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ABSTRACT

A new self consistent method has been developed for calculation of
boundary layer with mass injection, The system of partial diiferential
equations is reduced to a system of ordinary differential equationé by in-
tegration over different strips, The velocity and enthalpy profilesleire
assumed to be expressed by series of error functions, A method of
calculating the initial velocity and enthalpy profiles, based on an analysis
of singularity, is presented herein, The calculation of the initial profiles
is reduced to the solution of a system of transcendential equations. The
initial derivatives are calculated from linearlized equations near the sin-
gular points and provide a smooth start of integration of the downstream
equations. The present method was applied to the cases of a sharp edged
body and a blunt body. In addition to the velocity and enthalpy profiles,
the pressure distribution and shock layer thickness can be calculated from
generalized Newtonian expressions developed as a part of this effort.

This technical report has been reviewed and is approved.
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i INTRODUCTION

The task of the present effort was to develop a general numerical
solution for the boundary layer equations with mass injection  which can
be used for both sharp and blunt bodies. The basic difficulty, in solving
the problem is associated with the singular nature of the equations at the
initial section (&=0). Previous investigators have omitted the most
difficult part of the problem by assuming similar solutions (infinite blowing
velocity al &£=0), and starting calculations downstream of the singular
point. One therefore assumes rapid decay of the influence from initial
profiles, This approach is normally applied with success to the case of a
sharp body. However, such a procedure has not been successfully applied
to the boundary layer on a blunt body.

In the present report, the multistrip method of integral relations
was used to reduce the system of partial differential equations into a system
of ordinary differential equations. Profiles of unknown parameters were
assumed expressible as series of error functions with the coefficients
depending in part upon longitudinal distance., Expressing the unknown
parameters as series of error functions rather than polynomial provides
a better fit and requires fewer terms in the series, thereby leading to a
smaller number of differential equations, Provisions are made for
different thicknesses of the unknown parameters: viscous, mass diffusion,

and thermal boundary layers.

Despite the title the method is more general and not necessarily restricted

to bodies of revolution., It can be used for an arbitrary body. The developed
method anables to calculate the boundary layer with variable injection and

variable surface temperature,

Manuscript released by the authors, October 1964 for publication as an RTD

Technical Report.
1



2. THEQRETICAL PROGRAM

2.1 General Equations for a Boundary Layer with Mass Injection

2.1.1 Introduction
In solving the compressible boundary layer equations
one often encounters serious computational difficulties. The most general
finite difference schemes require enormous machine time and present some
difficulty in getting started due to the singular point at the leading edge.

A great simplification is achieved by introducing the variable

%‘.:é‘fﬁ—' ?%d(j which reduces the system of partial differential
equations to ordinary differential equations. However, the resulting
similarity of profiles holds only for certain distributions o. pressure
and mass injection rate(var""//;_—‘g‘).

Non-similar solutions are obtained by the von Karman-Pohlhausen
integral method in which the unknown velocity is expressed as a poly-
nomial with unknown coefficients, which may depend upon the streamwise
coordinate x, and the equations are integrated with respect to y/0 from
zero to one, where y is the coordinate normal to the surface and § 1is the
boundary layer thickness (having, indeed, no rigerous meaning). The
von Karman integral enables one to calculate § as a function of x.

To obtain additional integral conditions for use in determinining further
terms in the assumed polynomials, one may multiply the differential
equations by a certain function of the velocity before integration, thus
finding higher moments of the von Karman relation. Another cevice for

the same purpose used by Pallone (Ref, 1) and also by Rosciszewski (Ref, 2)

in an unpublished paper, is the Dorodnitzin technique (Ref. 3 ) of integrating



the differential equations in several strips from zero to various successive
values of y/06<1. Ultimately all of these integral methods reduce to the
solution of a system of ordinary differential equations for the coefficients
of the polynomials and 6 which are functions of x. Pallone omitted the
most difficult part of the problem taking the initial profile from the self-
similar solution with infinite large blowing velocity at the leading edge to
start the downstream integration. This procedure leads to the question
regarding the influence of initial conditions and cannot be used in calculating
such case as boundary layer at blunt body. A more consistent starting
procedure was developed in Rosciszewski! s paper based on analysis of
singularity. In the present paper basic ideas of this analysis are repeated
and developed further.

It is of interest to point out that Dorodnitzin (Ref. 4) and his school
retreated from the strip method of the moment method in recent papers
employing the integrals in terms of the Crocco variable from zero
to % = 1. However this method requires that all flow parameters are
single value functions of v:z2locity. This leads to some difficulties when
there is overshoot of some flow parameters {with blowing, this is possible),
or when the thickness of viscous diffusion and thermal boundary layers are
different. The present method does not lead to such difficulties.

In the present paper the velocity concentration and enthalpy distri-

butions were assumed to be given by the functional series

. ZN onc) B/ 16 [E ]
£ =ZM b, (%) @?[ofyfﬁ%%dy]
§- 2 a0 Y[ fofEc]



where Fn’ ¥, and ¥ , are arbitrary functions, a s &y b and f are
the unknown functions of x, and &« , A are quantities which permit
the viscous, mass diffusion and thermal layers to differ in thickness,

The choice of Fn' ¥ and {flr as error functions raised to the
corresponding powers leads to very satisfactory results, The reason for
this choice is that the error function is an elementary solution of the
diffusion equation and as such is the correct first approxima tion to the
velocity distribution. This may readily be seen from the integral form of
the Blasius equation. The selection of higher powers of the error function
for additional terms in the series, although suggested by the first therm,
is less obvious,

On the one hand, it was found to be infeasible to deal with multiples
of the argument instead of powers of the function, and, on the other, itis
just as easy to deal with error functions as with exponentials, for example.
No straightforward use can be made of orthogonality properties in the
successive strip integral method in any case. Thus were we led to try

this particular form of series.

Only three strip integrals were required to obtain initial profile
in excellent agreement with exact similarity solution with 'l?’w = 0 for the
flat plate which is valid only forg = 0. One obtains from these integrals
a system of ordinary differential equations fora _, g » b_. %, B and i, By

analysis of the singularity at x = 0 a system of transcendental equations is

found for the initial valuesa_, g_, b_ , f, &« and g .
no “ro’ ‘mo ol o
The initial values of a are obtained here once and for all for the
casef[’{z constant, and | ):,i:o at x = o, which corresponds to the case
of sharp-edged or pointed bodies with attached shock waves., The
initial velocity profilz is independent of concentration and total enthalpy

profile, wall conductivity, and blowing distribution normal to the surface
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(unless the blowing rate is proportional to X ). The calculated initial
velocity profiles using three strips and odd powers are compared with the
Blasius solution and found to agree very well,

The calculation of the initial concentration and total enthalpy pro-
file is more difficult because for Prandtl and Schmidt number different
from unity the thicknesses of the viscous, concentration, and heat
diffusion layers are unequal. The resulting initial enthalpy profiles depend
upon the ratio of wall to free stream total enthalpy, the free strearm Mach
number and the Prandtl number, assuming Lewis number equal to unit,
Therefore, for each new case the transcendental equations for o and bmo
must be solved over again.

The solution of the system of transcendental equations is the most
difficult part oi the computational problem. This puts some limitation on
the number of strips {unknowns a B bm) which can be used. The
assumption (l(. @ = const, decouples the momentum from mass diffusion and
energy equations., By this assumption mass diffusion equation is decoupled
from the energy equation. There is a possible iteration procedure which
would allow (ug? to vary in this calculation. At any rate there is no

difficulty in ronsidering ?{“ variable down—stream.



2.1.2 Transformation of Laminar Boundary Layer Equations

Into the Form of Incompressible Flow Equations

The Dorodnitzin-Stewartson transformation will reduce
the equations of conservation of mass and momentum for the boundary
layer to the form which they have for an incompressible flow.

The equations for the compressible boundary layer are

Conservation of mass

(1)

@@ﬂz Aevr’)_
o X oY

Conservation of momentum

9’3?*-? 27 93 [“(Tga] Dx @

Conservation of energy (Ref. 5)

Bho , o Ohe_ O (wa/% R-1,, 2«
Pugx + 5 29 2y 7 0y +(‘% 7 u‘afj - (3)

’a%/% G/ Le=1]lhm e



Conservation of mass for a species j (mass diffusion equation)
ée ¢,
Diffusion-thermo and thermo-diffusion are neglected in these equations.

- }"-’-r@- radius of the body (in the axisymmetric case)

for axisymmetric case

A
N
o —

for plane flow

- denotes mean mass density of the mixture

velocity components in x and y directions

U.
(_“C- - coefficient of viscosity
= 3

Prandt]l number (Fﬂ coefficient of heat conduction)

_ Lys 2
/"o— ; /’y‘""' %‘t‘:z;}“?‘ z"—' - tot§.1 enthalpy

Ae m Lewis Number { D,/ coefficient of mass

diffusion of j-th component)
/?j.:: C&-df- enthalpy of j-th species not including enthalpy of
formation
/’.J/‘ - heat of formation of j-th component
(_:_‘/' - mass fraction of j-th component

/7?j - rate of production of j-th component

We introduce the following transformation of coor’dinates

;I"v xvd
Y".o/é:dfi, X"[’" X



where ? depends upon both x and y and 9«, denotes the reference

density. Specifically, the following two operators apply:

'B__ o 3 Y
"2X oY ox

and (5)
a P Q0
e oY

Therefore, Eq; {1} becomes

)’agu_r r-.)»’
r opuU 'ay e B?W
oX TSV % Ta ov -9

or, upon introducing

w9
r"’aj/ g,” =V (6)

and taking into account that

aY 7 Der”,
ay !‘/ YIxX f‘”@y / 'L'a dg)
._Lif_”;. d¢r? , | er oY
& S e (S

the continuity of i;i.ass is expressed as

ou ;
3% Tay O o

which is exactly the form for an incompressible flow.

