FOREWORD

This report was prepared by Prof. Dr. Waloddi Weibull,
La Rosiaz, Lausanne, Switzerland under USAF Contract No. AF
61(052)-522. The contract was initiated wider Project No. 7351,
"Metallic Materials", Task No. 735106, "Behavior of Metals".
The contract was administered by the European Office, Office of
Aerospace Research. The work was monitored by the Directorate
of Materials and Processes, Aeronautical Systems Division,
under the direction of Mr. W. J. Trapp.

e laip 3762l

This report covers work conducted during the period

February 1960t August 1962.






ABSTRACT

The aim of the work reported has been to develop methods
of solving random equations, that is, equations involving
variates %random varliables). The maln difficulty of this task
arises from the fact that no variate, if not degenerate, 1is
invertible, or, algebraically expressed, even if the set V of
variates is a commutative monoid under both addition and
multiplication, it does not constitute a field.

For this purpose a set S of elements, called stochastic
quantitites (for brevity, stochastics), of which V is a subset,
has been constructed with the property that it constltutes a
field. This implles that there exists for every element of it
an inverse element relative to both the additive and multipli-
cative laws of composition, and thus it will be possible to
compute with the stochastics just as easily as is done with the
rational numbers with respect to the four fundamental operations
Ty =5 *s i

Considering a variate as a finite or infinite set of
ordered pairs, denoted by f(x) [x] , where the first projection
f(x) is a real-valued, non-negative function, defined for a
continuous set of values of x or for an at most denumerable
set of polints Xy and interpreted as a mass density or as

discrete parts of a unit mass, respectively; and the second
projection [x] is anyone of the values that the variate can

take, the notation of a stochastic is f(x)-jz [x] , where
f(x) is a real valued, positive or negative, function and

the symbol j” [x] is defined, for n = 1, by j, [x] = (1/dz)
2

[x] - e/dz) Ek + dé] . Thus j, may be interpreted as a

duplex mass, composed of two infinitely large masses (1/dz)
and = (l/dzj located at an infinitesimal distance dz from each

other. For n = 2 we have jg [k = (l/dzz) [k] - (g/dzz)
[x + dé] + (L/dzz)[# + 2-d£]and jg may be Interpreted as

a triplex mass, composed of three infinitely large masses at
an infinitesimal distance dz from each other, and so on for

arbitrary values of n. Since, by definition, jo [x] = 1 [x],

the general expression includes the variates as a special
case obtained by setting n = 0.
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From the definition above it follows, if f(x) is a con-

n

tinuous function, that f£(x)- jz is equal to the ordinary

derivative a" (fx))/dxn. Thus, Jg can be regarded not only
as a multiplex mass but also as an operator. In the same
way, j;?, defined as the inverse of j:, can be interpreted
both as a mass distribution and as a repeated integration,
further, the operator d?/dxn = 5™ may be defined, as is

demonstrated, also for the general case that n> is an arbitrary
real number.

Since some problems leading to random equations have been
presented, general properties of variates and multiplex stoch-
astics are indicated. Based on the known laws of composition
of variates, corresponding laws and some general theorems
valid for multiplex stochastics have been deduced. Owing to
the dual nature of the symbol j¥, simplified methods for
composition and inversion of variates can be developed as
is demonstrated. Finally, classification and some solutions
of random equations and criteria for the existence of real
roots are indicated.

This report has been reviewed and is approved.
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SECTICON I. INTRODUCTION

The ordinary algebra operates with letters, which are used as
symbols for real or imaginary numbers and which are composed ac-
cording to elementary laws of composition thus forming equations
which involve known and unknown algebraic quantities. The funda-
mental theorem of algebra is the proposition that every algebraic
equation has & root, and its main problem is to develop methods by
which the roots can be determined. A decisive property of an alge-
braic quantity is that it can be specified by one single number.

There is, however, another class of quantities which can take
a finite or an infinite set of values, to each of which is associated
a real number. The specification of such a gquantity, which will be
called a stochastic quantity and which includes as a special case the
random variables or the variates, requires more elaborate means than
a single number. Equations invelving kmown and unknown stochastic
quantities composed by use of appropriate composition laws will be
called stochastic equations, including the random equations which
involve variates only. The importance of such equations and the
need of methods for their solution is explained by the fact that
many of the quantities involved in scientific and technical problems
are random variables even if they for the sake of simplicity and due
to the lack of suitable methods for their solution are - frequenily
quite improperly - considered to be algebraic. Some examples of prob-
lems leading to random equations will be presented.

The fundamental difference between the methods for solving these
two types of equations, the algebraic and the stochastic, will be ii-
lustrated by a simple example.

Denoting algebraic quantities by small letters a, b, ¢, ..., if
known, and by X, ¥, %, ..., if arbitrary or unknown, and stochastic
quantities analogously by capital letters A, B, Cy sssy and X, Y,
Zy +.sy the algebraic equation

a=b.x+¢C
and the stochastic equation
A=B.X +C

will be compared.

Since the solution consists in the separation of the unknown

(1)

(2)



from the known quantities, the algebraic equation (1) is easily
solved in two steps

a-ceb.x+{c-c)=b.x and (a-c)/b=b.x/b=x

This procedure is based on the additive and multiplicative laws
of composition of real numbers

X-x=0 and x/x=1

These two simple laws of composition do not apply to variates
or other stochastic quantities, since for any such quantity

X-X #0 and X/X£1

The scope of the present investigation has been to develop
methods for the solution of random equations. The leading idea was
that it may be possible to find, for any given stochastic quantity
X, four quantities denoted by X+, X , X, X, which follow the
laws of composition of variates and which satisfy the conditions

X+X =0 X-X =0 X.X =1 X/X =1

Clearly, if such quantities, which will be called inverse com-
" ponents, have been found, the solution of equ.(2) is just as simple
as that of equ.(l) as indicated by the formal solution of equ.(2)

XH (A+C+) - BI

It is easy to prove that the inverse components can never be
variates and that the introduction of a new class of stochastic
quantities, which will be called multiplex stochasties, is required.

For the purpose of illustration, some examples of problems
leading to random equations will be presented, after which the sto-
chastic quantities will be defined and classified. Then their ge-~
neral properties and the laws of their composition will be demon-
strated and finally methods of solving stochastic equations will be
developed.

SECTION II. SOME PROBLEMS LEADING TO STOCHASTIC EQUATIONS

The most important application of the variates is related to

(3)

(4)

(5)

(6)

(7)



the properties of elements of sets, viz., of individuals belonging
te a population, say, their weights, lengths, colours, etc., taken
as entities.

While some properties of a single individual, say its weight,
can be specified by a single number, the same property of the indi-
viduals belonging to a population of, say, one thousand items will
in the most complete form require a list giving all the individual
woights. In most cases, it is, however, quite sufficient to know,
for instance, that 175 items have a weight of 3 kg, 325 a weight of
2 kg, and 500 a weight of 1 kg. These figures are called the fre-
quencies of the respective weights.

Dividing these figures by the total number 1,000 gives the re-
lative frequencies 0.175, 0.325 and 0.500, which are also called the
probabilities of the respective weights, for the reason that, if one
single element is taken at random from the set, then there will be
s probability of 17.5% of picking out an element having a weight of
3 kg. In cases where the set is infinitely large and the propertiy
in gquestiorn may take any value within a finite or infinite interval,
the probability has to be specified by a function f(x), which de-
fines the condition that the infinitesimal probability d4dP of draw-
ing at random an element with a value x, belonging to the infinite-
simal interval dx, is dP=f(x)dx. The function f(x) is known
as the density function (also frequency or probability function) of
the variate X.

The density function provides all pertinent information on the
variate., Consequently, the solution of a random eguation consistis
in the determination of the unkmown density functicns from the known
ones. Some examples will now be presented:

Example 1. Suppose that we have two sets, one consisting of a large
number of items and the other of a large number of boxes. The
weights of the boxes are representcd by the variate B  and those of
the items by another wvariate C. If now the items are taken at ran-
dom, one at the time, and enclosed one in each box, then the weights
of the boxes with their contents is a new variate, denoted by A,

We then have the random equation

A=B+C (8)

This symboli¢ equation implies that, if we take at random one
box from the set B, weigh it and find its weight to be b, and
one item from the =et C, weigh it and find its weight to be C.,
then we can postulate that 1



a.=b, +C,
i i i

is a random value from the set A, that is, the computed wvalue a,
is a perfect substitute for the weight of a box with content actu-
ally taken at random from the set A,

This way of defining a random equation (which is not applicable
to a stochastic equation in general) will be called the Monte-Carlo
definition of the equation. Based on this definition, which provides
also an experimental method of solving arbitrary randem equations,
mathematical laws of composition of variates will be deduced and ex-
tended to stochastic quantities in general.

The preceding procedure presumes that B and € are known and
consequently that our equation may be written

X=B+C

This equation is easily solved by known metnods, but let us
examine another aliernative

A=B+X

In this case, the variates A and B have been determined by
weighing a sufficiently large number of boxes with and withcut con~
tents and it is required to derive from this information the densi-
ty function of the variate C.

If we now apply the Monte-Carlo method to this problem and take
an element from the set A and find its weight to be a., and a
box from the set B and find its weight to be b, 5 thefi it is evi-
dent that

X.=a, ~-b,
1 1 1

does not provide a random value from the set C Thecause, suppose
that the least weight of the boxes is 2 kg and that of the items is
3 kg and that some of the boxes have a weight of T kg, then it may
happen that we have an a =% kg and a bi-"{ kg and thus

I, = 5-T7T=-2kg, which endently is absurd:

The reason why the method fails in this particular case is that
A and B are dependent variates, which will be denoted by

X=A( -)B

(9).

