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ABSTRACT

Conceptually possible procedures for designing aircraft for
the combined effects of vertical, lateral, and longitudinal
turbulence by the application of power spectral technigques are
developed and cutlined. The present state-of-the-art of this
technical area is established and evaluated by reviewing and
extending current methods used or proposed for predicting the
response of aircraft due to combined effects of the three com-
ponents of atmospheric turbulence. Reguirements for solving the
problem are identified and recommendations are made with respect
to major problem areas such as: description of the turbulence
environment, determination of the frequency response function of
the structure, and methods of combining the effects of vertical,
lateral and longitudinal turbulence components to thecretically
predict aircraft response. Finally, an outline of the specific
research needed is given, and a program is presented for accomplish-

ing the research and development required to solve the problem.
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SECTION I

INTRODUCTION

The development of aircraft of increasing size and flexibility
has stimulated renewed interest in the problem of representing the
full three-dimensional spatial dependence of the turbulence field
in gust design calculations. This may be contrasted with conven-
tional design procedures which treat vertical and lateral gusts
separately and allow them to vary only along the axial (x) direc-
tion in accordance with the one~dimensional turbulence assumption.
Thus, variations with transverse (y,2) position are ignored, and
the turbulence velocity is assumed to be uniform throughout any
plane normal to the flight path. This approximation may result in
errors in dynamic load calculations if the transverse dimensions
of the aircraft are not small compared to spatial wavelengths that
are capable of exciting significant structural responses. Further-
more, the analytical substantiation of spectral relationships
between structural responses and probe-measured gust velocities
obtained from dynamic response tests may be hampered, particularly
at the higher flexible response frequencies.

Treatment of the multi~dimensional gust response problem has
largely proceeded along two independent but mathematically equiva-
lent courses., The first approach was originated by Liepmann
(Reference 1) and extended by Ribner (Reference 2). It requires
that the frequency response function of the structure be expressed
in the wave domain. 8Since this is usually difficult, the method is

applicable in its basic form only to the simplest configurations.



A modification developed by Etkin (Reference 3) and elaborated in
Reference 4 has more general application, but involves a power
series expansion which is subject to divergence.

The second approach, originated by Diederich (Reference 5),
utilizes the frequency response function in the original space
domain, but generally reguires the evaluation of a large gquadratic
form to obtain the response power spectrum in accordance with
multiple input procedures. The two-dimensional version of this
method is exemplified by Reference 6 and 7, and corresponds to
the rudimentary case of a flat aircraft responding only to vertical
gust. Lateral gust response must be treated separately in this
case. A 3-D version is proposed for general configurations in
Reference 8, but the turbulence description which is provided is
limited to the 2-D case.

The first complete three-dimensional formulation of the space
domain approach for general configurations is contained in Refer-
ence 9. A unified theory is derived which describes the dynamic
response of a flexible aircraft traversing a random, isotropic
field of atmospheric turbulence. The formulation not only assigns
full three-dimensional spatial dependence to all three direction
components of the gust velocity, but departs from the conventional
space domain approach by decomposing the incremental turbulence
velocity field into two statistically independent subfields, one
symmetric and the other antisymmetric with respect to the midplane
of the aircraft. All of the mathematical redundancies attributable
to the conventional approach are subsequently eliminated, thereby

reducing the size of the multiple input calculation by a factor



of 36. By this means, variation of the gust with transverse posi-
tion can be economically treated in the analysis of large aircraft,
and responses to more than one gust direction may be rationally
combined into a single calculation. Furthermore, the theory and
methods may be extended to include the analytical counterparts of
the various frequency-dependent functions normally obtained by
spectral analysis of data derived from dynamic response tests in
which a gust probe is employed. These include: (1) response power
spectra and transfer functions, which require application of power
spectral methods, and (2} cross-transfer functions and coherence
functions, which regquire the additional application of cross-
spectral techniques.,

The new methed is fully compatible with current gqgust criteria
and utilizes gust input power spectra and frequency response func-
tions identical to those in the one~dimensional case, except that
the gust reference direction is chosen normal to each input panel
rather than parallel to the x, y and z axes of the aircraft coordi-
nate system. It is even trivially possible to reduce the analysis
to any number of rudimentary or degenerate cases such as those des-
cribed above, although there is usually little computational advan-
tage in this, It is easily shown that if the transverse dimensions
of the aircraft are sufficiently small, then the calculated results
of the 3-D gust response model approach identically the conven-

ticnal 1-D analysis.



SECTION II

TECHNICAL BACKGROUND

The theory of three~dimensional gust response is developed
in this section and in Reference 9 as a nonredundant extension of
the space domain formulation. An alternative approach, termed
the wave domain formulation, is mathematically equivalent to the
first and may be derived from it by multiple Fourier transforma-
tion. However, difficulties exist in its practical application
which are described in Appendix A, where a detailed mathematical
derivation of both general formulations is furnished, and the
underlying assumptions concerning the physical properties of

atmospheric turbulence are introduced.

2.1 FREQUENCY RESPONSE FUNCTIONS

The frequency response functicon for a structure may be

written H(F,f), and represents the complex amplitude ratio between

. . . . . iwt
a given structural response and a simple harmonic excitation e

applied at point r of the structure, where f = w/27 denotes the
excitation frequency. The excitation is here taken to be a normal-
wash of unit amplitude impinging upon a unit aerodynamic surface
at r.

It is often convenient to reference the phase of the frequency

response function to the input point ¥=1(0,r ,r3) corresponding

2
to the projection of r = (rl,rz,rB) onto the plane x = 0 of a

reference system moving with the aircraft. This is accomplished



—iwrl/U
by inserting the phase delay factor e ; where the velocity

of the aircraft is taken as U= (-U,0,0) with respect to a fixed
reference system. Then

- —iwrl/U

H(r,f) = e H(r,£f) (2.1)
where the tilde signifies that the phase is referenced to the
plane x = 0 of the aircraft system. Since an aircraft is usually
a bilaterally symmetric structure, it is also customary to employ
frequency response functions corresponding to symmetric (+} and
antisymmetric (~) input configurations. If a prime is used to
denote reflection of a vector through the plane ¥ = 0, then the
two input configurations correspond to unit inputs simultaneously
applied at r and r’ along the normalwash directions represented
by the unit vectors m(r) and n(r’) shown in Figure 1, The result-

ing frequency response functions are then given by
ot ~ ~
H (r,f) = H(r,£) £ H(r',f) (2.2)

Naturally, symmetric and antisymmetric input configurations tend
to excite responses of corresponding symmetry only. The total
response of the structure is cbtained by superimposing the sym-

metric and antisymmetric responses,

2.2 THREE-DIMENSIONAL TURBULENCE

The three-dimensional gust velocity field may be resolved
into two independent subfields, one symmetric, and the other

antisymmetric with respect to the midplane of the aircraft. The



-n{r’) = -n'{r)

Figure 1. Unit Directional Vector Pairs Corresponding to
Symmetric (+) and Antisymmetric (-) Normalwash

Input Configurations



subfields have the useful property of selectively exciting only
symmetric and antisymmetric responses, respectively. This pro-
cedure ultimately results in a considerable simplification of
the response analysis according to the method of Reference 2.

Let w(r,t) represent the gust velocity at point r and time t.
Employing the primed vector notation to denote reflection through
the plane ¥y = 0, the symmetric (+) and antisymmetriec {(-) subfields

are given by
vir,t) = fulr,t) £ 0(r',t)] /2 (2.3)

A geometrical construction illustrating the decomposition process
is shown in Figure 2. The original gust velocity distribution is

restored by superimposing the respective subfields. Thus,
uir,t) = v (r,t) + v (r,t) {2.4)

Figure 3 shows the result of applying the decomposition pro-
cess of equation (2.3) to an assumed three-dimensional gust velo-
city distribution. The ccordinate system used in the decomposi-
tion is that of the aircraft shown in silhouette. A front view
has been chosen for simplicity. Consequently, the longitudinal
component of turbulence is not visible. Notice that the gust
input distributions resulting from the symmetric and antisymmetric
subfields, are such as to induce aircraft responses that are
correspondingly symmetric and antisymmetric, respectively. Fur-
thermore, we see that symmetric and antisymmetric responses are
induced by both vertical and lateral gust inputs in the 3-D turbu-

lence description.
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TOTAL 3-D GUST VELOCITY

VERTICAL COMPONENT VERTICAL COMPONENT
T + b e,
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Figure 3. Decomposition of a Three-Dimensional Turbulence

Velocity Field



The dimensionality of the turbulence description refers to
the number of position coordinates upon which the gust velocity

is assumed to depend. The usual convention is given by

[ w(t) 0-D
wix,t) 1-D
uir,t) = ¢« {2.5)
U(fort) 2-D
\ u(x,vy,z,t) 3-D

Less common 1-D descriptions involve replacement of x by v or =.
Similarly, by replacing x,y by v,z or x,z, the remaining 2-D
descriptions are obtained. It is important to recognize that the
dimensionality of the turbulence field does not depend upon the
number or identity of gust velocity direction components, uj.,up Or
Us which may be included in the aircraft response description.

Figure 4 shows the result of applying the decomposition pro-
cess to the conventional 2-D turbulence description of equation
(2.5). Notice that the resulting turbulence field permits no
gust variation relative to vertical position and is rigorously
applicable only to aircraft whose aerodynamic surfaces are coplanar.
Consequently, in a strict sense the 2-D gust model is not appro-
priate to the T-tail aircraft shown in the figure.

