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THE COMPUTATION OF DYNAMIC RESPONSE TIME HISTORIES
OF A SYSTEM USING A MATRIX ITERATIVE TECHNIQUE

Benjamin B, D’ Ewart Jr,*, and Robert F, Farrell**

Bell Aerosystems Company
A Textron Company
Buffalo, New York

Second order differential equations of motion in matrix form are written
for solution of instantaneous accelerations for each degree of freedom in
response to imposed conditions. These accelerations are used to establish
velocity and displacement changes from initial conditions which are then
summed to produce time histories. Two examples are given. The first traces
out the motions of fluttering wing, The second simulates a closed, one dimen-
gional acoustic chamber and demonstrates a resonant frequency response and
speed of sound effects.

INTRODUCTION

This grner weseribes 2 computational procedure which has recently been programmed by
cell Aerosyswin: Gurmpany to utilize the stiffness matrix output from matrix structural
analysis techniques in porfurming dynamic response analyses by digital methods. Since the
program produces time histories utilizing a matrix iterative procedure it has been dubbed
the MITH Program for Matrix Iterative ‘Cime History.

EQUATJONS OF MOTION

The equations of motion of a dynamic system are in essence a statement of the equilibrium
of the internal and external forces on each element of a dynamic system. In matrix form they
generally appear as shown in Equation 1.

Mq +Dq+Kg = F(g,q,9,t) (i)

The left hand side of Equation 1 is frequently called the mathematical model of the system,
Herc the coefficient matrices M , D and K represent the mass, damping, and stiffness
<ssoctated with each coordinate or degree of freedom of the system, and yield the internal
forces of inertin damping and stiffness when multiplied by the accelerations §, velocities §,
and displacements q, respectively for the corresponding degrees of freedom,

The right hand side of Equation 1 describes the external force system acting on each
degree of freedom. It may be any function of time depending upon the nature of the external
force system to which the dynamic system is subjected.

Each line of the equation specifies the amplitude and relative phasing of the four forces
(internal forces due to inertia, ~damping, and elastic restraint, and resultant of external

*Chietf, Aeroelasticity and Dynamics

s **Group Loader, Aeroelastic Analysis
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forces) in equilibrium in the complex plane and acting on one element, Utilization of Equation
1 for the generation of time histories involves the real component of these vectors.

If the equations represent a linear system performing steady state sinusoidal oscillations
at one frequency w, then the vector force system rotates as a unit in the counter-clockwise -
direction with angular velocity w, and the projections of each internal force vector on the
real axis vs time provides a time history of acceleration, velocity and displacement of each
degree of freedom of the system,

K the dynamic system is nonlinear or is acted upon by nonlinear forces, the complex
vectors associated with time histories will not be of constant length or phasing relative to
the other vectors. Since linear systems lend themselves readily to classical eigenfunction
methods, we are concerned here, rather with methods suitable for producing time histories
of systems subjected to nonlinear forcing functions,

METHOD OF SCLUTION

The method of generation of time histories involves the determination of instantaneous
acceleration over small intervals of time for each degree of freedom and then performing
single and double integrations to obtain velocity and displacement changes over the same
small interval. An iterative process is used to assure convergence to equilibrium con-
ditions at each time increment. The velocity and displacement changes are then added to
the initial starting values to obtain the desired time histories. The method in detail is as
follows:

{a} Rewrite Equation 1 in the form of a solution of § . Thus,

& = M'(F(g,q,q,t) -Dq-Kja) | (2)

(b) Since we are dealing with a known physical system responding fo a prescribed set of
external forces, all coefficient matrices in Equation 2 are known and Equation 2 is used to
compute accelerations at any starting time, 1, » for which we wish to prescribe starting
values of velocity and displacement for each element. These may all be zero if the system
is initially at rest or may be given any arbitrary combination of velocity and displacement
we wish to impose on the system as starting conditions.

(¢} A first approximation to the velocity at t, is computed from
N . l . -
q'n- q’n-|+ 2(tn —'“"){q'n—l+ Qtnb {3)
where for our initial computation

t = ¢

n lt:nclt =t

| 0

and it is assumed that acceleration is constant over the time interval. This assumption is
corrected by subsequent iterations as indicated in steps (e) through (h). The time period
th- th., should be small (2-10 percent) compared to the period of the degree of freedom
with highest natural frequency.

