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INTRODUCTION

The AFFDL package of proposed revisions to MIL-F-8785B, the Militaxry Speci~
fication for Flying Qualities of Piloted Aircraft (Ref. 1), was received by Northrop's
Aircraft Group in mid-March 1978. A review was requested with comments to be
returned to the government at a symposium and workshop to be conducted in September.
The revision package was distributed to appropriate organizations within Northrop.

Ag a result of the initial review, certain topics were identified for which Northrop
had as yet unpublished data which -would be valuable to the specification activity.

Figure 1 shows those paragraphs for which specific contributions have been made.
This paper gives a summary of each area along with example data fo illustrate the

nature of the results.

LEVELS OF FLYING QUALITIES (1.5)

The current version of MIL-F-8785B (Ref. 2) defines levels of flying qualities
using one paragraph descriptions which are consistent with levels as defined by the
Cooper-Harper rating scale (Ref. 3). Although it is not explicitly stated in the speci-
fication, Level 1 corresponds to pilot ratings (PR) less than 3.5, Level 2 to PR's
between 3.5 and 6.5, and Level 3 to PR's between 6.5 and 9. 5. See Figure 2.
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The proposed revision modifies the definition of Levels as shown by Figure 3. The
objective is to explicitly recognize the effect of atmospheric disturbances on flying
qualities. Sufficient data are available to show that aircraft control and/or pilot work-
load can be significantly degraded while operating in moderate to severe environments
(Ref, 4, ete.). It is recommended however that this should not change the definition
of Levels. The definition of Levels corresponding to the Cooper-Harper Scale should
be maintained. Figure 4 shows that there are three primary factors which influence

a flying qualities evaluation. These are the system (the airplane in a normal or
failure state condition, the flight condition (where in the flight envelope), and the
environmental definition (atmospheric condition). When these three factors are
defined and a task evaluation is conducted a certain task performance and pilot work-

load results which correspond to 2 pilot rating and therefore a Level.

ATMOSPHERIC DISTURBANCES

LIGHT
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COOPER-HARPER

COOPER-HARPER

LEVEL1 LEVEL 1 LEVEL 2 LEVEL 3
DEFINITION DEFINITION DEFINITION
COQPER-HARPER COOPER-HARPER COOPER-HARPER
LEVEL 2 LEVEL 2 LEVEL 3 LEVEL 3
DEFINITION DEFINITION WITH NEW TASK DEF
COOQPER-HARPER COOPER-HHARPER
LEVEL 3 LEVEL 3 LEVEL 3 NO REQUIREMENT

DEFINITION WITH NEW TASK DEF

FIGURE 3. PROPOSED REVISION TO THE DEFINITION OF LEVELS
OF FLYING QUALITIES

MIL-F-8785B recognizes the effect of failures and flight condition on flying
qualities in paragraph 3.1. 10 of the specification by allowing degraded flying qualities
for Failure Status and for operation outside the Operational Envelope., It is recom-
mended that a better way to accommodate the effect of atmospheric disturbances is to
include it in paragraph 3,1.10 as part of a three dimensional space which calls out
the required Level of flying qualities as a function of the three primary factors that
influence flying qualities. Figure 5 shows the form of this three dimensional space,
The Levels asgigned to each element of this space are those taken from the specifi-
cation and the proposed revisions. This framework also makes it clear that the

procuring activity can change the required Level of flying qualities for a specific
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new aircraft simply by changing the Level assigned to any element of the space.
For instance, an all-weather aircraft might require Level 1 flying qualities in
Moderate disturbances and Level 2 in Severe conditions. It is therefore recom-
mended that the effect of atmospheric disturbances be handled in this way and that
the definition of Levels remain unchanged.

Algso, returning to the proposed revision as shown in Figure 3, there are two
elements of that matrix which require that "Flying qualities be such that control
can be maintained long enough to fly cut of the disturbance." This is interpreted as
Level 3 flying qualities with an unusual task definition. This will require that one
then define the geographic extent of typical atmospheric conditions. This informa-
tion is not available in paragraph 3.7. Visualizing the subject in the form as shown
in Figure 5 raises additional questions. What are the required flying qualities in
the Permissible Envelope? MIL-F-8785B states that operation there be "........
allowable and possible. " Does that mean Level 3? Also what about the remainder
of this three dimensional space of Figure 5? Figure 3 states '"'no requirement" for
Level 3 in severe atmospheric conditions, Does this mean that loss of the aircraft
is allowable under these conditions ? And, when viewed in the form of Figure 5, is
loss of the aircraft allowable in the entire undefined position of the three dimensional

space?