Figure 5 shows the result of applying the deccmposition pro-
cess to the conventional 1-D gust model of equaticn (2.5). Notice
that no gust variation relative to either vertical or lateral posi-
tion is permitted. Furthermore, vertical gusts excite only sym-
metric responses and lateral gusts excite only antisymmetric res-

ponses, in agreement with current 1-D analysis procedures.
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Figure 4. Decomposition of a Two-Dimensicnal Turbulence

Velocity Field
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TOTAL 1-D GUST VELOCITY
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LATERAL COMPONENT LATERAL COMPONENT

Figure 5. Decomposition of a One-Dimensional Turbulence

Velocity Field
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2.3 NONREDUNDANT SPACE DOMAIN FORMULATION

The response power spectra, ¢(f), contain the essential infor-
mation required to evaluate the gust response of an aircraft,.
According to the space domain formulation derived as equation (A-5)

of Appendix A,
p(f) = fH*(r,f)-cb(s - r,f)*H(s, £)drds (2.6)

where @ = CDlli i+d>22”+d>33kk +®12(ij+j |)+¢>13(I k+k i)+¢23(j k+k j)

The integrations indicated above are performed over the aero-
dynamic surfaces, and the asterisk denotes the complex conjugate.
H(r,f) is the vector frequency response function whose components
represent the responses to unit backwash, sidewash and upwash,
respectively. The nine-component cross spectrum tensor, $(s-r ,£f),
between gust velcocities measured at the two input points is written
as a dyadic to permit the familiar methods of vector manipulation
to be employed. The dot symbol signifies scalar multiplication,
so that the indicated pre- and post~ multiplication of the cross
spectrum dyadic by the wvector freguency response function results
in a scalar integrand.

Equation (2.6) can be reduced to nonredundant form by follow-
ing the procedure derived in Reference 9. To begin with, the

definition of H(r,f) in Paragraph 2.1 implies that
H{(r,£f) = H(r,£)n(r) {2.7)

where H(r,f) is the frequency response function associated with

normalwash, and n(r) is the unit vector in the normalwash direction.

13



Substituting this result into equation (2.6) vields
p(f) = JfH*(r,f) v(r ,s,f)H(s,f)drds (2.8)
where ¥(r ,s,f) = n(P)P(s-r,f) n(s)

¥ is the gust normalwash cross spectrum, since it represents the
cross spectrum between those components of the gust velocity which
are measured in the normalwash directions at the two input points.
Equation (2.8) achieves a nine~fold reduction in computational
effort, since the integrand contains one term as compared to nine
in equation (2,6).

Further simplification is gained by introducing the frequency
response function whose phase is referenced to the projected input
point according to eguation (2.1). 8ince the corresponding gust
normalwash cross spectrum must also be referenced in phase to the
plane x = 0, the associated gust velocity cross spectrum tensor is
no longer a function of the longitudinal separation between input

points, so that

¢ () f_"fi*(r,f) T(r , s,f)H(s,f)drds (2.9)

nir): O(s - ¥,£)en(s)

]

where ¥(r ,s,f)

The gust velocity cross spectrum tensor can be further reduced
by expressing it in a new reference frame obtained by rotating the
aircraft coordinate system about the x axis so that the new y axis
is parallel to s - ¥,as illustrated in Figure 6. The vertical com-
ponent of the transverse separation vector is eliminated by the

rotation, leaving only a lateral separation of magnitude Is - r| in

14
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the new coordinate system. Displaying the spatial variables expli-
citly and denoting the new coordinate vectors and the representation

of the tensor in the new reference frame by an overbar, we obtain

®0,y,z,£) = $(0,g9,0,f) (2.10)

where ® =& ii-f-&; ii+‘5 El-(+512(71+fi)

and Y = 85 - rps 2 = S3 - r3, g = (y2 + 22)1/2

We note that the tensor reduces to only four distinct non-zero com-
ponents in the new reference frame. These components correspond to
the four basic velocity configurations shown in the figure and are
functions of only two scalar quantities: the frequency, £, and the
transverse separation between input points, g. Analytical expres-
sions for the four tensor components are derivable for any of the
common isotropic turbulence models such as the Dryden or von Karman.
A detailed discussion of their properties is presented in Section
IV. The coordinate vectors of the rotated reference system are
given by

=1 = (§-TF)/|s - ¥ k= Tx]

e |

il
il

(yj + zk)/q (-zj + vk /q (2.11)
and the Cartesian components of n(r) can be written

nl(l') = nie)-i n2(l') = n(r)-j n3(r) =nir).k (2.12)

For an input point ¢’ in the negative y half-space, one may ob-

serve that r!

5 = ~r, and nz(r’) = -n,(r). The remaining components

16



of the normalwash vectors at r and r’ are identical, since the
aircraft is symmetric about the plare v = 0.

Substituting equations (2.10) through (2.12) into the expres-

sion for the gust normalwash cross spectrum in (2.9} yields
V(r.s,£) = ®;,(q,f)n;(F)n,(s) +

[3,,(a:5) - By5(a, 0] [yny () + zny (0] [yn, ($)+ zny(8)]/a° +

P44 (q,E) [0, (F)n,(s)+ n3(r)n3(s)] +

Elz(q,f){nl(r)[ynz(sn zn  ($)]+ ny(s)[yn, (r)+ zn3(r)]}/q (2.13)

( 2 2)1/2

where y = s, - T Z =8_,—-r v© + z

2 2’ 3 30 97

The next reduction of the space domain formulation is accom-
plished by intrecducing into eguation (2.9) the freguency response
functions defined by edquation (2.2) and illustrated by Figure 1.
Although these functions are referred to a single input point r,
they are associated with symmetric and antisymmetric input configu-
rations which include r’, so that the double surface integral may
be confined to one side of the y = 0 plane of symmetry. This
will be indicated by restricting the region of integration to
Ty Sy > 0. The net reduction in computation is two-fold, since
the two symmetries must be treated separately.

The symbol $i will denote the gust normalwash cross spectra
associated with symmetric (+) and antisymmetric (-) input config-
urations. Each is egqual to the sum of the four ordinary gust
normalwash cross spectra which relate the gust normalwashes be-

tween single points belonging to input configurations of like

17



symmetry, as shown in Figure 7. Then

Frr,s, £) = [(Vir,s, 6)+%(e" 8", 6) 1T 5, 6)+T(r ,8,£)] /4

[(F(r,s,0)2¥(r,s,£)]/2 (2.14)

where division by four accounts for the fact that only half of the
gust wvelocity configuration for each symmetry is available accord-
ing to equation (2.3). It may be deduced from symmetry considera-
tions that equalities exist amonyg the four ordinary cross spectra
in equation (2.14), such that they may be combined and reduced to
two, as shown,

When the above substitutions have been made, eguation (2.9)

may be replaced by
S(£) = ¢T(£) + ¢ (£) (2.15)

where ¢*(f) = fﬁi*(r,f)'\p“i(r . 5,60 (s, £)aras
r2,52>0

2.4 PANEL SUMMATION FORM

A further two-fold reduction in computation can be derived
from the fact that interchanging the input points in the integrand
of equation {(2.15} 1s equivalent to replacing the integrand by its
complex conjugate. However, since the result is awkward to express
as a continuous integral, it is expedient at this point to pass to
the panel summation form of eguation (2,15) by defining the dis-
crete frequency response functions

HE(f) = fﬁ‘i(r,f)dr m
m
panel m

1,....N {2.16)
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where N is the total number of symmetrically located pairs of aero-
dynamic surface panels into which the aircraft has been divided

for computation. The corresponding gust normalwash cross spectra
depend upon panel pairs m and n, whose positive y members are

assumed to be located at r and 8§, respectively.
% &t
\Pmn(f) =¥ (r,s,f) (2.17)

Applying these definitions to the integral formulation and sup-

pressing the fregquency variable for brevity yields

I+

=1 m mn n mn n m mn n

n=1 n=1

N

= Z‘iHH*lz\p- +2 Zl[Re(H+*Ht)Re(‘I'" ) =Im (BE*ui) I (92 )]} (2.18)
n=

2.5 GUST VELOCITY COHERENCE TENSOR

The gust velocity coherence tensor, I, is defined by normal-
izing each component of the gust velocity cross spectrum tensor in

the fashion:
_ Eb 1/2
rlj(r,f) -—rbij(r.f)/ i(f)cbj(f)] (2.19)
where Cbi(f) = Cbii(o )

¢E is the power spectrum of the ith gust velocity component, since
it represents the cross spectrum between like Cartesian components

at zero separation distance. According to equation (2.19),

- 1/2
b, (r £) = rij(r,f)[cbi(f)cbj (£)] (2.20)
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Thus, each component of I' serves to separate the coherence and
power spectral characteristics of the corresponding component of
® into two factors. Moreover, since the convenient tensor trans-
formation properties described by equation (2.10) hold for ' as

well as @, by applying (2.11) and (2.12), we obtain

P(s-r,f) = T(q,f) (2.21)
where

— —_ 2 - — — 2 — —_
= ’ = + -r_), T__ =T + r__-r
Ty = Tpqr Tyy = D3t/ (T, 7T ) 33 = Ty37 {2/ (0,0

— - 2 - —
Ty=Tpy = /)Ty, Iy =Ty = (2/@)Ty,, Tyo=Ty, = (yz/q ) (T),-Ty,)

y=8 ~-r zZ=8S_-r q = y2 + z2 1/2
9 5! 3 3° ( )
Equation (2.20) is applied in Section IV to develop a convenient

tabular procedure for evaluating the components of @ contained

in equation (2.13). Egquations (2.20} and (2.21) are utilized

in Paragraphs 2.6 and 2.7 to define response transfer functions
and cross transfer functions for the general case of three-dimen-
sional turbulence. These functions are analogous to those which
occur in one-dimensional gust response analysis and can be shown

to reduce to them in the small aircraft 1imit (Reference 2).