(d} A first approximation to the displacement at time !, is computed from

- -.-I.._ _ - .
9, =4, + 5O t“"){q’n-l + qtn } (4)
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where again

fn = tl

() The error introduced by assuming that q f,= G, may now be reduced by recomputing
the acceleration at time, Y, by using Equation 2 with the values of velocity and displacement
from steps (c) and {d) above,

(f) Recompute the velocities at time !, using Equation 3 with the values of acceleration
from step (e) above.

() Recompute the displacements at time f; using Equation 4 with the values of velocity
from step (f) above.

(h) Steps (e), (f) and (g) constitute a second iteration for the accelerations, velocities
and displacements at time t; . Repeat these three steps as required until convergence has
been obtained to the desired numhber of digits,

(i) Compute accelerations, velocities and displacements for time t; and subsequent
time periods using steps (b) through (h) for each time interval to produce the required time
histories.

ILLUSTRATIONS

The method is demonstrated on a fluttering wing configuration, and for a simulated one
dimensional acoustic chamber.

Example A Fluttering Wing Configuration

The above formulations were applied to a cantilever wing model of 31-inch span and 18-inch
chord having a center of gravity at 45.0 percent chord, elastic axis at 41.5 percent chm:d
and a radius of gyration of 25 percent chord. By conventional flutter analysia methods this

wing was found to have a flutter speed of 152 ft per second in its fundamental bending-torsion
mode. The equations of motion for this system normally appear as

M¥x + Dk + Kx = Ax+ Bx+ Cx (5)

Rewritten in the form of Equation 2 we have

x = (M=A)Y'((B-D)x + (C-K)x ) \ ()

where for the subsonic bending-torsion case the following matrix definitions apply
h
b = [ a ]

generalized coordinates for fundamental cantilever bending mode,

it

where h

generalized coordinates for fundamental cantilever torsion mode.

R
]
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*The aerodynamic matrices [A], [B8)and [C] are for flight at subsonic speeds. It should
be noted that the Theodorsen function C(k) makes the aerodynamic matrices, [B]and [C]
complex. Only the real part need be retained after multiplying these coefficient matrices by
the respective variables, % and x in complex form when computing acceleration using
Equation 6. To obtain the complex form of the variables it is assumed that the system is
performing essentially sinusoidal oscillations at some frequency w. Then knowing the in-
stantaneous real vulues of velocity and displacement %x and x at a given instant of time the
complex velocity and displacement will be given by

z - —

= X + jwX % = %
W TcomPLEX @

X COMPLE X

Thus a value of w must be used for aerodynamic force evaluation both to evaluate the
Theodorsen function and to construct the complex form of the variables,

Since w is actually an output to the analysis it will be desirable to use an estimated value
for the time periods of the first half cycle of oscillation, The machine program may be
written so that at the completion of one half-cycle of oscillation, a new frequency is com-
puted as

W e (13)

where T/2 is the time required for one-half-cycle of oscillation as established from the time
history. This new frequency is then used in the program for the time period of the next half-
cycle of uscillation. For each subsequent half cycle of operation, a new frequency is com-
puted and used. The effect of error inthe original frequency estimate will have a minor effect
on computed results, and convergence to the correct flutter frequency will be extremely rapid.

Two tests were made using the time history computational scheme on the model described.
First the known flutter conditions of airspeed and bending torsion flutter amplitudes and phase
angles were inserted as starting conditions to demonstrate that the program would continue
to generate steady state oscillations with the proper frequency, amplitude ratio and phase
angle, This was successfully demonstrated.

The second test repeated the first test except that an incorrect displacement amplitude
ratio was inserted at the time 1, starting condition to demonstrate the ability of the pro-
cedure to converge to the correct amplitude ratio, This was also successful. The results
for this case have been summarized on Figure L

This {igure shows displacement time histories for the bending and twisting degrees of
frcedom over 5 cycles of vscillation in both graphical and numerical form. The numerical
{abulation gives: (1), the absolute values of the input vectors and computed response vectors
for each half-cycle peak: (2) the amplitude ratio of these vectors; and (3) the amplitude
vatio from (2) as a fraction of the flutter analysis value.