,_'f._
2

In the same way the conservation of streamwise-momentum

becomes

w2 pu S T EUE.
oX 8Y

» 8010
)
N

N
V)l
g!
Q)
<
)
S
S
Q
}<



or, taking into account Eq. {6) and Eq. (7}, we find

uE L, out_ 1D (g?&au I o

S+ - L5 (8- ()
This equation again has the form of the conservation of streamwise-
mome ntum for an incompressible flow.

The usual estimates of the order of magnitude of terms in the equa-
tion of conservation of momentum normal to the surface again yield the
/a/% — O

information that Y= for thin boundary layers.

Finally the energy equation is found to be

OUby , QT h, a/;o
X G F R s (- e i

a}’/Z%L‘(/Ze ~Jh=4) &

For a flat plate and §/Miconst {

(9)

MNT) equations (7} and (8} are inde-

C

pendent of equation (9).
Mass diffusion equation is

e, ., [ Ej"

ocC gl
=53 EY aw ?/‘ P“‘ﬁth o

oY) ¢ 1)

2.1, 3, Integral Relations Method for a Compressible Boundary

Layer with Mass Addition

We shall develop a non-similar method of calculation of
the laminar compressible houndary layer with mass addition through a porous
wall., This method is similar to the well-known Dorodnitzin method. The
difference lies in the series representation of the velocity, enthalpy, and
concentration profiles which are here expressed in powers of the error

function rather than in powers of?. The initial value problem



is also differently solved. The method will be useful for cases in which
coolant injection is employed in an ar‘bitr_ary distribution such as, for
example, the case of injection at a finite rate in the nose region but in
that region only.

We now introduce another change of variables
£=X

(41)

where

_gggié_,'i=%5é

and voo and U.;., denote reference kinematic viscosity and velocity,

respectively.

9 @-)

so= A2 :

In Eq. (7) we have

@*O” &) oz 12
TR ) 07 © e

Equation (8) can be transformed into

0% 2l 4 pul Jga on L
’&g ,_g)’aoz .7[@)3 ( Z(“f ] 0
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Integrating equation (12) with respect to 2 from zero to ? = const

(Fig. 1) we have (integrating by parts and taking into account that at 2 0] a,-O)‘

a WA, l(/f o/ Ui é
c:f%" “df +/2f_gf @y ﬁ‘ ?+7[@ (14)
Smnlarly from Eq. (13) we obtain

5’%“/ e ] -~ )/ wret]=
o (L, 2 /7
- ;ffiw 55 d—g/

Multiplying Eq. (14) through by (¢, = (,(,/ and subtracting from
_2‘

(15)

Eq. (15) we have

& / ?‘20’? éa ad7+ i/&%@’? “%17'?/ *

(16)
| ueU |
s Tl ,57/ aﬁ/4
We shall express the velocity distribution in the form -
iF = aE)ertpr ) (et ) e - =
(17)

=ZNZ ane)esn)”

o
where 61’7[? [ﬂ’/QXPL 2/ ? is known as the error function and is

tabulated in many books This representation of the velocity profile has

an advantage over the Pohlhausen polynomial in that boundary conditions

11
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Figure 1. Schematic of a Slender Body Flow Field Showing
the Coordinate System,
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4
at /2— ,QC_A__O ,au' =0 are satisfied automatically. More-

) 07*
over.effz is the elementary solution of the diffusion equation, and it
is the first term in an expansion of the Blasius solution. Coefficients
Q{g)) Qz[g). ... areunknown functions to be determined by Eqs. (16)
with different Z'. . In fact we have as many ordinary differential equa-

tions as necessary taking for example ?-: O/ 02

The outer boundary condition for the velocity distribution, U 2 = /

is (6!’7[00—1)
A _
/= ZO,, (18)
n=|

Substi“uting expression {17) into the integral relation (16) we obtain

N
55 [2hrpitanpore= /e SEF£]

n=1 k=
N
nz-{kﬁ; Am.c {7)OnC?;¢ +[U J{)Z"kz ’420&(? )0,70.((

GfS bty %4‘“2 Ao ()0

2 O?%w 2._
T 5

Ane () /(éffg) c/? Asy (D)= £ et
3r NG (elj[ Y SXP= ‘2
A - 2 et f)
2Nk (Q‘V ef—'-/)) 6,?[?) O/? '
Piw, & ff)’ (Zz:?i; i



Expression {19) represents as many ordinary differential equations as
necessary for unknowns &, 02}. ..y and - f .
By analogy with the expression (16} from (9) and (14) multiplied

through by /704 /’)o/? we obtain the following integral expression

5’% a,/)oo’? otd§ ad?_;- /Ao_‘/ cca’? ahaa/?j

{20)

Flhi-ho) 7[5{‘?“ $¢ [5“2"@”/)”8?]"‘
S 5B

The tmal enthalpy distribution is assumed in the form

ho_

ho = Zb (Berf«n)” (21)

where ¢ 1is a scale factor whi-.ch accounts for different thicknesses of
viscous and thermal layers.

For 2<%/ viscous diffusion is very small as cc-;mpared to
thermal, and it is much better to consider 7- or static enthalpy and &«
explicitly rather than Ao because the thickness of the thermal bound-
ary layer is rauch greater than that of the viscous boundary layer. In
that case the boundary layer can be split into two layers, one a thin
viscous boundary layer where temperature is essentially constant
(h= r!')‘g) and the other a thermal boundary layer in which viscous diffu-

D~
sion 1s not important A¢ o — . However, at the present time

we shali consider the case of Prarndt]l number close to one,

14



Substituting expression (21} into (20) we obtai n

N M
ZZ Bmmaf’ag _""ZZ @annbrn %

n=l ‘m=0 n={ m=o
N M : y dU
2. 2 (Bom=Barn)bnZ2 = 7l f/ Z[&m—@,,,,jonbm

At S P, b 58

f"

2 + /ZZ%M}%{Z@ s

n"nlka
M

[Z by €1t o 2;Zonoz(erfy () ~ 4 jZGerJ ,

- 2Ry, (64 %&f"&)} a
where
ho= 22



These expressions have: neen tabulated {(Table 1) for different numeri-

cal values of ?

Again equations (22) should be solved along with the boundary

condition at ?=oo

M
2. bn=t (23)

m=0

if f(%-: const ((L(,NT) and aafé-"-‘o expression (19) is decoupled from

Eg. (22). These expressions represent the system of ordinary differ-

ential equations fOI‘C’.?,]fbm)OC (with n:{, .. /\6 m=/.. M )
From expressions {4) and (10) we obtain by analogy to Eq. {16)

the following formula

: £ 2 1
E /‘? g? Jédgj dz*f“/‘?f“d?‘f“@df/
'*fu"/":ff‘gi“?g; Le; ac/? y%_m?

HAsre . (24)

TKnow’no the approximate value of ¢ fo(o /7 )the Taylor expansion
lor &0=p00 —,‘Am leads to coqslderable saving of the computmg time.

B[ ot Ve S %— m(éf:‘“z) ") By

7
+ @.Ji_)éo('//e?l?) 2} xci&-c’?f/?za’?

e ‘2/}-70{‘9 2 é Nl P Ry
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" The concentration profile will be assumed in the form of power series

= Q&)+ 9,-,@)@9%?+@Z(§)@erfg,?)i..__=
2 | .
=2 5.&E7m7) e

where é/-‘:,{-?y(%) coefficient which accounts for different thickness
of viscous and mass diffusion layers.

Introducing expression (25) into Eq. (24) one obtains

N
ZZ Ginr Oﬁg&""zz G,;,,,. Cn f%'{‘

N=1 r=p RETAT
v B
+;r§; (Gmr Gznr)gfag—‘—/u i}

N
ZZ [Gmf‘—Gznc)gern & dCZZG nrOngjr'

Nn={ r=o
f? o n=t r=p
/ ‘- Y — 2 L

S g%r FS\[%@&}

[ [0
* o] Loy

W (,0‘

(26)

h .
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G‘?nr‘(?): (37(?) r[efflaj?] e)(ﬂ/-/ej?j7d7
It is interesting to point out that if the Schmidt number is equal to one

quantity /51:—./ and with mass source 727, =0 (no dissociation) and G=0

at ?:O and q:/ for ?__/ (Z Q;r --/) equations (26) then become

identical with expression (19) for % =0 (flat plate).