LONGITUDINAL STABILITY WITH RESPECT TO SPEED (3.2.1)

The proposed revision modifies the requirement for longitudinal static stability
to allow for the existence of aircraft with a statically unstable basic airframe for
which augmentation is used to provide effective stability. As a worst case, Level
3 condition, reference 1 allows a time-to-double~amplitude of 6 seconds. If one must
be able to operate the aircraft without augmentation this -requirement will set a
limit on the most aft allowable center-of-gravity (c.g.) position.

YF-17 LANDING APPROACH

For typical aircraft the nature of the airframe stability change with increasing
aft movement of the c.g. ie demonstrated by Figure 6. The short-period and phugoid
roots become real, one Phugoid root will move into the right-half-plane, and a new
"third mode" will form. For the Northrop YF-17 the sequence of events was first

the short period roots would become real. The Phugoid roots would become real,
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the one root would become unstable, then the third mode would form. Figure 7 shows
the effect of c.g. location on the longitudinal stability of the YF-17 in the landing
approach phase. The aircraft is stable for c.g. positions forward of about 28, 5% mac
and statically unstable for more aft c.g. 's. Based upon extensive piloted flight
simulations, Northrop established a minimum safe time-to-double-amplitude of 4
seconds, The proposed specification revision of 6 seconds is considered to be in
agreement with the Northrop value. The 6 second number is based upon in-flight

simulation where the additional task realism normaily results in more conservatism.

1t is interesting to note the sensitivity of the modal changes with c.g. position, .
With a one percent change in c.g., static stability can change significantly. It has
long been known that the sensitivity of time-to-double-amplitude in the pitch axis is

largely determined by the sﬁability derivative Cm {or Mu). See Figure 8, This s
u _
parameter is currently paid little attention in airplane design and is very difficult

to predict accurately.
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YF-17 TRANSONIC

The effect of failure transients and control following the failure was extensively
tested in the YF-17 program. "Failure Modes and Effecta” piloted simulations were
conducted in which selected critical failures were simulated in both typical flight
conditions and in conditions chosen to be most critical for each particular Failure
State. For longitudinal control the Pitch Control Augmentation System (PCAS) failure
was most critical at aft c.g.'s. For the YF-1T7 at 0.85 M the elastic neutral point
is at 29% of the mean aerodynamic chord (mac) and the elastic maneuver point is at
32% mac. Figures 9 and 10 are typical data from those simulation tests. Transient
and peak load factor values are shown for each test condition as the ¢.g, is moved
further and further aft. Pilot ratings were also taken for each task which was to
maintain control during and after the failure. Based upon the composite of these
simulation tests, the flying qualities correlated most readily with maneuver margin
and stick force gradient as shown by the solid lines on Figure 11. These simulation
trends were verified by a limited number of flight test points. These data indicate
that a minimum maneuver margin of about 1. 5% mac and a minimum stick force

gradient of about 2 Ibs/g are reasonable Level 3 design conditions.
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LONGITUDINAL SHORT PERIOD RESPONSE (3.2.2.1)

One of the primary motivations for revising 8785B at this time is to insure that
it will accommodate highly augmented aircraft for which the resulting dynamics are
far removed from those of the basic airframe. Figure 12 lists the typical problems
that occur when attempting to compare such aircraft with the current specification,
MIL-¥-8785B longitudinal short period response requirements are now stated in terms
of classical modal parameters which are difficult to identify for highly augmented
aircraft.

LARGE ORDER SYSTEM
¢ MANY ROOTS ON ROOT LOCUS
o MANY TERMS IN TRANSFER FUNCTION

NON-LINEAR SYSTEM
e PROBLEM FOR ANY LINEAR METHOD

NON-CLASSICAL MODES
o LIMITED SYSTEMATIC DATA BASE

FIGURE 12, HIGHLY AUGMENTED AIRCRAFT PRESENT MANY
PROBLEMS FOR THE CURRENT SPECIFICATION CRITERIA

Northrop is currently using a variety of alternate criteria as design guides for
highly augmented aircraft. Figure 13 lists those approaches which are currently
being used. Northrop's experience and methodologies for pilot-in-the-1oop analyses

are well documented in a recent contract publication, reference 5.