Note that the imposed input amplitude ratio of 0,989 was 80 percent of the steady state
flutter value obtained from flutter analysis, This is corrected to 96.9 percent of the steady
state flutter value at the end of the first cycle, and is corrected to within 0.3 percent of
the stoady state flutter value at the end of three complete cycles of operation. The wing
fiutter frequency of 43.9 rad/sec which was established by conventional analysis procedures
wis generated accurately over each half-cycle in each degree of freedom,

*This analysis is covered in Appendix 1.0 of AFOSR TN 60-1476 B, D’Ewart and R, Farrell
(Alr Foree Office of Scientific Research Report).
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It should be emphasized that while the convergence of the time histories to the known exact
golution is considered an excellent check on the practicality of the method, the rate of con-~
vorgence is not such a check, This is because the computational process merely attempts
to compute what is happening to the physical system as it responds at each instant of time
to the conditions imposed.

Example B One Dimensional Acoustic Chamber
Chamber Simulation

This example involves a 40-foot tube closed at both ends as shown in Figure 2. The tube
has been divided into 40 stations with simulation of the air as a concentrated mass at the
center of each station connected in series with massless gprings, The effective spring rate
of air is determined as shown in Figure 3 for igentropic conditions. Since a one-foot square
cross section has been used, the mass at each station is 0.002378 slugs/ft” agssuming
standard atmospheric conditions.

This model provides a convenient check case since the stiffness influence coefficients for
the idealization described can be written by inspection as shown in Figure 3, and exact
values for the speed of sound and natural frequencies are readily obtained as shown in
Figure 4 for the acoustic chamber.

1st Test Case — Natural Frequency Check

In the two check cases presented here we have not used external forces on the system hut
have instead generated the time histories of the system responding to prescribed input con-
ditions at time t = 0,

In the first case we have checked the ability of the program to trace out the time history
of the model in its fundamental mode. As indicated in Figure 5 this was done by letting starting
accelerations and displacements by zero, with a half-sine wave velocity distribution over
the tube length with center stations at peak values of 100 ft/second.

Figure 6 shows time history results after 1/4 cycle of oscillation. It was found that 1/4
cycle of oscillations was executed in 401,70 time periods giving a frequency of 13.964 cps
as compared to the exact value of 13,946 cps. Lt is interesting to note further that the dis-
placement shape for the forty stations was a half-sine wave accurate to seven digits although
only 5 digit accuracy was used in the input velocities.

2nd Test Case — Speed of Sound Computation

In this case a disturbance was introduced at the left end of the tube by glving station No. 1
an initial velocity of 100 ft/second at zero displacement. All other stations were given zero
velocities and displacements at time zero. Starting conditions are summarized in Figure 7,
The progress of the wave-front down the tube is indicated in the velocity distribution plots
of Figure 8 for a number of time points,

In each of the curves shown the wave-front is at the station with zero velocity {maximum
amplitude) marked X, Having identified the wave-front location as a function of time, the speed
of the wave-front was computed between a number of points down the tube as shown and plotted
in Figure ¢, The computed values are low but appear to be approaching the correct value
asymptotically. It seems likely that a different choice of input disturbances might be found
that would more rapidly generate a wave-front with a more correct traveling speed.
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Figure 1. Time History Analysis Output Displacement Summary
TABLE 1

TABULATION OF ABSOLUTE VALUES OF b, @ AND

Amplitu.dé
Cyele Babsolute %bsolute 2 22: gg;.i:tiii if
Designa- Flutter
tion Ft Rad Rad/ Ft Analysis
' Value
Input .0625 .0618 0.989 0.80
1 .06338781 .06695492 1.056 - 0.86
2 ~.05714757 -.06767146 1.184 0.969
3 05407092 06691427 - 1.238 1,005
4 -.05321080 -, 06627186 1,245 1,012
2 .056322346 06598823 1,240 1,007
6 -.05338031 -.06591764 1,235 1.003
7 06346337 .06591588 1,233 1,002
8 -.05350172 -, 06591591 1.232 1.001
9 .05350932 -.06590546 1.232 1.001
10 ~-.05350683 -.06588378 1,231 1.000
w = 43,9 Rad/Sec Observed at Each Cycle
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Chamber Description

Chamber Length: 40.00 ft.
Chamber Cross Sectional Area: = 1.0 ft2

Idealization: Divided into 40 stations of one ft. length with point mass at center of each

station
! 2 3 4 38 39 40
AV -~ T
[~
-~
/MMWVJWV'.’VWMJ.V\MIVW WWWW-’ @ 1.0
P L
- : .. }
- 1.0 fea— A — 1.0 e
.. - A 40" -