(10)

(11)

(12)

(13)



In an analogous way addition, mltiplication, and division
of dependent variates will be denoted by (+), (.5, and (),
respectively.

Since equ.(12) cannot be applied without knowing the depen~
dency between a, and b,, the solution of an equation even as
simple as equ.(1}) may be'rather complicated, and still more if
we take two items at random and put them into one and the same bhox,
taken at random. The equation then takes the form

A=B+X+X (14)

where the two letters X stand for two independent variates with
identical density functions.

It should be noted that equ.(10), bui not equ.(11l), has always
a real root,; that is, a variate satisfying the equation. This dif-
ference beiween the two equations is an essential fact.

Example 2. This example is chosen to illustrate multiplication of
two variates., Suppose that we have a large set of specimens. An
individual specimen may have an ultimate strength s,, ocross-
sectional area a,, and specific strength D.. SinBe all these
values differ frofi item to item, we have thred variates, related by

S=A.B (15)

Bere A and B are, at least in most cases, independent va-
riates. The variate S is easily determined from the known density
functions of A and B, whereas it is much more difficult to de-
termine B from 8 and A, s8ince we have

X=B=5(3:)A (16)
and we do not know the dependence of S and A.

Example 3. This example is related to the important and freguently
occurring problem of eliminating the influence of imperfect mea-
suring devices used for experimental determination of wvariates. Let
X denote the weight of a set of items which has to be determined by
means of a spring balance. If the spring constant varies during the
weighing procedure, it can be considered a variate denoted by B,

and if the balance has a varying zero-error, this is another variate
denoted by C. Then the actually observed weight A differs from
the true weight X which has to be determined. Since B, C, and X



are independent of each other, the correct random equation will be
A=B.X+C (17)

The variates B and C can be determined by a proper calibration.
This equation is typical of a large number of measuring procedures.

Example 4. A random equation relating the fitigue life N of a
specimen to the imposed pulsating load S may be rut in the form

S= (S, -8 )(¥/o+1)™ +S, - (18)

where S = the ultimate tensile strength of the specimen, 3 =
its fatifue limit, a and b constants (or more correctly ef-
pressed: degenerate variates). Since S, S, N, a, and b can
be determined by independent experiments. tBe variate S is the
unknown quantity. e

The solution of this equation is a rather intricate problem,
complicated by the circumstance that brobably S_  is dependent of
S and possibly a and b are non-degenerate Variates. This
problem gave, in fact, the initial incitement to the present inves-
tigations.

SECTION IIT. DEFINITIONS AND CLASSIFICATION OF STOCHASTIC QANTITIES

Let X be a set, finite or infinite, of ordered pairs £(x)[x]
where x is a real number and f(x) a real-valued function of X.
It is convenient to visualize f(x) as & mass density associated 1o
the point x on the x-axis in an n—dimensional space Rn.

Let P(x) be a function which is almost everywhere equal to zero,
that is, it is equal to zero except in an at most denumerable set of
points x. where it takes finite values Pi==P(xi),

Let p(x) be a function almost everywhere continuous, that is,
except at the discontinuity points a; where it has a finite jump
(saltus) equal to Pi—p(si),

Let p’(x)=d(p(z))/dx be a function contimious except in the
discontinuity points bi where it has finite jumps equal to
P? = p’(bi), etec.

Putting f(x)-P(xi)/dx-i-p(x), we specify the set X by



- X=g(x)[x] = (P(x;)/ax +Kx))[x]
or, since P(x) does not exist but for X=X,
X= (P, /ax)[x, ]+ p(x)[x]

The function £(x) will be called the density function of
X and will be denoted

Df(X) - f(x)

The notation P,/dx implies that the density is infinitely
large at points x, "but in such a way that there is a finite mass
P. within the infinitesimal interval dx. The notation p(x)[x]
ifiplies that to each value x is associated a real number p(x)
(interpreted as a mass density). The function f{(x) will be regar-
ded as a single object which can be moved in the space R . The no-
tation f(x)[x] denotes its initial location, while the Rotation
f(x)[x+a] implies that each value (real number) f£(x), initially
associated to X, now is associated to the point (x+a) on the
x-axis, that is, the object f(x) has been moved a distance a
on the x-axis. A move in the arbitrary z-dirsction an infinitesi-
mal distance dz will be denoted by f£(x)[x+dz].

On the particular conditions that
o0
P, 20; p(x)=20 and LP, + fp(x)d_x:l
-— o3

the set of ordered pairs of real nmumbers X will be called a
variate (also random variable), because then the mass may be in-
terpreted as a probability.

When there are no such restrictions imposed on the density
function, the set X will be called a real stochastic quantity or,
for brevity, a real stochastic.

We will now introduce a new concept called the derivative Y
of a variate or of a stochastic, which will be denoted by D(X)/dz
and defined by

Y=D(X)/dz = Izi;n—(.(‘:’f(x)[x] -t(x)[x+8z])/AO3)

If dz=Az-»0 is an interval which tends to zero (but
never reaches it), equ.(23) may be written, for short,

Y= (f(x)[x]-£(x)[x+dz])/as

(29)

(20)

(21)

(22)

(23)



Taking the two terms of f(x) separately, we have, since P,

is a real number and Pi[xi] may be written P, '1[11]’ .

D(Pi[xi]dz = Pi(l[xi] - 1[::i +dz])/dz
With the notation |
3,[%;) = (1=, ] -1[x, +aa])/az
we have A
o(p;[x;1)/az = (P, . §_ )x,]

This result will, for brevity, be expressed by the statement
that the derivative of a real rumber Pi is

D(P, }/dz = P, . J,

keeping always in mind that the real number has to be located any-
where in the space Bn.

Applying the limiting process to Pi .jz results in a second
derivative

. 2 2 .2
D(Pi . Jz)/dz=]) (Pi)/dz =B, .3,
and by further repetitions in general
n n .n
D (Pi)/dz =P, .,
In the particular case n=0 we have
.0
i lx1-1[x,]
or, for short,
.0
Jy=1

The symbol jn will be defined for n equal to any real
mumber, positive of negative, as will be demonstrated in Section 5.

The second term p(x)[x] derivated becomes
D{p(x)[x])/dz = (p(x)[x] - p(x)[x + dz])dz

and, since p(x) is a real number,

(24)

(25)

(26)

(21)

(28)



D(p(x)[x])/dz = p(x) . j [x] (29)
or, for brevity,
D(p(x))/dz=p(x) . 3, (30)

keeping in mind that the object p(x) bhas to be located any-
where in the space Rn and has, in the limiting process, been
moved the infinitesimal distance dz in the z-direction.

The important, particular case that z=x in equ.(30) and
the effect of discontinuities in p(x) will be discussed in
Section 5. i

Applying the derivation procedure to p(x). jz results in
a second derivative

(3 (x))/dz® = p(x) . 52 (31)
and by further repetitions in general
D' (p(x))/az" =p(x) . 3} (32)
Combining equs.(27) and (32) we have
p*(£(x))/az" = (2, /ax+(x)) . 55 (33)

where f(x) stands for f(x)[x] and 32 for jn[ii] end
jz[x], respectively. z

Just as P, is a real number which may be interpreted as a
concentrated maSs and p(x) is another real number which may be
. ! n .h
interpreted as a mass density, P, . j and p(x).Jj may be cal-
led mltiplex numbers and interprsted”as a mmltiplex“mass and a
miltiplex mass density associated to the points x on the straight
X=1line.

The set of ordered pairs X. jo=f(x).j [x], where f(x) is
a real-valued function will be called a multiplex stochastic.

The stochastic quantities may thus be classified into: Real
stochastics, including as a particular case the variates, and the
multiplex stochastics. Each of these classes may be subdivided
into discrete, contimuocus, and mixed stochastics.



In the particular case that the stochastic quantity consists
of one single ordered pair, it will be called degenerate (degenerate -
variate, degenerate real stochastic, degenerate multiplex stochastic).

According to the conditions (22), a degenerate variate must be
denoted by 1[x.,}, and a degenerate stochastic by k. jn[x.] where
k 3is a real nuiber, positive or negative. The case n <0 * corre-
sponds to the degenerate real stochastic k[xi], where k#1.

I+ is evident that the derivative of a variate can never he a
variate but sometimes a real stochastic.

SECTION IV. GENERAL PROPERTIES OF VARTATES

4.1 Degenerate and Discrete Variates

A degenerate variate X 1is defined by the condition that it
takes only one single value x,, which implies that there is 100 %
probability that it takes this value, or that the mass distribution
consists of & unit mass located at the point xi. It will be denoted

X=(1[x;])

The particular case that xi=o will sometimes be denoted by
X=0. This notation does not imply that X disappears, and should
correctly be denoted by X=(1[0]).

Comparing the two degenerate siochastics (1[0]) ana (0[1]),
the first notation implies that the probability of the value O is
100%, while the second one implies that there is no probability at
all, that the real stochastic takes the value 1 and sofar no other
value, so this notation actually impliies that the quantity disappears.

In the same way, X=1 should correctly be written X=1[1],
but the notations X=0 and X=1 will be accepied, when no con-
fusion can arise.

The most simple non-degenerate variate is that one which takes
two values, and x, with the probabilities Pl and

P2-1-P1 respectively, It will be denoted by

10

(34)



Care mist be taken {o distinguish this notation from
which implies the sum of two degenerate stochasties.