Figure 14 shows the pitch response criteria to which the YF-17 was designed.
The total augmented frequency response of pitch rate to stick force was required
to fall within the shaded region. These bounds are based primarily upon the Neal-
Smith data base of reference 6. This criteria can be used regardless of the order
of the subject airplane system. Non-linear effects can be accommodated if one
tests for the input amplitude dependent nature of the frequency response. Unacceptable
airplanes are most congpicuous on this criteria by the increased phase lag at moderate
frequencies as shown in Figure 15.
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An equally satisfactory and possibly more direct means of accomplishing flight
control system and flying qualities design is to operate directly in the time domain.
This approach allows for the effect of plant nonlinearities, sllows one to use non-
linear elements in the design of the control system itself, and encourages the use
of direct digital design of control system software. An example of the non-linearities
present in a typical advanced fightér design are shown in Figure 16, taken from
reference 7. Figure 17 shows time history responses taken for this system and
demonstrates that very well behaved responses can be obtained even for highly
unstable airframes. From such time histories classicalmodal parameters can be
estimated using techniques historically used for flight test data reduction. Figure
18 shows the flying qualities of the subject airplane compared to the boundaries of
8785B, In general these results have been varified by piloted flight simulation,

The purpose here is to demonstrate alternatives to the equivalent system
approach as stated in reference 1. It is hoped that such methods will be given
due consideration in the final selection of a short period response requirement,
but regardiess of the format of the requirement, it is recommended that the revision
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combine the chosen parameters into one criteria. In other words, gsp should not

be an independent requirement from w sp vsn, .

CONTROL FEEL IN MANEUVERING FLIGHT (3.2.2.2)

8758 B basés it's control requirements on response per pound of stick or pedal
force and this is appropriate. However, the specification almost completely ignores
the effect of stick position or deflection. Figure 19 shows the effect of arm location
relative to the body on the maximum pull capability of a 5th percentile male. These
data are from reference 8. They show that one's maximum force capability is not
symmetric left and right and varies by about a factor of two for forward and aft
stick positions. Figure 20 shows similar data for both pull and push strength as a
function of upper arm angle. Here one can see that pull and push strength differ
significantly and also that the 5th and 95th percentile male strengths differ by as much
as a factor of three,

These data are included here because it is the feeling of the author that their

effect is not widely known. It is hypothesized that at least the upper limit of stick
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force should be a function of the percent of pilot effort required and not just of force
required at the stick grip. Certainly a given stick force at the grip will feel heavier
to the pilot for aft stick positions. Also one must be very careful in correlating the
acceptability of stick forces for various aircraft to include the effect of stick location
and maximum stick deflection. For instance, the F-5A stick deflection is greater
than that of the A-7D by more than a factor of 2, This places the stick in a different
location in the cockpit for maximum deflection.
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PILOT INDUCED OSCILLATIONS (3.2.2.4)

Northrop's attention was sharply focused on the subject of Pilot Induced
Oscillations (PIO) as the result of a very dramatic encounter on the T-384 in 1960,
A time history of that incident is shown as Figure 21. Peak load factors ranged
between -9 and +8 g's but the aircraft was brought under control and recovered.
The incident occurred on a low altitude high-gspeed run on which the stability augmen-
ter malfunctioned, A limit cycle occurred (not shown in Figure 21) in the pitch SAS
and the pilot disengaged the SAS at a peak value of surface command and the dircraft
experienced a step input to the stabilizer. This initiated large pilot inputs which
coupled with the airplane to form the PIO. See references 9 and 10 for details.
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-8 6,500 FT

ﬁﬂ/&ﬂ[\quQfL\fVvaxﬂdwﬁ

UP 8 L L 1
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PULL 30 1 1 i L 1 1 1 1 1 1 1 1
B 9 10 11 12 . 13 14 15 16 7 18 18 20 21

TIME ~ SECONDS

FIGURE 21. A FLIGHT TIME HISTORY OF A T-38A PILOT
INDUCED OSCILLATION (JAN, 1960)
The incident was attributed to several factors including the bob-weight, feel-

spring, and horizontal tail servo-value. Changes were made to these parameters

and the modified versions of the T-38 have been PIO free, The investigation, analysis,
and research conducted in support of the T-38 emphasized the importance of the varia-
tion in stick force per g versus frequency. This dynamic stick force per g for the T-38
before and after the control system modification is shown in Figure 22, The difficulty

is that at least three potentially significant features have changed simultaneously. The
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amount of the drop was decreased, the minimum value was increased, and the level at

high frequencies (in the vicinity of 10 rad/sec) was increased.

