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ABSTRACT

Two codes have been developed for the IBM 7090.
FANTASTA II computes neutron transmission through laminated slab
shields and slowing down density within the shields by Monte
Carlo methods. TRIPROD II is a slowing down code suitable for
shielding problems. These codes are based on FANTASIA and
TRIPROD, shielding codes for the 1103A Univac. Throughout the
text the "II" is omitted in reference to FANTASIA II and TRIPROD
II. Operating instructions are included.

This report has been reviewed and is approved.

Chief, High Energy Physics Branch
Materials Physics Division
AF Materials Laboratory
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I. INTRODUCTION

This report describes FANTASTIA, a slab Monte Carlo
program for neutrons, and TRIPROD, a multigroup diffusion pro-
gram. FANTASTA computes neutron transmission, as well as the
slowing down densities due to hydrogen and non-hydrogen scatter-
ing at some cutoff energy, usually 300 kev. These programs,
originally coded for the 1103A-Univac,[1] have been recoded for
the IBM-7090. FANTASIA is now a production code; TRIPROD is
not. The codes were designed to be used together, though they
can be used separately. There is a link between them which
converts the slowing down densities computed by FANTASIA into

input for TRIPROD.

Manuscript released by authors February 1964 for publication as
an AF Materials Laboratory Technical Documentary Report.
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IIL. FANTASIA

A, QGeneral Description

FANTASiA is a Monte Carlo code designed to calculate
neutron shielding data for a multislab plane shield. The code
may be used alone or in conjunction with TRIPROD, which calcu-
lates, starting with FANTASTA results, further shielding data.

FANTASTIA is divided into two logically distinct
sections for operating purposes; these sections are called
FANTASIA-CROSS-SECTION (FCS) and FANTASIA-PROPER (FP).

The function of FCS is to take cross-section data in
standard form* and modify it to make the data usage in FP as
simple as possible. The communication between the two codes is
by means of a cross-section tape prepared by FCS.

FP carries out all the Monte Carlo calculations and,
if called for, produces a tape containing the slowing down data
to be used by TRIPROD, which then computes a thermal flux

distribution.

B. FANTASIA-CROSS-SECTICN

1. 8Standard Cross-Sections

FANTASIA-CROSS-SECTION (FCS) has been set up to
run with FANTASIA-PROPER (FP) to prepare cross-section data and
related information for FP. The output of FCS is a binary tape,
which is read by FP. The first logical record on the tape con-

sists of the energy argument table, hydrogen cross-sections, flux

Lt e R R e el e e N e R P ——

* The form used is that given in a series of reports prepared by
Fh? United Nuclear Corporation. See, for example, Reference
2 -



to dose conversions, the energy divisions for the Gamma ray pro-
duction and some miscellaneous parameters. FEach additional
logical record contains all the data for a given element. These
data consist of the total cross-section, the elastic scattering
cross-section, the non-elastic neutron-producing cross-section

O1s given by

Op = Op0 + 2 Oon + VOg »

where o, 1s the inelastic, Son the (n,2n) reaction, and Og the
fission cross-section, and v is the (energy dependent) number of
neutrons per fission, differential information for elastic
scattering angle and inelastic scattering energy, slowing down
cross-sections, and gamma production cross-sections, as well as
various miscellaneous related data. Since raw cross-sections

in the form taken do not directly contain much of this data,
these must be calculated. The following is a tabulation of the
basic input and the processing in FCS:

a. Total and elastic (integral) cross-sections:
No processing (except conversion from barn atom-1 to cm2 gm-l).

b. Non-elastic processes: o calculated.

c. Elastic differential cross-sections: Legendre
coefficients converted to coefficients of the polynomial expan-
sion in A the cosine of the center of mass scattering angle,
normalized to make average = Ty the elastic scattering cross-

section.
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d. Inelastic differential: For continuum levels,
use cumulative distributions. Height of curve at energy E' is

Byt

EI

replaced by‘( , with S normalized to 1, where Eyp is the

0

highest possible energy of the outgoing neutron. For discrete

levels, o9 (E), the cross-section for excitation of the target
i

nucleus to energy Q; by a neutron of energy E, is replaced by

(where N is the number of levels)

i
%z o (E)
=Y

> (E)
a
5y

j=1

In case fission is possible, the Watt fission
gspectrum is added to the inelastic differential data. It is
assumed that for fissionable elements there are no discrete
levels for inelastic scattering.

e. Slowing down cross-section: Calculated from
elastic, inelastic, and fission cross-sections (see following

section).

f. Gamma ray production: The continuous part is

converted to integrals over given energy ranges. Discrete gamma

rays are converted to energy deposited within given range.

2. Slowing Down Cross-Sections

The cross-section for slowing down past the
FANTASTA cutoff energy E; is computed as the sum of three terms,

due respectively to elastic scattering, inelastic scattering,

and fission,
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a. Elastic
Calculate Ac,M’ the cosine of the minimum
scattering angle for which the energy of the neutron after
scattering is below the cutoff energy EL’ where A is the atomic
weight of the target divided by the atomic weight of a neutron

and E is the incoming neutron energy

Ao a2 EuE) - ath)
c,M ZA

1f A > -1, the contribution o_ _(E) to slowing down
c,M S,n

is

A
c,M
Us,n(E) =I > on(E,Ac)dAc
-1

Otherwise o n(E) = 0, on(E,Ac) is the differential elastic
>
scattering cross-section for incident neutron energy E and center

of mass scattering cosine A,

b. Inelastic
Let o_ _1(E) be the contribution to slowing down
?
by a neutron at energy E from an inelastic collision.

1) Continuum distribution

E

0

os’n.(E) =.[ cn.(E,E')dE'



where an.(E,E') is the differential cross-section of a neutron
at energy E, non-elastically scattered and producing a neutron
of energy E'.
2) Discrete Level
For each level where the excitation energy

Qi > E, Ac,M is calculated

a+1)2EL/E) - @E241)

C,M - ZI
_ E - Q.
where A = A ——E—-—];
If Ac,M > -1

A= min(Ac’M,l)

A+ 1
o (B0 = Lt oy ®

Otherwise Us,nl(E,Qi) = 0
Finally og,nt (B = ? Og,n' (B2Q)

¢. Fission
The contribution Og f(E) is given by
>

Ep
cs’f(E) = v(E)cf(E) jr - £(E")dE'

(8]



where f(E') is the normalized fission spectrum

(i.e.f £(E')dE' = 1).
(o]

C. FANTASIA-PROPER

1. General

FANTASTA is designed to calculate fast neutron
shielding data for multilayer plane slab shields by Monte Carlo.
The output is logically broken down into two categories, trans-
mitted and internal. The transmitted results consist of fast
neutron current, flux, and dose. The internal results consist
of neutron slowing down densities and inelastic scattering gamma
ray production.

The code is able to treat either delta function or
distributed sources in position, direction, and energy, (see
Section 3).

The shield is made up of infinite plane slabs.
Internal results are calculated for each slab only, so that to
obtain data internal to a given physical slab it is necessary
to divide into several logical slabs, each with the same com-
position. Throughout this report all references to slabs will
be to logical slabs.

Incorporated into the code is a multicase feature
which allows the calculation of data simultaneously for several
different shields, where the thickness of each (logical) slab

in each case is prescribed separately.
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2. Qutput Description

a) Transmitted

The current and flux are calculated in spectral

(histogram) form as functions of the energy of the emitted
neutrons in dimensions of neutrons cm 2 sec”!

strength of one neutron cm-2 sec_l. Total dose is calculated

for a source

as millirad hour-l for the same source strength.

b) Internal

The slowing down output is divided into hydrogen

and non-hydrogen slowing down. Slowing down density for each
category is obtained at a given spatial point (double-valued at

region changes) as neutrons em™3 sec™! and integrated over each

region as neutrons el sec™l. The gamma-ray production (from
inelastic scattering) is obtained in integrated energy spectral
form, i.e., as Mev-cm sec"1 within each given energy range.

3. Problem Specification

a) Source
The source is considered to be of the form
fE(E) f6(6) fx(x), where any of the functions may be delta
functions. The energy source fE(E) may alternatively be con-

sidered to form a fission spectrum.

If none of the above apply, then the source

function is specified by giving an argument list and a correspond-

ing function list for the variable. For all three variables, the

B
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function is then assumed to be zero outside the argument range.
For initial energy and direction, the function is assumed to be
linear between each pair of prescribed points. For initial
position, the function is assumed to be exponential between each
pair of points.
b) Shield

A shield for FANTASTA consists of a set of
infinite plane slabs of finite width. The composition of each
slab is arbitrary, within the limitation of available cross-
sections. Any element may be used at any density.