If x,—»X,, then X—-(l[xl]) , that is, to a degenerate
variate, wﬁich may, for short, be written X:x_l.

4.2 Continuous Variates

If the density function f(x) does not include any discrete,
infinitely large values, it will be denoted by p(x). The mass
within an infinitesimal interval dx +then represents the proba-
bility 4P of obtaining, at random, a value belonging to this
interval.

Thus
aP = p(x) dx (31)
In the same way, the mass content of the interval (a,b),

corresponding to the probability P b of finding, at random, a
value belonging to this interval, %s

Pop= fp(x) dx (38)
The function F{(x) defined ‘by
#(x) = [p(x) ax (39)

is equal to the probability that X takes a value equal to or
less than x, denoted Prob(X=x)., This function is known as
the cumilative distribution function and will be denoted by

car(X) = P(x) (40)

4.3 Bounded Variates

The veriates may, from another aspect, be classified into
bounded and unbounded variates. The importance of the bounded va-
riates is due to the fact that all properties of concrete objects,
represented by a variate, for instance, length, weight, material
strength, fatigue life, times, etc., are bounded (as never taking
negative values), even if they are frequently assumed to he normal
variates, which have no finite bounds.

11



In analogy with the notation x+, known as the positive part
of x and defined by

< - {x if x Z¢
0 if x=<0

we will use the notation

a
+a (x - b) if x-b 20
&-v) ‘{ 0 if x-b =0

where a 20.

A variate bounded from below has a density function which is
equal to zero for x-Db 2£0. The value b 1is called the lower
bound. A variate bounded from above has a density function which

is zero for b-x=C. The value b 1is called the upper bound of
the wvariate.

The essential difference between bounded and unbounded conti-
mous variates consists in the property that the density furction
of a bounded variate has at least one discontinuity and consequent-
1y higher multiplex derivatives, while that of an unbounded wvariate
has no discontinuities at all.

Two classes of bounded wvariates of practical importance will
now be examined: The first c¢lass inecludes all variates having a
density function which can be developed into a series of the form

£(x) =3k (x ~-b)re
where the real mumber az=0. It should be noted that this function
and its derivatives have no discontinuities except possibly at the
lower bound ©b.
As an example of such a density function we will take
(m 21)
which may be developed into the series
f(x) mm. (1), g (P mEm=1) ),

where the integer n 2 0.

12
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In particular we have for

+0 +1 +2 s n _+4n, , _x+
m=1 f(x)=x /0! -x /1) + x /2% - =2(-1) . x /nl=e
me 2 f(x)==2(x+l/0! - x+3/12 + 1*5/21 - <2z(-1)". x+(2n+1)/n1

and, for illustration purpose,
m=1.5 f(x) = 1.5(x70 Y01 - x*2- 012 4« 2350 - L

The second class includes variates which have a density func—
tion of the form

£(x) = 2k, (x-1,)"™ (0 20)

This function has the property, useful for composition and
solution of equations, that itself and all its derivatives up to
the (n-1)th are contimious. The discontinuities are located at
the points b,. The lowest value of b, is the lower bound of
the variate. .

The rectangular variate V_ (also denoted R(a,b))

v, = (1 (x-8)* + K (x-0)*0)[x], where k) =-k,= 1/(b-a)

The density function has discontimities at a and b equal to
1/(b-2a) and -1/{b-a), respectively.

The triangular wvariate Vl

v, = (kl(x—a)+l+ ke(x-b)+1 + k3(x-c)+ 1)[x], where
ky=2/(b-a)(e-8); ky=2/(c-b)(a-b) 5k, =2/(a=c)(b-0c)
For the symmetrical case a = -¢; b=0, we have
V= (e o)™ - 2(x)* s ( x -0)™)/e?) [
The density function is continuous but its first derivative

has discontinyities at -¢ and ¢ equal to 1/¢“ and at ©
aqual to 2/c”.

The parabolic variate V2

Vo= (ke (x+ a)*? . ky(x+ v)*2 .+ k3(x—c)+2 + k4(x-—d)+2)[x]
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For the symmeirical case d=a; o=b, we have

2 .2
ky=-k,= 3/2a,(a2- 'b2) and -k, =k3 = 3/2b(a" - b°)

The density function and its first derivative are continuous
but the second %erigative has2dis§ontinuit§es %t -2, =b, b, a

equal to 3/a(a®-17); -3/p(a®-1%); 3/b(a”-17), and -3/a(a2-b2).

The density functions of Vo, Vl, and V2 are presented in Fig.l.

4ef4 Approximation of Continuous Variates

Any contimuous variate can be approximated by a discrete vari-
ate composed of the masses of each of a sufficiently large set of
intervals of equal length located at the mid-point of the interval.

Another method, which in some cases is preferable, consists in
taking the intervals, not of equal length, but of egual mass content
and to locate these concentrated masses in the center of gravity of
each interval. This procedure is easy to perform, by use of the
distribution function F(x) defined by equ.(39).

Denoting the inverse function of F by F-l we have
F(F_l(x)) =X

If m is the total rumber of intervals, then the mass 1/m
has to be located at the m points

x, =F(3/zm) (i=1, 3, .., (2-1))

As an example tzke the distribution function

1/a
PuF(x)=l-o %

which will be approximated by the mass 1/m located at the m points

x, = F () = (-Log(1 - ?))" = (- 1og ((2m - 1)/2m))"

It is worth mentioning that every variate, experimentally de-
termined, is a discrete variate according to the first alternative.
Suppose, for instance, that X represenis the weights of the ele-
ments of a large set and that these weights have been determined
with an accuracy of -~ 0.5 kg. The only actual information ob-
tained are the observed pumbers of elements belonging to each in-
terval, that is, the experimentally determined demsity function is
a discrete one. How it may be assumed that the density be con-
stant within each interval, or linear, or parabolic. Theze as-
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sumptions lead to the density funection (49), taking n equal to
¢, 1, and 2, respectively. In any case, every function which is
continuous can be represented to any desired degree of accuracy
by means of a sufficient number of intervals but this number de-
creases considerably with n for a preassigned degree of accu-
racy.

The second alternative of approximating the density function
is easily obtained from the experimental data. Taking, for in-
stance, the rumber of intervals equal to 10, then, after a proper
smoothing procedure, the relative number of observations equal to
and less than 5% s 15 %, 25%, etc., provides the corresponding va-
lues x, of equ.(56).

Ancther way of approximating continuous variates consists in
the use of a power series defined in X as indicated by equ.
(43). This method is ¢f particular interest when the variate re-
presents some material property, for example, the strength or the
fatigue life of a specimen, where only the lower part of the dis-
tribution function (39) is of practical interest, that is, for
low probabilities of failure. From purely physical reasons, such
variates mist be bounded from below.

We then assume the distribution to be
+n
F(x)=& kn(x- xu)
where xu is the lower bound of the wvariate.

As an exampleS let us take the Rayleigh variate with X, = o,

defined by equ.(47 Thus

. —x+2
P=F{x )=1l-e

The corresponding power series is

P(x)=x"2~ x+4/2 + x+6/6 - x+8/24
Since F(x) is the pro'biaility that X<=x, any approximation by
use of the first term x only can be used with an error of less

than 0.5% up to a probability of 10%, which for a designer may
be an excessively high percent of failure. By use of the two first

terms the function P{x) can be approximated up to 30% with an er-

ror of less than 0.04%.
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Some of the pertinent functions are given below

F(x) = x+? - x+4/2

£(x) = 2z - og*3

£i(x) = ox*C - 6x™2
f11(x) = 2/ax - 1227
si1i(x) = 2j/ax - 12x70
it (x) = 232/(1:: - 12/dx

From this table it may be found that, taking the first term
only, the second derivative f''(x) is represented by a mass 2
concentrated in the point x=0, and taking the iwo first terms,

the fourth derivative f''''(x)is represgnted by two masses con-
centrated in x=0, one mltiplex = 2jx and the other a resal
negative = ~12. These results makes a considerable simplification

of compositions and determination of inverse components, that is,
of the solution of equations involving the Rayleigh variate, as
will be demonsirated in the following.

SECTION V. GEKNERAIL PRCPERTIES OF MULTIPLEX STOCHASTICS

The multiplex number j was in Section 3 defined by a 1li-
mitiﬁg process resulting in fhe derivative of the ordered pair
k{x.

i

D(k[xi])/dz - ka[xi] o (k[xi] - k[xi +dz]})/dz

This derivative may be geometrically interpreted as a trans-
formation of the real number (mass) k into a duplex number (mass)
kj_, which is composed of two infinitely large numbers (masses)
k/dz and -~k/dz located at an infinitesimal distance dz from
sach other.

Applying the limiting process to the ordered pair kj_[x.],
the second derivative bhecomes 2 4

(k[ x,])/a2" = D(xj_)/az = kj_(1[x, ] - 1[x, +dz])/dz
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% (klx, ])/as® x5 . 3 [x, ] =k32[x,]

This derivative may be gﬁometricglly inéerpreted as three
infinitely large masses 1/dz°, -2/dz°, 1/4z°, 1located at the
infinitesimal distance, dz frgm each gther. ,Strictly, we should
have four masses 1/4z°, -1/dz°, -1/dz“°, 1/dz° at the distance
dz from each other. It can, however, be proved that, from the
view-point of composition, these two mass distributions are equi-
valent and thus that the initial distance &z which tends to
zero and reaches the infinitesimal distance dz may not only tend
to but also reach the value Az=0 for the two mid-masses. This
rule applies to all masses of equal sign.