2.6 TERANSFER FUNCTIONS

An alternative formulation of equation (2.15) may be derived
which extends the concept of the conventional transfer function to
three~dimensional gust response analysis. By analogy with equa~

tion (2.14), define symmetric and antisymmetric gust normalwash
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coherence matrices
~t ~ ~
Bl (r,s,f) = [Gij(r,s,f) + Gij(r',s,f)]/2 {(2.22)

where Bij(r,s,f) = ni(r)I‘ij(s - r,f)nj(s)

6ij("s'f) represents element ij of the gust normalwash coherence
matrix, and egquals the coherence between normalwash components i

and j measured at r and §, respectively, and referenced in phase

to the x = 0 plane. Substituting equation {(2.22) into (2.15)

vields

3
o () = Z{ T2 D, () + 22'11 Lo [o, ()@, (0] Y2 (2.23)
ji=1

where Ti‘?(f) = fH’ (r,f)[e“ (r,s,£) + 9‘ (v, s,f]H‘(s,f)drds/z
J rz,s >0

Ti§ represents element ij of the symmetric and antisymmetric re-
sponse transfer function matrices for three-dimensional gust.
Notice that interchange of subscripts is accomplished in the in-
tegrand to reduce the summation to i £ 7.

Reverting to panel summation form, we replace 6§j(r’s’f) by
eljmn(f)’ where panels m and n are located at r and $, respect-
ively. Then equation (2.23) reduces to

o2t 1/2 24
3 TSP + 22’1‘ [‘1"3] (2.24)
N (2 3
where T2 E 3]}15] (85 3pn + ©5inn)/2
+ Z [Re(H i )RE(eljmn + ejj-:imn) - Im(H k: )Im(ezj]'nn * eSlmn)]

m=1

in analogy with (2,18).
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2.7 COUPLING BETWEEN GUST COMPONENTS

Only in the 3-D gust response formulation is the coupling
between gust components fully represented. This is illustrated
as follows. Let Uj denote the RMS response amplitude due to gust
component j, and let pij represent the correlation coefficient
between responses due to gust components 1 and j. By definition,
]pij|£ 1, and the total mean square response amplitude, az, equals

the integral of the response power spectrum; i. e.,
2 O
e = _/(;¢(f)df (2.25)

Substituting from equation (2.23}), taking the square root, and

applyving the above definitions then yields

2
U=(ai+az+02+2o’ap + 20 o p +20’0‘P)l/

3-D (2.26)
3 172712 2:3°23 371731

2
2 f“’ 2+ 2-
where o} = O[Tjj(f) + Tjj(f)]¢>j(f)df

0
and o, ; = j;) [Tf*j’(f) + Tfj(f)][@i(f)cbj(f)]lfzdf/alaz

It can be shown that when the 3-D formulation is reduced to
the conventional 2-D formulation by assuming that the vertical
dimensions of the aircraft are negligible, only coupling between
responses due to longitudinal and lateral gust components remains;

i.e.,

1/2

o = (ai + az + ai + 20 06 p ) 2-D (2.27)

12 12

Moreover, even this coupling is irrelevant if response to longitu-

dinal gust is not included in the aerodynamic model.

23



Finally, if the 3-D gust response formulation is reduced to
the 1-D turbulence limit by assuming that the transverse (vertical
and lateral) dimensions of the aircraft are small compared to
those wavelengths which are present in the spatial distribution
of gust velocity and which excite significant structural responses,
then the power spectrum of the combined gust response equals the
sum of the power spectra due to the individual gust components.

The RMS amplitude of the total response then reduces to

2

c = (02 + 02 + 62)1/2

1-D (2.28)

2.8 CROSS TRANSFER FUNCTIOCNS

In dynamic response testing, it is common practice to install
a gust probe on the aircraft for the purpose of obtaining time
histories of one or more components of the gust velocity during
flights through turbulence. Since the aircraft is also instru-
mented to obtain response time histories, statistical comparisons
between outputs and inputs may be accomplished. These comparisons
often assume two forms. In one case input and output power spectra
are computed. These are related by transfer functions according to
equation (2.23). In the other case, cross spectra between inputs
and responses are computed, so that an analogous expression involv-
ing cross transfer functions is required (Reference 10).

Instead of correlating a response with itself, as we did in
equation (A-2) of Appendix A, we could cross-correlate it with
component i of the gust velocity measured by a probe located at

point p. Straightforward application of the preceding methods
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vields a corresponding cross spectrum, ¢i(f). By analogy with
equation (2.22), define symmetric and antisymmetric probe

coherence matrices

Ni _ ~ r~ i
Ajy(P, 8, 5) = [Aij(p.s,f) E (p,s, £)]/2 (2.29)

A,
1]
where Kij(p,s,f) = eirij( s-B,f)nj(s)

and €7 = e5 = 1, €, = p2/lP2'

Klj(p,s,f) represents element ij of the probe coherence matrix,
and equals the coherence between gust velocity component i mea-
sured at p, and component j of the normalwash measured at s, where

both components are referenced in phase to the x = 0 plane. Then

6 (£) = ¢ (£) + ¢ (F) (2.30)
1 1 1
. _ 2wifp sy 3\ 4 1/2
where ¢ (f) = e 2: H 5 (£)[®; (£)@5(£)]
j=1
+ ~ ot
and H  (f) = fA..(p.s,f)H (s,£)ds
ij ij
g >0
2
H?. represents element ij of the cross transfer function matrices

1]

which relate to the symmetric (+) and antisymmetric (-) parts of
gust component i measured at the prohe, that porticon of the re-~
sponse which is of corresponding symmetry, and which results from
the specific action of gust component j upon the entire aircraft.
If we let ph—+ P in eguation (2.29), then by virtue of (2.21}),

we obtain

AT =AY 2R, =g (2.31)
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so that ¢1(f) = ¢;(f) = ¢;(f) = 0, Therefore, when the gust probe

is located in the plane of symmetry, the response cross spectra
with respect to longitudinal and vertical gust velocity originate
only from symmetric gust input, and the lateral cross spectrum
originates only from antisymmetric input.

The panel summation equivalent of equation (2.30) is obtained
*

ljon(f) , where 0 represents the probe

. ~t
by replacing Aij(p"’f) by A

location p, and panel n is located at s8. Then

. 3 + 1/2
t _ 2xifp,/U =
$: = e 1 Z Hy 5 [d:id:nj] (2.32)
1=1
+ N + %
where Hij = Zl AijOan
n=
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SECTION III

AIRCRAFT DESCRIPTION

The freguency response functions for loads and deflections
constitute from a design standpoint the essential dynamic response
description of an aircraft. These are obtained by first solving
the governing equation, which 1s most conveniently cast into matrix
form, corresponding to the aerodynamic and structural representa-

tion of the aircraft as a finite number of discrete elements.

3.1 GOVERNING EQUATION

The dynamic response of an airplane flying through turbulence

is described by the matrix equation of the balanced loads:
(M {%}+ [®k]{x}={c%}+ {1} (3.1)

mass matrix

where [M]
[x]

{x}

{z%}

{r"

and the dot denotes a time derivative.

stiffness matrix

L

incremental deflections (column matrix)

loads due to incremental deflections

gust loads

The time dependence of the loads and deflections may be taken
as elwt, where w 1s the excitation frequency. This entails no
loss of generality, since the total response is eventually obtained

by integrating over the range of excitation frequencies.} Then

{ ¥ }= - w? {X } (3.2)
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and it is possible to write
{rX}=[p]{x} (3.3)

where [D] is a function of w and incorporates all terms involving
time derivatives of {X} . In analogy with equation (3.3) we may

also write
{1 =1c){w} (3.4)

where {w} contains the gust normalwash measured at the reference

point of each aerodynamic surface panel.

3.2 MODAL ANALYSIS

The free wvibration mode shapes which comprise the columns of
the modal matrix [@] are determined by solving equation (3.1) in
*)

the absence of the loads {L and {LW} . The result may be written

[x][&] - [M1[e] [a] = o (3.5

where the modal eigenfrequencies are contained in the diagonal
matrix EazJ. The eigenfrequencies of the rigid body modes appear
as zeros in the matrix. It is easily shown that the modes are

orthogonal with respect to [K] and [M] so that

[x] = @H] [w] (3.6)
[2]7 [x] (]
(21" [¥][¢]

where EEJ

and (]
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are the generalized stiffness and mass matrices, respectively, and
the superscript T denotes the matrix transpose.
Since the modes form a mathematically complete set, {X} may

be expanded by linear superposition of mode shapes; i.e.,

{x}=[2]{qa} (3.7)

The final step of the solution consists of determining the modal
amplitudes {q} which will satisfy equation (3.1) when {LX} and
{Lw} are reinserted.

Accordingly, by substituting eguations (3.2), (3.3) and (3.7)
into (3.1), multiplying by [¢ﬂT and then applying equation (3.6)

we obtain the modal or generalized form of eguation (3.1):

Fu@2-2)dq} = {0%}t + {o%} (3.8)

= generalized loads due to deflections = [D] {q}

{
{Qw} = generalized gust loads = [é]T[G] {w }

and [5] = [¢)°[p][2]

transposing {QX} to the left hand side of the equation and solving

for {q} then yields

{a} = 817 {o"} (3.9)

where [B] = [\ﬁ(az ~w?)d - [D]

and the superscript -1 denotes the matrix inverse.

3.3 DETAILED SOLUTION

The terms {LX} and {Lw} in equation (3.1) must be examined
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further to provide an explicit representation of structural damp-
ing, aerodynamic induction, and control system effects in equation
(3.9}).

Conventional practice assumes that the structural damping in
the modes is proporticnal to and 90° out of phase with the gener-

alized elastic loads [#]T {Lg}, where

= (3.10)
{Lg} = (k] {x}
and the subscript E signifies elastic response. Then by virtue of

equations (3.6} and (3.7), the generalized structural damping matrix

may be written

ifed [#)" {1} = i[Fa’] (3.11)

where ng is a real matrix containing the structural damping coeffi-
cients for each mode.

Let {2%) and [a"] denote the aerodynamic induction matrices
which relate aerodynamic loads to incremental deflections and gust
normalwash, respectively.