The multicase feature (see Section 10), as
used in FANTASTA, permits the specification of a set of problems
by varying the thickness of each slab.

4. Analytical Foundations

Let A be any desired quantity to be calculated
(e.g., flux, dose, slowing dJdown density, etc.). A can be repre-

sented by

A= 3 A
n=0
where An is the contribution to A due to neutrons undergoing
exactly n collisions. Let Pn(x,ﬁ,E) be the probability density
function that a neutron after exactly n collisions will be at

position X, with direction cosine 5, and energy E. Then

An = [ [ Pn(x,ﬁ,E)QA(x,ﬁ,E)dxdﬁdE



where Q,(x,0,E) gives the contribution to A for a neutron at
x,0,E and undergoing no further collision. Further

Pn+1(X',5',E') = f f f Pn(x,ﬁ,E)p(x,B,E; x',ﬁ',E')ddedE

where p is the probability demsity that a neutron starting at
x,5,E will undergo a collision leading to x',5',E' with no
collision in between. 1In this description P0 is the source dis-
tribution. p and the Q's are given as follows:

_ D{x,x"',E
p=e T 2 ,E,E",5,60)

A %
Current Q = W(o,1)(5) G,
Flux Q = &
F =
Dose QD = f(E)QF
For the iEh slab:
Hydrogen slowing down, left boundary SH(i) FL(i)
right boundary SH(i) FR(i)
interior SH(i) FI(i)

Non-hydrogen slowing down, left boundary SN(i) FI(i)
right boundary SN(i) FR(i)
interior SN(i) FI(i)

Gamma ray production, kEh energy

interval, slab interior SG(i,k)FI(i)

Where £ (x',E,E',6,6') = the cross-section at x' for scattering
from E,6 to E',5'.

For §50: FL () = Yo, D x) . L=t
] 1=

Gy

FR(i) = W(O’Ti) (x) . T
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. Giy
For 5<0: FL(l) = w(T1-1,”)(X) . T%ﬂ—

R = F(r; )
Ver, o T,)™®
For all 5: F (i) = g% Fp (i) + ( 1'15 ) - Fp(i)
. D(x,Ti,E)

Where Gi = @ ———TgT———

and D(x,y,E) = Component of mean free path distance between
| ¥ and y normal to slab faces.
n = Total number of slabs.
T, = Distance from origin to iEb shield division.

('I'0 = 0, T = shield thickness) .

SH(i) = Hydrogen slowing down cross-section of the padl
slab.

SN(i) = Non-hydrogen slowing down cross-section of the
£ g1ap.

SG(i,k) = Gamma ray production cross-section of the ig[—1

slab for the kEb gamma ray energy interval.
w(a b)(u) = Characteristic function of the interval (a,b), i.e.
-
¢ = 1 for u inside the interval,

¥y = 0 otherwise.

11



5. Statistical Estimation

Statistical estimation is used to obtain all out-
put data. For the external data a special first scattering is
made at each collision (see Section 6), and the contribution C to

neutron current (with no further collision) is calculated from:

C = We“D/6

The contributions F to flux and R to dose are obtained by:

F = C/5

R = x(E)F

where D = number of mean free paths to edge of shield along
the normal
W = present neutron weight (after estimate collision)
b = direction cosine
r(E) = f£lux to dose conversion factor (a function only of
the neutron energy E).

The internal data estimates are made after each
true scattering (see Section 6). This is done by first calculat-
ing the uncollided flux F. at the iEh slab boundary and the
uncollided integral flux I, in the il slab by

t;

Fi“Tg—[e-W

12



for each i along the extended uncollided neutron path, where

Zi = the linear total cross-section of the LEE slab

t; = the number of mean free paths, along a normal pro-
jection of the nsutron path, to the iEE slab boundary.
The boundaries are indexed so that the far boundary
(from the origin) has the same value as the slab
index.

In case the neutron is in the iEh slab, I, is given by:

5 W .
Ii=-2~*£(~5—-Fi) 3 1f5>0

3] W .

The contributions to slowing down by hydrogen are

obtained by:

==
|
%

where HL,i’ HR,i’ and HI,i are the contributions to slowing
down by hydrogen at the left end, right end, and interior of

the iEh slab with:

13
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where Zg i is the linear hydrogen cross-section of the LEE slab
L

and E; is the low energy cutoff. The contributions to slowing

down by non-hydrogen and gamma ray production are obtained by:

= 5 F

L,i ™ °N,i "i-1

Nr,i

Ni4

G k= S¢,i,k i

where N, NR,i’ and NI,i are the left, right, and interior

i!
]
contributions to slowing down by non-hydrogen elements for the

iEh slab and Gy Kk is the contribution to gamma ray production
]

in the kEE energy interval and the iEh slab. The conversion
factors S s Sa . are tabulated function of neutron energy
N,i> "G,i,k

(see cross-section description).

6. Scattering Procedure

At each collision, two scatterings are computed.
The first is carried out for the purposes of estimating trans-
mission (current, flux, and dose), while the second is used to
obtain slowing down density and gamma production estimates and
to continue the history.

The first scattering is carried out in the follow-
ing sequence:

la. Choose &' the cosine of the angle with the
shield normal. The new direction must be in the forward hemis-

phere. 14



1b., Choose §§ the azimuthal scattering angle.

le. Calculate A the cosine of the angle of

scatter.

p=55" + \/ (16D - 6'2) cos ¢
where © is the previous cosine with the normal.

ld. Choose between hydrogen and other elements.
In this selection, if the cosine of the scattering angle is
negative or if small enough to make the neutron energy
Ef (= &2 E, where E is the energy before collision) after
hydrogen scattering to be below the cutoff, hydrogen scattering
is forbidden (assuming hydrogen present in this slab).

At this point, if hydrogen had been chosen
the process is complete, since E' had already been computed.
However, if hydrogen is not chosen, we proceed as follows:

le. Choose the target element.

1f. Choose between elastic and inelastic scat-
tering. If the scattering is elastic, we calculate A, the
cosine of the center of mass scattering angle and E' the resultant

energy of the neutron.

A= (8% -1+ 4 Va2 + a2 - 1y/a

E' = EA% + 245 + 1)/(A + 1)?

where A is the atomic weight of the target nucleus divided by

the neutron weight.

15



If the scattering is inelastic, either E¥*
the adjusted emitted neutron energy (in the center of mass) or
Q* the adjusted energy level of the target is obtained by a
random selection procedure, depending on whether the incident
energy is in the discrete or continuum range. The adjustment

factor is (A+1)/A, so that E¥* + Q% = E. A is then calculated

A=A VE*?E

The mechanics branches at this point, depending on whether or
not A is greater than one. If greater, E', the emitted
laboratory neutron energy, is calculated using A, the cosine

of the center of scattering angle.

b, = W2 -1+a VR + a2 - 1)/E

EY = E(Zi2 +2 A A, t+ /A + 1)2

However if A is less than or equal to one,
the center of mass scattering angle (which determines the

energy and weight) is a two-valued function of the laboratory

scattering angle.

Ac=(A2-1_-1~_A (K2+A2-1)/K

Furthermore, certain laboratory scattering angles are impossible,

i.e. Ac¢ ¥1 - A2, Therefore, to complete the collision, a choice

16



of the two values (if possible) must be made, Ac is computed
from the above formula where the sign had been chosen at
random. E' is then computed from the resultant AL In case
A<l - K?, E' is made = 0,
For the second scattering the order of events
is as follows:
2a. Choose between hydrogen and other elements.
If not hydrogen, steps la, 1lb, lc, le, and 1f are carried out
in order as for the first scattering (except that in la, the
cosine chosen is for the full sphere).
If hydrogen is chosen, the process continues
with:
2b. Choose A the cosine of the laboratory scat-
tering angle, restricted to a range determined by the low

energy cutoff of the problem, i.e.

2c. Choose § the azimuthal angle.
2d. Calculate E' the energy and 5' the cosine of

the angle with the normal.