2.2 The Boundary Layer On a Sharp Nosed Body

2.2.1 Calculation of thel nitial Profiles {(at &=O )

To start calculations the initial values of (.= o,
and f),,., = bm,, , C:/ = CJ'-O atg.—: ®) should be known, We shall present
below the analysis for finding these values.,

At %-’2 O , the coefficients o, -+ - Cp,must be finite in order for
the velocity to remain finite, but —a%—%/zfirg’_—»’ Or(é)f[é) must be
infinitely large because at §=@ the thickness of the boundary layer is
zero and the velocity changes from zero at the wall to a finite value out-
side the boundary layer (velocity gradient ~~ A oo ). Therefore

sl
7[(§) must vary as follows

fE)~ £=

where fé is an arbitrary power (/@>O ).
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2
Dividing both sides of expression (19} through by 7C ‘and dropping

. . . A
all terms which fails to zero as 'g approaches zero (assuming that Vv,

finite at f (o} ) we have

Q-S iZZ@lnk AZHK. Cn Clic +§>l—?j_§24 On O; ,r“'ca

N=t k=g
or
{27)

> “ 2.
_!_d_.,ﬁ_ iﬂ‘.?tg'fqénoﬂ—-/ﬁ-_‘ ‘e(‘(ﬁ 9‘4

£t G{ES g

v ; A"'”“C?na" _Z Z e OnClic }
N=! jewy} et k=

Taking into account that an=0no+£¢?n where fa,,«@, for

small %‘ we obtain upon separating variables and integrating with
7[ - V———'g {28)

whera

K_—__— / U/Z:Z(Amx—fqnx )OpcOko}
= /f' i ?ZI‘QSHO"’O “FQOQ@Q)

1=y

We see that necessarily/a:é-. This form of f is the same as that used

in the Blasius solution.

The qu.antity]r calculated from expression {27) should be the same
for all Z . This quantity represents in a certain sense the thickness
oi ine boundary layer because “f:[7 for ?‘- =2 is close to one but

2.—7[}/. The greater the ‘7‘-/. the smaller the ')d((thickness of the

boundary layer}.

2l .
Yand noting that 75 and f vanish as § approaches zero for

pointed bodies as long as‘_,(S andd are finite.

is
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Therefore we obtain

Vo |
; ;[ Airc (1 ?f) ~Azne (* Z ) Cre Qo
@ (58 2 Anp)on = jc, f(%g.,

Z Z:: [ A e )—Aznie(’ ?z)] Qo Ckeo
‘?,(E‘fgﬁan[pz)am FOIO ?(““ ?‘*‘

L [Am.c(%) den.c(%)]OnoC?z, ~ 2/(02 (29)
?f(% ?2’4\30 (&)C?no O/o (“ ?‘-‘ (7(;!

—_— . a s

where 2 is the number of strips, Equations (29) form the system

of transcendental equations for C(,o/ Qza) . .-- G, . This system

is supplemented by expression (18). We need as many strips as un-
knowns (e . Itis interesting to point out that C?fa} azo/- - Qno, &K

- A
do not depend on velocity gradient and injection given by ¥/ as long
—— n
as U:FX and UFooat =0 » The condition that
~ ” A /

U ~ X" and YU~ !‘;? are therefore the similarity conditions.

If ?(Qz const the system of equations (29) is decoupled from
the similar system obtained from mass diffusion equation and energy
equation.

From expression (22} the quantityf could be found, Apply-

ing the similar iimiting procedure as in the case of Eq. (19) it [ollows

26



from equation {22) for § —_—C

f—] %ZZ /Bmm mm)Onabrno
(Cx. .8 gaap[25m . XZAénkanoOmJ"‘

N=1 k=4

~

(30)

JZ(K%-f/-—‘”-—&[Z T2 ST s oLl Mﬁcﬁ)}

Because agamf is a function of § only, the above expression must

be satisfied for all 2 ‘Substituting different Z one obtains the -

system of transcendental equations for coefficients b,y, and o". This

system has the form
2
2K

ZZ [Blnm(?) Bgrm (?J/O"o bmﬂ
Uo (ﬂ%ﬁ%;oémoﬁsm(?)” 2 bro+ Z; /ZZAx&m(?}O”"OkO] "

=t k=l

T (S St oA S ooy B Gty Bl EE)

=i k=i

ZZ [Bmm (2?) 20m[2?. ]Ofb bma \
(ﬁ(. —-2;:;2 S;“:Z'gc,bmo dm - 7=OC' ZZ A“’”" (?2)0 Ozi]-r

I k=i

(31)

, —LJZ@E ‘/)//QI“Q&Z/J Qg»ofgz“gzyana.{e:fz) @/Zq’“ ?/3 —@g/é;,-n Ao _%_)

—
——
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The system of equation.s (31} requires the solution of the system
of equations (29) and the analogous system for the initial mass concen-
tration profile. However for §(u= const the last two systems are inde-
pendent of enthalpy profile. If Le“—':/ and Pr = const the concentration
profile doesn't affect the initial enthalpy profile. |

To find the initial concentration profile one must apply the same

limiting procedure as before to eq. {26). One obtains

, — UOZZ ( 2nr(?¢) Gﬁ:nr(?z) Q,rCJn

N=/ M=o

2&£[848, 2/_9,_0 (32)
f{ kOcjgr 9?{“&{@0

Substituting different numerical values for ?‘ one obtains again
the system of transcendental equations for coefficients 97 and /&D
4o

Tais system has the form

_-2;5/_2_ ZZ/ G.gnr(Q) Gmr( fgj Cno

=, M=o

To @ ~ =
| E_éc, ‘_>:— 5«*(?)9;'—'— S‘t g C““?

ZNZM[Gznr (?2)-6,,,,-(?2)_79%00

= e = oeee..
o z?’z. ) . __2 —to ZZ;,-:,
‘5%“; G e, 9T

(33)
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if f;(a; = const and 7 &‘_‘ = const system of transcendental eqixar.ion
requires only knowledge of the solution of eq. {29) but it is decoupled
from the energy equations.

For Sc=/ the initial concentration profile is the identical as

the velocity distribution providing that Jm =) and C:‘, /

2.2.2. Example of a Flat Plate Boundary layer (Le =] )

We take &= 61'7[2 and one strip 2‘-'—'4 . From expression (24)

evaluating A/mc/ ,42,7,‘} ,4‘5” numerically, we obtain

F=0322 //%-:i- | | (34)

or the coefficient of surface friction

= e rmeaeeee
Q)
3 o
|
Wi
I\
|
O
N
~=

This is slightly smaller than the quantity given by the von Karman-

Pohlhausen solution.
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The velocity distribution obtained from the above formula is plotted
in Figure 2 and compared with the exact solution {Low Ref6) and with the
three strip method.

Assuming the enthalpy distribution in the following form
- _
N~ no: éo-f'bef_’j[/o('?) _ (35)

we obtain e =0.829 from formula (18) applied to one strip (Z‘-z 4 ),
taking Mao=5and /_7_;..; = ho=COS and 2 =0, 72 .~ Therefore

Ao

e = 0.05+ 0.95erf| 74°) 39‘??)

The total enthalpy profile obtained using this formula is plotted in
Figure 3.

/Io/
Yixveo

exact solution, alt.hough there is deviation of total enthalpy at larger

The heat flux at the wall, ? =5 agrees well with. the

distances. The thickness of the thermal boundary layer is larger than
. . S _ 1~
that of the viscous layer by roughl z==/12 .
yer by roughly == =5/2
Again for a flat plate { f/u =/ ) the velocity profile

may d¢ taken in the form

U
&-‘“: &y ef‘j'/?"‘as (ég—f?)eifos-@fjf?)s {36)
Using three strips we obtain

waic.. resulis in a velocity profile which is identical to that of Blasius!
solution to about three significant figures., This latter result is also

piotied in Figure 2.
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T T T I T T 1 1 M b

| _ THREE STRIPS
SB[ o T =1137l erf (0.25945 F) +

0.2512[ert(0.25945 ?)}’5—
0.3883(erf (0:25945Y )]

4.8} LOW'S CALCULATIONS. ’
- g~—~—O0NE STRIP '/
U = erf (0.322Y) /
4.0
- PE =1, 7
Y =+
32} 3

O L | 1 | L | Il i 1

1
O 2 4 6 .8 1.0

Figure 2 The initial velocity distribution using the present
method compared to an exact solution (selfsimilar
solution),
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72 T T T I T | T I — 1 T
THREE STRIPS
= N -
120.:5 bp [erf(akF)]" ,K20.2555 , b = 0.05
g4 O neo ~
® b, = 0.9433 , by = 0.9023, by =-0.8956,
- a = 0.9349 -
® b, =0.8566, b, = 066807,
5606 bg =-0.57408, a = 0.953198 f —
I LOW 'S CALCULATIONS f |
A-——-——QONE STRIP I
4.8 % =0.05+ 0.95 erf (0.828 K ¥ ) / n
4.0+ -
3.2 —
241 —
.6 —
.8 —
O; [ 1 I 1 I -l I 1 l
0 2 4 6 .8 1.O
hg 7 hg,
Fi gure 3. The initial total enthalpy profile obtained by the present

method and a self simtiat solution.
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~
as 7/, 1is not proportional to /g .