Automatic control systems may respond to either gusts or de-
flections according to the sensors employed. Deflections in this
case include elastic loads, since a direct dependence exists
through equation (3.10). A sensor in the form of a differential
pressure gust probe mounted on a boom would be sensitive to both
gusts and deflections, for example. Accordingly, let [SX] and [SW]
represent the matrices which relate aerodynamic loads resulting
from control surface deflections, to incremental deflections and

gust normalwash, respectively, as detected by sensors.
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Referring to equations ({3.3) and (3.4) we may now deduce that

[5) = ifMa?g] + [3¥] + [E¥] (3.12)
where [5%] = [2]T [s*] (2]
and [2*] = (#]7 [a*] [¢]
Similarly,
(6] = [a"] + [s"] (3.13)

Substituting equations {(3.12 and 3.13) into (3.8) enables us to

write (3.9) as
la} = (5770 fo¥ 310
where [B] = [M(u?(1 + ig)-u®)] - (z%] - [6%]

aa o= [#17([s¥ ]+ [a"]) {w}

3.4 LOADS AND DEFLECTIONS

Elastic loads associated with design calculations will be
indicated by affixing a prime, to distinguish them from the elas-
tic loads we have so far considered. The associated stiffness
matrix will also be primed, so that in analogy with eguation

(3.10),
{ug} = [x'] {x} (3.15)

Substituting equation (3.7) into (3.15) and recognizing that only

31



the elastic modes contribute, we obtain

{Lgt = [x'] [95] {agt (3.16)

Loads and deflections are computed by substituting into equa-
tions (3.16) and (3.7), respectively, the modal amplitudes obtained
by (3.14). 1In practice, as many modes are used as 1s necessary to
represent the structure over the range of excitation frequencies
of interest. The upper limit of this range is dictated by the

rapid fall-off of the gust input spectra at higher fregquencies.

3.5 FREQUENCY RESPONSE FUNCTIONS

The frequency response function H(r,f) introduced in Para-
graph 2.1 represents the complex amplitude ratio between a given
structural response and a simple harmonic normalwash occurring at
point F. However, the concept of a frequency response function
need not be restricted to excitations applied at a point, but may
be extended to include other inputs such as generalized forces or
modal deflections., Under the discrete element formulation, each

such frequency response function may be arranged in the form of a

single row of elements in an influence coefficient matrix. These
matrices will be denoted ly the generic symbol [H] accompanied by
two subscripts which identify, respectively, the type of response
and the input to which it is being related. This notation allows
us to conveniently summarize for later use the results contained

in equations (3.7), (3.13), (3.14) and (3.16). Thus,

{x} = gyl {a} = [age] (v (3.17)
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[e]

[, ] [y, ]

where [qu]

[u ]

Xw

[817' [l [c]

and [8_ ]

qw
Similarly,
{rgt= [ap ] fagt = [By,,1iw} (3.18)
wnere [ng,] = (1, 1[5 ]

ana [n 1=[x][e]

Lq

3,6 SYMMETRY CONSIDERATIONS

If the aircraft is bilaterally symmetric, it is both customary
and expedient to compute the symmetric and antisymmetric responses
separately, and then to combine them. This procedure is analogous
to the treatment of the turbulence field in Section 1Y, so that
the matrices appearing in Section III may be associated with either
symmetric or antisymmetric responses. Similarly, the symmetry of
the response will be specified by affixing a (+) or (-) super-

script to the matrix.
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SECTION IV

THREE-DIMENSIONAL GUST RESPONSE

The essential statistical information required to compute
the gust design parameters of an aircraft subject to stationary
random inputs is contained in the cross spectral densities of
the resulting responses. Procedures for obtaining the response
cross spectra will be developed by employing the methods derived
in Reference 9. The necessary ingredients consist of an aircraft
description in the form of the frequency response functions de-
rived in Section III, and a representation of the gust environ-
ment developed in Section II and based upon the fundamental cross

spectral density tensor of the turbulence velocity field.

4.1 RESPONSE CROSS SPECTRA

In accordance with the structural symmetry considerations
discussed in Paragraph 3.6, let {Xi} represent a set of symmetric
or antisymmetric deflections. The cross spectral density between
two responses measured on the aircraft may be taken as the product
of one of the response amplitudes with the complex conjugate of
the other. Thus, a matrix containing the cross spectra between

the deflections is generated by the expression

[e2] = {x*"} {x*}T (4.1)

where the asterisk indicates the complex conjugate. The matrix

of total cross spectra is obtained by summing the symmetric and
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antisymmetric cross spectra. Thus,
- + -
[0 ) = [e5, 1 + [o,,] (4.2)

The diagonal of the matrix contains the response power spectra,
since it consists of cross spectra between identical responses.
It may also be observed that the transpose of the matrix is equal
to its complex conjugate. This constitutes the Hermitian pro-
perty common to all cross spectral matrices, and implies that
nearly half of the matrix is redundant, since every element -on
one side of the diagonal is the complex conjugate of its trans-
pose element.

The response power spectra, which were discussed in Para-
graphs 2.3, 2.4 and 2.6, are of primary importance. However, as
shown here, the generation of response cross spectra requires
little additional effort. The power spectra of other responses
such as local stresses, which can be linearly related to the
calculated responses, may be easily obtained from the calculated
response cross spectra if the associated linear coefficients are

avallable.

4.2 MODAL CROSS SPECTRA

+ .

Let [¢;q] and [W;w] dencte the cross spectral matrices of
the symmetric and antisymmetric modal deflections and normal-
washes, respectively. Substituting from equation (3.17) into

(4.1) yields

x t1rat 10 + 7 T
[o5 1= [u2i] [ a1 = [mg0] [y rTlng ] (4.3)
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where [f;z]= {q*t}{qif = [H;;] [Tiw] [Héw]T
ana  [g]= fort}{tf

Notice that the specific portion of equation (4.3} which estab-
. t . .

lishes the diagonal of [¢§X] corresponds identically to (2.18).

Similar expressions for the elastic load cross spectra may be

written based upon equation (3.18). Thus,
* t * 9T 1% t1ryt 1T
TLIAT LR = [H} v 4.4
[op] [HLq] [¢qq] [HLq] [a] ] [v> 1087, ] (4.4)

The above egquations contain two possible procedures for com-
puting loads and deflections, Since the two methods will neces-
sarily yield identical results, a choice may be made on the basis
of computational efficiency. Thus, it is easily verified that if
the number of responses to be analyzed is significantly greater
than the number of included modes, then intermediate calculation
of the modal cross spectrum matrix in equations (4.3) and (4.4)
may be more economical than the direct application of the normal-
wash cross spectra, particularly since [Hiq] and [Hiq] are indepen-

dent of frequency.
4.3 NONDIMENSIONAL COHERENCE TENSOR

The coherence properties of the three-dimensional turbulence
field are described by the gust velocity coherence tensor, r,
which was introduced in Paragraph 2.5. Since the tensor is sym-
metric, it has six distinct components, in general. However, by
virtue of the rotational transformation given by equation (2.21),

all nine components of the tensor may be expressed in terms of

36



the four distinct components of [' in the rotated coordinate
frame. Furthermore, when expressed in the rotated system, the
tensor reduces to a function of only two scalar variables: the
transverse separation distance, g, and the frequency, £. The
scale of turbulence, L, appears as an additional parameter in the
tensor formulations derived from the Dryden and von Karman spec-
tral models for isotropic turbulence. However, the dependence
upon L can be eliminated by expressing the two variables in a

dimensionless form consisting of the distance in scale lengths,
n = q/L (4.5}
and the frequency in radians per scale length,

k = 2rfL/U (4.6)

The four distinct components of [’ may then be written in the

nondimensional form,
I‘ij(q,f) = Fij(nL,xU/er) = slfij(n,x) (4.7)

The gust velocity power spectra, @i(f), may also be written in
nondimensional form by normalizing them to the mean sgquare value,
(ui) , of the corresponding gust velocity component, and express-

ing them as functions of the dimensionless frequency. Thus,

2
¢i(K)dx = @i(f)df/ (ui>, 50 that
P, (f) = (27L (ui) /0) e, (k) (4.8)

An expression for the four gust velocity cross spectrum tensor

components appearing in eguation (2.13) is obtained by substituting
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(4.7) and (4.8) into (2.19).

2
dlij(r,f) = (27L (ui> /U)‘/’ij(n,x)[wi(x)ioj(x)] 172 (4.9)

The analvtical forms of the two distinct gust velocity power
spectra and the four distinct ccherence tensor components in the
rotated system are derived in Reference 9 for both the Dryvden and
von Karman spectral models. They are presented below in nondimen-

sional form.

Dryden Spectral Model:

Let p = n(l+x2)l/2, and Kn denote the nth order modified

Bessel function of the second kind. Then

(Pl(x) = 2/1r(l+x2), ‘Pz(x) = P3(x) = (l+3x2)/1r(l+x2)2 (4.10)
and ¢11 = uKI(u)-uzKD(#)/2
2.1/2
-i¢21 = xuzKl(p)/21/2(1+3x ) /

(4.11)
¥y = ,uKltn)-#zKO () / (1+34%)

-
1
<
|

= uzKo(u)(1+x2)/(1+3x2)

von Karman Spectral Model:

In the ven Karman case, it is convenient to introduce a medi-

fied scale of turbulence, L = LI(1/3)/T(1/2)T(5/6) =~ 1.339L, and

to define the corresponding ¥ and . Then

0 (k) = 2 /7 (1+x%) 276 e, (x) = eilx) = (148 x2/3) /x (1+42) 117 (4 12
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~5/6 | -
1
-iy_ . = BEﬁll/GK (ﬁ)/21/2(1+8?2/3) &
21 5/6
(4.13)
- B[5/6 5y -z 11/6 7)/(1+872/3
by = BLEY Pk =BT PRy B/ /3)]
_11/6 - _2 _2
- = B K 1+4x°) /(1+8x°/3)
,;,22 ¢,33 7 1/6(“)( k) /(1+8%

where B = 21/%/r(5/6) ~ 0.9944.