E' = Az E

68! = AB + VQl-AZ)(l-ﬁz) cos ¢

Because of the large overlap of the two pro-
cedures, particularly for non-hydrogen scattering, the code

contains only one subroutine to carry out the two scatterings

(using an indicator to distinguish), with separate sampling

formulas for each case. 17



7. Non-Elastic Neutron Producing Reactions

The reactions considered here are inelastic
scattering, (n,2n) reaction, and fission. These reactions are
handled by use of a function oc(E,E') of the incoming reaction

energy E and the outgoing reaction energy E', where

o(E,E') = an.(E,E') + 20 (E,E') + v (E)cf(E)f(E')

n,2n

on-(E,E'), g (E,E') are the differential inelastic and (n,2n)

n,2n
cross-section; respectively, £(E') the fission spectrum
normalized to unity, v (E) the number of neutrons per fission,
and cf(E) the fission cross-section.

This implies that after a non-elastic reaction,
there are on the average A neutrons produced for each neutron
undergoing such a reaction, where A = (o 1+ + 20, + v og)/
(Un. + 0y, F cf). In FANTASTA, this process is handled in
effect by multiplying the neutron weight by A, having chosen

the outgoing energy E' from the distribution given by o(E,E').

8. History Termination

In normal operation histories are terminated by
either Russian Roulette or low energy. Russian Roulette is
used with a survival probability of 1/10 and is called for when
the contribution to current from the next collision is estimated
to be less than 0.01 times that of the maximum from the history.
If (possibly due to underflow) the neutron weight is zero, the

history is killed outright. The low energy cutoff for FANTASTA

18



is 300 kev. 1In order to increase the amount of information
obtained in each history, hydrogen scattering is set up to
forbid degradation below the cutoff, sharply limiting the
number of occurrences of degradation during operation of the
code.

In addition there is the possibility of certain
circumstances leading to anomalous results, due to digital
imprecision. To avoid destroying useful data, such histories
are terminated immediately.

The number of histories terminated by each of the
three possibilities (Russian Roulette, low energy, error) are

included in the output data (see Section 12-¢).

9. Importance Sampling

Importance sampling is carried out in two logically
different operations, random variable selection and random
decision making. Since the theory and application of importance
sampling has been described extensively, we will only present
the actual procedure used.

For all random variable selections, a truncated
exponential distribution based on a parameter B, depending on
the state of the neutron, is used to calculate a normalized
random variable u. The corresponding physical variable is
obtained from u by a linear transformation. If A is a physical
variable with A;, Ay the minimum and maximum possible values,

then u is defined by



i

In Table I, B, N> and My for each of the physical variables are
listed. The choi%ei functions for each of the decisions are pre-
sented in Table 2.

TABLE 1
RANDOM VARIABLE PARAMETERS
Physical Variable and Limits B
Source
: Eo (EMIN’EMAX) 0
6 (ByyrsOax) -5 Bpax~Opmpy) (Lily-1)/ (L+1)
%5 Coyos *uax) 0
| Collision
x (0,D) Dy - 1{[5]
é For Estimate
5' (0,1) MIN(L+1,MAX(0,3(L-.5)))
% B (0,7 -(sap/y V(102 (1-5'2)
; For non-hydrogen
, scattering
6' (-1,1) (L+LH-1)/(L+1)
¢ (0,m) -5 Ya-s2) -6
For hydrogen scattering
{EL" 2@w-1/0) (1= Ve "
AGWE - D where U = 1+(145) (1.5+MIN(9,Ly))/3

g, (0,m TV (L-1)/ (L+1)

where V = - V(l—ﬁz) (,1_,52)/(1&1;_ - BA)

oy
if -I-j_—tH- - &A - [/(1-62)(1—4&23' < 0,

@iﬁz) -2 | Va-sd)a-12
o - %8 A - (1-62) (1-a2)

tly

1/2

otherwise V = - MIN

' PR
L+Ly

20



TABLE 2

DECISION FUNCTIONS

Type At Estimate At True Collision
S/ 2p) SH(* + Zip)

where T* = Max(0,48%; (EA2-E, )/ (E-E;)) where S* = 4%/ (4+L)
Py cnﬁﬁn + oy) 2cn/(2crn + o1)

Since all random variables and decisions are made using
importance sampling it is necessary to adjust the neutron weight.
Furthermore the dual scattering procedure makes it necessary to
retain the old weight before collision so that the true collision
will be properly weighted. When each random variable is chosen,
the weight of the neutron is divided by the density function and

for the selection, i.e. W', the new weight is given by:
W' = w(eP-1)e BY/3

where W is the old weight. W and W' symbolize previous and
present values of the weight. In the above formula and all those
below, a W' produced in one formula becomes the W for the next.

In addition the following specific adjustments are
made. Let Wo be the weight before collision. This is calculated,
after the collision position is chosen, by (symbols defined at

end of section):

W = W/, ||

21



At the estimate collision the weight is adjusted in a series of

steps.
First W' = W0/2
Second, if the scattering is by hydrogen,
1
W = AAZHW/PH
In this case no further adjustments are necessary. If
the scattering was by a non-hydrogeneous element.
!
W' = WEN/ct(l - PH)
Then if the scattering (non-hydrogen) was elastic
' —
W' = ch(Ac)/W
If the scattering was inelastic

W' = WUI/(l - PE)

In the case where A < 1 so that a choice had to be made for a sign

in the b, formula, let P+ be given by:

P, = .5+A/K2+A2— 1/(?[2+2A2 -1

Then if a plus sign is chosen:
J
W'o= 5W/P,
If a minus sign is chosen

W' o= 5W/(1 - P

22
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Finally, for both elastic and inelastic scattering (where A = A

for elastic),

Woa W@+ 2K o+ D/ENER « 4% -1

At the true collision the first step is

W' =W
0

If the scattering is by hydrogen

W'o= 287, (1 - ‘/EL/E)W/PH

1f the scattering is by a non-hydrogeneous element, the formulas

used for the estimate collision apply. The symbols used herein

are defined as

on(Ac) =

Eyvrwe Bmax =

follows:

Linear total cross-section, i.e. [ZT] = ca L.
Linear non-hydrogen cross-section.

Linear hydrogen cross-section.

Macroscopic element total cross-section, i.e.
[o,] = cmz/gm.

Macroscopic elastic cross-section.

Macroscopic elastic differential cross-section,

normalized to have its average equal O

Macroscopic non-elastic neutron production cross-
section (see FCS).
Minimum and maximum values of source energy read

in when input distribution is used. If fission

23



SMIN® OMAX

MIN> *MAX

10.

spectrum, EMIN = E; and EMAX given by upper limit

of argument for cross-section table.

= Minimum and maximum values of source direction

cosine when input distribution is used.

Minimum and maximum values of source position when
input distribution is used.

Number of mean free paths along normal to outer
edge of shield.

Number of hydrogen mean free paths along normal

to outer edge of shield.

Number of mean free paths along normal to edge of
shield in direction of neutron path.

Number of hydrogen mean free paths along normal to
edge of shield in direction of neutron path.

Coded probability that hydrogen will be chosen as
the target nucleus.

Coded probability that the scattering will be

elastic.

Multicase Features

Because of the fundamental role of importance

sampling in Monte Carlo codes, where all "natural" properties of
matter are treated by weight adjustments, it is possible to carry
out calculations for many different shields by using the same
tracks, as long as the purely geometric variables (distances and
angles) remain unchanged. In addition, with the case of plane
slabs, owing to the equivalence of density and thickness changes,

only angles must be preserved.
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In developing a code to make use of this property, a
decision must be made as to how general a multicase procedure to
incorporate in the code, weighing the complexity of the code and
the added computation time against the value of the added informa-
tion with the decrease in running time per case.

The complexity in procedure falls into two logical
categories, source variations and shield variations. Source
variations may be made in angular distribution (for distributed
as opposed to monodirectional sources) or in energy. The former
was not included since it was felt that distributed angular sources
other than isotropic have limited value. Many energy sources
might be more useful, but the greater complexity did not appear
warranted by this program, since the fission source would be used
most of the time.

Shield variations can be made in different degrees
of complexity. The simplest is a constant density change for the
entire shield (the similarity transform). Somewhat more complex
is having each slab in the shield vary in density separately.

