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ABSTRACT

This volume describes the analytical methods that were generated or used as part of this

program. The main body of this volume is divided into three chapters, as follows:
o Closed Form Analysis Methods
o Finite Element Analyses

o Photoelastic Stress Analysis

Emphasis was placed on the development of closed form analysis procedures for bonded
joints in laminated composites. A comprehensive linear analysis method and associated
computer program (BONJO ) has been developed. MNumerical results obtained with this
program are compared with finite element analyses, strain goge data, and photoelastic
results, A "Plastic Zone" approach was used to extend BONJO | to include joints with
ideally elastic ~plastic adhesive stress-strain behavior. The theoretical development of
rigorous non-linear analysis procedure for bonded joints has been presented. However,

this method was not carried beyond the exploratory stage.

Finite element analyses used to evaluate the step lap bonded joints and bolted joints are
presented and discussed. Photoelastic stress analysis procedures used in the program are

described in the final chapter together with the results obtained.
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i. INTRODUCTION

This program was undertaken to develop an understanding of the fatigue phenomena of
structural joints in advanced filamentary composite materials and to develop analytical
and testing methods fo support proper fatigue design of advanced composite structural
joints. The program included the evaluation of both bonded and bolted joints. Primary
emphasis was placed on joints in boron-epoxy. However, a limited evaluation of bonded
joints in graphite-epoxy and glass-epoxy was included. Although the sizes of the joints
for this investigotion were small (one to ten inches in width) all configurations evaluated
are representotive of typical structural joints currently utilized in advanced filamentary

composite structures.

The program consisted of three major areas of investigation:
o Analysis Methods
o Fabrication, Inspection, and Testing

o Fatigue Analysis and Failure Mode Studies

Analytical methods for determining joint stresses were divided into two major tasks:

(1) analysis of bonded joints and (2) analysis of bolted joints. Primary emphasis was
placed on the development of a ¢losed form elastic analysis procedure for bonded joints.
This analysis was used to evaluate a number of joint variables. A "plastic zone" approach
was used to extend the closed form analysis procedure to include joints with inelastic
adhesive siress-strain behavior. The results of the elastic closed form solution were
verified with finite element analyses, photoelastic analysis and strain gage data. Finite

element analyses were used to evaluate the step lap bonded joints and bolted joints.

The experimental program consisted of fabrication, inspection and testing of a large
quantity of joint specimens. Fabrication and inspection methods were established which
resulted in specimens being fabricated to close tolerances and of uniformly high quality.

This provided specimens that would consistently develop stresses that were predicted by the



analytical methods. Developing testing techniques and actual specimen testing was o
major portion of the program. Establishing proper specimen support was essential to
obtaining repeatable joint sirengths within a specimen configuration, Equally important
was determining the proper cyclic rate for the different stress ratios and specimen configu-

rations to preclude specimen heating and erratic fatigue lives.

Evaluation of the experimental results was divided into two separate but related tasks.,
These tasks were failure mode studies and fatigue analysis. The failure mode studies
mentioned were photomicrographic analyses of the failure surfaces. This failure mode
analysis does not replace but cugments‘ the gross failure modes generally defined within the
experimental phases of a program. The photomicrographic analysis conducted within this
program established failure modes related to specific joint designs, joint loading, and
fatigue history. The fatigue analysis established relationships between specimen configu-
rations, joint variables, material combinations, feading conditions and stress ratio effects
for constant amplitude loading. The relationship between constant amplitude fatigue and

spectrum fatigue (block and realistic) was also evaluated for specific joint configurations.

This report is divided into three separate volumes each containing the developments
accomplished within a major area of investigation. Each volume is a self<ontained
document, complementing the other two volumes but not dependent upon them for

coherence or continuity. The titles of the three volumes are:
Volume | - Analysis Methods
Volume Il - Fabrication, Inspection and Testing

Volume lil - Fatigue Analysis and Failure Mode Studies

Volume | is divided into three chapters, with primary emphasis being placed on the first
chapter. This chapter, entitled "Closed Form Analysis Methods, " contains sections on
earlier methods and their short-comings; the development of the analysis procedure
BONJO I; the plastic zone extension of BONJO |; and a section on numerical results.,
The second chapter is devoted to finite element analyses of the step lap bonded joints and
mechanical joint specimens while the third chapter deals with photoelastic analysis

methods.