The gust velocity power spectra and coherence tensor com-
ponents given by equations (4.10)-(4.13) are plotted in Figures
8-17. Notice that all four coherence tensor components are real
except ¢12, which is imaginary. This indicates that a r/2 phase
difference exists between the coherent portions of the longitudi-
nal and lateral gust components. Similarly, ¢33 exhibits a small
negative value at low frequencies and large separation distances.
Therefore, coherent vertical gust components have a phase differ-
ence of » under these conditions. It may be recalled that intro-
ducing a longitudinal separation merely imposes a further differ-
ence in phase, and has no effect upon the modulus of the coherence.

The one-dimensional turbulence field is characterized by com-
plete coherence between like Cartesian gust components and complete
incoherence between unlike components, regardless of frequency or
separation distance. This corresponds to equating ¢ij to unity if
i =3, or zero if 1 # j. One-dimensional turbulence is approached
in the 3-D case by letting « —0 and % —+»0. This corresponds to
low frequency and small separation distance. One may observe that
the 1-D turbulence condition is approached in Figures 9-12 and
14-17 by advancing toward the lower left hand corner of each coher-

ence plot.
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For dynamic response applications, the coherence tensor
components given by equations (4.11) or (4.13) may be stored in
compact tabular form for rapid digital computation of the gust
velocity cross spectra according to (4.9).

Examination of Figures 8-17 shows that although the Dryden
and von Karman power spectra differ significantly, the contour
plots of the corresponding ccherence tensor components are
almost indistinguishable. Evidently, the coherence properties of
the turbulence field are relatively insensitive to the specific
spectral distribution of gust velocities. This suggests the use
of a single representative set of tensor components in all three-
dimensional gust response calculations, including those in which
flight-measured gust input spectra are utilized. Recent atmos-
pheric measurements (Reference 11) have tended to yield power
spectra which agree with the von Karman form, indicating that the
tensor components given by equation (4.13) would be most appro-
priate for this purpose. The usual problem of estimating the scale
of turbulence from flight-measured spectra is obviated inasmuch as
dynamic response calculations are typically confined to the asymp-
totic range (n < 1< « ), where uncertainty in L merely shifts the
point (x,x) approximately along a contour line, thus having little
effect upon the value of the tensor component, This advantage may
be utilized even more directly by replacing the tensor components
by their appropriate asymptotic forms, which can be easily derived
in the limit as L becomes large, and which depend only upon g/,
where A= U/f, the gust wavelength. This result, which may be

termed the inertial range approximation, eliminates the need to
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specify L in evaluating the coherence tensor components.

Unless the transverse dimensions of the aircraft are small
compared to the scale of turbulence, three-dimensional effects
will prevail even at the lowest frequencies. This conclusion may
be established by reducing equaticns (4.11) and (4.13) to the low
fregquency limit, and is suggested by reference to the low fre-

guency range (x < 1) in Figures 9-12 and 14~17.

4.4 COMPUTATIONAL PROCEDURES

The aircraft description required for a response analysis
consists of the frequency response functions, Hi(f), defined by
equation (2.16). These functions are generated for panel pairs
n=1, ..., N, and for each of the required loads and deflections,
according to matrix equations (3.17) and (3.18), respectively. If
the number of responses to be calculated is much greater than the
number of vibration modes employed, then it is most efficient to
leave the frequency response functions factored into two matrices,
which relate the desired responses to the modal amplitudes, and the
modal amplitudes to the gust normalwashes, respectively, as shown.

The turbulence description for computing response power spec-—
tra consists of the gust normalwash cross spectra, W;n(f), defined
by equations (2.13), (2.14) and (2.17). Tables of the coherence
tensor components given by equation (4.13) are entered with the
nondimensional parameters defined by (4.5) and (4.6). The values
extracted from the tables are then substituted into equation (4.9)
to obtain the gust velocity cross spectrum tensor components re-

guired to evaluate the gust normalwash cross spectra.
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The response power spectra are obtained by substituting
H;(f) and.w;n(f) into the matrix equivalent of equation (2.18),
which is represented by (4.3) for deflections, and (4.4) for
loads. The method inveolving intermediate calculation of the
modal cross spectrum matrix, as explained in Paragraph 4.2, is
used if the Hi(f) is in the factored form described above.

If one wishes to utilize flight-measured gust spectra instead
of the analytical spectra defined by egquation (4.12), then egquation
(2.18} may be replaced by (2.24), which may be modified for greater
efficiency by allowing the summation over gust components to be
performed before the summation over panel pairs.

The turbulence description required for computing response
cross spectra consists of the probe coherence matrix, A;jOn(f)'
obtained from equations (2.21), (2.24) and (4.7). The response
bt

ij0n
equation (2.32}. This is a short calculation, since only a single

cross spectra are computed by substituting Hi(f) and A (£} into
summation is performed.

The RMS load amplitude, ¢, and zero crossing rate, NO’ are
required in fatigue design calculations and are obtained from the

response power spectrum. Thus,

v = [-[Oz(f)df]l/z (4.14)
Ny = 'gg(f)fzdf/a (4.15)

An alrcraft may be instrumented to measure simultaneous time
histories of gust components and structural responses during tur-
bulence encounters, as described in Paragraph 2.8. This provides

an opportunity to substantiate the analytical dynamic response
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model of the aircraft by comparing the conventional frequency-
dependent functions obtained from spectral analysis of the flight
data, with the equivalent functions computed from the analytical
model using the measured gust input spectra and applying the same
flight parameters. Such an analysis typically includes the flight-
measured transfer function,Ti(f), cross transfer function,ffi(f),

and coherence function, Ti(f), which are defined as follows.

1/2
T, (£) = [8(£) /@, (£)] / (4.16)
H (£) = &, (£) /9, (£) (4.17)
‘ri(f) = |¢i(f)|2/¢(f)¢i(f) (4.18)

Aerodynamic response to longitudinal gust is typically ignored
in conventional analytical models used in gust response analysis.
If this procedure is followed in the case of 3-D turbulence, then
the coherence tensor components ¢11 and ¢12 associated with longi-
tudinal gust are no longer required. Although this is likely to
have little effect on the overall length of the calculation, it
results in a considerable simplification of the equations used in
the analysis, since all terms associated with the longitudinal gqust

component are omitted.

4.5 ONE~DIMENSIONAL TURBULENCE LIMIT

It may be recalled that the gust reference direction is
taken normal to the aerodynamic input panel in defining the fre-
. +
dquency response functions, Hn(f). The frequency response func-

tions generated for a conventional one-dimensional gust response
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calculation are identical, except that an upwash is associated
with symmetric response, and a sidewash with antisymmetric re-
sponse, in keeping with the result shown in Figure 5. Furthermore,
if the 1-D analytical model allows response to longitudinal gust,
then a set of symmetric frequency response functions associated
with backwash is also required. The 1-D frequency response func-
tions are then summed over input panels to obtain a single cross
transfer function, Hi(f), for each gust component i.

Reference 9 shows that in the one-dimensional turbulence
limit, fifteen of the eighteen elements vanish in the 3-D cross
transfer function matrices, Hij(f}, defined in equation (2.32).
The three remaining elements reduce identically to the correspond-

ing l1-D cross transfer functions described above; i.e.,
BY.(£) = H,(£), Ho () = H,(£), HL (£) = H,(£) 1-D)  (4.19)
1148 = By (8), Hpy(£) = Hy(f), Hy () = Hy ( :

The squared transfer function matrix defined in equation (2.24)

reduces in a similar fashion, except that
2+ 2 2- 2 + 2
2o = |1, 0%, w20 = a0 |2t ={rm|? amp .20
The response power spectrum then reduces to
3 2
$(f) = J_L21|Hi(f)| @, (£) (1-D) (4.21)

This may be compared with the 3-D case given by equation (2.24).
Similarly, the response cross spectrum given by equation (2.32)

becomes

¢i(f) = Hi(f)dDi(f) (1-D) (4.22)
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4.6 TIMPROVEMENTS IN ATRCRAFT DESIGN AND ANALYSIS

The converse of the one-dimensional turbulence limit discussed
in Paragraph 4.5 corresponds to large » and «, which represent sep-
aration distance and reduced frequency, respectively. According to
equations (4.5) and (4.6), 5 = q/L and x = 2rfL/U. Therefore, one
may conclude that three-dimensional turbulence effects are impor-

tant under the following conditions:
o for aircraft of large transverse dimensions, q,

o 1in turbulence of small scale length, L, correspond~

ing to low altitudes,
o for high structural response frequencies, f,
o at low airspeeds, U.

Furthermore, it is obvious from geometrical considerations that
¢é3 is the most significant coherence tensor component in three-
dimensional gust response, since it represents the coherence
between laterally separated vertical gust components. Therefore,
the magnitude of 3-D gust response effects under given conditions
may be assessed by entering the contour plot of Figure 17 with the
corresponding values of 7 and x to obtain ¢33. If the resulting
value of the correlation tensor component proves to be appreciably
less than unity, then 3-D gust response effects may be assumed to
prevail.

It may be stated in summary, that the three~dimensional gqust

response procedure, as outlined here, is mathematically identical
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to the conventional one-dimensional method except for the follow-
ing two modifications, which do nothing more than account for the

transverse coherence properties of the 3-D turbulence field:

© The gust reference direction is taken normal to each
aerodynamic input panel in the 3-D case, thereby
resulting in only two sets of frequency response

functions, one symmetric and the other antisymmetric.

The conventional 1-D procedure is identical, except
that the gust reference direction is taken in the
longitudinal and vertical directions in the symmetric
case and in the lateral direction in the antisymmetric
case. This results in three sets of frequency response

functions if all three gust components are used.