Even more generality may be obtained by varying the proportions

of various elements in each slab or even using different shielding
materials (taking into account the special position of hydrogen).
In deciding how complex a procedure to use, the principal criterion
used was what kinds of problems to which FANTASIA would be applied.
On this basis, it was decided that varying the density of each slab
would be sufficient for most studies and that further complexity
(with increased coding complexity and running time) would not have

enough value to be incorporated into the program.
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11. Generalized Quota Sampling

Given a sampling scheme in a Monte Carloc calculation,

if the standard deviation of a quantity calculated on the basis
of one history is o, then if N independent samples are chosen,
the deviation of the quantity would be c/Vrﬁ: However if a
correlation sampling procedure is used it is possible to obtain
a more rapid reduction of the standard deviation of any quantity.
The particular correlation scheme described here has the property

that for a sample of size N, the standard deviation N of a

quantity can be shown[3] to satisfy
2
k c*
O'N< 1—\]-2'+—N— )

where k is independent of N, and o%* < 0.

The procedure is a method of independent quota
sampling for each variable called generalized quota sampling.
For each variable, the unit interval is divided into N equal sub-
intervals, where N is the number of histories per group. When a
random number is generated to obtain the desired random variable,
it is forced to lie in one of the subintervals not used in a pre-
vious history, with the choice among the unused intervals not
subject to any biasing, and independent for each variable. This
procedure satisfied the requirements of generalized quota sampling
described in[3]. As used in the code, N has a practical limit of

216, 1If a larger N is prescribed, the generalized quota sampling

is carried out on subgroups of histories of size at most 216,
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12. Operation

a. General Description

FANTASIA and TRIPROD have been written to be
operated under the 7090 FORTRAN Monitor System. To avoid tape
setup, all Monitor intermediate tapes were used as program inter-
mediates. If FANTASIA is used alone, no further tapes are
required. If TRIPROD is used with FANTASIA logical tape 9 is
needed in addition. To operate the code, it is then only neces-
sary to place the decks on the input tape in the following order:

Binary:

a) TFANTASIA links

b) TRIPROD links (if used)
Data:

a) all FANTASIA input

b) all TRIPROD input (if used)

Tapes 1-8 are needed for FANTASIA alone, 1-9 if run together.
The logical tape assignments are:

1, system

2,3,4,8,9 (if needed), intermediate

5, input

6, output

7, binary card images (in case of

recompiling

b. Input Data

The input for FANTASIA problem is from standard

IBM cards. The format is given below and the quantities described

27



subsequently. For a series of problems the input for each is

self-contained and may be loaded sequentially.

UANTLITY RANGE FORMAT NO. COLUMNS
Card 1
Problem number and date A 24
Comment A 48
Card 2
NC (1,8) I 3
NM {(1,7) I 3
NS (1,30) I 3
IT -— I 3
NH (1,1000) I 6
NE >0 I 6
ND > 0 I 6
MC >0 I 6
GP > 1, F{0) 3
R0 -- @ 13
EU - F(0) 6
EA -- F(0) 6
Card 3
X (0.,T) F(2) 9
Nl 0 or (2,20) 1 3
60 (-1.,1.) F(2) 9
N2 0 or (2,20) I 3
E0 0 or (.3,14.) F(2) 9
N3 0 or (2,20) I 3
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Card 1
Card 2

is self explanatory.

i

Number of cases (described in section 10).

Number of different physical compositions used to make
up the various slabs.

Number of slabs in shield.

TRIPROD indicator; if <0, then TRIPROD is used and this
is the last FANTASIA problem; = 0, then TRIPROD is not
used for this problem; >0, then TRIPROD is used for this
problem, more FANTASTIA problems follow. If TRIPROD is
used at all, it must be used in the last FANTASIA prob-
lem.

Number of histories per group;set = 1000, if input
greater.

Limit on number of errors; set = 40, if input < 0; prob-
lem terminates at end of printout if number of errors

exceed NE.

Number of debugging printouts, i.e. first ND collisions
are traced.
Maximum number of collisions; problem terminates at end

of printout if number of collisions exceed Mt.

Number of groups between printout; code sets to positive
integer.

Initial random number; codes sets odd.
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Distributed source blocks. For each value of k (k = 1,2,3 in

order), the following two sets.

ANTITY RANGE FORMAT NO. COLUMNS
Lk Cards
Aj,k - F(2) 9 each
Lk Cards
Fj,k - F(2) 9 each

Shield geometry block.

NS Cards

T, - F(2) 7

M, (l,NM) I 5

Ti,4 - F(3) 5 each
Composition block.
1 Card

Ny (0,7) I 2

Pp - F(3) 7 each
NL Cards

I, (1,5) I 2

wp,q - F(3) 7 each

DESCRIPTION OF INPUT

Format designations are A for alphanumeric, I for integer,
$ for octal and F for floating point, where the number in
parenthesis indicates the number of decimal places assumed to the

right of the decimal point if no decimal point is inserted.
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E,, = Upper energy for flux and current transmission spectra.

E, = Width of energy division for transmission spectra.

X = Source position; ignored if Ny # 0: T = shield thickness.

Nl = Number of points for source position distribution; 0

indicates delta function at X, -

8, = Cosine of angle with normal of source; ignored if N, # 0.

N2 = Number of points for source direction cosine distribu-

tion; 0 indicates delta function at B,-
E = Source emergy; ignored if N, # 0; if Ny = 0, E, =0

indicates fission spectrum source distribution.
Ny = Number of points for source energy distribution; 0

indicates delta function at EO or fission spectrum.

Distributed source blocks.

For each k, Lk is given by:

=0, if N, = 0

Ly k

Nk-l

L =1+ |S5—| , 1£N_#0

where k = 1,2,3 refer to source position, direction, energy,
respectively.

A, is the argument table and F, the function table,
3» i,k

where j ranges from 1 to Nk. The Aj K are in increasing order of
’
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magnitude. Both Aj  and Fj i bave at most 8 items per card.
] 3

All Fj 1 (source position) are made 2.10"30
b ]

since the function is
assumed exponential in between. For K = 2 or 3, linear inter-
polation is used.

Shield Geometry block.

For the 2 glab (numbered in order of increasing distance

from origin):
T, = Nominal thickness (cm).

M; = Number denoting composition of slab; i.e. M; = mixture
number (see below).
ry g = thickness ratio for the e case where 1 < £ < N,;
3

th

the true thickness for the §— case is then Tir N

i,4° °C
items on card.

Composition block.

First card

N, = Number of non-hydrogeneous elements used in problem.

Pp = Density (gm-cm'a) of hydrogen in mixture number p, where
1 <p < Ny; Ny items on card, with p’s in consecutive
order.

Subsequent Cards

For the th non-hydrogeneous element used (no ordering

required, but I_ < Iq+1 suggested) .

q
Iq = Position on tape of element cross-section table, see
section 12-d for element list.

mp q = Density of element in mixture number p; see comments on
]

pp’
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c. OQutput Format

The following are examples of typical first page,

error, and data page printouts. The data are as follows.

First Page:
(1) Comment from input.
(2) Number of histories per group.
Initial random number.
(3) Number of different slab compositions (mixtures).
Number of elements used (hydrogen included even if not
used) .
(4) Mixture numbers.
(5) Element symbol.
Density of element in mixture indicated at head of
column.
(6) Number of slabs.
Number of cases.
(7) Case numbers.
(8) Slab number.
Mixture number indicating composition of slab.
Slab thickness for case indicated at head of column.
(9) Nominal thickness of each slab (see input description).
(10) Source position (delta function distribution).
(11) Number of points of source direction distribution.
(12) Factor used to renormalize function table to make
average value unity.
(13) Point number.
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(14) Argument of point.
(15) Function at point, after normalization.
(16) Source energy distribution given by fission
spectrum, normalized to make average value unity.
Error Printout block.
(1) Type indicator (at extreme left of line), see note 1.
(2) Argument for error, see note 1,

Present group number.

Present history number in group.

Present collision number in history.

Total number of collisions to present.

Value of latest parameter used in random variable
routine.

Value of latest random variable calculated.

Value of latest random number generated.

(3) Part of weight independent of case, see note 2.

Part of weight associated with first case, see note 2.

Number of mean free paths from source to present
position along path, for first case.

Number of mean free paths from present position to
edge, along perpendicular, used for statistical
estimation, for first case.

Number of mean free paths from present position to edge,
along perpendicular, used for slowing down estimates,
for first case.