il. GENERAL DISCUSSION

1.0 INTRODUCTORY REMARKS

The increasing utilization of advanced filamentary composites in the design of aircraft and
space vehicles has necessitated the development of more sophisticated methods of analysis.
Prior to the introduction of these new materials, the use of adhesive bonding was limited
almost entirely to secondary structural applications. The design of bonded joints was based
largely on experimental data. Theoretical methods such as those by Goland and

Reissner (1), Volkerson (2), and Szepe (3) were used to obtain a more detailed knowledge
of the disfribution of adhesive shear and normal stresses in bonded lap joints and were

generally considered as adequate for that purpose.

The determination of siresses in bonded joints with laminated composite adherends,
however, is much more complex than in those with isotropic adherends. This increased
complexity can be only partly atiributed to the fact that composites are anisotropic and
heterogeneous. A large part is caused by the necessity to account for the effects of inter-
laminar shear and normal stresses in the analysis of composite joints, Numerical results

that demonstrate the importance of the above effects are presented in this report.

Another foctor that may be impertant in the analysis of composite joints is the presence of
residual thermal stresses. These stresses are caused by bonding or curing at elevated

temperatures and subsequent cooling to operating temperatures. Although thermal stresses
are infroduced in all multi-directional laminates, they become especially significant when

bonding highly dissimilar materials such as boron and aluminum or graphite and aluminum.

It is within the capability of most large finite element progroms in existence today to
perform an analysis of virtually any degree of complexity; but such analyses are cumber-
some and costly. In addition, the preparation of input data and interpretation of resulis is
extremely time consuming. It is therefore preferable to use direct or closed form methods

wherever possible.



Since the majority of specimens to be analyzed as part of this program were simple bonded
lap joints of uniform geomefry, it was decided to develop a closed form procedure for
composite joints. Although it became necessary to develop a more comprehensive pro-
cedure than initially onticipoted, for the reasons mentioned previously, the method turned
out to be very efficient and offers tremendous cost and time savings as compared to the
finite element method. Finite element analyses, however, were performed for some of the
step lap joint and mechanical joint specimens and for the verification of the closed form

procedure.

2.0 NOMENCLATURE

Symbols are defined in the text when they first appear. A list of the most important ones

is given below for convenience.

A, B, D ~ Laminate Stiffness Matrices

E Young's Modulus

G Shear Modulus

L Overlap Length

Mx’ My’ Mxy Stress Couples

Nx' Ny' ny Stress Resultants

Vx’ Vy , Transverse Shear Forces

hN Distance from Reference Surface to Free Surface of Laminate
t Thickness

U, vV, W Displacements in x, y, ond z directions
X, ¥, 2 Cartesian Coordinates



€ £
xp’ “yp

Superscript

g
Xyp

Thermal Expansion Coefficients
In Plane Strains

In Plane Plastic Strains
Normal Strain

Normal Plastic Strain
Transverse Shear Strains
Adhesive Effective Stress
In Plone Stresses

Normal Stress

Transverse Shear Stresses
Poisson's Ratio

Upper, Lower, Adhesive

h .
Reference Surface, k! Lamina, Temperature



11l. CLOSED FORM ANALYSIS METHODS

1.0 GENERAL

For the purpose of this report, theoretical methods other than finite element or finite
difference procedures will be defined as closed form methods of onalysis. This will

inc lude iterative as well as direct solutions based on the theory of elasticity. The assump-
tions of sma!l deformations and uniform geometry are made throughout this section.
Additional assumptions will be discussed as they are applied. Closed form solutions are
developed for the two joint configurations shown in Figure 1. Because of assumed sym-
metry, only one half of the single lap joint and one quarter of the double lap joint need to
be considered as shown by the heavy dashed line. The length of the joint is defined in
Figure 1 as being in the plane of the paper and in the direction of the chosen x-axis. The
width of the joint is the dimension perpendicular to the plane of the paper (parallel to the
y-axis). Theregion 0 < x < L will be of primary interest and the governing differential

equations to be developed will apply to this region only.