0 Symmetric and antisymmetric normalwash cross spectra
between input panels are calculated in the 3-D case
in accordance with the isotropic turbulence model
upon which the gust input spectra used in the 1-D
case are based. This accounts for the transverse
coherence properties of the 3-D turbulence field.
The normalwash cross spectra and the frequency res-
ponse functions are then substituted into the quad-
ratic form represented by eguation (2.18) to obtain

the power spectra for symmetric and antisymmetric response,

In the 1-D analysis, each set of frequency response

functions is merely summed over input panels as described
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in Paragraph 4.5. Products of the squared modulus of
each sum and the corresponding gust input spectrum are
then added together to obtain the response power spec-

trum as shown in equation (4.21).

Two-dimensional gust response analysis, which was mentioned
briefly in Section I and Paragraph 2.2, will not be treated in any
detail here, since the 3-D gust response analysis reduces identi-
cally to the 2-D case when the vertical dimensions of the aircraft
become negligible. Furthermore, because lateral gust becomes un-
coupled, the 2-D calculation as usually performed is actually
longer than the 3-D. This follows from the fact that lateral
gust response is treated separately, and the quadratic form that
accounts for coherence between the remaining gust components is
not reduced in size.

Three-dimensional gust response analysis provides a single set
of lcad amplitudes and zero crossing rates for use in fatigue de-
sign, since coupling between gust components is accounted for in a
mathematically rigorous manner, as described in Paragraph 2.7.
Fatigue damage due to vertical and lateral gusts is often artifi-
cially separated in the 1-D analysis, The conventional 2-D analysis
is subject to the same limitation, even though it accounts for
ccherence between the remaining gust components.

The functions which are obtained by spectral analysis of
flight-test data, as described in Paragraph 4.4, are particularly
sensitive to the transverse coherence properties of the turbulence
field. Consequently, for aircraft of large transverse dimensions,

the discrepancy between test results and the parallel 1i~D analysis
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may hinder efforts to substantiate the analytical model. This
problem is avoided by employing the 3-D gust response analysis,
In fact, as explained in Paragraphs 5.2 and 5.3, the coherence
properties of the turbulence field may provide a means for vali-

dating the induction characteristics of the aerodynamic model.
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SECTION V

OUTLINE OF RECOMMENDED RESEARCH

Current gust design criteria specifications implicitly assume
that the atmospheric turbulence environment is three-dimensional,
and that it is isotropic in its coherence properties. For example:
(1) the power spectra of the gust velocities used as input to our
analytical models are derived from isotropic turbulence theory,

(2) gust criteria specifications used in aircraft design calcula-
tions typically assume that the vertical and lateral scales of
turbulence are equal, although RMS wvalues may be allowed to differ
at low altitudes, and (3) in deriving these criteria from aircraft
response records, a spanwise averaging correction is often applied
to account for three-dimensional turbulence.

Only in the gust response calculation itself are these assump-
tions customarily ignored. There the turbulence field is generally
taken to be one-dimensional, and the responses to vertical and
lateral gusts are separated. However, the assumption of a three-
dimensional turbulence environment i1s compatible with existing
criteria and design procedures. Moreover, no significant increase
in computational effort would be required to account for three-
dimensional turbulence in gust response calculations. As explained
in Paragraph 4.4, the calculation may be reduced to easily manage-
able size by use of the three~dimensional gust response method
introduced in Section IT.

The research plan outlined here is designed to achieve four

interrelated objectives: (1) implementation of three-dimensional
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gust response computational methods, (2) validation of these
methods by comparison with dynamic response test results,

(3} incorporation of these methods into current design proce-~
dures, (4) development of new methods and applications, includ-
ing treatment of aircraft response to turbulence conditions which

depart from current ideal assumptions.

5.1 IMPLEMENTATION OF COMPUTATIONAL METHODS

It is recommended that an efficient dynamic response computer
progranm be developed to calculate aircraft loads and deflections
resulting from three-dimensional turbulence. The program should
furnish response power spectra, as well as RMS amplitude ratios
and zero crossing rates used in fatigue design calculations. The
program should also be capable of furnishing the various statis-
tical functions of freguency that correspond directly with those
obtainable from dynamic response test of an aircraft employing a
gust probe. These include flight-measured transfer functions,
cross transfer functions and coherence functions. The program
should be capable of accepting flight-measured gust velocity power
spectra as input for comparison with flight results, as well as
being able to generate the Dryden and von Karman analytical spectra
for use when the RMS gust velocity and scale of turbulence are
furnished. The gust velocity coherence tensor used in the calcu-
lation should be computed from stored tables according to both the
Dryden and von Karman turbulence models, so that comparisons can
be made. An option should be provided to compute the exact analy-

tical coherence tensor when the scale of turbulence is furnished,
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or to utilize the inertial range approximation when it is not.
The inertial range approximation was discussed in Paragraph 4.3.

The computer program would utilize the aircraft response
model developed in Section III, so that automatic control systems
could be included, and the number of vibration modes could be
easily adjusted. Modern, efficient eigenvalue methods such as
the QR transformation would be utilized to compute the wvibration
modes, so that the number of modes included would have little
effect upon the speed of the computation. 2An option would be
available to compute loads and deflections directly from the
normalwash cross spectra, or to compute the modal cross spectra
first, if a large number of responses are involved, Both methods
are contained in equations (4.3) and (4.4)., RMS amplitudes and
zero crossing rates for use in fatigue design would also be fur-
nished by the programn.

Doublet lattice methods would be applied to obtain three-
dimengional aerodynamic influence coefficients, and the new sub-
sonic kernel function formulation developed in Appendix B would
be employed to reduce computational effort by the use of tabular
interpolation. An option would be provided to reduce the aero-
dynamic influence coefficient matrices to a diagonal form which
is effectively equivalent to modified strip theory. This would
make it possible to establish the effects of the aerodynamic
model on the three-dimensional gust response calculation, as
mentioned in Section IV.

An optional breakdown would be provided showing the relative

portions of the calculated response quantities attributable to the
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various categories of gust input; i.e., vertical, lateral, coupled,
symmetric and antisymmetric. Options to reduce the turbulence
model to one and two dimensions would also be included so that
effects of dimensionality could be examined.

The computer program would be applied to analyze the gust
response of an existing aircraft for which pronounced three-dimen-
sional turbulence effects and combined vertical and lateral gust
responses could be expected. 2An airplane having a T-tail, wing
pylons and a large wing span would be ideal for this purpose.
Preferably, the analysis would be performed so that a direct com-
parison between corresponding analytical and flight test results

could be conducted as described in Paragraph 5.2.

5.2 VALIDATION BY FLIGHT TEST COMPARISON

Figure 18 outlines the sequence of calculations required to
compare results obtained from the analyvtical model with data de-
rived from dynamic response flight test measurements. The opera-
tions involved in processing the flight test data are indicated
on the left hand side of the diagram, while the remainder of the
diagram shows the computational sequence followed to obtain corres-
pending data from the analytical gust response model. The computer
program which incorporates the analytical model is described in
Paragraph 5.1.

The aircraft is assumed to be instrumented so that time his=-
tories of gust velocity components as well as response guantities
such as loads and accelerations can be measured during flights

through turbulence. The figure indicates that the digitized time
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histories of the gust velocity components measured by the gust
probe are corrected for aircraft motion by gust reduction. The
measured time histories are then spectral analyzed to obtain the
power spectra of both the responses and the gust components. Cross
spectra between responses and gust components are also calculated.

Corresponding response power spectra and cross spectra are
generated by the analytical model program as described in Section
IV, using as input the gust power spectra obtained from the test
data, and assuming the average conditions which existed during the
test flight. Transfer functions, cross transfer functions and
coherence functions are then calculated from the power spectra
and cross spectra generated from the analytical model. These
functions are alse¢ calculated from the power spectra and cross
spectra cbtained from the flight test so that comparisons can be
made as indicated in the figure.

A comparison between flight test measured and theoretical
gust responses for an analytical model employing one-dimensional
turbulence is given in Reference 10. The possibilities for sub-
stantiation of analytical results are appreciably enhanced when
the three~dimensional turbulence model is used, since the statis-
tical c¢oherence properties of the turbulence field are thereby
preserved. Cross spectra between responses and gust inputs are
particularly sensitive to the coherence of the turbulence field
which exists within the spatial bounds of the aircraft. Conse-
guently, cross transfer functions and coherence functions, both
of which depend upon the cross spectra, are expected to show better

agreement between test and analysis in the 3-D case.
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Because of the coherency augmentation effect of aerodynamic
induction discussed in Paragraph 5.3, it is alsoc expected that
cross spectral results will be quite sensitive to the aerodynamic
representation. Transfer functions and coherence functions derived
from three-dimensional gust response analysis will therefore con-
stitute unique diagnostic tools for assessing the aerodynamic
portion of the analytical model.

Data derived from power spectra, such as RMS responses and
zero crossing rates, are expected to show improved spanwise dis-
tributions, often accompanied by a general reduction due to span-
wise averaging of the gust input.

It is recommended that the test flight chosen for comparison
be approximately five minutes in duration to provide sufficient
statistical stability. An RMS gust velocity of three feet per
second with reasonable stationarity should be the minimum cri-
terion for acceptance so that extraneous inputs and gust reduction
errors will represent a sufficiently small proportion of the final
measurement.

If the test aircraft is instrumented to furnish time histories
of control surface positions, it is then theoretically possible by
means of digital filtering procedures, to correct the response
data for the effects of control surface deflections induced by the
pilot or by automatic control systems. The filters would be de-

rived from the analytical model as indicated in the figure.
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5.3 APPLICATIONS TO AIRCRAFT DESIGN PROCEDURES

Cumulative fatigue damage as calculated by Miner's theory is
proportional to zero crossing rate, but is usually much more sensi-
tive to rms load amplitude, so that even a small change in the
latter guantity can have a significant effect on fatigue life. It
is therefore recommended that load data furnished by 1-D and 3-D
gust response analysis be applied to obtain a comparison of the
effects of the two gust response models on calculated fatigue
damage. Comparisons with fatigue damage estimates derived from
fatigque testing and aircraft utilization would alsc be conducted.
The airplane treated in Paragraphs 5.1 and 5.2 can be used in the
verification.