It is interesting to note that as long as f{‘( = const., the initial

velocity profile is independent of temperature or total enthalpy profile

and wall conductivity. Neither does it depend upon blowing rate as long

/

Py

The calculation of the initial total enthalpy profile is more difficult

because for e-'r‘/ the thicknesses of the viscous and thermal diffusion

layers are not equal. The coefficient o in (21) which accounts for that

fact enters under the integral sign in the expression for 5”:,,,.- The re-
sult is that the solution of the system of transcendental equations (27)
requires a prohibitive amount of computer time. The substitution
A=A+ Nl with G{o:fza,.. removes Aol from under the integral
sign and results in a substantial saving of computer time. The total
enthalpy curves are, however, not as general the velocity profile, siﬁce
they depend upon the ratio of the wall enthalpy to the total enthalpy of the
free stream and also upon the {ree stream Mach number. The assumed
series may be taken, for example, with eiﬁer odd or even powers of
the error functién. Both give good agreement with Blasius! solution.
This indicates that the result is only slightly dependent of the form of the
series, It is not the case for an assumed polynomial profile,

Using three strips one obtains for the total enthalpy profile (assum-

ing My=005, R=072, Mn=5, ga=/ )

;‘%# O'OS"L0856—666?:?621‘0._668018?&2/2 :
_o.57453[;g9z°(2 ]? o

c-co = O.g5-3/98
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or
h _ / 2
f= = 005+ Q9433 e/ );o_%zs[erf(af?y |
- o.g?sé[effogzj with £ =09349 (38)
For S)(& C these calculations are still va_lid but /(FC—‘-( The results of

these calculations are shown in Figure 2.

2.2.3 First step solution {Calculations of derivaties at singular point)

In the way indicated above one can obtain the initial (starting profile)
for the velocity and entﬁalpy distribution. However, the next step cannot be
calculated from equation {19} because of the singularity (O—Q-) at §=O. There-
fore the first step must be obtained separately By analysis of the singularity,
As we show in Appendix A, equations (19), and .(22) for small § represent
the linear system of equations forggi g’g‘ . The left hand side of

o
these equations represent a matrix proportional to 7{-,-’-' r—-;’é‘ . Near the

singular point all derivatives are inversely proportional to i% .

I _
ag rg‘

where Ca coefficient of proporﬁonality. Therefore, integrating, one
obtains
= Cng +2C5/?.= ono+2§a £
Sk
or, differentiating with respect to , one obtains

rvcn_ da,, &
I =23E + 25z =/
dbn:__“_dz
dg*  2g dg

The factor 2 in expressions (39) agrees with a general property of parabolas,

or
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o .
I V,=O bat {/# const the solution near the singular point has a

form

The result of substituting Qp=0h, +4Q, . . €7C into expression (19)

is as follows (see Appendix A)

n=y kK=f

NN
PR 2ta) Ao~ BEFER S g

- 4K 9 s B
r7 U gg ZZ Ach k‘t?’.i—' /(/ZZ[A’”" Aan}Qn,OZ,

=i k=
=l ok=¢

'07 “L mg( ¢ i, —*/—-dU N a4
§ U*® Z§ ?)O%C? +UC7§—ZZI42M

PN nN= k=g
i Cn {?f’[ —- —

'§ Azl L7 ?‘] 57172 +—-— G/ g - 2
o gU 5/4? / «5‘—&)243,,(?;)0%/(0
-G%—(M)__Z_Q_,_&Z + A | (39)

( J)Ona O.co

where /\ contains § in powers 1/2, 1, 11/2, 2 etc.
A similar procedure (Appendix B) leads to the system of algebraic

equations for initial deviatives in enthalpy expression.
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N M
nZﬂg()Ow, (2 Bnm B.?nfﬂ) ‘f'%‘%;o G bn (284,,”-, &;'mn)

Qk F&{ ,
l) 13 — {3

2/2 s
2, bno(B,,- Bm)a*]+ 24 L&D - ZZ A@nk@?cg“?”"f’*éi

“z“}é’QZZo b (B |
= ] o(m'“"B )—Uh{;'mbm(e?{;c?jﬂb}
ZZ O”o‘bnﬂa (8,-,,,,-—- 2 s

n=| m30 a§+

mzo
n=f k=g

)me a\,m—'érg;vé'-f- - /Z 4’71‘@“0‘(} (40)

A vy = __g__ - o< 2 e .
S o Le 0%?] ?e 7!/23%?{/ C?/?
Ben = "_3—23 /ef'*of O] / J? /-/—-906 7 +-2—°59/m /)er»fé(?z.)""]

64 7::; = (no mass injection) and U= const (ﬂat plate), and

f(u = const.. the solution must be

dczg_.a’é_m_md{:
dg “dg dE

This is, therefore a self-similar solution {not depending on § but on

r) only).
-
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As indicated by equations (39) and (40) the deviation from the self-similar
/ﬁ
solution due to blowing { 2} =() )is greater than that due to pressure
gradient U: const. ).
~ __ A D

For 7/, = const, the transformation §: Lo § makes expressions
(36), (37) independent of the actual blowing rate (the coordinate § being
stretched).

After calculating the first step from equations {42) and (43), the

expressions (19) and {22) should be used. The linear expression WithA=C

K
ives Chn etc. and then £\ can be calculated in next approximation.
g Efg ) PP

The

solution of the first step and of further steps for the downstream characteristics

of the boundary layer is accomplished by the solution of systems of ordinary

differential which do not require inordinate amounts of computer time.
Standard matrix inversion methods exist enabling the solution of such a
problem to be obtained quite readily.

The result of calculation of flow over a flat plate with constant blowing

and constant temperature at Pr = 0.72 are presented in Figures 43 and 4b.
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Figure 4b, Enthalpy Profiles on a Flat Plate for the Present Method.
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2,3 The Boundary Layer on a Blunt Body

A solution of the blunt body boundary layer [was given in ref. (7)]
assuming C%q = const. and constant blowing velocity. The similar
solution obtained in this way is applicable near the stagnation point.

In the present paper the differential equations are integrated using a
multistrip method and assuming the distributions of the unknown flow param-
eters to be expanded in series. This results in a statement of the problem
which is non-similar and allows the variation of 5‘;&& and the blowing
velocity 22:,. . Therefore the solution is not restricted to the vicinity
of stagnation point.

The main difficulty in solving the problem is associated with the
singularity at the stagnation point ( =0 ), The analysis of this
singularity leads to a system of transcendental equations for the initial
velocity and enthalpy distributions whose solutions agree well with the
similarity solutions, But in addition linearation of these equations gives the
initial streamwise derivatives which allows the smooth extension of the
integral curves downstream of the singular point, Thus a difficulty of the
similar solution method is overcome without an arbitrary matching
procedure to change to the necessarily non-similar characteristics of
the downstream solutions.

The system of equations was developed in the Part 2,1 assuming

velocity and total enthalpy distributions in the form

U= werfy)”

40
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.and

;f,‘ :f b lErfecn)”

m=o

This particular form of finite series was chosen for several
reasons, First, it was desired to limit the required number of
integral strips and hence the number of terms in the series. To do so
with polynomials would have limited the smoothness of the curves,
because polynomials always introduce inflection points and thus generally
require more terms for adequate representations. Secondly, the error
function, is the first order solution of the Blasius equation and therefore
correctly represents conditions near the outer edge of the boundary layer,
Thirdly, high speed computers can handle powers of the error function
as readily as trigonometric functions, for example, so to preserve
smoothness and edge features higher powers of these functions were
chosen, Orfhogonality considerations were irrelevant in the multiple
strip technique.

In any case it must be emphasized that this particular choice of
expansion is incidental to the principal purpose of this paper which is to
show how the singular point problem may be analyzed in a self-consistent

fashion and extended smoothly downstream.,
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2,3,1 Basic System of Equations

By neglecting mass diffusion™) the resulting equations are (eg. 19 and

22 of Part 2.1)

N
QT%‘/ZAMK"AMJQ O/Qz 22[2.4,,,,‘ 42m]0n0£

= =/ k=g
}Z_ZZ‘KZ(AMK 2nK)OnC7/c U[D:’fzon(ef%?) - (41)
e '(““?fffz’qsna” i 8 R ﬁgf
N
S an=1 | )
and
. dan
Bmm =i bm - mém s (Bm maf_

~/Uf £ jzz forerbomforr / %ffjbm@’f"?)ﬁéof

n={ m=0
B 9‘@‘8[;5% b [—, N=0 fe=y O/{Z%)
M
g;o bm =1 (44)

(X)The biggest complication associated with including mass diffusion is
associated with the increase of the number of equations in the system of
transcendental equations for the initial profile.
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m/ e7) 97 5 PencsErfy) o/ é77) A
N 9 N7
oo ()=t ) ot )
25 5= S, = o U7
¢ S5gs A g“a"’yﬁif’gz%)g

U") pr- etc. are reference velocity, kinematic viscosity, etc.,

respectively,

F e @45)
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._-_-. _QL 7 foed h o
RO ANT: ,U=Z~§_—f
= )
A= 5%
therefore
_/g _e ¥~/ 2_“" ()
/ /’)O Bém bm UZZ ’4”)“ oA O]
N=i kwg
where

Bgm = [ ?é’fof’z)md?
?dl = 2.2z
Bom = / Erf«p) 7 expleh jo:p

2.3, 2 Calculation of the elocities and Enthalpy Distribution in
the Stagnation Point

Multiplying equations (4/) through by (/ for (/=0 {stagnation point)
. ‘6oc¢ 2
we get ( G Feo ot £=0,7=0 ; fand f° are not infinite as opposed to the
case of a sharp body for which (/#O at §=O » but they are finite in this

case),

- =t
Q= 0f+nf+rn=0 %
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D,[?-): é(‘—" ﬁ(a‘gﬁm (?f')OOO—K/_:‘F’Q—Oﬁé—(E P‘:(a—‘"
Dy ()=~ ”wf et ) |
20)= {3 3 ~r-2tpfro [ 2]