Factor used for Russian Roulette test.
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(4) Slab number of present position.
Nominal distance from origin of present position (cm).
Linear cross-section minus hydrogen cross-section of
slab containing present position.
Present value of cosine of angle with normal.
Value of cosine of angle with normal before present
collision.
Cosine of scattering angle at latest collision.
Cosine of azimuthal angle at latest scattering.
Present value of neutron energy.
Value of neutron energy before present collision.
Qutput data page.
Data from (1) - (8) is separate for each case.
Remainder applies to all cases.
(1) Case number.
Group of histories.
(2) Upper energy limits for gamma rays produced.
For items (3) - (6) and (9), the data in each row is for a
slab., The order of the rows corresponds to the order of the
slabs from the origin.
(3) Total gamma ray energy produced in each energy
interval (column).
(4) Total gamma ray energy produced.
Slab thickness.
(5) Slowing down density due to hydrogen collisions
at left end point.
Slowing down density due to hydrogen collisions

at right end point.
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USSP+

Slowing down density due to other element colli-
sions at left end point.

Slowing down density due to other element colli-
sions at right end point.

(6) Slowing down flux due to hydrogen collisions.

Slowing down flux due to other element collisions.

(7) Neutron number current transmitted through shield
in energy interval.

Neutron number flux transmitted through shield.

Upper limit of energy interval.

(8) Total current transmitted.

Total flux transmitted.

Total dose transmitted.

The data in (9) and (10) are accumulated for an entire problem.
(9) Slab number.

Number of collisions.

Number of collisions (not necessarily in particular
slab) for which an estimate of gamma ray produc-
tion and/or slowing down flux was made.

(10) Number of collisions.

Number of histories terminated by degradation.

Number of histories terminated by Russian Roulette.

Number of histories terminated by Errors.

Latest random number generated.
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Note 1. Error Indications

e
Indicator Argument Place Reason
0 - Slowing down Called for by input
estimate
1 Number of mean Collision posi- Particle escape
free paths past tion calcula-
edge of shield tion
2 Excess of cross-  Scattering for No non-hydrogen
section over estimate elements selectable
total of non-
hydrogen
3 Excess of cross- Scattering for No non-hydrogen
section over collision elements selectable
total of non-
hydrogen
4 Function argu- Exponential Exponential argu-
ment subroutine ment too large
5 - Random number Random number
subroutine routine bug
Note 2. The neutron weight, for the first case, is the product of

the first two items of (3).
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MAY 29, 1963 TEST 27 FANTASIA
k2% TRICK 200 +/6G
200 r1S./GP. INs ReN.
I MIXTLRCS 2 ELZMENTS

DENSITY (GM/CC) 2F ELENMENT IN MIXTURE
ELEN. |

H J.112
g 0.888
2 SLABS 1 CASES

SLAB THICKNESS (CM) FBR EACH CASE
SLAB MIX 1
| ! 13.03
2 1 0.00

UNNERNMALIZEC THICKNESS F@R EACH SLAR
]G.CO 90-'00

SEURCE FESITIZn -0.

2 P2INT SEURCE CIRECTIZN DISTRIBUTIEN
LSRMALIZATIEN FACTER =  1.000¢C

PZINT 1 2
NegRM.CES. C€.0000 1.0000
HEIGHT 1.00 1.0G

FISSIEZN SCULRCE NERMALIZEC BY 22,5515
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MAY 2§, 1963 TEST 21 FANTASIA PAGE 2

¢ CAauSE GP FIST CEL r@TC8L RV PARAMETER RVAR RiNUM
~L4.7274E D} 1 ] 0 0 8.5455E~01 0.920 0.10]
Wl FIXEE CASE TOTMFP CEDGE(TR) CECGE(SL)}) CURFAC

3.7159e CO 1.CCCOE 00 Ce by, 0141 u4.01%1 1.2i00E QC
St FEslIt XSEC-k CES-N CZ5-NE C@S5S-SC CysS-aAZ EMNER  ENER-H

1 "'C- 0- 0-93] Cc 0. 0. 0.?87 C.

0 CAUSE GP FIST CEL TETCZ2L RV PARAMETER RVAR RNUN
-1.3225€ Q2 1 2 0 1 8.0924E-0 0.259 0.813
Wi FIXELC CASEI TOTVMFP CEDCE(TR) CECGE{SL) CURFAC

5.6645E 00 1.C0C0E 00 O« 35.2554 25.255% 4,9210c-1¢
SLY FESIT XSEC-k CE2S~N CeS-ANmr Ce25-5C Cos5-aAz ENER ENER-H

] -G. C.093 0.267 C.931 CQ.734 (C.E3C « 379 g.7487

G CAUSE GP RIST CkL T@TCLZL RY PARAMETER RVAR KNUM
-l.4685E Q1 1 3 0 2 b+ 6LEBE-O1 0.7€C0 J.373
wWT FIXELC CASE} T@TVFP CEDGE(TR) DECGEILSL) CURFAC

6.2747E-03 1.0000E QO 0. 10.32205 103205 3.9894E-0T
sLs FESIT XSEC~k CRS-N C€S~-NK C@S-SC Coas5-AzZ ENER ENER=-H

1 ~-0. C.102 0.703 C.267 -0.748 -0.788 10.E91 1.379
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CASE |
GAMMA RAY PRUCUCTIEN SPECTRUM (MEV/CM2)
HIGH E 1.00 2.CC 3.C0

6.900-06( 99 3.10E-C51 9} 6. 10E-C5( S5)
1.68BE-046( 1) T51E-C¢ 7) T.UTE=-05( 8)

HIGH E 6H.00 14.CC
1.20E~-04( 6) 5.92e-03( 1)
2.85E-05( 9) 1.356-032( &)

TEZTAL GAMFMA RAY PREDUCTIEN SLAB THICKNESS (CM)

MAY 29, 19632 TeST 27 FANTASIA PAGE 7

GRELP 5 (1)

4,00 (2)
G.61E-05( 63  (3)
2.3CE-05( 9)

6.233E-03( 3) 10,00 (4)
1. U2UE-03( u) 90.00
SLEZWING CEWN CENSITY (N/CM3) AT INTERVAL ENCP@INT
! FYCREZGEN CZLLISIEN @THER CBLLISIEN
; AT LEFT END AT RIGHT END AT LEFT END AT RIGHT END
: 3.67€-01(21) 3.95e~-03(3232) 5.55E-03(14) N UGE-06(20)  (5)
35.95E-03(33) 1.d9E-08{ 35 B U9E-QE(20) 5.6EE-10(5u)
SLEWING C2uWN FLUX (N/CMZ) IN INTERVAL
RYCREGEN CZLLISIEA @THER CRLLISIEN
3.071E-01(20) 6.504E-03(1C) (6)
1.545E-02(20) 1 U6UE-OST &)

TRANSMISSIEZN CATA

CURREAT SPECTRUN FLUX SPECTRUM ENERGY MAX
2.58E-05(41) 2.84E-CGLUu8) 14.C0 (7)
1.39E-Ct(ky) 1.55E-C8L4LS) 12.00
1.31E-07(34) 1.45E6~07134) 10.00
T.36E-06162) 7.88E-08(¢1) 8.00
3.31E~07(u3) 5.15£-07(28) 6.00
2.42E-07(75) 3.03E~C7(¢8) 4.00
§.93E-CE{41) 1.28E-07(21) 2.00
TRTAL CURRENT FLUX CESE
8.828E-07133) 1. 188E~C6( 26) 2.515€-C8(37) (8)

CBLLISIEN CATA

SLAB CBLLISIENS
i 14601
2 2040
CeLLIisien HISTERY TERMINATIENS
TETaAL LW ENERGY KILLED ERRER
3641 32 G¢E 0

40
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13.

Cross-Section Tables

The code at present contains (in order) cross-

sections for the following elements (in addition to hydrogen,

which is treated separately).

1. Oxygen
2. Aluminum
3. Iron

4. Silicon
5. Carbon

The following is a description of the data and

format needed for additional elements. An excerpt from a typical

table is given where the cards are numbered to correspond to the

text.

(1)

(2)

Element Cross-Section Table Prologue

37 data words, each consisting of a decrement
part, denoting the lengths of tables 2.-38.
described below. The use of the macro QTBL
generates 9 items given the first location of
each of nine consecutive tables and the location
of the next datum after the ninth table.

1 word, containing the element symbol (left
adjusted). For fissionable elements, an F must

be inserted as the third character.

41



(3) 8 words, containing in order the following:
a. Atomic weight (floating).
b. Continuous to discrete crossover energy, i.e.
a. to b. crossover for tables 13.-38.
The remaining items are all FORTRAN integers.
c. Number of Legendre coefficient tables.
d. Number of continuous inelastic arguments.
e. Number of discrete inelastic levels.
f. Number of continuous gamma production
arguments.
g. Number of discrete gamma rays produced by
arguments above crossover energy.
h. Number of discrete gamma rays produced by
arguments below crossover energy.

