cases , we may produce a model having similar energy transformation pattern 

to the physical model . Due to the limit of space , we omit the examples . 

COMPLEX DAMPING FITTING AND EIGEN-MATRIX FITTING 

The first way to improve the correction procedures is to use the complex­

damping coefficients to determine the correct correspondence . The imaginary 

part of a complex-damping ratio satisfies 

w = w exp ( <; ) , i = 1, 2, ... , n 
l n l 

(13) 
l 

when the system is lightly damped , i.e . 

I µ
1 

I :s 0. 3 , i = 1, 2 , .. . , n . (14) 

Equation (14) is satisfied with most engineering str uctures . 

th In Equation (14), w is the square root of the r eigenvalue of the 
r l 

l 

generalized stiffness matrix, where r
1 

is a designated permutation of 

1, 2, .. . , n. Thus, by using equation (14) andµ, we can determine the 
l 

correct correspondence quantitatively . 

We propose a improved model correction criterion as follows . 
n 

J = l: 
l=l 

( <;(m) _ <;(a))2 + ( Cm) _ (a))H r ( (ml Cal) 
1 1 l l pl pl l pl - pl (15) 

where 1 are weighted coefficients for least square approximation of ratio 
l . 

c;< . l _ The term ( c;<ml_ c;<al)
2 is a good monitor of non-proportionality . 

l l 

With the complex-damping ratios available and the systems considered being 

lightly damped, The correct correspondence can be solved from Equation (13). 

A second approach to deal with correct correspondence is to avoid using 

the modal parameters mode by mode . Instead we can use a more general 

convergence pattern so that the correct correspondence is assured t hrough 

the convergence. In this regard we have a choice of either using the state 

matrix or using the eigen-matrix . Because the size of the state matrix is 

2nx2n, (supposing the order of the system is n), we consi4er the eigen-
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matrix whose size is only nxn. 

An eigen-matrix A is defined by 

A = P A P-
1 

( 16) 

where A is a diagonal matrix consists of all eigenvalues A , i = 1, ... n, 
l 

of the system, and 
1/2 

\ = - ~ l WI± j ( 1-~ I ) WI ( 17) 

A matrix A has the eigen-decomposition (16), if and 

only if A satisfies the following quadratic matrix equation: 

M A2 +CA+ K = 0 (18) 

where the coefficient matrices H, C and Kare defined as in Equation (8) . 

From Equation (16), we can see intuitively, that convergence of an eigen­

matrix A involves global adjustments of all modal parameters Therefore, 

the problem of correspondence will not occur here. The cost function can 

be established by 
J = II ACml_ A(alll (19) 

where II . II stands for a norm of matrix A(ml_ A<a> . For example, it can 

be the Frobenius norm, 
n 

J = 11 A(ml_ A(al 11 = { I: I: I a(ml _ a(all2 }1/2 
n 

(20) 

where a< · > 
1 J 

F 1=1 J=l IJ lj 

is the ilh entry of matrix A<·>. Or it can be a p-norm, such 

as the 2-norm, 
J = II A< ml - A< al II 

2 
= { A [(ACml_ A(al)H(A<m>_ A<a>)] }112 

max 

where A 
max 

[.] is the maximum eigenvalue of matrix[ . ] . 

CONCLUDING REMARKS 

(21) 

In this paper, we first examined several model correction procedures 

and their common weaknesses. Most available methods emphasize the speed of 

numerical convergence . In this study we pay attention to the validity of 

the corrections. We suggested methods to improve some of correction 

procedures .by using the correct correspondence between the modes of 

physical and analytical models. This study results in the improvement of 

finite element modeling . It is also shown that a strong connection exist 

between the theoretical studies such as the complex damping theory and 

the various practical applications. 
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