O L=l k=S

D, can be positive or negative (velocity profile with inflection)
[% must be negative for
: % must be positive

because]f must be positive

(48)

][_.: —0, FIDP-4D,05
2 0,

Because J[ is a function of § only ][E][(é-) we have the

system of equations for the initial profiie

R3¢ Z‘)ji/ D-400s _ Le(nis )i// 2);2 (Qen )~ 0(7:) Do) 7—
2 D,(?,j 20, (?m) £ =

Z .. (49

One obtains as many equations as the number of stt:ips used, An additional

condition is given as equation ( ‘/42)
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In a similar way one obtains from equation (43)
Q=Ef+EfE=0 (501
with
&= /ﬁ%ﬁ{ 2 Bl e~ by + ff—ZkZA*"‘O”‘ _(2
SR Zb,méarac 2" b} 7

m=go

G35 BB

N=y =0

Therefore,

][___ & F)E-4EE,

o (/)

Becausef must be the same as that given by equation (48), the system

of egs (49) will be supplemented by

4= B HED YEQIED) ~Eilpm) 7 E i)~ 95l )
25,(?:) 25(?:-&()

(52)
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ahd, as before, an additional relation is

M
E b, =
w=-o

Expressions (49), (52} are coupled because the integral in [):3
depends on bMOaccording to expression (46), Therefore these expressions
must be solved simulitaneously. This leads to complications because of
limitations of the numerical technique of solving the system of transcendental
equations.

However knowing an initial guess from the solution of the related

AU_

problem when similarity obtains a-(—f =Congl one can solve such a systern. In

fact knowledge of the exact solution is not necessary because of the possibility
of introducing a compensating term é (}Z) resulting from the fact that
o
I,.U is not exactly zero.

It follows from expressions (47) and (50) that the solution depends
o ) A dU
on the ratio of @UT‘ . The tra.nsforma.tlonj(: eliminates
?- ° Y 55{0 d§ i

and therefore the direct influence of Reynolds numbeér,

Initial profiles calculated from the systems {49) and (52) and compared

with result of reference 8.

2.3.3 Calculation of the Initial Derivaties

At the singular point withU:: © and é;: O according to equation {41)

equation (47) includes the term é-l'
(9]

There appears therefore a singularity /—CJQ) which will be analyzed by

taking small increments in all parametzrs depending on §
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Velocity Distribution at Blunt Body Stagnation Point.
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. QFQng—+ AQy  With AQ<<On,
_Q d()/_,,_ddU'

U=U=G s+ OE) o

Neglecting second order téerms, taking into account equation {#6) with

= i i >, = and
/’Jo; — const (Bernoulli integral), and assuming 6((4, /(,/D n
'?L(L( — const, one obtains from equation (4/ )

i3 (2 P oG+ 5 5 2hmiom] NG00 ]

W= k=i At ke=t

— ’ ég(ﬁmz Azng)c;naam §CfU/{ /‘Zf'zano(e’j[?)-f-

g

ﬁhamﬁ%@ﬁw—%weau$pﬁ24<%
'ﬁf“‘f°f“‘ff44~m“~**2-é-@ff A L

e L /70,2:[ Baony 26 +2 By, o=

P/o
A
_s—._éf-j Z (2 Airk= ’42’”‘- Cne Qko g_é[ s A, OZ_:O”"(E)}[?‘)
C:?T'S—/o A== EloS n=
_ LS /w”” L5 esae_pap.. | AU
= Sro gg L pic Cing Gicp § X /D:o So E—Do—-ﬁ%-z——/'ﬂgg)
A >a B bme ] = SO0 2 Az, Q a *
_ o"—;n-.—;-:j Mo ~Me / 2 / _ 37 ~Ne fo]
| %%/o -

(54)
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A similar way the sy;tem of equations (‘?3) gives [ =—= O(Ug))
N M
Ibm dof do,
%;OO% Blnmad% +an|§quﬂM On,, b g +¥;{8m ﬁ’hngb».a:?
FNMNM MM :
E R e

st ol iy

8 b5 sl +3; b 22 pcxpf o Jerfhn) act]
Zfﬂ%ﬂi—@é/éogmbm—;%f 5f/~ 2[/"5/"5/2@65,,,, b

M

[ B = = AU
B e an G o 08 STanca

/ s .
=7 {A%ﬁ[%}mo{ef;&&?} - 537" fi" /Uﬁi/lzmonoazo

Cj%: < N0 k=i

FI-7 77 . . . .
Assuming a certain pressure distribution (J" UE-§) and blowing distribution

~ Gl AO -
U = %;/fg‘) , One ¢can express % 4 R éf etc., by derivatives
proper multiplying factors. We shall do this for a Newtonian pressure

distribution.

2.3.4 Newtonian Pressure Listribution

According to Newtonian Theory the pressure‘distribution is given by
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p= S LS & ZCos;*/e. (56)

P,Q) (/oo  are velocity and density of the undisturbed flow, /6
the angle of the element of surface with the free stream direction, Kzl, a
constant cocfficient which can be calculated for a blunt body using normal
shock relations and assuming isentropic compression between the shock wave
and the stagnation point (for J=L4 /’\/-2‘:-?2 )e
Taking the Bernoulli integral

J-J—b——mf-U“" ——{—_&5%

a-l & I & (57)

and assuming the isentropic relationship between /D, and <

P S
/DO \fﬂ (5‘9)

one obtains

U= /@_ 2)’—/_39,, \pa)J #U;o//—(/-&’)%:j

where (/o is a reference velocity /(,f; S CIw)
8
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According to expression (56)

U-‘;//"(msja)‘é:f’

© (59a)

or for small /E’) (594)
T= [, '~
U-— Sirn - S0
T SO G
and from expression (9&)
S 7y (60)
=2'_ = fco
& = (=) |
where, according to expression {56 ) and (57),
- 2 >
§6= X~/ '[(foo (6/)
If one takes stagnation density as a reference density the
dimensionless density is:
=_ 5=
5 o
For small /5
= /=5 3in :
& / X /3 + ey 5//);3‘/ 62)

and the density derivative is

92 25 |
TE '}T(C‘%ﬁ) ¥ sns C?f? (63a !
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or for small

oo _ a2 _. -y .
Fe =5 Rt sini) g2

The derivative of velocity is

al _ ¥

= ra . &
B e )T T
or for srx;all//:a,
C/U— - S/hz
oz V' esn(1+ S50 e

and
) < ‘“’2 =y~ S sin Scoss Sy a2
de* Iy 17 25 ﬁ-i{%ﬁj
-+ Casz //__,L 3sinayaa 7
S TERIGE S
Also

C/.g Cjé— 9 — 2 Co@/@c%/gfé 5/’/;/5

For a spherical nose ( /; sphere radius)

....9-/7 .: ds/@______ __—_:___J_g.,,ﬂ: -—/-—
e dm)l, 6lU. ke

where 3} is the kinematic viscosity at the stagnation point.

e — Reyrnc/ds rumber
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(64)

(65)

(66)

(67)
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o0

2
The dimensionless pressure is -E:?— = M)

«(69)
G T e Kcosin = 35 cosa

2.3.5 Calculation of Initial Derivatives with Newtonian
Pressure Distribution

If in equations (54) one substitutes expressions {61), (G5), (66),

etc., one obtains (/{5«/}

G =1 (74 p ;é%"//g@%

and '
U 2
R L HIE G
£ =5 =t (70 )
For a spherical nose /@:defg (£ = constant)
and
ot i
Ade — 1 dU_, 77
& < dE? %
Taking into account that
ACn S
£ Js
Lf L oE
g =

55 : (72)



From equation (54) and {55), assuming that AL, """§2+O(§6) L/!_"5_,_ AU

is not linearly proportional to &£ ) it follows that the right hand sidc is
y propor g

srizTiicnal o § .
Thereiore
o,
dg T &
S K ) . |
or =-K , Where 2 = const, and upon intergrating
gg —f2§
£ o
C]”—O”°+/(22—"O"°+5’§"’7”2§“ (73)
Similarily
= L+ T2 &
TR 5
Dr = e C{-”—’- & (74 )

-

where the derivatives i e# are calculated at point g >0,

'Calcul'ating from equations (73 ) and (74) Aon:On—-QnozzL%/Og_g

¢tc., and substituting into expression (5%), and (55) one obtains "/’qa’nz:"%rn
\

Fen .

L’_‘F&”, = \}
i T T N
i o ‘/

Uy
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*2¢6 Z[‘f"}%gjmdb i/af zf‘?{ZB by

— Lol b,
(et 5 T*/ZZ@% Bunm i

Hh={ m=o

~ ,5’2'“10 }On b, O’f wa

L a% g d§ S 2¢ G’g_Zf%/@nm B, 4
A ey - SEE LT,

]EQ o ijZ/‘—Z e Cho e, f% (76)

Equations {75) and (76 ) are a linear system of equations for the

""a

initial derivatives of theunknown quantities at point g .
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2.4 Inviscid Hypersonic Flow About an Arbitrary Body

2.4.1 Introduction

Hypersonic flow about yawed bodies presents a difficult
analytical problem, and exact numerical solutions, even neglecting real
gas effects, require a great expenditure of computer time. Laborious
methods of calculation do not necessarily give better agreement with
experimental pressure data than does simple Newtonian theory, nor do
they encourage one to attack more complex problems. Newtonian theory
does not provide characteristics of the flow other than pressure distribution.