The mass distribuiions for the different derivative jz[O]
are presented in the following table

Miltiplex Location of mass—elements
masses 0 dx 2dx 3dx 4dx
§° 1 - - - -
Joax 1 -1 - - -
2. ax 1 2 1 - -
P.ad | 1 -3 3 a1 -
54, ax® 1 -4 6 4 1

All derivatives, except jo, have a direction, in the pre-
ceding denoted by 2z, which for higher derivatives may change in
the successive steps.

As an example we take the second derivative
2 .2
D°(k[x;])/ax . ay =kjy [x,]
which may be geometrically interpreted as a mass distribution com-

posed of two masses k/dx.dy and two masses -k/dx.dy located
at (xi,O); (xi+»dx,dy) and (xii-dx,o); (xi,dy), respectively.
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In the preceding, we have discussed the derivatives of de-
generate stochastics (including variates).

The extension of this concept to discrete stochastics is im-
mediate.

Regarding a discrete stochastic as a sum of degenerate sto-
chastics, located at a set of points X that is,

X=2(k, . olx,1) (67)
it follows that
p™(x)/az" = 2(k, . 57 " (=, ]) (68)

We will now examine the concept of derivatives of a conti-
nuous stochastic

X=£(x)[x] (69)

including the variates, if f(x) satisfies the conditions of
equ.(22).

The symbol £(x)[x] implies an infinite set of ordered pairs,
To each real number =X is associated another real number f(x),
interpreted as a mass density. The function f(x) is regarded as
a single object having an initial location from which it can be
moved without changing its shape.

Thus f(x){x+b] implies that the real number f(x), ini-
tially associated to x, now is associated to (Xi—b), that is,
the object f{x) has been moved a distance b on the x-axis. A
move of f{x)} a distance dz in the arbitrary direction =z will
thus be denoted by f(x)[x+dz].

Considering that the symbol f(x) denotes a real number, ob-
tained by applying a set of composition laws to x, it follows
that
£(x)[x+b] = £(x-1)[x] (70)
and also that

£(x)[x/v] = £(bx){x] (71)
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In general, for any transformation
-1
z=g(x); x=g (z)

where g(x) is a real-valued function, which is finite and
uniquely defined for all real x, we have

-1
£(x)[e(x)] = £(g " (2)[2]
Mathematically, f(x){2] and £(z)[z] are identical objects,
gince both x and 2 denoftes any arbitrarily chosen real num—
bers.

By specification of different x-axis and z-axis in the
space Rn’ a distinction may be imposed on them.

If we now denote by Y the derivative of the contimuous
stochastic X of equ.(69)

Y= D(X)/dz
then it feollows from the preceding that
T=2(£(x)[x])/dz = £(x) . j [x]
and, in general
Y =DM (X)/ax" = £(x) . j’;[x]

In the important, particular case that z=x, it follows,
by definition, that

D(f(x)[x])/ax = £(x) . j_= (£(x)[z] - £(x)[x + ax])/ax
and by equ.(70) that
£(x) . 3 [x] = (£(x)[x] - £(x - ax)[x])/ax = £? (x)[x]
Hence, for any continuous function f(x) we have
f(x). ip= daf(x)/dx = £’ (x)
and in general
£(x) . 33 = £(x)/as"

where the integer n 2C, that is, equal to the ordinary deriva-
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tives,
In particular
£(x) . j°x= a°r(x)/ax° = £(x)

Equ.(78) which is valid for positive integers only, will now
be generalized by putting

2 .a a
£(x) . 3= a*(2(x))/ax
where a is an arbitrary real number.

For thg particglar case f(x)=k.x we will derive a for-
mila for a°(x")/dx which satisfies the following conditions:

(1) a®(£")/ax* = x(n,a) . (nsa)
that is, k and m are uniquely determined by n and a.
(2) db(da(xn)/dxa)/d.xb=k(n, a+b). xm(n, a+d)
that is, k and m are uniquely determined by n and (a+b)

(3) If n, a, and b are integers, the formulas must be identical
with the ordinary formulas of derivatives.

The first condition is satisfied by m=n-a, and so is the
second condition, since (n-a)-b=n-{a-b), and also the third
condition., Thus, we may put

a®(x")/ax® =k . X" T ®

The expression k=f(n)/f(n-a) obviously satisfies the first
condition, and alsc the second one, since

k=(f(n)/t(n-3a)). (f(n-a)/f{n-a+d)=f(n)/f(n~a+d)
The third condition is satisfied by f(x)=x! , since

1 if a=0
n if a=1
n(n-1kf a=2 etc.

k=nl/{n-a)}

nonron

Accordingly, the derivative will be defined by
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a?(x")/ax® = =", ji:(n!/(n-—a)!) x0T (n-a 20) (81)

For any continmuous function f(x) which can be expanded into
a series

f(x) = Zk . = (82)
we have
a?e(x)/ax® = £(x) . j;=2kn(n!/(n -a)3)x" " ? (83)
where n and a are arbitrary real numbers and (n-a)20.

Equ.(83) will now be applied to density functions which are
bounded from below.

As the first example we take
£(x) = k(x-b)* (2 +#) (84)
where n 1is a positive integer. We then have

£(x) . ¥ =k{(n+a)l/m){x-b)™
+0
£2(x) . " % =k((n+a)1/02)(x - b) (85)
n+l+a ’
£(x) . =k((n+a)!/ax)[b]
N+ 2+ a .
£{x) . j =k((n+a}lj/ax)[p]
The two last expressions interpreted as density functions take
infinite values at x=1b, but in such a way that there is a finite

mass k(n+a)! and k(n+a)lj, respectively, located in this
point. When no confusion can arise, the term dx will be omitted.

Applying equs.(85) to the density function (46)
+
fx)=eF =xtYor-x /1142t 20, (86)

we have +
e X .j=1[0] - x+0/02 + x+l/12 -

+ ' (87)
-X . .n -1 n—2 .n-3 -
o L= (i" T~ T T =0 o]
and mltiplying both members by j o
=t ;-1 -2 -3
e =(ITT -3 +i 7=, )O] (88)
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Applying equs.(85) to the demnsity function (48)
£{x) =1.5(x"'°'5/o: - x+2°0/13 + x+3'5/2! - . (89)

we have in the same way

£(x) =1.5(372*7. 0.52/01 — 57>+°

. 2.03/1) + 3“4'5. 3.53/21 - ..)  (90)

We will now examine the concept of an integral of a stochastic
X, which will be denoted by

I%(X) . ax"
and defined, as being the inverse of D (X)/ax", by
(0% (x)/ax")ax" < X (91)
Since D(X)/ax" =X, 3‘2 we have
(X. j‘;) .axt =X

which motivates the notation

-1t

I(x)ax” = X. 37

By use of the preceding formilas, some useful relations will
be derived. From equ.{B8l) it follows that

(x-2)*2. 2=at(z-v)"°
and
(x-1)" 2. 52+ Lo at[n)]

(omitting the term dx)

Multiplying both members by ;j_(a’+1) we have

(x-2)* 2w a2 0] wna 3] -0/ (92)
and in particular for b=0

x*® < a137(a+ o] and 37 %[0)=x"®" Y a1y (93)

By use of these formulas the transformation of the series (86)
into (88) and (89) into (90) is easily performed.
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The integration can be extended to the n-dimensional space.
Taking, for instance,

ko (el 0] = K(x-a)*0. (ron)*O

which represents a mass distributed over the surface (x >a, y>»b)
with the constant density k.

SECTION VI. COMPOSITION OF VARIATES

6.1 General Laws of Composition

Let the symbol # in the composite
X=Ax3B
denote an arbitrary law of composition.
Then,
X.=a,%b,
i i i
is a random value from the sst X.

By repetition of this procedure, a random sample of any size
can be produced and an approximate value of the integrated density
function of X, denoted by Cdf(X)= F(x) is obtained by counting
the mumber (n) of values, which are equal to or less than x eand
divide this number by the total number (N) of computed vzlues.

Thus
P=F(x)= n/N

The deviation of the observed value n/N from the true value
P(x) can be as small as desired by a sufficient increase of N.

The practical application of this method, which iz called the
Monte-Carlo method, can be carried out ir the following way: Let
F and F, denote the distribution functions of and B and
tBeir inve%se functions be dencted by F_ and Fg'. Since
P1=Fa(a) and P2=F.b(b) we have &

-1 -1
a=F (Pl) and b=F (P2)
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The probabilities Pl and P are uniformly distrituted
over the interval (O,lg, that is, they are rectangular vari-
ates defined by equ.(5C). Thus, by taking independently of each
other two random rumbers r, and r, from R<£0,1)} two indepen-
dent values

-1 -1
ai-_-Fa (rl) and bizFb (r2) (99)

are obtained., The values =r,, r, ¢an be taken from a Random Num-
ber Table or they can be pro&uceg by a digital computer.

This method is applicable also to composition of any number
of independent variates and to any type of composites, for example,

L= AP (100)

which defines a random value
-1
-1 Fo(r,)
x, =F, (rl) b ‘T2 (101)

The disadvantage of this method depends on the large number
of values z. required even for a moderate accuracy of the esti-
mated functidn F{x). PFurthermore, this method cannot be applied
to stochastics in general, because the values of a stochastic other
than a variate are not associated to a probability. Ancother method
will therefore be demonstrated in the sequel, but before then the
concept functions of wvariates will be examined.

6.2 Munctions of Variates

The variate X is said to be a function of another wvariate A
X=£(a) (102)

if it is a composite invelving one single variate and constants
composed according to some preassigned law. It can be defined by
the Monte-Carlo method.