(4) 10 words, continuous inelastic arguments.

(5) 7 words, discrete inelastic arguments.

(6) 16 words, continuous gamma ray production argu-
ments and energies of discrete gamma rays produced
for arguments above crossover.

(7) 11 words, energies of discrete gamma rays pro-
duced for arguments below crossover.

In tables (4) - (7), the numbers are in increas-
ing order of magnitude, except that the two parts of (6) each are
in order of magnitude and are consecutive. If the number of

entries do not fill a table, zeros must be inserted at the end.
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Thie macro QALI may be used for this purpose with an address of

the form A+B,

where A is the location of the beginning of the

table and B is the desired total length.

o B W N

13a.
13b.

Element Cross-Section Table Body

Total cross-sections.
Elastic scattering cross-sections.
Inelastic scattering cross-sections.

{n,2n) cross-sections.

=12, Coefficients of first eight Legendre polynomials

for elastic scattering differential cross-sections.
Table of values cn(E,E') for first value of E'.

Table of values of Uq_(E) for first value of Q,.
i

14-22. Same as 13 for second through tenth values of E'

23a.

23b.

and/or Q;, where the arguments for the a. parts are
given in item (4) and for the b. parts in item (5)
of the prologue.

Table of values of GV(E,E'), the continuous gamma
production differential cross~section, for first
value of E',

Table of values of 9.Q (E), the cross-section for
3N

production of gamma ray of energy Q;» for first
value of Q for low energy part of E argument

table.
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24-38. Same as 23 for second through sixteenth values
of E' and/or Q;. If any Q; have a non-zero

%y,Q (E) at high energy part of E argument table,
1

these are placed after all GY(E,E') have been
exhausted and are tabulated in the same manner as
the GY(E,E'), where the arguments for the a. parts
are given in item (6) and for the b. parts in item
(7) of the prologue.
The following items are included for fissionable elements only,
where v(E), the number of neutrons for fission, is assumed to be

of the form:

v(E) = v, + v'E

39. Fission cross-sections.

40. v, (one item).

41. v' (one item).

Table 1 and if present, table 39} are assumed
to be full, i.e. equal in length to the argument table. All
other tables begin at a point corresponding to the highest entry
of the energy argument table. Table 2 ends at the lowest energy
for which the value differs from the corresponding value of
Table 1. Tables 3.-38. each end at the lowest energy for which
its value is not zero. For those tables where there are a. and b.
parts (13.-38.) if the b. part is not empty, the a. part must be

included (by inserting zeros if necessary) for all energy arguments

above the cross-over point.
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Finally a table is included, indicating which elements

are present and where. A FAP card of the form,
HTR XXEL

where XXEL is the location of the first entry in item 2. (The
elastic cross-sections) of the body of the table, must be

inserted just before a card,
NNH SYM *-ADA

positioned six locations before the energy argument table in the

cross-section data subroutine, MOVDA, source deck.
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ITI. TRIPROD

A. Difference Equation Formulation

The derivation of the TRIPROD difference equations

from the original Boltzmann equation is standard.[1]

The equa-
tions apply to slab, cylindrical, and spherical geometries.

The difference equations are

-3 + b

ni¥n+l,i nign,i B cnign-l,i = Qs (3.1)

Here

ﬁn ; = average flux per unit lethargy in ith lethargy
)

group at space point (slab and cylinder)

= radius times average flux per unit lethargy in ith
lethargy group at space point n (sphere)

The actual solution of eqs. (3.1) is a recursive one involving

two auxiliary quantities Z and W. Thus the equations actually

solved by the machine are:

Poi = ¥ni * Zni Pnp1s (3.2)
with
Z . = “ni 0<n<N (3.3)
ni = bpi~Cni Zn-1,1 ’
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ni b Z ’ 0<ngN

_ l-e 1 - +
Qi = l}ln it * Ton Sn+1] BTy [Tln'l(“’ui-l) * Tzn“(“’“i-l)] *

4, + 3, +
Pai = O1nCnit %24 ng * Toq [Kil(n ) +K;7(n )]

+ Ty [Kgl(n_) + K?_l(n-)] + a;4(n)

“'1nKa'lL1 (n”)
ni Arn-

[ &
_ 3, + 3, -
€ni = T2 Ky2(07) + 1 K.5(m7)
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-Au- 4

1 +
n(n',u; _y) o+ AuK,

A (GO N (3.12a)

+
n(at,up) = e

-fu, - b, -
n(n-,ui) = e . 'r](n ’u]'_-l) + ﬁUiKil(n ) ﬁni (3.12b)

- p(2-p)Ar -

Ly, = (3.13a)
in 2rn
p(2-p)Arn+
i = 1+ 7 (3.13b)
Ar - p(4-p)ar -
=7 [P T (3.14a)
r
Ar_+ p (4-p)Ar_+
n n
Tzn = 1+ Iz—rn (3.14]3)
p(p-1)Ar -
gln = 1 - Tr (3.15&)
n
p(p—l)Arn+
o,y =1+ 7 (3.15b)

The p's, 1's, and o's are geometrical factors, with
the value of p depending on the geometry.
p = 0, slab
= 1, cylinder
= 2, sphere
The K's are kernel functions, involving the cross-

sections which are computed according to either of two options
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and are discussed below. The g

n, j»i 8Te group transfer coeffi-

cients for inelastic scattering and are also discussed below.

In the equations, n" = n" except at boundary points,

at which the notation indicates that discontinuous quantities

are to be evaluated in the region to the left of the boundary

(n”) or in the region to the right (n+), where n is a boundary

point. Also,

n,i

Ar + = T q"T (3.16a)
Ar - = T -T 4 (3.16b)

= upper lethargy boundary of ith group

= average source strength per unit lethargy and

volume in ith group at nth space point.

ayq (n) is a parameter related to the boundary conditions and

will be discussed later.

Suppose we are given the following:

The geometry, by specifying p and the boundary points.

The mesh structure, by specifying T Yy-
1

The kernels Kil’ Kgl, K?l, and Kiz; the parameter

ail(n); and the sources S_+

r—,1i’
The region of interest, say 0 < n < N, 1 <1 < I.
The boundary conditions in the form Z ., W _., ﬁNi‘
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6.

7.

The initial conditions ﬂn 1" and n(ni, uo).
3

. ., a i .
fnl and hnl re given

The eqs. (3.2 - 17) determine the flux for 0 < n < N, 1 < i< I.

We compute as follows:

1.

2.

Bn,i'

Ar +, Ar -, Au; for the problem from egs. (3.16a - 17).
K1ge M2p0 91n° %2n° Tin’ “2n from eqs. (3.13a - 15b),

for 1 < n < N-1.

b ; from egs. (3.8 - 11).

a . .y C_ ., €
ni’> ni* ni?

For i = 1, Q,; from eq. (3.7) for 1 < n £ N-1.

For i = 1, 2 ; and W_. recursively from egs. (3.3 - 4),

first for n = 1 and then for successively higher n to
n = N-ll

For i = 1, §_. recursively from eq. (3.2), first for

ni
n = N-1 and then for successively lower n to n = 0,
For i = 1, n(ni,ui) from eqgs. (3.12a,b), 0 { n < N.

~J

# .+ from eq. (3.5) and n,i+1" from eq. (3.6), having

n,i

already computed Bn ;- and ﬂn T
2 3

Repeat steps 4-8, letting i+l-+i, until @ has been
computed for all groups.
Here

= flux per unit lethargy at the point lethargy

value u, _; and the space point n (rn times the

flux, for a sphere)
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n(n,u;) = slowing down density at n and u; due to

scattering by hydrogen (rn times as much, for a

: sphere)

Bn,joi - macroscopic cross-section at n for inelastic
scattering from lethargy group j to group i

fni’hni = constants relating the average flux per unit
lethargy at space point n in lethargy group i to
the flux per unit lethargy at the endpoints of
the group.

) . 1
We will generally choose either £fi= hni = 5 or

é ni = 1, hni = 0.
E B. Cross-Section Averaging and Kernel Computation

i There are two different cross-section averaging pro-

e

cedures that will be described here. The definitions of the

kernels in terms of cross-sections depends on the procedure used.