The purpose of the present work is to develop a theory based upon
the fundamental conservation laws in the integral form and upon certain
simplifying assumptions which will give the Newionian result plus
centrifugal correction for pressure and at the same time will give the
local average velocity and the shock layer thickness. To accomplish this
an average velocit‘y parallel to the body with a zero azimuthal component
and a constant average density is assumed. These assumptions may be
releasedand certain variations of these gquantities in a direction normal to
the body may be taken into account. The possibility of this refinement
is, of course, an advantage of an integral method.

The results are applied to a number of simple flows for comparison

with the theoretical and experimental results of others.

2.4.2 Development of The General Equations

The fundamental conservation laws are applied to the flow
through the control segment shown in Figure 6 while assuming zero

transverse velocity (w = 0).
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Pigure 6. The Control Segments Used for

the Solution of Hypersonic Inviseid Flow

About an Arbitrary Body,
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—_-.—/a/z gazco\s/@[r‘;—fg Cof}/g))géj-f- Lo 1
o

We write the conservation of mass as

rafad
fm'V; AS cosoc = yu(fsv*ym%)dyd'@ (77)
h T
A 5:2; ~y Sing CosF-0)a®+58 a3 09 =5y 86+ 58 cos r AQ

which defines SG .

For vanishing 40 and setting p/Pw = ,(_) and u/ve= u, this

may be written
COSGCé,‘s’ = SO a:aé‘f-é)-f 8(055 / feefrs o+ <008 )d_‘f (78)

If we now assume pu = f(ro) and S/R <<1, where R is the local normal
intercept length measured from the surface to the reference axis

(R = r /cos 8), this may be further simplied to:

z
,; ) — —
cos S o) =0 S
Fgag) @ cosd-0) = S< (79)
The corresponding integral form of the law of conservation of

axial momentum is

A1)
Qo Vi costaS - S’“"’Cosﬁﬁawwas)@d
G
6ra6. 15

/@ardf"d&

Assuming in addltlon here that the normal velocity component is zero

(v = 0), differentiating with respect to rand allowing ABto tend to

zero, we obtain

3 o Cosy
Cc:sofg}__‘sme cos (¢ 9)(/ = Cos(g-@)sm&'dw)—

(80)
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- 2 .
Now we introduce the notation p _ = pwlpme and again neglect 0/R

compared to unity to obtain with the help of Equation {79):

Cose Sr&:%(u Co?/e, coscd \S,é)—f/b:,r;

{81)
where
RS
See = Tz
(82)

Seis derived in Appendix C and given in Equation (78) for bodies of
"nearly circular’ cross-section (bodies whose transverse radius of
curvature is everywhere of the same order of magnitude as the mean

radius of the section), The corresponding relationships ior arbitrary

shapes are derived in Appendix D. It is desirable to carry Equation {81)

a step further as

Cos’A = 1l cos o Pule Se Coset [cos p SEX
RS TGy T Sy CO° (cosp5r,

‘e s;n/ggf) (83)

In the same manner the law ' of conservation of radial momentum

leads to
Cos{ Casel SiNol = — ﬁMjé..,L i< COgocsjn/@
Sre ,
69- . d""
—+ CoscC (' Sin 2y ol f2
S CF(IPGE +  con SL2)
(84)
Eliminating E’w from the Equations (83) and {84), we obtain
O(J&T S{".@. —
= S [~ L F CoSC CoSh —+ COSL SN S
A6 S ( y< 2 = ) (85)
Now pressure can be calculated from Equation (83):
P, ., = é’—ﬂﬁ’ Cos‘z{ 5/?‘)78—(‘0::@,5/'006' Cosl sin B cas
/D“’ T /e i / /'8 /6 (86)

— . P
- % (T coset sinys F2)
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From Equation(79) the thickness of the shock layer i1s found to be given by

S - COSX COS 5 COS(0™E)
~ 2 simd g

(87)

where R = ro/cos f as mentioned before. A suitable average density mignht

be the arithmetic mean
P=5(+8)

(88)
where 55 = (y+1)/(y-1) 1s the dimensionless density at the shock in the
limit as M, > The density at the wall, p,» can be found from the
Bernoulli eguation

2 - Lt/ a?)
ow 20 (89)
Equations (85), (86), (87), (88), and (89) enable one to calculate
approximate values for the pressure, density and velocity distributions

over arbitrary vodies at angles of attack. These equations were derived

with the aid of simplifying assumptions which we summarize here:

a) Zero normal and azimuthal velocity components,
b) Small shock layer thickness relative tc the length R = ro/cos 8,

c) 5 and u independent of y.

For lees restrictive assumptions, Equations (79), {83), (84), and {89)
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(vith U interpreted as i ) must be used for the same (presumably refined)

information.

Now we shall apply the simpler set of equations to several typical flows.

2.4.3 Bodies at Zero Angle of Attack
In this cese o, y-§ and %rl all vanish. Moreover, if the body has
o
geometrically similar cross~sections, %%— also vanishes. Therefore, for

Q
a large class of bodies one can integrate Eguation 85 to obtain

2 o
T = r cos cr
2 Gl-/ /6 (90)
(o]
In a similar way for plane flow one obtalns

,ﬂ

_ . [”
= osp ar (51)
0
i al
or in gener . 5 I
iz = JJ. r’ Cospa ar
lo A ©2)

where J = 1 for plane cases and j = 2 for bodies of geometrically similar
cross-section.

The temperature, found from the energy equation, is

—_—

== [—(e
=z
(93
where
T _ 2
The density, found from the equation of state, is

_ OB | |
§= (5-1)T L (o9
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The shock layer thickness, found from the continulty equation, is

/s
8 =~ (99
J &
In general the integration in Equation (92) will have to be performed
numerically. The special class of bodles for which 8 = constant, i.e.,

wedges and cones, allowsa completely analytical solution:

e = Cos/s (96)
Dy = &S/n2
i = "/ /éz 97)
- jg‘iS/f?/Ea
©s8)
§ior= 2975-1)
o = _;"7‘—:5 — ST+
€= (S%78)5 ““Lz(aw
(99)
e 5= =2 RESIIC
J (325+/) Cos (100)

We note that only & depends upon j.

2.4.4 Wedges and Arbitrary Gones at Angles of Attack

Clearly the above results for a wedge at zero angle of attack are
unchanged by choosing instead a positive attitude. The value of 8 must
accommodate the combined inclination of the normal and the angle of attack.
Similarly, as we have seen, several features of the flow about cones of
arbitrary cross-section at zero angle of atteck may be calculated in a
simple way. 8ince those resulis depend only upon 8 and L and g may always

be redefined with respect to the free stream direction, we may replace g8
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by ﬂ' and use Equations (96) through(l00) for flow over wedges and arbitrary
cones at angles of attack. Derivations are given in Appendix E,

The. value of 5' is related to x and & by the eguation

= SINeL COSE + ('?a/zl cos (8-d2)
Vi+GaPeos* o)

where 3 is the angle of inclination of the surface normal with respect to

d‘/n/s’::

the vertical when projected upon the plane of cross-section. This angle

is given by

dE = G — +an [ d'”)

The value of 8 1s obtained from the expression above for 5' by letting

a = Q.

2.4.5 Applications to Common Body Shapes

We now apply the above solutions to several simple body shapes. The
following sections will consider & wedge, a cylinder, a hemilsphere, a

yawed circular cone and an elliptical cone at zero and at a positive angle

of attack.
Wedge
The expressions found already for o = 0 (i.e., Equations (96) through
(ioo)with g = l) constitute the solution for a wedge and they may be inter-
preted directly for o % 0. The expression for the velocity, Equetion (9)
is exact., The exact expression for the dimensionleas.pressure behind an
obligque shock at angle ¢ with respect to the free stream is
. .2~§W}75§ -1 —
P 3 T e P
For hypersonic conditions, the second term may be dropped obmpared to the

first term, and the shock angle approaches the body angle, ¢ = 8. This
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then shows that Expression (97 ) gives the pressure distribution which i1s
exact for a gas having v = 1, and identifies the theory with other
Newtonian perfect gas models (see, for example, Reference 8).

Cylinder

For a cylinder of radius r, 8 is related to i &s shown In the sketch

below.

The following results are obtained;

g
32_’"‘%’/ A:f") Yzl“sfh;ﬂ) =/

) {101)
=5 SinY

ERe |
fD: /— =2 S0 %—PNEWON/ANHQLS/GQ%:/D

NEDT— Bussemany’

(102)
_ /.2
T=z(1-Fsny)
(103)
- = /——‘9/ T
$io F~/ /'_/%fifﬂkfzgi
{104)
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94K

X+/ (105)
-4 g7/
§+ 57

A=

The pressure distribution given by Eq.(112) is plotted in Fig. 7 along
with the numerical results given in Ref., 4. It may be seen that the
present calculations give exactly the Newton-Busemann results (where
the centrifugal correction has been made).