However, care must be taken to distinguish the constants from
real numbers as will be demonstrated on the linear function

X=b.A+¢ (103)
Postulating that the sum or the product of & real number and
a variate can never be a variate, except in the particular case
that the real number is a positive integer n and in the two

expressions, where n signifies the number of elements of the
sum and the product,

n.A=A+A+ and A".p.4... (104)
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the constants in equ.(103) mst be degenerate variates and the
correct notation of equ.{103) is

X=(1[b]) . 4+ (1[c])

In most cases no confusion can arise through the notation
used in equ.(103), except when b is a positive integer. The
difference between XE-.EA and X2= (1/2/). A will be demon~
Strated by the Monte-Uarlo method.“ The first symbol implies

~1 -1
x; =F_ (rl) +F (rz)

where r. and r, mist be independent random mambers, while
the second symbol implies

~1
x;=2.F (rl)
The second interpretation is that one of equ.(103).
Considering that
- = =
Prob(a _ai) P f(ai)
it follows that,on the condition that b>0, there is, in any
random sample from X of equ,(1C3) exactly the same number n

of a~values equal to or less than &, as there is x-values
equal to or less than xi=b. a; +¢,” or

Prob(X sxi) =Prob(A = a.i)==Pi
Hence,

Caf(X) = F((x=-c)/b)
DF(X) = f{(x-c)/b)b

On_the condition that b <0, it follows in the same way that

Prob(X ﬁxi) =Prob(A > ai) =1-P,
and consequently

cﬁgfﬁ : E ;(F(E:(f “cc)x)bl))}b
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In the particular case that b=-13 c¢= 0, we have

L= -A

Df(X)= £(-a)
which implies that, if the density function of A is symmeiric

with respect to x=0 as, for instance, the normal distribution,
then

A=-A

which does not imply that A=0.

6.3 Composition of Variates

The usual method of composing variates, which in many cases
results in closed expressions for the density functions and which

will be adapted to stochastics in general, will now be demonsirated.

Let a unit mass, representing a probability, be distributed
over the (x,y)-plane in such a way that the mass £(x).f(y)dx.dy

is allotted to the two-dimensional interval dx. dy. If now a curve

Z; =XXy= constant is drawn as demonstrated in Pig.2 and all
vilues on one side of this curve are equal to or less than 3z,
then F(z.) is egual to the total mass allotted to this side’of
the curve.

The mass distribution over the (x,y)-plane is uniquely de-
termined by the two density functions f(x) and f(y) and is in-
dependent of the law of composition =%, while the curves for con-
stant values 2. are uniquely determined by the law in question
bat independentlof the variates. Curves corresponding tc the par-
ticular cases: Z=X+y=3, 2Z=X-y=2, Z=X.y=4, and
z=x/y==1/2 are drawn in Fig.Z2.

This method will now be applied first to degenerate and dis-
crete variastes and subsequently to continucus variates.

6.3.1 Degenerate and Discrete Variates

Let A=(1[a]) and B=(1[b]) be two degenerate variates. As
demonstrated in Fig.3 we have one unit mass located at the point
a on the a-axis and one unit mass at the peint b on the b-axis.
The joint density field consists of one unit mass at the point
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(a,d) in the (a,b)-plane. The z-axis may serve as axis both
for addition and maltiplication but with different scales. Ve
bave the mass distributions for the sum and the product

A+B=(1[a])+ (1[b]) = (1[a+Db]) and 4.B=(1[a]). (1[b]}=(1[a.p])

It is readily seen that the resulting ordered pairs are obtained
in both cases by multiplying the first projections of 1[a] and
1[b] and by adding the second projections in the sum and by mul-
tiplying them in the product.

As the second example we take the two discrete variates
X=((3/a)[1]+ (1/4)[2]) and Y=((2/8)[2]+(2/4)12]+ (1/4)3])

The joint density field is composed of six concenirated masses ag
demonstrated in Fig.4.

By geometrical construction we have

X+ Y= {3[2]+713] +5[4]+1[5])/16

X-Y=(3[1]+7(2]+ 3[3] +2[4] + 1[6])/16

The sum of the first projections must for all variates be
equal to unity. Without graphical constructions these result can
be obtained by the rule of mltiplying the first projections and
to sum the second projections for addition and to multiply them
for miltiplication according to the following schemes:

(Ea.i[xi]) * (Ebj[xj])uﬁai . bj[xi+xj]

(o a.i[x.l]) . (L‘bj[xj])= Zay . bj[xi . xj]

6.3.2 Continuous Variates

Random Addition and Subtraction

Putting X=A+B, the relation between a and b for a
constant value ¢f x is b=x-a and the x-curves are siraight
lines with a 45 slope, as indicated in PFig.5. The bisector to
the a~ and b-axes may serve as the (a+b)-axis, because just as
F(a.i) is equal to the mass allotted to the left-hand region of

27

(115)

(116)



a perperndicular to the a-axis and going through the point a,
and likewise for F(b,), thus F(x,) is equal to the mass 3n
the left-hand side of™a perpendicul%.r to the bisector and going
to the point x,. It is to be noted that the scale of the
(a+b)-axis difters from those of the a- and b-axis.

In a similar way, the (a-b)-axis is indicated in Fig.5. It
should be pointed out that the difference (A-B) can be consi-
dered a sum of A and -B, the density of which is f(-b), as
indicated in equ.{113). :

The additive law of composition will be demonstrated on a
simple example: Let A=R(4,6) and B=R(1,4) be two rectangu-
lar variates. From e .(503 it follows that f{a)=1/2 for
42826 and f(b)=1/3 for 1=Db < 4. The joint density field
is equal to the shaded rectangle in Fig.6 and the surface density
is constant p=1/6. The density functions Df(A+B) and
Df(A-B) are obtained from the condition that f£(x).dx is
equal to the mass located within a small strip dx perpendicular
to the axis.

Random Multiplication

Putting X=4.B, the relation between a and b for a
constant value x is b=x/a, and the x-curves are hyperbolas,
as indicated in Fig.7. Also in this case, the bisector can be
used as the x-axis but with a non-uniform scale. All positive
products (a.b) are located within the quadrants I and III.

The distribution function F(x) is equal to the mass lo-
cated between the two hyperbolas going through the points x for
positive products and outside the two hyperbolas going through
the points -x for negative products.

If this method is applied to the random square Xs= A2=A. A,
where A=R(1,2), then the joint density fiold is squal to the
shaded square in Pig.,7 with a demity p=1, By integration, it
is found that

P(x)=x.logx-x+13 f{x)=1logx for 1< x <2

F(x)=x. log4/x+ x-3 f(x)=log4/x for 22x % 4 (217)

-

Random Division

Putting X=B: 4, the relation between a and b for a
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constant value of x is b=x.a and the X-curves are straight
lines going through the origin. In Pig.l0 the curves for x= 0.5
and X=2 are indicated. A vartical line through the point

a=1 1is an appropriate X-axis with the same scale as those of the
a- and b-axes. The distritution function F(x) is equal o the
mass within the quadrants I and IV which is located below the x-
lie together with the mass within the quadrants II and III which
is located gbove this line, as indicated by two archs in the fi-
gure for bi:a=0.5.

Applied to the ratio X=A:A, where A=R(1,2), the dis-
tribution and density functions are:

F(x)=2x-2+1/2x;  f£(z)=2-1/2x° for 0.5%x % 1.0

Mx)=-x/2+ 3-2/x35 f£(z)= -1/2+2/::2 for 1,0%x % 2.0

SECTION VII COMPOSITION OF MULTIPLEX STOCHASTICS

7.1 General Laws of Composition

The composition of two variates X and Y consists, as de-
ronstrated in the preceding paragraph, of two procedures: the for-
mation of a two-dimensional density field, which is unigquely de-
fined by the density functions of X and I, and the determina-
tion of the mass distribution within this field in relation to a
set of curves, which are uniquely defined by the law of composi-
tion. Thia mass distribution provides the density function (or
the distribution function) of the composite Z=X=7Y.

These two procedures will be maintained for the composition
of multiplex stochastics,

7.1.1 Formation of the density field

In the case of two discrete variates, denoted by X= (r.[x. 1)
and Ye=(P.[y.]), where x. and y. are two at most denumbrabie
set of poil’}ts:," the density %ield. is gomposed of infinitely large
densities P, ., P./d.x. dy associated to the points (x.,x.), or,
there is a flnitg mass Pi . P;j located at each of thezl-'.e ‘_Boints.
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This law will be applied also to the multiplex stochastics
(2. . i®)[x.] and (P..3iMy.]. Thus, to each point (x’.131 x.)
will b8 asdociated a finite nﬂltiplex mass P, .P,. 3 . e J
The subscripts w and v indicate the direction$ of'‘the mmlti-
plex units and they may or may not be equal to the x~ or the y-
directions.

In the case of contimous variates, denoted by X=f. (x)[x]
and Y= fg(y)[y], the density field is formed in such a W®ay that
to each two-dimensional interval dx.dy is associated a mass
£ (x). fz(y) .dx.dy, that is, to each point (x,y) is associ-
ated s ffnite mass density fl(x) . fz(y).

This law will be_applied also tc the continuous mltiplex

stochastics fl(x) . 32[1 and f2(y) < i y]. Ths, to each point
(x,y) 1is assoGiated B finite mas§ densily £ (x). £,(3) - 3 - 3y

7.1.2 The mass content of an infinitesimal strip

Prom the field, formed according to the preceding procedure,
the density function f{z) of Z=X=Y will be determined by
the condition that f(z).dz is equal %o the mass located between
the two curves xEy=2z and x*¥y=2+dz, that is, the mass con-
tent of the infinitesimal sirip ds=.