Figure 2. Simulation of One-Dimensional Acoustic Chamber

_Physical Properties

P
K = J\\k , Isentropic Spring Rate

i}

2960 Lbs/Ft. M
M Mazs of 1 Ft3 of Air at Std. atmosphere \
3 pues
= ,002378 Slugs/Ft
where
AIR AT I

P = 2116 Lbs/Ft2 5TD

5 ATMOS |
A = 1.0 Ft .
o |-—|,o—-1

i

= specifie heat ratio
; Figure 3. Simulation ol One-Dimensional
A= 1.0 Acoustic Chamber

Equations of Motion

A
f

B = O
il R

.002378 , i +2960
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Speed of Wave Propagation

- /K
C = N
where
C = speed of wave propagation through material of bulk modulus

K' and mass density M’

for the above case

K = K' = 2060 Ihs/ft
M = M' = .po2378-31ugS
£t

Thus

_ 2960,00
C —"/.—002378 = 1115,68 ft/sec

Natural Frequency of Closed Tube

For the first mode

1115.68 (1)

f 540, 00)
f = 13,9460 cps
where
f = natural freq. -cps.
¢ = speed of sound-ft/sec
n = mode number
I = tube length-ft

Figure 4. Exact Dynamic Characteristics of Acoustic
Chamber Representation of Figure 2

737



AFTFDIL-TR-66-80

ACCELERATIONS: a = 0.0 1{t/ sec2 at all stations

VELOCITIES: Sine wave velocity distribution as shown below in Figure 5
with 5 digit accuracy

DISPLACEMENTS: A = 0,0 at all stations
TIME INCREMENT: 00004475 sec,
PERIOD OF TIME COVERED: 1/2-cycle of 18t mode or 800 time increments

CONVERGENCE CRITERIA: Agreement to 0.10 percent between iterations

3"" b5 . ..'|°....'.5....2|°....?5....3|°.. ..3.5....4|°|
e
N
100
llll- ,/V‘H \\\
> —
= 50 P ™
! RN
> 0 -

Figure 5. Acoustic Chamber - 1st Test Case Fundamental Mode Computation

INPUT
Initial Conditions att = 0
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A, Frequency Check

Time increments required for 1/4 cycle = 401,7

Length of one time period ,00004475 sec.

Time period for 1/4 cycle

L

401.7 X .00004475 = .-}-

1t

.0179031 sec.

Fundamental frequency = % - 4 ( 0179031)

13.964 cps

Exact frequency 13.946 cps (From Figure 3)

B. Displacement Shape Check

[

[F

2 ’/ \

w

205 - .

7 <

@ z/ N

5 ° | | 2
a I 5 10 15 20 25 30 35 4:1

Displacement Shape Observations
(1) Displacement shape is sine wave accurate to 7 digits

(2) Displacements of corresponding stations on left- and right-sides
" check to 7 digits.

Figure 6, Acoustic Chamber - 1st Test Case-Fundamental Mode Computation
OUTPUT Computed Results After 1/4 Cycle
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VELOCITY
Station 1 + 100 ft/sec (toward sta. 40)
All other stations 0.0 ft/sec.
DISPLACEMENT
At all stations 0.0 ft.
DAMPING AND EXTERNAL FORCES
At all stations 0.0
TIME INCREMENT At = 0.00004475 sec,
CONVERGENCE CERITERIA 0.1 percent between iterations

Figure 7. Acoustic Chamber - 2nd Test Case Speed of Sound Determination
Initial Conditions at Time t = 0
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Figure 8. Acoustic Chamber - 2nd Test Case Speed of Sound Determination
Station Velocities at Times Indicated
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ExAcT
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Figure 9,

Time
Increment

87
129.5
171.5
213.18
460,25
501.186

542.00
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Acoustic Chamber 2nd Test Case Speed of Sound Determination

Location
of Wave

Front Peak
Amp Sta.

4

6

8

10

22

24

TTTYY

26

Elapsed Distance Speed
Time Traveled of
Sec. Ft, Wave
Front
.00190187 2.000 - 1056.2
0018795 ——2.000 1064.1
.0018652 —— 2,000 1072.3
0110564 ——— 12,000 1085.3
.0018307 2.000 1092.5
.0018276 2.000 1094.3
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