Since the 1-D turbulence field retains full spatial coherence,
the magnitude gust response effects in the 3-D case is ultimately
dependent upon the reduction in coherence between input gust forces.
Gust forces acting upon a given panel depend on the gust normalwash
impinging upon neighboring panels as well as upon the given panel
itself. Although modified strip theory accounts for the induction
effects of neighboring panels, it attributes the total gust force
on each panel to the normalwash impinging upon that panel alone.
Then gust force coherence becomes identical to gust normalwash
coherence, which is determined solely by the turbulence field as
described in Paragraph 2.3.

Therefore, only by the application of aerodynamic methods
which treat induction effects explicitly can the influence of aero-
dynamics on gust force coherence be accounted for. This is feasible

for routine gust design calculations in the supersonic case (Mach
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box methods, for example.) However, in the subsonic case, the com—
putational effort required has often discouraged routine use of
methods such as the doublet lattice. A new subsonic kernel func-
tion formulation described in Appendix B has been developed to
remedy this deficiency by allowing much of the computational
effort currently involved in the application of doublet lattice
methods to be replaced by simple tabular interpolation. It is
therefore recommended that computational procedures which fully
exploit the new method be made available, including tables of the
necessary aerodynamic data. Analytical data on the spatial coher-
ence distribution of gust force for simple configurations should
also be provided in the form of plots or tables. This would allow
aerodynamic effects to be considered in investigating the spatial
ccherence distribution of gust force for 3-D gust response calcu-

lations.

5.4 ADVANCED DEVELOPMENT

The three-dimensional gust response analysis developed in
Section II is capable of accounting for all three gﬁst components
simultaneously, as explained in Paragraph 2.7. To exploit this
capability, further development is recommended to provide an
improved aerodynamic representation for longitudinal gust res-
ponse. Current gust response models usually ignore the longitu-
dinal component, as explained in Paragraph 4.4.

Since pilot-induced control surface deflections which occur
during dynamic response test flights in turbulence cannot he

accurately treated by linear response methods, no attempt is made
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to incorporate a description of the resulting structural responses
into the analytical model used in flight test comparisons. Since
these responses are not insignificant, it is recommended that high
speed digital filtering technigues be developed to correct the
measured responses for control effects. Fast Fourier transform
methods could be employed to generate filters corresponding to

the frequency response functions which relate these structural
responses to the control surface deflections. The filters could
be applied to the measured control surface deflections to obtain
time histories of the resulting responses. These could then be
deducted from the corresponding measured responses to correct for
control inputs. The process is illustrated in Figure 18.

Current gust criteria and lcad computation methods could be
extended to include phenomena which depart from Taylor's hypothesis
and the assumption of homogeneity, which are introduced in Appen-
dix A. Nonhomogeneity is exemplified by the "patchy" character
of medium and high altitude turbulence and by low altitude turbu-
lence induced by ground obstructions. Such diverse phenomena as
enhanced small sample variability, non-Gaussian statistical effects
and flattened gust power spectra may be attributed to nonhomogene-~
ity. Similarly, the "frozen" turbulence assumption represented by
equation A-4 may be invalid at the very low airspeeds to which

helicopters or VSTOL aircraft are subject.
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APPENDIX A

A DUAL GUST RESPONSE FORMULATION

The dynamic response of an aircraft traversing a three-dimen-
sional field of atmospheric turbulence may be described by either
of two equivalent mathematical forms, which differ according to
whether the wvector freguency response function which describes the
aircraft, and the tensor function which describes the turbulence
field, are expressed in the space domain or in the wave domain.
Conversion of a function from one domain to the other is accom—

plished by applying a three-dimensional Fourier transformation.

A.l1 SPACE DOMAIN

The space domain version of the three-dimensicnal gust res-
ponse problem may be derived by substituting the convolution

expression for the response,
X(t) =f|’l(l',r)'ll(r,t—t)dl'd1: (A-1)

into the definition of the response autocorrelation function to

obtain
C(r) = <fh(r,a)'u(l‘,t—a)dl'da hi(s,8) u(s,t+1—-B)dsds >
= fh(r,a)- Cu(r, t-a)u(s, t+c-8) > * h(s,B) ardsdadp
= [ hr,a)* Qs-r,vra-p)* his, ) ardsduas (a-2)

where the brackets, { », denote the time average.
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The assumption that the gust velocity correlation tensor is a

. function only of the space-time separation between the points at
which the velocity is measured implies that the turbulence field
is homogeneous and stationary; i.e., the statistical properties
are independent of position and time.

The gust velocity correlation tensor in the moving reference
frame may be replaced by its eguivalent in the fixed reference
frame by recognizing that the input point § has moved an additional
distance {(t+a-f)U relative to r when both points are measured

in the fixed reference frame. Thus,
Q(s-r,t+a-8) = R(s-r+(t+a-g)U ,1+a-B8) (-3}

Furthermore, by assuming that the input turbulence field is "frozen"

according to Tayloxr's hypothesis, we may set
Ris-r+(1+a=-B)U ,1+a=-8) = R{(s-r+(t+a-8)U ,0) (A-4)

Substituting these results and equation (A-2) into the definition
for the response power spectrum, replacing t+a-8 by a single vari-

able and invoking the appropriate definitions then vields

b(£)

]

2f|'l(l',a) *Ris-r+{t+a-8)U ,0)-h(s,8)e—z"iftdrdsdadﬁdr

it

th(l",a) *R(s-r+ U1 ,0)°h(s,fj)e_2"if(T ’“+mdrdsdadﬁdr

f{fh(frﬂf)ez"'ifada}'{2f|l(s—r+ U ,O)e_zriftdt}.

{fh(s,a)e'”ifﬁde}drds

= fH*(r.f) - O(s-r,£) * H(s,)drds (A-5)

I
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Egquation (A-5} represents the space domain formulation of the
three-dimensional gust response problem. Since the frequency res-
ponse functions are normalized to surface area and vanish off the
aerodynamic surfaces, the double volume integral of equation (A-5)
effectively reduces to a finite double surface integral. Further-
more, analytical expressions for the gust velocity cross spectrum
tensor are derivable from any of the common isotropic turbulence
models such as the Dryden or von Karman. Notice that these tensors
in general are of second rank and therefore have nine components,

one for each ordered pair of Cartesian coordinates.

A.2 WAVE DOMAIN

The space domain formulation of the gust response problem may
be converted into the wave domain version, but it is first necessary
to derive an alternative expression for the velocity cross spectrum
tensor by transforming it to the wave domain and back, and employing

the Dirac delta function. The forward transformation yields
fti)(r,f)e‘ia"'dr = 2fR(r+Ur,O)e'i(a'r+2”f’)drdt (A=6)

By adding and subtracting {l*Ur, the bracketted expression in the

exponent on the right hand side can be rewritten
Qer+ 27ft = Qo(r+ Ut) + (27f - U (A-7)

Substituting this result into equation {(A-6) and lettinggq= r + Uz
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then yields

fq,(,.,f)e-m-rdr _ 2fe-i(21rf—.ﬂ.oU)rdt fR(q,O)e-i‘Q"q aq

1l

327d5(27F - Q-U) SN (A-8)

If the Fourier transformation back to the space domain is applied

to both sides of equation (A-8), we obtain

(1/2) 3f<b(r,f)e‘i9'("‘)dndr = (1/2w)3f@(r,f)8w3a(r~s)dr
= 327r4(l/21r)3f5(21rf - 21U S(R)ein.sdﬂ

d(s,f) = 41rf§(2rrf - W) sm)ei“"dn (A=9)

The wave domain formulation can now be derived by substi-
tuting equation (A-9) into (A-5) and applying the definition of

the frequency response function in the wave domain. Thus,
#(f) = fH*(f,f)'{lI?rfé(Zfrf- Q:v) S(Q)ei‘n"(s_”d.ﬂ} + H(s,f)drds
= 41rf5(21rf— 2-u) {fl'l*(r,f)e-i'o"rdr}* S() -{fﬂ(s,f)ein"ds}dn

= 41rf5(21rf +Q,0) K*(Q,£) » $(2) « K(Q,£)af (A-10)

Equation (A-10) represents the wave domain formulation of the three-
dimensional gust response problem. The effect of the delta function
in the integrand is to extract those spatial waves which contribute
to the frequency f. Analytical expressions for the tensor compo-
nents of $(§l) are derivable from the common spectral models for
isotropic turbulence. However, except in certain rudimentary cases,
it is generally impractical to compute K(§,f) directly from its

definition. A procedure has therefore been developed which may be

75



derived by expanding the definition of Ki(f},f) in a Maclaurin

series,

K(Q,5) =3 /a0 (8V)" K, 5)
n=0Q

/=0

Q-0

=Z:(1/n!)fl'l(r,f)(iﬂ‘r)ndr (A~11)
n=0

oG . r
=E(1/n!)fl'l(r,f)(.Q.-V’)nelﬂ"dr
n=0

where V'= ia/00, + josoa, + ka/a-sz3’ is the gradient operator in
wave number space, and i,j,l(are unit vectors parallel to the
corresponding wave number axes. Substituting this result into
equation (A-10), integrating over {,, and grouping terms in like

powers of Qs and Qq, We obtain
o n,m,l1

L3
s nzl 0 k ) OH(f)ijk' SOy  HE) )5 g,k (B712)
s, L= 1] 1=

where H{f).

ijk = [ (v "1)i+j+k('2rf/U)i/i!j!k!] fH(I‘rf)rlirzjr Kay

3
and S(£)__ =IS(—er/U,Qzr93)92m93nd92d93

are moments of the vector fregquency response function in the space
domain, and the gust velocity power spectrum tenscr in the wave
domain, respectively. The summation corder is from right to left.
Equation (A-12) is eminently suitable for machine computation
because its generalized form facilitates inclusion of higher order
terms which are significant at higher response frequencies. When
$(fl) is derived from the Dryden or von Karman spectral models,
a wave number cutoff must be imposed to prevent divergence of its
higher moments. The influence of this cutoff on the convergence

properties of the expansion warrants further investigation.
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APPENDIX B

AN IMPROVED KERNEL FUNCTION FORMULATION

FOR UNSTEADY SUBSONIC FLOW

The application of doublet lattice methods to nonplanar
surfaces in unsteady, subsonic flow has often been discouraged by
the elaborate approximation procedures required to evaluate the
kernel function. A new formulation is presented which allows these
lengthy calculations to be replaced by simple, accurate tabular
interpolations, thereby yielding a significant reduction of
computational effort in typical applications.