This law, which has already been demonstrated by means of
various compositions of variates will be maintained for multiplex
density fields. It is of importance for the practical application
thai in the case of continuous maltiplex fields, the masses en-
closed between the two curves =z and z+dz may be real masses.
This statement will be proved for a density field consisting of a
single line over which is distributed a multiplex mass with a den~
sity f(x). J,e

As indicated in Fig.9, the symbol f£(x). j signifies two
real mass distributions with the densities f(xJ/ &z and -f{x)/Az,
the latter moved in the z-direction a distance Az. The angle between
the z-and the y-axes is &, An infinitesimal strip dx, inter-
secting the x-axis at an angle B, as indicated in the figure, con-
tains a pair of real mass elements, the sum of which is called the
tangential mass 4P and is equal to

B
dPB = ((f(x+ax)/az-f(x)/az)dx
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Since
O3~ (tga+ tgR)Ay and Ay=cost .Az
we have

Ax=(sina+ cosa . tgh )az

]Z-’B = d.PB/dx= ((f(x+ax) - £(x))/Ax. (sina + cosa. tgh)
or, if Ax —»0{
Pﬂ= (sinB + cosa . tgB) . £’(x)
The tangentia} mass associated to the interval (a,b) is
Pab=a/'pﬂdx= (sina + cosea . tgB)(f(b)- £(a))

If the density function f£(x) has a discontinuity with a
Jjump equal to P! at a point =x, belonging to the interval
(a,b) and we lel this interval tend to zerc, then there will be
a finite mass

=P 3
Pﬁ(xi) _Pi(sn.na + cosa. tgB)
located at the point xi.

Let us now apply this formula to the particular case that
£f(x) is the density function of a rectangular stochastic with
the mass equal to P (=1 for a variate) uniformly distribu-
ted over the interval (ai, a.i+Ax). Then

_§ P/Aax in the interval
f(x)"{ 0  outside

and the tangential mass distribution is composed of one concentra-—
ted mass (P/Ax)(sina+ cosa . tgf) at X=a, and another
-(P/Ax)(sina + cosa . tgB) at (ai+x).

If now Ax -0, keeping P constant, then, by definition,
the tangential mass distribution tends to a concentrated mass
P.j (sina+ cosa. tgp). It can thus be concluded that the tan—
gentlal mass P{3 corresponding to a concentrated mass P. ;jz
is a mass
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PB=P . jx(sina+ cosa . tgh) (123)

From equs.(25) and (33) it follows that the three alterna-
tives corresponding to equs. (120), (122), and (123) are all in-
cluded in the expression

Py= (sina + cosa& « tgp) » £(x) Jp (124)

From this expression it follows that the tangential mass is
depending on the angle B, except in the case that cosa =0,
which corresponds to the linear distribution f£(x).j_. This
result is obvious, since f£(x). jx signifies a real mass distri-
bution and a real mass has - contTary to a multiplex mass - no
direction.

For the other extreme case, cos¢ =1, we have for the mass
distribution with the density £(x). jy a tangential mass density

pg = £(x) - i, - &b (125)

Let us now examine a density field consisting of a siggle line

over which is digtributed a mass with the demsity f£(x). i,
From Fig.1l0 it may be found that
by = (£(x+2.83) - 26(x +03) + £(x))/o 2
and by equ.(119)
Pg = (sina + cos« . th)z. 2(x) (126)

Repeating this procedure, we have the tanggntial mass den—
sity corresponding to a linear density f{x). jz to be

Pg = (sina + cosa. tgB) . £(x). j; (127)
This formla includes also the cases that f(x)} has dis-
continuity and infinity points.
As a particular case we have for n=20
pg = £(x) (128)

that is, pB is independent of B, since j:=1 has no direction.
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Equ.(lE?) provides the fundamental tool for composition of a
degenerate or discrete multiplex stochastic and a variate or other
real stochastic.

As an examplg, the addition of the variate f(x){x] and the
stochastic (k. jzfyi]) will be demonstrated.

Since the additive law of composition requires that tgf=1
and (sina+ cosa . tgB)=1 both for a=0 and a=90", it
follows from equ.(12%5) that

.n .n .
2= (2(x)x) W (e Ly, 1D=(2 () [x])+(k- 5207, 1) = ((ka2(x). 52) [x 47, 1)
or by equ.(70)

2= (k. £(x-3,) - 52(x])

7.2 General Theorems of Multiplex Composition

Simplified methods for composition of variates and other
stochastics can be developed by use of some theorems which will
be presented.

et X and Y be iwo stochasties and their arbitrary com-
posite Z=X=Y. This equation will be rut in the form

£(z)[2] = £(x)[x] + £(y)[¥]

The density functions f£(z), f£(x) and f£(y) which are
arbitrary functions differing from each other, will now be sub-
jected to various changes and the effect on the density function
of the composite will be stated.

Theorem 1. If one of the elements of an arbitrary composite is

miltiplied by a real mimber, then the composite shall be miltiplied

by the same number, that is,

k . £{x)[x] £k, . £f(y)yl =k .k, . £(z)[z]
In particular, if k, =k, =k,

k. 2(x){x] =kt . £(3)[y] = £(2)[ 2]
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Theorem 2. a) If one of the elements of a sum is moved a certain
distance, then the sum moves the same distance, that is,

£(x)[z+b]+ £(y)[y+cl=1(z)[z+b+c]
In particular, if c¢=-b,
£(x)[x+ 1] + £(z)[y -] = £(z)[2]

Equ.(135) can be geometrically interpreted as a move of the
density field in a direction perpendicular to the z-axis.

b) If one of the elements of a product is expanded
(oontracted), then the product will be correspondingly expanded
{contracted).

(2(x)[b. x] . (£(3)[c. 3] =£(z)[z.b.c]
In partiéﬁla.r, if c=b_1,
(2(x)b.x]) . (£(F)y. v D) = £(z)[z]

BEqu.(137) can be geometrically interpreted as a move of thse
density field along the curves z=Xx.y= constant.

As a general law, it can be stated that moving of masses
along the z-curves does not affect the composite.

Pheorem 3. If the density function of one of the elements of a
sum is composed of two functions, as indicated by

(£,(x) + £,(=))(x] = £2(7)[y] = £(2)[=]
then
£(z) = 1}13(1l x7Y) +nf(x2 xY)
where
=[] 5 X,= £, (x)[x]

Care must be taken to distinguish (£, (x)+ £, (x))[x] from
(£, (D[] + (£,(x)[x]). e
Theorem 4. If one of the elementg of a sum is miltiplied by the

miltiplex number k. j. or ka i then the sum shall be
mltiplied by the mltiplex mumbe¥ k. j_, that is,

iy - £2(x) . 93] + &y . 2(3) Gly) = iy ok, . £(2) 3770 (2]
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This theorem can be proved by use of the three preceding
theorems in the following way:

By definition
£(x) o 3 = (£(x)[x] - £(x)[x+ ax])/ax = ((£{x) - £(x -ax))/ax)[x]
Hence,
(£(x)/dax - £(x-ax)/ax)[x] + £(y)[¥] = (£(2)/dz ~ £(z - 42) /dz) 2] =
= £7(2)[2] = £(2) . j [2]
Thus
£(x) . 3o [x)+ £() [y ) = £(2) . 3, [2]

and for higher derivatives, positive and negative, by repetition
of this procedure.

T3 Simplified Methods for Composition of Continucus Variztes

The preceding theorems can be used to transform by derivation
the elements of the composite into discrete stochastics, which are
mich easier to compose than the originally. After this procedure
kas been performed, the final result is obtained by inverse trans-
formations.

This method will be demonstrated by means of three examples.

As the first example is taken the addition of the rectangular
variates X=R(4,6) and Y=R(1,4). This addition has already
been performed geometrically, as demonstrated in Fig.6.

Since f(x) bhas two discontimuities: 1/2 and -1/2 at
x=4 and x=6, respectively, and f(y) has two discontinuities:

1/3 and -1/3 at y=1 and y=4, reapeciively, and £’(x)=
£'(y) =0 elsewhere, it follows that

£(x)« 3= (1/2)[4) - (1/2)[6]= (a[4]-1[6])/2
£(y) - 3, = (/3011 - (1/3)14) = (1{1) - 1[4])/3

Applying Theorem 4 and omsidering aqu.(116), the following
scheme is convenient to use
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J ! .2 2
2.f(x).jx.dx + 3.f(y).jy.dy = 6.f(z).,]z.dz

1[4] - 1[s] 1f1] - 1[4] 1[5]-1[7]-1[8]+1[10]

Thus,
6.2(2). 32 . azs® =1[5]-1[7] - 1[8] + 1[10]
and
£(2) . dz = (1[5] - 1[7] - 1[8] +1[20)) . 5776
and by equ.(92)
£(2) = ((x-5)"1 - (x- )" - (x-8)"F + (x-10)*)/6

This equation provides the mathematical representation of the
graph f{a+b), presented in Fig.7.