Northrop has since been using the gain margin on the dynamic stick force per g
as a criterion parameter. Figure 23 shows the Northrop gain margin criteria requires
that Level 1 be greatei' than 16db, Level 2 be between 10 to 16 db, and Level 3 be
between 5 and 10 db, It is now recommended that the minimum drop requirement augment

the gain margin criteria and that both should be used.

ROLL PERFORMANCE (3. 3. 4., 1)

The proposed revision to the roll response requirements are intended to account
for the inherent reduction in roll response at low and high airspeeds and at elevated
load factors while requiring a higher rate of response in the middle of the envelope for
one g flight, For the Combat and Ground Attack Flight Phases the requirements are
stated in terms of bank-to-bank rolls for any load factor up to 0.8ny. The requirement
is to change bank angle by 30, 50, 90, or 180 degrees in a time less than or equal to a

specified amount,

There are several factors which should be clarified in the context of this re-
quirement, First, ""bank-to-bank' generally refers to symmetric maneuvers; for
instance, 60 degrees bank-to~bank is from 30 degrees left wing down to 30 degrees
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right wing down. It is assumed for the purposes of this paper that for the elevated
load factor conditions the required change is from the trimmed bank angle for that -
load factor through whatever change in bank angle is required, See Figure 24, For
example, when trimmed at 1. 15 g's the change in bank angle of 90 degrees would be
from approximately 30 degrees left wing down to 60 degrees right wing down. In
addition, especially when considering steep clumbing or diving trajectories or high
angle-of-attack conditions, one must be concernéd about the definition of bank angle
and the axis system in which it is defined. A standard practice is to use the integral
of the body axis roll rate. The specification requires that the roll angle be measured
in the Y-Z plane between the y-axis and the horizon but is not clear if this is a body or
stability axis coordinate system.

The required roll performance is stated for four sepai'ate speed ranges from
very low (VL) to High (H). These speed ranges were calculated for the F-5E in the
Combat (CO) and Ground Attack {GA) Flight Phases. For the speed ranges as defined
in reference 1 certain of the speed ra.ngés collapsed to a single value, As shown in
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Figure 25 for the CO Flight Phase the VL range collapse and for the GA Flight Phase
both the VL and M (Medium) ranges collapsed.
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It is recommended that the speed ranges be redefined in such a way that this
collapsing of ranges does not occur. Figure 26 shows the speed range definitions as
stated in the proposed revisions (reference 1)} and the Northrop recommended defini-
tions. It is recommended the speed ranges be defined as a percentage of the entire
operational speed range. The lower 10% is V1L, the next 30% is L, the next 30% is M,
and the remaining 30% is H. With these definitions all aireraft are treated equally
with the ranges being an "elastic' fit to the particular total speed range.

8785B PROPOSED REVISION

SPEED RANGE
SYMBOL EQUIVALENT AIRSPEED RANGE
VL V, MIN <V < Vg + 20 KTS
M 2Vg <V < 0.7 Vyax
H 0.7 Vjax <V < V, MAX

NORTHROP RECOMMENDATION

SPEED RANGE
SYMBOL EQUIVALENT AIRSPEED RANGE
VL Vo MIN <V <V, MIN +0.1 AV
L Vo MIN + 0.1 AV <V <V, MIN + 0.4 AV
M Vg MIN + 0.4 AV <V <V MIN + 0.7 AV
H Vg MIN + 0.7 AV <V <V, MAX

WHERE A V=V, MAX -V, MIN

FIGURE 26. RECOMMENDED SPEED RANGE DEFINITIONS
FOR THE ROLL PERFORMANCE REQUIREMENTS

An example of the F~5E roll performance is shown in Figure 27 which plots time
to bank versus Mach number for maximum rolls at 0.8 n;. The data includes time to roll
30 degrees, 50 degrees, and 90 degrees. The solid symbols show the required maxi-
mum time allowable for the bank angle change for each speed range. If the speed
ranges are defined as in reference 1 and as shown on the left half of Figure 27, the
F-5E does not, in general, meet the requirement. If the speed ranges are defined
as recommended by Northrop and as shown in the right half of Figure 27, then the re-
quirements are satisfied for most conditions although not universally. Since the F-5E
roll performance is found very satisfactory in operational use, it is recommended that
the speed ranges be redefined. The performance levels are then approximately

satisfied,
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NOTE: FILLED SYMBOLS INDICATE MIL SPEC LIMITATION FOR LEVEL 1,
OPEN SYMBOLS ARE F-5E ROLL PERFORMANCE