2.0 PRELIMINARY INVESTIGATIONS

After a thorough evaluation of available theoretical methods, it was decided ecrly in the
program to develop o procedure for the analysis of simple laminated composite lap joints
based on the Goland-Reissner (1) differential equation approach. This procedure required
the removal of the imposed symmetry restrictions in the Goland-Reissner analysis and the
substitution of gross laminate properties in place of the isotropic elastic moduli. The

Kirchhoff assumptions, however, were assumed to remain valid in this initial procedure.

For the case of single lap joints with relatively flexible bond layers and isotropic
adherends, Goland and Reissner obtained the following uncoupled differential equations

o o . .
for the shear stress, O, 4 ond the normal stress, g, in the adhesive:
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It might be remarked that there is an inconsistency in equations (1). The First equation is

based on plane siress considerations while the second one assumes o condition of plane

strain.

The above equations are uncoupled as a result of the requirements that the thickness and
material properties of the two adherends must be identical. If these restrictions are
removed one may, by using essentially the same procedure, obtain the two coupled dif-

ferential equations:

3% 46 [1-v2 1-v3\a® 66 f1-v2 1-)2

Xz _ a u_ L Xz a u o L C,0 =0
o>t \Ety Ef S vV e 2 g2 )z

U u L'L
(2)

a4 1 N -vE 1 -2 6 f1-v2 1-v2\d®

z, a u . L 0o+ a 2u _ 2L Xz =0

R 3 3197 % ax
dx a EU fU ELTL a EU tu EL’L

These equations thus represent the governing differential equations for a single lap joint
with unequal isotropic adherends in a state of plane strain (in the x-z plane). EU and EL
are the elastic moduli, vy and v are the Poisson's ratios, and £, and rL are the thicknesses
of the upper and lower adherends, respectively. To obtain the relations for a plane stress

condition, the Poisson's ratios are dropped from the above equations.

The normal siress, o_» may be found from the first of equations (2) and then substituted

into the second one to yield the following sixth order differential equation in (dcr:z/dx):

3 4 2 do®
d d d Xz _
(—6+C|_4+C2““2+C3> = ° ®
dx dx dx



where:
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12E l-v2 l—\)z
C = o v, L
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The solution of the differential equation (3) is in the form:
é
WX
o _ i
9y Ao + z AI e
=
where the ki's are the roots of the equation:
6 4 2 _
A +C]?x +C2K +C3—0

The constants Ai may be determined from the boundary conditions.

(4a)

(5)

(6)

The analysis for a double lap joint configuration is similer to that of a single lap joint and

differs only in the coefficients of equation (3) and the boundary conditions. The coef-

ficients, Ci, for this case become:

4G 1-\)2 l—\)i
cC =._¢9 v,
1 rc (; 2t )

utu L'L
126 A-y2
C,=—3f_—Y
2 fa £ t3
uu
BE_G_ l-v 2
C.=C.C.+
3746y 2 (Efz)
Q U u

(4b)



In the above f| represents the total thickness of the plates to be joined and t is the thick-

ness of each splice plate.

The differential equation (3) applies to joints with laminated composite adherends; but the
coefficients C, will now involve the gross laminate stiffness properties. The stiffnesses
may be obtained from laminated plate theory* without difficulty. The constitutive equa-

tions for a thin laminated plate are generally writfen in the form:

N} =[A]{e} - [B]{x}

(7)
{M} = [B]{e} - [D]I{x}
When the laminate is in a state of plane strain, one has, therefore:
B o
N =A% " B
] ®
Mx - Bliex B D] lnx

0. . . . .
where € is the strain at the reference surface, which will for convenience be taken at the

interface of the laminate and the bond layer. The gross laminate stiffnesses are given by:

=+ Z Cl(k)(hk P

N
R W, 2 2
By =+ Chythy =h )
k=1 ©)
N
o .3 3
Dy, ‘*52 Cyythy =h )
k=1

*Note that at this point the Kirchhoff assumptions are still assumed to be valid.