: One wants to enter the computation either at the beginning by §
é giving the microscopic cross-sections or later by giving the ;
é group-averaged cross-sections. In either case one has to specify :
% the averaging option and group structure used and in the latter

case make sure that the scheme and the group structure are the

same in the group-averaged cross-section input as in the body of

the problem.

o R S VTR
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Option I:

For all cross-sections 2 = Zt, b

a? tr
, vy
st = -&—11—[ Z(u)du (3.18)
i
Yi-1
*i . .
b will be defined later.
kL, = L (3.19)
3=
tr
i
3 *i gz|'t B2
Kil = 3 + = + iAui + -:-3';- (3.20)
tr
-Au,
4 l-e 1t
K]'.l = Au, (3.21)
i
hi
3 eng7h - E] eng
K - 3.22)
vy
%* 1
st . m—: / Z‘.in(u)f(u,ui)du (3.23)
Y1
u.
1
Bh, §>i = Fus Zin(u) [f(u,ui_l) -f(u,u]._)] du (3.24)
’ JJy, 1
J—
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? Option II:

For all cross-sections 2 = 3., 2, Jgy, &

t’ Ta’ tr
u
1
2 (u
i jzi-l ) M
st oo (3.25)
1
f zin(u)
2, (u
t
Uil
L
1
f Zin (W) f(u,ui+)du
¥ JUi-1 ¢ (U (3.26)
! du
Eztiui
Yi-1
.
AR
: j E%-n—(a)- [f(u 1.11 1) f(u u. )}
Bk, 31 T (3.27)
du
= . {u
Lj-l £
u,
1
£ (ID u)
-1 e (3.28)

[ =i

Note that we average 1/ztr, rather than % p» in the same

way as Zt’ Za, and ZSH'



1 1
Kip = —7 (3.29)

1
3¢y
K§ = Zi + Z*i + L (3.30)
il a u.
i+ 4
£ u
[~
u,
l-
-Aui
4 l-e i
Ki1 = T&;~ s (3.31)
hi
K3 - L f; (3.32)
i2 u, *
du
uy &, ()

Note that K}l and K?l have the same form as for
Option I.

Here

B = transverse buckling

Take B = 0 unless otherwise indicated

3

'l

mean lethargy increase per collision

a = macroscopic absorption cross-section

£ = macroscopic total cross-section for nonhydrogen

Z
2
2oy = macroscopic total cross-section for hydrogen
2
f

in = macroscopic inelastic scattering cross-section

(u,u') = probability that a neutron inelastically

scattered at u goes to a lethargy greater than

u'.

Etr= macroscopic transport cross-section.

The K's are region as well as lethargy-dependent.
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K%l will be recognized as the diffusion coefficient.

K21 is evidently an effective cross-section for removal from the
ith group by anything but hydrogen collision and K4 is then an

il
effective cross-section for removal by hydrogen scattering.
ng relates the slowing down densities at u; , and u, to the

average flux in the ith group.

In the thermal group i = I, nothing gets scattered
out. Further, the thermal flux is not a flux per unit lethargy,

but an integral flux over the group.

91 ='[ P {u) du . (3.33)
Ur-1

To obtain the thermal flux correctly, one computes the kernels

imposing the following values:

1
I, = 0 (3.34)
pup = 1 (3.35)
I
EE: - 0 (3.36)
SH
-AuI
e = 0 (3.37)
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Thermal also poses some problems as far as cross-section
averaging is concerned. 1In the first place, ur_q is somewhat
arbitrary. One may take it as corresponding to an energy 2.5
times thermal energy. For the thermal group, one may average
the cross-sections over a Maxwellian distribution with velocities
ranging from zero to infinity. This gives for a 1/v cross-
section (microscopic) the average cross-section in the thermal

group

3
op = 5~ o(kT) = 0.886 o(kT),
where o (kT) is the value of the cross-section at thermal energy
corresponding to temperature T,
This prescription is by no means unique and in certain
cases might not be very good. However, it is about as good as

one can do without going into properties of individual moderators.

C. Boundary Conditions

Consider the following boundary conditions

I. #(o) = O (3.39a)
IT. @'(c) = 0O (symmetric) (3.39b)
ITIT. fR) = 0 (3.40a)
Iv. #'(R) = - v @ (R) (3.40b)

One condition (either I or II) is to be used at 0 and

one (either III or 1IV) at R.

27



3
1
3

: We take n = 0,1,---,N, with ¢(0)+¢0¢(R)+¢N.
é I. Po) =0 (3.39a)
; We take
é W, = 0 (3.41a)
ZO = 0 (3.41b)
II. ﬂé(o) = 0 (symmetric) (3.39b)
In the symmetric case, a, = c,. Further, this
situation can be represented by the relation
B, = 8 . (3.42)
Then from eq. (3.2),
| Py -W,y Wy
! _ U= -1 __-i 1 -
2 ﬁo = “Zii___” Z, + 7?{ ¢_1 W, + Zoﬂl (3.43)
Because of (3.42),
Wy
W, o= - E:I (3.44)
Z =i (3.45)
o] Z *

Solving (3.44) and (3.45) for Z_q and W_, in terms of Z_ and LA

and inserting these values into (3.3) and (3.4) for n = o, one

finds

N
[
o]
Q

A s

(3.46)

(3.47)
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III. @(R) =0 (3.40a)

We take
By =0 (3.48)
a;1(n) =0 (ef. eq. (3.9)) (3.49)
Iv. ¢'(R) =«p(R) (3.40b)

v is then the reciprocal of the extrapolation

distance. If we write
T
‘Y ='1"5 » (3.50)
where D is the diffusion constant, then

2
1 1 _ *h
P=W=93_- = %

1
= = . (3.51)
tr 2 tr M

Here

d = extrapolation length

Ztr = transport cross-section

M = geometrical constant (= 0.7104 for a slab)

This boundary condition is taken care of by the

uil(n) in eq. (3.9). Under boundary condition IV,

ail(n) = Ty , n=N
= 0 , n<N (3.52)
Py = Wy » (3.53)
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where in the computation of WN, the terms

Oodni *t Ton [Kgl(N+) + K?_l(N+)] =0 (3.54)

in expression (3.9) for b for n = N, i

ni?

In effect what the procedure does is to set up an
(N+1)EL mesh point a distance 1/v beyond the el point, with

void between, and take @ = 0, The equations (3.37-39) in-
N+1

corporate the results of doing this. %
D. Source and Initial Conditions ;
The sources for u > u, are given by contributions to
the appropriate Sni‘ For a fission source this is proportional
to ui
f1 = j;i-l f{u)du , (3.55) é
where
f(u) = number of fission neutrons per unit lethargy at u i
per fission neutron. g
The initial conditions are the slowing down demsities %
at u . These might be given by the FANTASIA-TRIPROD link. The %

conditions are

n{n,u,) = slowing down density at n and u, due to

scattering by hydrogen

q(n,uo) = slowing down density at n and u, due to

scattering by all elements but hydrogen

60

P P T S TR

st AT



et q(n,uo)

ﬁn,l- = -(E—Z:TIT (3.56)

where

(Ezt)nl- = value of gzt at point n and lethargy u,.

Note that in spherical geometry the slowing down

densities must be multiplied by r to give n and q.

E. Cross-Section and Nuclide Data

The required cross~section data for each e lement other

than hydrogen are

o = total cross-section

Q
0

elastic scattering cross-section

R} = absorption (non-neutron-producing) cross-section
o1 = inelastic scattering (n,n') cross-section

Oy = (n,2n) cross-section

g = fission cross-section

These are given as microscopic cross-sections for a set of
lethargy values u_ . Macroscopic cross-sections are denoted by
replacing o with 3. The energy distribution of inelastically
scattered neutrons is also required. In the continuum region

(smaller initial lethargies) this is given by

cin(u,E') = cross~section for inelastic scattering
from lethargy u to unit range of energies

about E'.
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In the discrete region (higher initial lethargies) it is given

by the excitation function

fin(u’Qi) = cross~section for excitation of ith level of

the compound nucleus by inelastic scattering

from lethargy u.
Qi = excitation energy of ith level.
In addition, the atomic weight A of each element must
be given.