F-5E€ ROLL PERFORMANCE AT 0.8 N, 15,000 FT
CONFIGURATION CO
18 87858 PROPOSED SPEEDS Y——————x NORTHROP RECOMMENDATION
MIL. SPEC. SPEED RANGE NORTHROP PROPOSED SPEED RANGE
16 |- Ek b\ — n A\
[ %] ’ Q
\ 20° ROLL N\ t\
@ Uiy !\\ ] Wik LMt
112 F N b T nel N A
a "kl » B A J A e =300 RoLL|
= NN 50° ROLL - e \‘o. ~ =
2 os |- o = . - Sge---0
w _ .
g . "l-n.... —— p— """..,,. e 1
k- 30° ROLL 50° ROLL
04 — 30° ROLL
- - - 9
o L ! L [ | i
o 0.4 08 . 1.2 0 0.4 0.8 1.2

MACH NUMBER

FIGURE 27, F-5E ROLL PERFORMANCE

ATMOSPHERIC DISTURBANCES (3. 7)

Northrop has extensive experience in the modeling and use of atmospheric
disturbances in both analysis methods and in piloted simulations. See references 4
and 11. The most recent experience has been with respect to Gaussian vs, non-
Gaussian turbulence models {ref. 12), The non-Gaussian model employed is known
as the Tomlinson (or Jones) Model. The so-called Tomlinson model is featured as
being more'repres'entative of the true time varying or intermittent properties of the
real atrnosphei'e. Figure 28 shows that the Tomlinson model has fewer changes of
intermediate velo.city with a ""greater-than-Gaussian' probability that there will be

either very small velocity increments or extremely large velocity changes. Figure 29

shows a comrnarison of representative Tomlinson and Dryden forms.

_ Reference 12 presents the results of an analytical and piloted simulation investi~
gation of a ride improvement mode system for the YF-17 in low altitude high speed
ﬂight. Both Gaussian and non-Gaussian turbulence models were used. Since reference
12 is available in the open literature one is referred there for details. It was concluded
there however that the performance of the flight control system design may be influenced
by the choice of turbulence model and that this aspect may need to be reflected in the

appropriate military specification,
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FIGURE 29, W — GUST TIME HISTORIES FOR THE TWOQO
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In addition, there is a lack of flying qualities requirements, criteria, and even
rough design guidance for aircraft response to, and control in atmospheric disturbances.
This is true of both discrete and continuous upsets., The models are reasonably well
defined but means of identifying levels of acceptance are relatively non-existent. It
is recommended that additional studies similiar to that of reference 12 be conducted to
fill this void.

SUMMARY

Selected sections of the proposed revisions to the Flying Qualities Specification,
MIL-F-8785B have been reviewed by a team of aerodynamic and controls personnel
at Northrop's Aircraft Group. The results for the paragraphs reviewed are discussed
above. This paper is an edited and condensed version of a Northrop internal report
reference 13 which will be furnished to the tri-service 8785 team. In general, the
revisions were found to be satisfactory with minor disagreements and recommendations
covered separately above. It is noted bowever that the desire fo couch requirements
in terms of engineering parameters of the system itself is leading to an increasingly
complex and cumbersome specification. As a philosophical recommendation for
future revisions, it is suggested that stating the requirements in terms of the desired
output performance should simplify the specification, better insure satisfactory
operational systems, and provide the contractor with greater engineering design
freedom. System simulations are available sufficiently early in the design process
today to check output performance that this approach should not provide the procuring
agency with any unusual problems ir following specification compliance in the early
stages of development. If this approach is used it is also recommended that a "Backup
Document' or "Military Handbook' be formulated to contain the current systems design
engineering knowledge on how to obtain good flying qualities. This document should
contain methodologies and a collection of useful criteria for each performance require-
ment area, This document would have to be continually revised to remain current as

new knowledge is obtained,
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