Hemisphere

For a hemisphere of radius r, the following results are obtained

(see the above sketch for cylinder)s

uzéés’h(/j (106)
%Zo:z /'—Egicslk)zﬁb
(107)
Ts = 21— Fsn )
' (108)
=22 [— G-sin®
o= =4 T T
g~ — Y 5,0
/ 3 Sir (}b (109)
5=p !
gt/
f“_f— 5/ {110)

The pressure distributlon given by EqJ{i07)and the shock layer thickness
given by Eq.(110) are plotted in Figs.8 and 9, respectively, along with
the numerical rezults given in Ref. 10.

Circular cone at an angle of attack

In this case ﬁ! is given by

- sin o cos € + (r./z) cos o

J 1+ (ro/z)2

sin B° = (111)
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X = PRESENT METHOD
0.8 .
NUMERICAL
5/3 CALCULATIONS
(REFERENCE 10}
©
2
a 0.8
o N
*
0.9
b |
0'20 0.1 0.2 03
_t-cos
FIGURE g * PRESSURE DISTRIBUTION ON
HEMISPHERE.
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l

X —PRESENT METHOD

0.1

FIGURE 9

0.1 0.2 0.3 0.4
I - cos Y

:SHOCK LAYER THICKNESS FOR
HEMISPHERE .
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M= 7.95

Bc=10°

Q=4°

O-EXPERIMENT
<-BOUNDARY LAYER

X- PRESENT CALCULATIONS

L
g
\
:
&
s
!
E

Figure lla. Shock Layer Thickness Data for
a Conical Body (Reference l1l)Compared to

The Present Theory
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8. =10°

. a=8°

O EXPERIMENT
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X PRESENT CALCULATIONS

Figure llb Shock Layer Thickness Data for
a Conical Body (Reference l1) Gompared to

the Present Theory.
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2.5  Calculation of Skin Friction and Heat Transfer at the Wall

The calculation of skin frictionr'and heat transfer is easily obtéined usi.ng
the method of integral relations and the series representation of veloﬁity and
total enthalpy. The skin friction and heat flux will be obtained as functions of
the longitudinal distance § . The skin friction (tangential stress) is given
by the expression

5% )(““f"" UL £15)55],

(112)

where U is the potential flow velocity given by Newtonian theory or
numerical results, f(§ ), and aj are given as a result of solving the systems
of differential equations (printed computer output), and

is given and a function of wall temperature,

The heat flux is obtained similarly

7= é’ PN(;: G U Uno 10, &, #(E) .(113)

where b; is obtained from the solution of the system of differential equations

(printed computer output), and Pr = -C-‘&-g’—('f— is the Prandtl number,
w

\
\
1
i
\
\
\
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2.6 Calculation of Forces Acting on the Body

Force acting on the frontal area of the body results from the pressure
distribution and the skin friction,
The force is therefore equal to

D= pAcE + (T3S

1)
- where & is the surface of the body, p is

the pressure given by potential flow theory.

n is the unit normal vector directed

outside to the surface §&.
is the unit vector streamwise tangential to the surface and

T denotes tangential stress calculated from eq. (112).

Component of force {drag) in the direction x (undisturbed flow direction).

R =- P cosin x)dls + Z’é"dé“
(2% 6

where cos {n,x) and cés (s,x) are given by the body geometry and the angle of

" {114)

attack .
Lift is equal to

= —/p sin(n, x) 6+ lf Tsin(s, x)d&
[y

)
Pitching moment

M=~ [P =TS [

where the subscript z denotes the component along the axis perpendicular to the

plane passing through the axis of the body and velocity vector Z
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2.7 Real Gas Effects

If one assumes thermodynamic equilibrium, the effect of exitation of
vibrational degrees of freedom, electronic exitation and dissociation results
in a variable C, and gas constant R » (R=R_ (1+x) where x{T) denotes

degree of diséociation).

Since the properties of a given gas are known functions of temperature,
it is no problem to input these real gas properties in places of the ideal gas

properties. Naturally, one must do this for each gas separately.
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3. DISCUSSION

A method of solution for the case of mass injection into a boundary
layer has been outlined in the present report, The system of partial
differential equations were reduced to a system of ordinary differential
equations by integration over different strips. The velocity and enthalpy
profiles were assumed to be expressed by a series of error functions. The
system of equations were solved starting from the section §¥ = 0 without
additional assumptions as to initial profiles, The initial profiles were ob-
tained by an analysis of singularity at ¥ = 0 and were reduced to the solution
of a simultaneous system of transcendental equations. The present solution
of the transcendental equations uses a GD/Convair Subroutine called NON II,
which results in satisfactory convergence. In the blunt body case, velocity
and enthalpy profiles are coupled and, therefore simultaneous solution of
eight equations was required. For given input parameters (ratio of
enthalpy at the body surface to free stream enthalpy and the injection para-
meter) one can use existing solutions as the initial guess and attempt to
converge the system of equations with perturbations of input parameters,

In this way, tables of initial profiles can be calculated.

In the present report a lineralized system of equations was derived
to calculate the initial derivatives of the coefficients used in the power series
expressions for each unknown profile, The linear system of equations
provides smooth transition to the downstream equations. It is also possible
to obtain initial derivaties in tabular form, leaving only the solution of the
downstream flow.

Example calculations have been presented for cases of sharp and
blunt bodies. The results indicates no trouble starting the computation
near the singular point and that smooth behavior of the downsteam boundary
layer parameters was obtained. Therefore, it is possible to state that the
present method of calculation is accurate {(multistrip), self-consistent,
and adequate for sharp and blunt nosed bodies. However, to reduce the
present method to a fairly simple calculation, one should calculate tables of
initial profiles and initial derivatives for a wide variety of input parameters.
The initial profiles and derivatives could be calculated by a small perturba-
tion of the input parameters in the transcential equations using existing
solutions as initial guesses.
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APPENDIX A

CVALCULATIONS OF INITIAL DERIVATIVES OF COEFFICIENTS
IN VELOCITY PROFILE

lim P e

s~of T gl &

From equation (19), it follows that c%g ~de say g,K= <
£ e

and, integrating, we get

K=/(@+.QC/§_' /(o""‘z s/ A§
_Ag

Now
58
_ A L K, dz/(
A = e S
d’/( .
(/"’) .2 ‘"g‘gd'g

Therefore,

.7[ g—%(/—/_!(g %g-*m §)

and consequently
f) /
7;5 2,«, /+ /‘%a— ( g) )5 e

or using the expansion

I
MK
W)

N
Wy

!/ _ 2
I+€ " ./H€+6+' o where & <&/

f,
—_— 2 /.._____. dt‘( @, dzf‘vs
v7:~" 2%[ 1‘(o§§ /4.@) oéy%—) VA
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Now we may write

L B[ E i G o,
where
Pt = 2/<, (/-KS +24 )§“ g(gg)y).

NN
ZZ (’42m<—4mk)[0’7°ako * A Cn O, + A1 Qo +AC, L)O;i/

n=i j=

;430 (C?no‘/'ﬁan)—- -I/—T‘% (‘2—“‘55-

We could take into account that

2"2 unc-hisionie + FERS 4

= U Q———? (Clw 2 = (from this condition the

ll‘o*&

system of transcendental equations for (Jnp , Q4o and o was obtained).

Bo o/

in numerical calculation., This puts a lower limit on .ﬂ§ because mu&?‘beﬁé

In fact, ‘?’; is not equal exactly zero because of an inevitable error

and ;ﬂg cannot be taken arbitrarily small to satisfy this condition.

A
However, we shall include the term § = as a small error,
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From equation (A8) and expression (A7) one gets

dim B~ [ o+ 4 G ke A e o+ B

& A&
B oo

2!(5 ZZ (4-??)& /Qimc)[ﬁanok + AQeQno*t NG AN | +

N=1 fe=|
4 S ?‘Zﬁmdon*% AC"Q/"”Q-f g’Sj
Introducing

ACH= 2 ggﬂé , AQk= da"g

one obtains

i fgf ZZ (Aan Arnk){azoa%+anog§£)+ |

E~2g K

4
é d? ZZ (’42»115 An/c) COneClico

LTy
+2/(czf’%——‘e NA&. == G&52 o~ =
2. A TE F%"gg +4,
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where

4= KB g e P2 AT

~- 2 e,
I/JF—’ ?(Ef 5 G}’dg’ ZZ ( Az i~ ric daﬂ o g—‘?‘oﬂ,

nN={ k=t

dcz;(_
f 7 22 Z (Peric ~ Ay )gg@l d@«

=/ le=

& (T —-;;, -
C:% 7 [ - = d“]Z Z@zw,a,,,k)[omaeﬁ
+2§d0h |

a——Ofco +2§dgc}"’ _/_4 O’C?n/

The other small order terms as follows from expression (19) are

—222[2)4”»: ”Agng]§d§ dé +"7 U%Z/Vi ’4#‘:&{

N=i k=t

=(op CJ’Oﬂ L,
e Fg T o g +2§ %‘- + S ZZ Ao (an oAa

-:‘Oxgda” p 6?’<:7n A n ey,
w&/{; = 5 52)- & /_72(0%—7& ﬁg)iéf?j
~FRES by

A=A+A4,

83



APPENDIX B
CALCULATIONS OF INITIAL DERIVATIVES OF COEFFICIENTS IN
THE ENTHALPY EXPRESSION

It is convenient to separate into a group those terms of equation (19)
which do not vanish individually when each term of that equation is divided

by fz and § is allowed to approach zero, Accordingly, we have

@ = fZZ(B.?nm—Bmm)Uném ""'Z;T(E?‘r '?—/g Ssmb, -

N2l gy
2L
=b + /'70/ {:KZ )44,"‘0»101::-/ &)

or

7[) NN
@h = ‘_-S—ZZ (Bano— Birmo "*Aanm —4 Bmm)(t?no""danj(bm-f-.dbm)

n=i K={

4/735’? ?ZZN B #885m) (B 218~ 260N )
7 ho.r ZZ’44nt @?’70"*«&0’3)(0«:97"&0;:) (82)

nN=i K=t

Now in studying the limiting form of equation (19) for small positive
gthe group é is multiplied by T and the first erder expansions of all

functions of % are taken, Thus for O<§<</

7/ _z.éh - _fi‘z ( Bano Bfnmo —4 anm_ﬂgmm)/@na'*wry'

n"k."'