As the second example the maltiplication of the rectangular
variate X=R(1,2) by itself has been chosen, that is,

ZeX.X=X

The easiest way to proceed is to transform the mmltiplication
into an addition by the new variables: x’=1logx; ¥’ =logy;
2’ =logz. Then f(x?) and f(y’) have discontinuities 1 and
-1 at x’=y’=logl=0 and =log2, respectively, and the
scheme becomes

. . .2 2
£(x’) . j - dx f(y’).ay.dy f(z’).az . dz

1[0] - 1[1eg2] { 1[0] - 1[log2] | 1[0] - 2[10g2]+1[210g 2]

Hence,
£(z?) . ji . dz2= 1{0] - 2[1og2] + 1[210g 2]

and, as in the preceding example,
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£(z) = (z’)+l - 2(z’-10g2)+1 + (2?-21og 2)+1

= (logz)+1 - 2(logz - log2)+l + (logz - 21log 2)+1

Thus,
£(z) =1o0gz if 14z<2
=logz -~ 2logz+ 2log2=1log4/z ‘if 22224
=log4/z + logz/4=0 if 4=z

This result is identical with that given in equ.(117), which
was obtained by geometrical construction.

As the third example the addition of two Rayleigh variates,
approximated for low probabilities, will be presented.

Using the first term of equ.(6l) only, and assuming the lower
limits to be b and ¢, we have

£(x)=(x-0)*2  ana  £(y) = (x-c)*?

The scheme then becomes

£(x) . jf; . dx 2(y) . js_ . dy £(z) . j: . dz°

2[b] 2[ec] 4[b+c]

Thus
£(z). ,jg . dz° = g{b+ec] ; £(z)=4{b+c]. j';s/dzz
and by equ.(92)
£(z) = (z-b-0¢)*?

7.4 Inverse Components
The usefulness of inverse components has been indicated in

the Introduction and their definitions are given in equ.(6).
Some examples of such stochastics, corresponding to a few simple
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variates and relating to addition, multiplication, and division,
will be presented.

It will be found that the determination of inverse components
can be performed either geometrically or analytically. ZEoth me-
thods will be demonstrated for comparison.

7.4.1 Addition

The additive inverse component, called the inverse addendum
and denoted by X+ ig defined by

X+X =0 (146)
where the right-hand member stands for 1[0].

(a) Let X be the discrete variate

X=((3/4)[1] + (1/4)[2]) (147)

that is, the mass distribution consists of a mass 3/4 oconcentra-
ted in x=1 and another mass 1/4 concentrated in =x=2.

As demonstrated in Fig.ll, a mass FP= 4/3 at the point x=-~1
will, together with X, establish a density field composed of two
masses 1 and 1/3 at the points X=1 and 2z=2 on the line
x =-1. The second mass mst be compensated by a mass -4/9 at
the point x, = 0, and soc on.

Thus,
X, = (4/3)[1] - (4/9)[0] + (4/27)[1] - (4/81)[2]+... (148)

Phis result may be analytically derived according to the fol-
lowing scheme:

(4) X (1/4) . X, X+ X,

3] +1[2] | (1/3)[-1] 1[0} + (1/3)[2]
-(1/9)[o] - (1/3)[2]-(1/9)(2]
(1/21) 1] +(1/9)[2] + (1/27)[3]
~(1/81)[2] -(1/21}(3]-
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It is of interest to note that the term 1[0] can be ob-
tained also in the following way

(4) x (1/4)x, X+ X,
3{1]+1[2] 1[-2] 1{o] +3[ - 1]
-3[-3] -3[-1]-9[-2]
Thus
X =4[-2] -12[-3] + 36[-4] - 108[ - 5]+ ... (149)

is another inverse addendum of the variate (147). Zven if the
masses increase infinitely, it can be used just as equ.(148) in
connection with bounded variates, as will be proved by the fol-
lowing example. '

Taking, for instance, the variaste, defined by equ.(115),
which certainly contains X, and adding to i X+, defined by
equ.(148), ws have the scheme

X, (16) . (Y+71) (16) .(X++X+ Y)
(4/3)(-1]1-(4/9)[0) + | 3[2]+7[3]+| 4[1]-(4/3)[21+( 4/9)[3]-
(4/21)[1]- (4/81)[2] | =[4)+1[5] +(28/3)[2]-(28/3)[3] +

+(20/3)[3] -
Thus,
X+ (X+Y) = (1/4)[1]+ (2/4)[2] + (2/4)[3] =Y (150)

In the same way,

X, (16) . (X+7Y) (16) . (X++X+Y)
4{-21-12[-3]+ 3[2]+7(3]+ | 4[3]+20[2]+28[1]+12[0]+...
36[~4] -108[-5] + 5[4] +1[5] -12[2]} - 60[1] ~ 84[0] + ...

-108[0] + ...
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Thus,
X, +(X+ ¥)= (1/4)[31 + (2/8)[2] + (1/8)[1]+ o[} + O[-1] + ...
which is identical with equ.(150).

The first addendum is bounded from below and the second one
is bounded from above. The former should be used in connection
with variates bounded from below and the latter in connection with
variat=>s bounded from above.

The sum of the masses P, of X  in equ.{148) is
P, = a,/(1-q) = (4/3)(1+1/3) =1

Consequently, if the mass (1/4) of equ.(147) is moved until it
coincides with the mass (3/4), then X —=1{1] while X+-—-1[-1],
that is, degenerate variates follow the same additive law of com-

position as real numbers.

Phe preceding method of computing inverse addenda can be ex-
tended to any variate of the discrete type.

(b) Let X be the rectangular variate
+0 +0
R(a,b) = (k(x-a)" - k(x-b)" )[x]

Phe inverse addendum can be geometrically determined, as de-
monstrated in Fig.12. If the density p=1/(b-a)=1/h, then a
duplex mass (1/p). j. at the point x =-a will, together with
X, establish a denslty field composed of two masses 1 and -1
at the points x=a and X=b on the line x+=-a, respectively.
The second mass is compensated by another duplex mass (l/p). b ]
at the point X=h-a, and so on. The inverse addendum thus x

becomes
R (a,b) = (1/n)(1[~a] + 1[b-a)+1[2h- a]+...) . 3,

It follows from equ.(125) that Jj_ can be substituted for
j_ in equ.(154). This addendum is botinded from below. Another
a&dendum, which is bounded from above, can be determined, viz.,

R (a,b) = (-1/n)(1[-b}+1[-b-h] +1[-b-2h] + ..) . 3,
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EZqus.(154) and (155) can also be deduced analytically, as
demonstrated in the following example.

(¢) Let X be the triangular variate (Cf.equJ52))
T=(x-1 - 2(x-2) "1 4 (z-3)*t (156)

It follows by equ.(92) that, (omitting, for brevity, the
factor 1/dx),

7, ji = 1[1] - 2{2] +1[3] (157)

The computing scheme becomes

T-ji T+.j;2 T+T,
1[1]-2[2] + 1[3] 1[-1] 1[o] -2[1] +1[2]
2{0] +2[1] - 4[2] + 2[3]
+3[2]-6[3]+
+4[3] -
Thus,
T, = (1[-1]+ 2[0] + 3[1]+...). ji (158)
The other addendum that is bounded from above is
T, = (1[-3]+2[-4] + 3[-5]+. .). 57 (159)

Also a third addendum, which is unbounded, can be derived.

From the preceding examples it may be found that it is easy
to determine the inverse addendum to any polynomial variate of
the type defined by equ.{49). It will be of the discrete type
and be composed of multiplex masses k. jn « Bvidently, any
variate of the continuous type can, with ahy desired degree of

accuracy, be approximated by equ.(49).
(a) Let X be the exponential variate

X= e"‘+[xJ (160)



Considering equ.(88) the computing scheme becomes

X K+ X+X+
PR L P j 1ol -3+ 38573 L.
1 R R SU
Thas
X, =(3+1)[o] (161)

In an analogous way the inverse addendum of any variate
having a density function which can be developed into the series
indicated in equ.(43) can easily be determined. The procedure
consists in a transformation by means of equ.(92) of the density
function into a series

£(x)=Zk_ . i (162)

which is treated according to the computing scheme above. In
general, an infinite series will result.

Te4e2 Multiplication

The miltiplicative inverse component of an arbitrary vari-
ate X, called the inverse maltiplier and denoted by Xx is
defined by

where the right-hand member stands for 1[1].

The inverse maltiplier of a discrete variate can be deter-
mined by means of a computing scheme in analegy with that used
for addition with the modification that the second nrojections

of the ordered pairs must be miltiplied, as indicated in equ.{116).

(a) Let X be the discrete variate, defined by equ.(147). The
computing scheme becomes
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U
(4) . % (1/4) . % X.X_
3[1]+1[2] (1/3)[1] 1[1]+ (1/3)(2]
-(1/9)(2] - (1/3){2] - (1/9)(4]
(1/21){4] |~ +(1/9)14]+(1/21)[8]
. -(1/21)18]
Thus,

X = (4/3)[1] - (4/9[2) + (4/27)[4] - (4/81)(B] + ... (164)

Comparing this expression with e&u.(148), it is found that the
masses are the same tut with differsnt locations.

(b) Let X be the rectangular variate, defined by equ.{150),
putting a=1 and b=2,

Then
R(1,2) . j . =1{1]-1[2] (165)

and the computing scheme dbacomes

R.j_ : N R.R_
1M1 -1[2] 1{1] 1{1] -1[2]
1{2] 1[2] - 1[4]
1[4] 1[4] - 1(8]
Thus, -

Rx(1,2) =(1[1]+2[2]+1{a]+1[8)+...). 3 (166)

x

This inverse multiplier is bounded from below. Ancther in-
verse miltiplier, bounded from above, can be determined in a si-
milar way, being
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Rx(1,2) (- (1[o.5]+1[0.25]+1[0.125]+ .0} (167)

It should be noted that it is possible to deduce an inverse
mltiplier which is composed of j_ - masses, but then tgff 1
which makes the formlas somewhat fore complicated.