The transport cross-section is given by

Opp = 0, + (1 - ) Og (3.57)

where for isotropic center-of-mass elastic scattering, which

we assume,
- 2

The cross-section data are given in the form described
here in the NDA compilations.*

It is necessary to make sure that the inelastic dif-
ferential energy cross-sections are used in a form that is
consistent with the interpolation scheme of the TRIPROD program.
As stated, the code takes inelastic cross-sections in two forms:
either as the cross-section cin(u’,E) at u' per unit final

energy about E, tabulated as a function of u' and E, or as an

excitation cross-section fin(u',Qi) tabulated as a function of u'

and the excitation energy Qi' In the available tabulated

* See, for exampie Ref.[2].
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inelastic cross-section data fin(u',Qi) may be available as
interpolated in the initial lethargy directly from experiment¥,
for the lowest excitation levels Q; . At higher incident
energies one resorts to calculated cross-section in the form
cin(u',E).*

In general, fin(u',Qi) may not sum precisely to the
total observed inelastic cross-section at u' because of experi-
mental inaccuracies. We therefore define the normalized excita- -

tion cross-section

B W = £,0,0) sy (3.59)

g has the required property that

2 gi(u) = 1, (3.60)
i

cin(u) is the cross-section for neutron production by inelastic
scattering. In terms of the (n, n') and (n, 2n) cross-sections

it is
oin(u) = cn:(u) + 0, (0) (3.61)

This is because of the (n,2n) neutrons are included in cin(u,E).

In the discrete region, czn(u) = 0.
Since oin(u',E) is computed while o, (u) is measured,
integration of Uin(u,E) over E will not in general give cin(u).

- A R S R mm E E El P wm G ER M e G T mm A M D B e e N AR mm R P me o NP P mm R G mm M EE M D AP Ee ws WG B e e b S

* See, for example Ref. [2].
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Again we must impose a normalization. We assume that gv
oin(u',E) is linear in E between successive tabulated values. é
It is further assumed that if E takes on the values Ei and if %
there are P values of I in the tabulatiomn, that é
EP+1 = 0 (3.62) ?
1
Uin(u ,0) = 0 (3.63) i
E;q <E (3.64) '
cin(u',E) = 0 E > E1 . (3.65) %
Then we can get a normalized cross-section %
o: (u') 66 9
Ui;l(u"’E) = Gin(u"E) 1 -~ i (3. ) ;
7 Oyn(u'sEy) + og, (u =Ei-'—1)3 (E;-E5 1)
1= *
In terms of g; and Uié’ the differential inelastic ?
neutron cross-section is %
! ! 1 1 ;
Uin(u)f(u,u) = E o, (u',E) , u' < ukl §
=3 g, (u') 6 (E'-E-Q)E,* u' > u, (3.67)
Here N is the smallest lethargy at which f, (u,Q.) is given. %
1 in i ]
For uk2 <u' <« U s where u  is the largest lethargy for which ;
1 2
we use the Oin (u',E) data, one takes g

* Eq. (3.58) assumes that the excitation energy Qi equals the

neutron energy loss in the c.m. system. While not strictly
true, this is an adequate agproximation for our purposes.
4




g;!'(u',E) = Gié(ukz’E) . (3.68)

Elsewhere we interpolate limearly in u', for both ciﬁ(u',E) and

gi(u') .
In these equations, we have the usual relation between
energy and lethargy

E' = Eoe'“ . (3.69)

Note that

-u
Q; <Ege . (3.70)

In eq. (3.58), f(u',u) is the number of neutrons
inelastically scattered at u' that end up at u, per unit final
lethargy. It is the quantity used in egs. (3.23, 24, 26, and 27).

For the discrete case,

E
£(u',u) = g;(@") & (u'-u-fn Q-‘j’-) (3.71)
1

The mean lethargy loss per collision is given by

2
g=1-480 4y 242 (3.72)

So far all these have referred to a single element. To
get the macroscopic quantities that go into the kernel computa-

tions, we denote each element by an index r. If

Cr = nuclear density of element r (nuclei per unit

volume), then as functions of u,
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Zep = 2 C (0,), (3.73)

r

o= i C,. (o). (3.74)
Seg = Oy (Ogy) (3.75)
5 (W E(u,u’) = 2y (05, (@) (£Cu,u")) (3.76)
ts, = i C. &, (E), (3.77)
zf=:::;‘cr og (3.78)

Here Cy is the density of hydrogen atoms (A=1). The sum over r

excludes hydrogen. In the computation of Ze only fissionable

materials contribute.

F. Iteration Procedure-Fission

When TRIPROD is used in conjunction with FANTASIA, it
starts below the energies of fission neutrons and there are no
fission sources. When used as a reactor code, it covers all
energies and a standard iteration procedure is used. One also
needs to iterate in some way when uranium is present in a shield.

We will discuss first TRIPROD operating as a unit.
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One chooses a trial source distribution

S,y = S.f; (3.79)

where fi is the fission neutron distribution in lethargy, defined

by (3.55).
Define
I i
P = 1%1 gni e buy (3.80)
Let
V = total sum of the thicknesses of all fuel regions,
for a slab
= %; times total volume of all fuel regions divided by
height, for a cylinder
= % times total volume of all fuel regions, for a sphere.
vy = 0, slab
= 1, cylinder or sphere.
Define |

v = _._RL__ (3.81)
J; r'yPndr
For the next iteration, let
»EPn+Sn
and repeat.

Ultimately the procedure should converge. Then let

Kk = .5; (3.82)

67



L) is the number of neutrons produced per fission.
k = 1 is the criticality condition.

If the fissionable material is present in a shield,
one can carry through similar procedure. 1In that case it is pre-
sumed that the effect of the fission is not the main effect, but
a perturbation. Only part of the source is due to fission. One
starts by assuming that that part vanishes. One solves the equa-
tion and finds Pn. The next estimate for the source due to
fission is VP . One can iterate this procedure.

In fact, if the entire FANTASIA-TRIPROD scheme is used,
the contribution due to fission will add sources to FANTASIA
only, though the fissions may occur either fast, in FANTASIA, or
thermal, in TRIPROD. In any case, one can iterate.

G. FANTASTIA-TRIPROD Link

FANTASIA gives the number of neutrons slowing down past
a cutoff energy E0 (corresponding to u = 0 in TRIPROD) in each
spatial interval. It also computes the slowing down density
per unit length at the boundary points between intervals. The
link picks up these values from FANTASIA and transforms them
into point values at the spatial mesh points of TRIPROD.

The procedure, which is done separately for slowing down
due to hydrogen and for that due to other elements but is
identical for both, is to fit an exponential curve to the end
point values of a FANTASIA interval. If the integrated slowing
down density using this curve differs from the total number of

neutrons computed by FANTASIA as slowing down in the interval by
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less than the computed standard deviation of the latter quantity,
the curve is used. If not, a quadratic form of curve is assumed.
The three parameters are fit so that both the end point values
and the integral over the region agree with the FANTASIA results.

The slowing down curve so obtained is continuous every-
where, agrees with the FANTASTA values at the boundaries of the
intervals, and differs from the integrated FANTASIA value over
each interval by less than the standard deviation in that
interval.*

Thus consider the position interval x) £ X £ %y Let
the slowing down density computed by FANTASIA be denoted by y,

where

li

Y1 y (%)) (3.83a)

y(x5) (3.83b)

Y2
Let the total number of neutrons computed by FANTASIA to be

slowed down in the interval be J.

We assume that in the interval

y = a ebx . (3.84)

Since the curve is to pass through (x,y;) and (x,,¥,),

e e s

* If the fractional variance 27 is smaller than some prescribed
J

value 62, we use Je rather than ¢ in the inequality (3.88).
This is to eliminate a possible faulty criterion that could
occur if the computed ¢ werggaccidentally small.



We compute the integral

p 4
2
bx bx Ve = ¥
K = .[ v(x)dx = %-(e 2 . e 1) = —2—5——l' (3.87)
X
1
and compare it to J. If
kK -3 <o , | (3.88)

where o is the computed standard deviation for J, y(x) is

assumed to represent the slowing down density for Xy < X < Xy
If

[K - J| >a, (3.89)
y(x) is obviously not a good representation. We then let

2

z(x) = A + Bx + Cx (3.90)

This is to be fit to Y1s Y2, and J. Then
_ 3(3’2 + Yl) (xz - Xl) - 6J _
C = C (3.91)
(x2 = Xl)
B = .
o S|

With these values for the parameters,

z(xq) = Yy , (3.94a)
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z(xy) = y, (3.94b)

X,
X z(x) dx = J. (3.95)
X
1
z(x) is used in place of y(x) in this case.
One expects the exponential fit to be valid except
near material interfaces. The quadratic fit in those regiomns
can take account of minima and maxima in the flux which may

occur near interfaces.
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