(bmo-t"llb) -+ .‘f_.z(mﬁ ?/é[bmo"“ﬁbm)[ﬁg FA Bapy )~ 2@0&?&
m m) r ;""‘Ab:)

/’)o; +Aa”)(azo fﬂa‘(’) (55)

=l ks
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Where from the discussion in the text we have demonstrated that
for very small positive § , K is a parabolic function of § and the

following relationships are valid:

JI_ Ko .
“iew -2 glE
{2 g K+4§/Q’Z)
B - (—,—%gf%w—/afé)g ﬂ(dz)gv‘ )

'f'z‘af“‘s'

Foh (-t 2O BEE ) O

With these expressions the group fé becomes, for O<§<</
~ 2 -
2@} Q&L md§§+ég— { )%7" .
Zﬁ‘[(@nm mm )O i bm°+( 'AZBZ”"” 4 8’””’) Cing b’ﬂo+(82nm _'Bmmo)

=1 g=y

Grecsbmtbm, 00,))+ 3035, Birmy) A 2t S5 08, a8,

nst =y

@nodbm *Drne LK = —Q* 4k
+AC Abnn)j&"'" + ég—) >
Z b Bémo“ 204’15 + 17

n=st o m=eo

(€5 o
ZZ ’44/*14: Cno Qe 1~

+% @D’Hostmo ~+ Bapme NDpn + D Eon A Bém)-— 20/%.{5/

- 25 26 4 2412’3,410(

VJ?—’ KJ_ /90, ﬁz ’4401.: (Onadc?z +

+ o AQ, + LGk ﬁan)j B5)
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Making specific use of the parabolic form of K, C?n/ bm and ol
we may express their values at the point é in terms of their derivatives
there and the value of the functmn at é_ { thereby avoiding the singular
derivative which would occur in a Maclaurin expanslon {typically ol= a(a'*2c_{" &
Again for O<§4‘</ '

f;éh—ZZ[Bz,m, Brrma ] (0o 2 b )+

+ %'g(&m BGnm)aobmaé + 240 T Ul’é f amdg"°+
bo Bn G~ e 0
-f-é Bs, 5§—‘ ho; [ijzl,é)m (0:«054+C?n _Z;
-3 X
}Qé;o[&znmo— BnmJQha bmo%c‘f‘.ﬂ, (Bé)
where
[(Défn 4( / dK ZZ (ASan ABnm)C?hoévy,o

s o

'"f“ L Ar.mo”"B;hmo)(f—?m | bhn +bmodan+mﬂdb”/+22/d 82nm "38 )/
aTe’)

Nl mzo

T2y A0 B A+ aOnAbm%(Z+ —;(;Z__ = /1 ’%CC%Z%/ZZ /

54m~5
PMTAB,,, =48, ) C?hw‘uﬂon)[bmn-f—d brn) +

gmzo (82'7”70 ‘“’Bmmo) thﬂb +2/Z /d anm A Birm ) Cno Abm +

A=t masp

b o .
* Amedontaa Ab”')}“" £ R‘(M %ZXZ,%AM@, =l %—’4"‘

0!

—/-ZAB\BMO ﬁbm -+ 4/(' ‘[( é

B . oL N
Sm ”m —PQ% __?_“M zdé\;&.{ >/

. Al &G -+ 4’ g@ z KT;T M " hw Z/hlnk (On A+ Qoo AT
. [“' rna/ mab’" S?-y?éblo -~ ’Q' /

"' T sy
86
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Now, if the remainiung terms of equation (19) are also expressed
in these terms valid for small positive §, we obtain additional terms

which may be included for the sake of completeness:

2 — —_-ZZ‘[(BIVJM +4 Binm ) LCn 'f"ABme]dbm

1= M=o
H= om0

( bmo*‘““"’”) XZ _/ (3 "m0 ~Barma ) Ly +@ Onr=A8znm )/bmﬂnbmﬁé

N=dom=o

~2% U ol /"{% (bivyo 78 m )@r/(é(omo()? )F U IE,
O ferd (o A0t - .
b fort ) 1) " B He S b e /ex/a/& i

—Z‘f &nm/anodb + A0 bm +A]Onﬂbm a——— -—SZA 34/0’%7‘&0”).

(8s)
where
- oda
A b
Abm—' a——'%

AL = 2%%
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AZFPENDIX C
GEOMETRIC RELATIONSHIPS FOR A BLUNT BODY

Geometric relationships for body shapes of Figs. 62 and 6bused in
the derivation of Eq.82 are given here, Relationships for general body

shapes are given in Appendix D,

0= Ses# 6(4-6)8 - e
S = ’L@sin&t - £G HGcosE
| 2
= (%9
C=¥-4
SEG -—-—-{:_2__ s |
e n@ cos(§~4)- (@~ 6 (C-2)
/  SeeH_ g
= /. =2 X
& a?ﬁ»o@ 2sind snd, cos{&él) (-3
| 65564
BE06 = sy 90681 £ o,y ER-
Sing, cos(l~4,)/ I—-22 _Cos,
=Sy (6)/ 13 mm G0
/ B / / |
Cos & —+3 ' - Sin =
NS Sing, -;ST’VZ@C%EOCL / Tano co?“Z
co?y = cotg, — 7nec cos =
- < .sme-, =X (G-5)
a’-- arc co‘?‘_x_
‘ _ /
a’_'o'_ /—/-_X / sz?aﬁ,.z s;b@-a (c-e)
'fcm?» C-7)
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APPENDIX D
GEOMETRIC RELATIONSHIP FOR A GENERAL BODY SHAPE

Geometric relationships for & general body shape as shown in schematic

of Figure 32.

_ £G-
\SEGH" g H-.S/n§
— F o
£G= 5,,.)8\-5/}'7.65
G =1(8-4,) = C"js‘ﬂ(ﬁde)
£=F-ge ¢
E=Jg- B
= Jr
E=ge- J"
Seey,=_5°

vy ’ Cos (-
mshéb %\@C%Jé)@ 9 )

’?2—*—5'52&’_. r?
0P T Zshy e, s
/aa ¢ COS(Q._OIC)
Srcy .
O T (6

RCIEY
e Siny~ Sing, Cos@ye
0 Qé}\lz /= —_( Zon @"dﬁ J+c o‘/&%‘dﬁf
+ 2o

7LC7V‘_) df..,e_,/é—rj—w

IX = .
y FCO‘SQ} X= FS-’/)Q

o (.L@V’
o +Y 0z EE:I\E\%’ - sec( 205 +157)
@ﬂ"ar)@j CosY g (Geotand +r3)*

7/'0/" bodies /uw'ny SirilGr eross— sections
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SHOCK LAYER,

r}=r(9,z )

Figure 12. Geometric Relationships for a General Body Shape
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APPENDIX E
LOCAL SURFACE INCLINATION FOR A CONE OF AREITRARY SHAFPE

A cone of arbitrary shape extends generally in the negative z-direction

and has its apex at the origin of coordinates.

We may write several geometrical relationships for the purpose of
expressing the inclination of the local surface normal to a plane set
normal to the free stream direction.

In the plane z = const

J_dfgzzcon(@_d@) (E-1)
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Drawing vectors from the apex of the cone to the point P and from b!

to a' we have

F= 715 sing+ J3cosd- iz

(E-2)
f =%/ n CoS (L : f—/SCoﬁ('@"dé)
[ o (@‘ 06)/5//’)36) (/ Cos40 ) (E-3)
The local unit outward normal vector to the cone at P is
7= Fxt . Zsinge - fcosac—f—éz’;cos(@—ad (E-1)

/FXE/ /r}:(ZL@_ 20052(9—2%))

The unit forward normal to the plane through P and set normal to the
z-axis is simply k. But the unit normal to a plane through P and set

normal to the remote stream direction is

,F,.'w - “j SINaC 4 L Cosel (E-5)

The scalar product of n and ﬁw’ since they are unit vectors, gives
directly the cosine of the included angle, but B' is the complement of the

included angle so we have simply

: /s
TSN COSHK A % CoSC COS\KQ, fcjc)

Vi +(’£—°)2C<352('9‘c;€)

. / R
5//”7/6:_ (n-mw).::‘
i

(E-6)
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At zero angle of attack this reduces to
- = —

i BT o)
since }¢=0. Now Equations (85), (86}, (87), (88), and (89) may be

used to compute the flow characteristics. Figures (10} and (il) present

.

calculations of pregsure distributions and shock layer shape for a yawed

circular cone. Because the velocity is close to V. in Equation (1) u

has been set equal to unity, and p to ,EJS = (Y+1)/ (¥ -1).
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