Let xg, Yor and zg denote the Cartesian coordinates of a
normalwash point relative to an oscillating pressure dipole of
strength pei”t, and let 7y and Tg represent the dihedral angles of
the surfaces at the respective receiving and sending points. Then
the ratio of the normalwash w/U to the lift exerted by the pressure
dipole is given by the kernel function#*

-iwa/U

2
K=e¢e (KlTl - K2T2)/8wqu

where U is the airspeed, g is the dynamic pressure,

r, = (y02 + 202)1/2, and the relative crientation between surfaces

is accounted for by

=
Il

)

2 (zo cosvY,. ~ ¥, sin'yr)(zO cosY, ~ Yy 51nys)/r1

1 = cosly = 7

2

)
=]
o
~
I

*For notational brevity in the development which follows,

the sign of K, is reversed relative to convention.

2
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The expressions for K, and K2 given by Landahl (Reference 12) con-

1
tain the integrals

o —iklu
e
I,(k, ,u,) = J{ du v = 1,2
1
2 2 2_2,1/2
where ki = wr;/U, uj = (MR-x,)/8°r) , R = (x5° + 8°r; /2,
g8 = (l—M?')l/2 and M = Mach number. For convenience, define
ik,u
KV' = e l le v = 1,2

Then the kernel function may be rewritten

~1wM(R-Mx,) /82U ,
K = e (Kl’ T, - Kz' T2)/8rqu

I1 and 12 cannot be evaluated in closed form unless kl =0

or u, = 0. Moreover, each integral generates a family of spirals

1

having u, as parameter and converging toward the origin of the

1
complex plane as k1 increases. (See Figure 19.) Because of this
complicated behavior, it has been more practical to compute the
integrals as needed by lengthy approximation procedures (References

13 and 14), than to furnish them directly by tabular interpolation.

However, by defining a new function

kiug

i
F,(ky ,uy) = (2v-1e I, (ky ,uq) v = 1,2

the spirals are effectively unwound and confined to a single guadrant.

It is actually most convenient to tabulate F, in its normalized form

-'F-V(kl ,U.l) = Fll (kl ,ul)/Fv(O'ul) v = 1,2
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Figure 19. Behavior of the Integrals, Iu(kl ,ul), Cccurring in
the Conventional Version of the Nonplanar Acceleration

Potential Kernel for Oscillating Subsonic Flow
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2,1/2
where Fl(O,ul) =1 - ul/(1+ul ) /

2
and F,(0,uy) = 2F;(0,uy) - u3/(1+uy?)3/2

For large values of uy , fv may be replaced by its asymptotic

form Fv. Thus,

2>>l v

H

F,(k; suy) = F,(kpuy) for uy 1,2

] [v.0] =
2y gikyuy [ Tym20ml omikgU gy

where Fu(klul) = 2vul uy

This expression may be integrated by parts to yvield

L » 2

Fz(klul) 1- [(k1u1)2 +(klul)4 g(klul)]/ﬁ

+i[-2kyuy +0cup? - Gequp)® £ (kyup) | /6

me gin u *® cos u
= —Ein U 3y and g(kquq) =f —_———— du are
where f(kjuy) 0 u+kiu1 gikiuy 0 u+k1u

auxiliary functions or which accurate approximations are available
{(Reference 15). For moderate values of u, Fy may be computed by
dividing the range of integration of Ip(ki ,ul) into two parts,
choosing the upper limit of the first integral large enough so that

the second integral may be written approximately in terms of ?2.

Then

. ¥ ~ikju - 8 iead
F o(ky ,up) = _2v-1  _1Kp¥y f e qu + FylkqW) -ikid
uy (l+u2) v+1l/2 2,,,{1"‘2"

for T2>>1 v = 1,2
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A numerical evaluation of the first integral may be efficiently

accomplished by Filon's method (Reference 16), in which the integra-
tion interval is divided into an even number of egual increments.
Since the exponential in the integral varies rapidly with u when

kl is large, it is treated exactly, whereas the remainder of the

integrand, which varies smoothly, is fitted with a parabola over

each double increment in u. Tables are easily constructed by this
method to provide interpolated F, values of greater accuracy than
corresponding values of I, computed by conventional approximation

methods. The tables need not extend to u; <0, since

—iklu

Fp(kl ;—ul)'= 2e lRe[Fy(kl ro)] _Fy*(kl ra )

1

where » = 1,2 and the asterisk denotes the complex conjugate.

F, is conveniently tabulated vs k, and u; if u, is small.

However, the expressions for ?& suggest that for larger wvalues

of Uy s it would be more appropriate to replace the parameter kl

by kju,. 1In keeping with this arrangement, curves of F, are

plotted in Figure 20 for constant U, and also for constant kl

over the range OSEulsjl, and for constant klul over the range

J.SI%LS w . Physical considerations will inevitably dictate

an upper limit for kl when uy is small and for klul when uy is

large, thereby providing further justification for the split table.
Under the new formulation, the expressions for Kl’ and K2'

may be written

Ky (M,ky ,ug) = Fl(kl ,ul) + Gl(M,ul)

1

2
106 + GZ(M,ul)
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Figure 20, Behavior of the Integrals, F}(kl suq) , Occurring in
the New Formulation of the Nonplanar Acceleration

Potential Kernel for Oscillating Subsonic Flow
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2)—1/2

where 8(u1)==(l+ul and 6(M,ul)==M(Mul +l/8)/(l+ﬁzu12)==Mrl/R

are introduced as computational parameters. Then

Gl(M,ul) = @4

G, (M) = 63 [ez(ula+2)+azwm>2]

Quantities such as G1 and G2 which are independent of angular

frequency o need be computed only once for any given geometrical

configuration. Furthermore, when the flow regime is restricted

to the incompressible or steady state cases, Kl’ and K2’ reduce to

K,'(M,0,uy) = F, (0,u;} + G,(M,u} STEADY FLOW
K, "(0,ky suy) = F, (kg ,up) INCOMPRESSIBLE FLOW
K,'(0,0,uy) = F,(0,u,) STEADY, INCOMPRESSIBLE FLOW

where v = 1,2 and uy = —xo/rl

The only singularity in the kernel occurs when rl—*-O and the
normalwash point lieg in the wake of the pressure dipole. In that
case, K,—F, —2v. Procedures for treating the singularity have
been described elsewhere (Reference 17}, and are compatible with

the formulation presented here.

B3



Coutrails

Approved for Public Release



Unclassified

Security Classification

DOCUMENT CONTROL DATA-R&D

(Securily classification of title, bady of abstract and indexing annotation must be entered when the overall report is classified)

b, DRIGINATING ACTIVITY (Corporate author) 28. REPORT SECURITY CLASSIFICATION
Unclasgified
Lockheed-Georglia Company 26, GROUP

3. REFORT TITLE

RESPONSE OF AIRCRAFT TO THREE-DIMENSIONAL RANDOM TURBULENCE

4. DESCRIFPTIVE MOTES (Type of report and Inclusive dates)

%. AUTHGORI5} [Fitst name, middle Initial, last name)

Frederick D. Eichenbaum

6. REFCRT DATE 78, TOTAL NO. OF PAGES 7h. NO. OF REFS
October 1972 83 17
Ba, CONTRACT OR GRANT N2, 9&8. ORIGINATOR'S REFPORT NUMBERIS}

F33615-71-C~1878
b. PROJECT NOQ. 1367

&, TASK NO . 13670 2 ob. 3:;:5:::?590“1’ NOISt {Any other numbers that may be assigned
d, AFFDL-TR~72-28

10, DISTRIBUTICN STATEMENT

Approved for public release; distribution unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY
Air Force Flight Dynamics Laboratory
FBE

Wright-Patterson AFB, OChic 45433

13. ABSTRACT

Conceptually possible procedures for designing aircraft for the
combined effects of vertical, lateral, and longitudinal turbulence by
the application of power spectral technigques are developed and out-
lined. The present state-of-the-art of this technical area iz estab-
lished and evaluated by reviewing and extending current methods used
or proposed for predicting the response of aircraft due to combined
effects of the three compconents of atmospheric turbulence. Regquire-
ments for solving the problem are identified and recommendations are
made with respect to major problem areas such as: description of the
turbulence environment, determination of the frequency response func-
tion of the structure, and methods of combining the effects of verti-
cal, lateral and longitudinal turbulence components to theoretically
predict aircraft response. PFinally, an outline of the specific re-
search needed is given, and a program is presented for accomplishing
the research and development regquired to solve the problem.

DD IF»?::AM1473 Unclassified

Security Classification




Unclassified

Security Classification

14. KEY WORDS LINK A LINK A LINK ©
ROLE wT ROLE wT ROLE wT
Three-Dimensicnal Turbulence
Gust Loads
Power Spectra
Transfer Functions
Aircraft Structures
Dynamic Response Analysis
Unclassified

#U.S,Government Printing Office: 1973 — 759-490/329

Security Classification