7.4.3 Division
L
The inverse component of an arbitrary variate X, called

the inverse divisor and denoted X , is defined by
X: X =1 (168)

where the right-hand member stands for 1[1].

The inverse divisor of discrete and contimuous variates can
be determined by means of computing schemes demeonstrated below.

(a) Let X be the discrete variate, defined by equ.(147). The
corresponding scheme for division then becomes:

(4) . X (1/4).}(= X3 X,
3[1]+1[2] (1/3)[1] 1[1]+(1/3)[2]
-(1/9)[0.5] - (1/3)[2] - (1/9)[4]
(1/27[0.25] (1/9)[4]
Thus,

X, = (4/3)[1] - (4/9)[0.5] + (4/21)[0.25] - ..

(b} Let X Ye the rectangular variate

(165). The corresponding scheme becomes:

R(1,2) defined by equ.

Rody R=.j;1 Rt R,
1[1]-1[2] 1[1] 1{1]-1[2]
1{0. 5] 1[2]-1[4]
1[o. 25] 1[4]1-1[8]




Thus, .
R=(1,2) =(1[1]+1{0.5]+1[0. 25] +...). g (170)

Trhis inverse divisor is bounded from above. In a similar way,
another inverse divisor, bounded from below, is obtained, being

R (1,2)=-(1[2] +1[4] +1[8] +...). g (171)

SECTICN VIII. SOLUTION OF STOCHASTIC EQUATIONS

8.1 General Considerations

Any equation invelving one or more stochastic quantities
A, B, ¢ with known density functions and one or more stochastic
quantities X, Y, Z with unknown density functions will be cal-
led a stochastic eguation. The solution of such an equation con-
gists in the determination of the unknown density functions from
tke known ones,

If all the known quantities are variates, degenerate or non-
degenerate, the equation will be called a random equation. Such
an equation will be said to have a real root if the equation can
be satisfied by substituting variates for the unknown stochastics.
Criteria for the existence of real roots will be discussed below.

Considering that any composite of variates is another variate
and can never be a real number, and a degenerate variate only on
the condition that all elements are degenerate variates, it fol-
lows that none of the members of a random equation can be a real
number or a degenerate variate. Rach member mist involve at least
one non-degenerste variate.

If a randem equation involves only one unknown variate, it
will be said to be of the first degree. If two of the elements
are unknown, of the second degree, and so on. It shou d, how-
ever, be noted that an equation including the terms =X.X
and 2X= X+ X is of the second degree, in spite of the fact
that there is only one unknown density functionm.

Various types of equations will now be discussed.
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§.2 Fandom Squations of the First Degree

Considering that any composite of variates obtained by a com-
bination of elementary laws of composition is itself a wvariate,
any eguation of the first degree can be put in the form

A.X+B=C.X+D (172)
This equation defines the stochastic X, in some cases be-
ing a variate. It can be given two somewhat different signifi-
cations. Applying the Monte-Carlo definition it may be required
that, if we take at random four values a; s bi’ sy and di’
xi_-(bi-di)/(ci“ai) (173)

should be a random value from the set X, Another interpretation
of equ.{172) would be that, if X has been determined and we
take at random a large number of values x., a., and b, and
independently ancther set of values x., ¢, &nd d_, hen

it is required that these two random samplés should éorrespond

to the same wvariate.

A formal solution of equ.(172) can be deduced according to
the following scheme.

Adding D+ to each member, we have
A.X+B+D =C. X
+
and, since X.X_=1[1],
A.X+ (B+D+) . (X. xx)= C.X=X(a+(B+ D+) . xx)
Thus, on the condition that C=k1[0],
A+(B+D+).Xx=c
Hence,
(B+D+).Xx=C+A+
and finally

X=(B+D ). (C+a,)_ (174)
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Some particular cases of this solution will be examined:

(a) Supposing 4, B, C, D to be degenerate variates 1[a],
1{v], 1[c], 1[d], and considerings that then _

D =1[-d]; A =1[-a]; (B+ D+)=1[b-d] 3 (c+A+)=1[c§a]

and (C+4) =1[(c-a)"1], we have

X=1[x]=1{(b-4) : (c-a)] (175)
that is, there is 100% probdability that X takes the value
X=(b~d)/(c~a) (176)

This result corresponds to the first interpretation of equ.{172).
(b) Let a=1f0] ;5 p=1[0], c=1{1], then A+=1[-1] and (A+)x=
= 1[-1] ana
X=B.(1[1]) =B (177)
(¢) If B=D and C #4, then (B+ D+)=1[0] and X=1[0]
(¢) 1f a=10], then X=(B+ D). Cy
(e) If A=C;B=D, then X=(1[0]). (1[0])1= (1{o]/ . (1[ o]).

This result corresponds to the case 4. X+B=A.X+B which
is satisfied by any X,

8.3 Random Equations of the 3econd and Higher Degrees

General solutions of this type of equations have not been
found.

In the particular cases that
A.(2.X)+B=0C(2,.X)+D (178)

and

A.X°4B=C.X°4D (179)
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where
2X=X+X and X =X.X (180)

tBe equations can, however, be solved by substituting 2X=Y and
X =7%. After Y and 2 have been determined according to the
method presented in the preceding paragraph, the variate X can
be determined by successive computations, if discrete, and by
approximations, if continuous.

8.4 Random Equations Involving Dependent Variates

By means of the preceding methods some problems relating to
the composition of dependent variates can be analysed. Let us
take the following practical problem: If a specimen is subjected
to pulsating load, there will, after a certain number of cycles,
appear a visible fatigue crack. This number, denoted by I, varies
from specimen to specimen and is a variate which can be determined
by means of a sufficiently large number of tests. A continuation
of the fatigue test will, after another number of cycles, result in
final failure. This number, denoted by N, is called the fatigue
life of the specimen. It is anofher variate which also can be
experimentally determined.

There is a reason to beliesve that a specimen which has a
long initiation period 1 will frequently, if not ever, have a
long fatigue life N. This plausible statement can be mathemati-
cally expressed by the approach

I=Y+2

where X, Y, and Z are independent variates. For the i'B  spe-
cimen theghtake the values X., ¥., 2,. Clearly, the value 2z,
of the it specimen and the $alus 2> of the j th specimen ake
quite independent of each other, so and I, experimentally
determined by a set of independent fatigue tests, are independent
variates.

On the other hand, for a given specimen a large value of 2,
jmplies a large value both of N and of I, so there is a corre-
lation between N and I, if they belong to the same specimen.
The propagation time T1 measured for each individual specimen
will be



T, =F(-)I=X-Y

while the propagation time T, measured as the difference between
the independent variates N £&nd I, taken at random from diffe-
rent specimens, will be

T2==N-I:=X-Y + Z-2
From equ.{182) we have the inverse addendum
(¥()1), = (x-7),
and adding equs.(183) and (184)
Z-Z=(N-1)+(§(-)I)_

Since N,I, and (N(-)I) are independent variates, which have
been experimentally determined, the difference (2-2) can be
computed and from this difference the variate Z can be deter-
mined at leest by approximation methods, It is readily seen that
the right-hand member of equ.(185) is equal to 1{0], if there
is no correlation between N and I within the same specimen.,
The easiest criterion of this correlation consists, however, in
a comparison between the variances of Tl and T2, because

2Var Z = Var T2-Va.r ‘1‘1

Another type of dependency will be illustrated by the fol-
lowing example: If H is a property of a specimen, say, its
hardness, and 7T another property, say, its ultimate strength,
then there may be a correlation between these properties of each
individual specimen. W¥e may thus try the approach

T=X.2

H-"Y.Z
where X, Y, Z are independent variates,
Suppose now that T and H have been experimentally deter-
mired by separate tests, Then T and H are two independent

variates, and the ratio

TsH=(X.2): (Y.o2)=(X:7Y).(2:2)
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If, however, this ratio is computed from values belonging to
the same specimen, then we have

T(:)E=(X.2)(s)(Y.2)=X:¥Y
From equs.(188) and (189) we have
Z:Z=(T:H). (T(:)H)x

where the right-hand member is composed of the experimentally de-
termined variates T, H, and (7(:)H).

8.5 Criteria for the Existonce of Real Roots

General criteria are difficult to find, but some particular
cases will be discussed.

Let us compare the two equations
X+ B=C
and
Y+ C=B
Adding X, to both members of equ,{191)
Y+C=B=C+X_

Since the sum of two stochastics is uniquely determined by
its elements, it follows that

Y=X
+

From equ.(193) it can be concluded that if X is a variate,
then Y is certainly not a variate. Tihus, if equ.{191) has a
real root, then equ.(192) has no real root.
TPhis criterion can be exiended to the more general case
A.X+B=C,.X+D

and

At Y+D=C-Y+B
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By addition of équs.(194) and (195), we have
A(X+Y)+ (B+D)=C(X+Y)+(B+D)
Adding (B-l-D)+ to each member we have |
A(X+Y)=C(X+Y)
and, if A=kC
X+Y=1[0] (196)

Consequently, X and Y cannot be variates both of thaem, and
only one of the equations €194) and (195) can have & real root.

Further, comparing
A.X+B=C.X+D (197)
and
CY+B=A.Y+D (198)
we have, after some easy calculations,

B+D+=C.X+(A.X)+=A. 1f+(c.1')+

C.X+C. ¥Y=A.X+4A.Y
whichk may be wriiten
S(X+Y)=a(X+7) (199)
Tms, if A=k C,
X+Y=1[0] | (200)

and X and Y cannot te variates both of them, that is, at most
one of the equs.{197) and {198) can have a real root.
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