10



In the above expressions, the positive sign refers to the upper laminate and the negative
th
sign to the lower laminate; hk is the distance from the upper surface of the k  layer
(lower surface for lower laminate) to the bond layer interface. For a single lap joint with
composite adherends, one now obtains:
G [ DY pt

T a 11 11
S B T

1 U =u ==L
o VA Pn APy

Ef1
=l t=r (4e)
DY. D
A Y B
2
Ea Go Bllj] B;-I
C.=C.C.+ +

a 11 11711

while for a double lap joint one finds

U
_Guf 2 Pyy
Cl___r_ 3 —u
a VA AR Py
Ea ]
27l (4d)
a D”
2
EaGa Bllj]
C.=C.C.+
3 172 t2 AU b—u

a 11711

When the laminates are in a state of plane stress (in x-z plane), i.e.
S0 0 9
4 xy ¥z
(k)

the gross laminate stiffness properties are obtained by replacing C” by I/S(]k]) in equa-

tions (9). Ch and Si] are defined in reference 4 in terms of the elastic constants and

lamina orientations.

11



After the coefficients, C., are determined, the roots, ki, can be calculated from equation
(6). Seven boundary conldifions are now required to obtain a solution and define the state
of stress in the joint. None of the conditions that were used, however, pertained to the
adhesive shear stress and as a result the peak shear stresses occurred at the ends of the
joint, as was the case in the Goland-Reissner analysis. This cannot be correct, of course,
and it will be shown later that in reality the peak siresses occur slightly inward from the

edges.

The fact that the location of the peak shear siresses in the adhesive could not be
accurately predicted was not considered a major argument against the use of the method
described here, but studies were made which indicated that the mognitude of these stresses
was considerably lower thon calculated with this analysis. |t was conjectured, and later
substantiated, that because of the relotively low transverse shear stiffness and normal
stiffness (through the thickness of the laminate) of most fibrous composites, adherence to

the Kirchhoff assumptionscould lead to unacceptable errors.
The above method of analysis was therefore discontinued and a more rigorous procedure

developed in which the Kirchhoffassumptions were discarded. The theoretical development

of this procedure is presented in the following sections.

3.0 GENERAL EQUATIONS FOR LAMINATED COMPOSITE JOINTS

3.1 lLamina Relations

The laminate is assumed to consist of orthotropic layers which may have arbitrary thickness
and material properties. A Cartesian (x, y, z) coordinate system is used as the plate
reference system in which the z-axis is normal to the plene of the plate. A small splice
cut from the laminated plate is shown in Figure 2. The material symmetry axes (1, 2) of
each lamina lie in a plane parallel to the x-y plane but may be rotated about the z-axis
through an arbifrary angle 8. The thermal expansion coefficients are also assumed to be

orthotropic and hence:

12
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T . th ., ‘
The linear strain—displacement relations for the k' lomina may be written:

KO I T I
X X yz z y

e(k) = v(,k) e(k) = ugk) + wsk) {10)
y y X2 z X

RO RS IO
z z Xy y X

where a comma followed by o symbol means differentiation with respect to that symbol.
The constitutive relations for the kfh lamina with respect to its own principal (1, 2, 3}
axes may be expressed in matrix form by

{U](lk,)z,s = [C]gk,)z,a fe "“T}gk,)z,s (i

T is the temperature change from some initial reference state (bonding or curing tempera-
ture, for instance}. The non -zero coefficients of the stiffness matrix [C] are given in
reference 4 in terms of the elastic constants of the material. The stress—strain equations

with respect to the laminate reference (x,y, z) axes are:

5% oy @, 04 0 o Q)" fe |

| Ey Q,, Q23 0 0 Qy €,

JCEZ . 033 0 0 Q36 {ez | (2
cyz Q4;4 Q45 0 eyz

Oz Q5 O | ®xz

\EXYJ i Q“ﬂ LEXYJ

Since the [Q] matrix is symmetric, only the upper half of the matrix is shown. The actual

stress in the lamina is obtained from the relation

% c@l el S @qMg® e (13

XY Z X:¥rZ X, ¥rZ X:¥/Z xX,¥,2

where the equivalent thermal stresses are defined as follows

14
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ol =(c o, + Coa )T (14)
0, ={Cy90 ¥ Cogp * Cagg

cT ch =0

yz Xz

T

xy ~ LENGy + €y = o) = Copy + (Cyg - CoaglmnT

and m =cosf8, n =sinf. The Qi] are given by:

Q= ’"4Cn + ey )+ ey, + mn’C

Q] 2™ m2n2C” + (m4 + n4)C]2 + m2n2C.'.22 - 4m2n2C66

Q3= "‘2C13 ¥ ”2C23

le = m3nC” - mn(m2 - nz)Ci2 - rlnnSC22 - 2mn(m2 - nz)Cbé
Qyy =nCy; + 20 7C, , + miC,, + 4min’C
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Q45= -mnC44+mnC55

2 2
Qgs=nCyytmCys

Q =m2n2C -2m2n2C +m2n2C

2 2.2
66 N 12 gp ¥ (m™ -y C

3.2 Effect of Transverse Shear

in lap joints made of conventional metallic materials the effect of transverse shear
deformation on the stress distributions in the joint is generally found to be negligible

and therefore an analysis based on the classical Kirchhoff assumptions is adequate in most
cases. However, in laminated plates having relatively low transverse shear moduli, these
assumptions are no longer permissible. The effect of transverse sheor deformation on the
bending of symmetrically lominated plates hos been investigated by Whitney (5). His

work has been extended for use in the present analysis.

The mid-surface of the adhesive layer has been taken as the reference surface for both
lominated plates. The adhesive shear siresses at the reference surface are dencted by

o . th .
Giz and Gyz and the fransverse shear siresses in the k' layer are assumed in the form:

o(k) =2 (l ) Q(k)f(z) Thezt (k)]cp + [Q(k)F( z) + bysz * 051 :
Xz Xz N 5
(15)

US;.) B Usz (l hN) ! [Q(k)f(z) *hysz °f1k5)]°°x * [Qﬂ?f("‘) thyzt °‘(¢If4)]c9y

where P, and cpy are functions of x and y only; z is measured from the reference surface;
and hence will be negative for the lower laminate (see Figure 1). It must be noted that in
this case hN will also be o negative quantity. In an isotropic material the transverse
shear stresses vary parabolically through its thickness. Whitney's assumption of a para-
bolic variation of shear stress within each layer therefore seems reasonable. With this

assumption, f(z) is taken in the form:

16



f(z) = 4 (zh z) (16
h2 N
N
which is symmetric with respect to the middle surface of the laminated plate and goes to

()

zero at the outside surfaces. The constants a..’ are determined from the requirement that

the shear stresses are continuous at the mferfaces of adjacent layers, or

o 2o 1o - ol Dy g

% J Li=45 k=1,2,.N-) (17

It follows from equations (15) that:

KO
[

(k)

and hence the remaining aii can be calculated from equation (17). Since f(0) = f(hN) =0,

one finds for the Nth lamina

N
o) = > Qeih) - it )2
k=1

The bi' follow from the condition that the shear stresses are zero at the free surface
(z= hN) and therefore:
oMN)
b, = - T:J_ (18)
' N

For a laminate which is symmetrical with respect to its middle surface, a., ’ and therefore

(N)
i

bii will be zero.

The transverse shear forces are obtained by integrating the sheor siresses over the thickness

of the laminate

LI
x 2

+
+V 0‘ h Asscp +A

(19)

+V ——cr h + A
Y

7 45%+ A 449y

17



where:

N

b S @i -ty ol b
k=1

i,i=4,5

and

Flz) = [ #(2) dz = i—zz— (3zh,, - 229)
N

In equations (19}, the positive sign refers to the upper laminate or splice plate while the
negative sign refers to the lower laminate (negative z-axis). This convention will be
maintained throughout the analysis. Solving for the shear functions P, and cpy from

equations (19) one obtains:

where;

>
}

Agg A4s}=[A44 A45:l
45 Ps55] P45 Ass

Substituting (20) into (15) yields for the fransverse shear stresses in the |<"h layer:

o = Esk) oo+ 6(;) ° +GNy Ly
yz 3 x4 'y

XZ XZ

(21)
(k) _ ={k) o =) o =k =(k)
oyz G5 crxz-H.?;6 GyziG7 inGs VY

in which the G%k)'s are functions of z only. They ore given by:

=,z ]
G =T -g—-3

—_ (k)
h | G.(2)
N N “3\%

i8



=k 1 = (k)

GZ(Z) - = "2- hN 64(7.)

5 @% =R a8 + bzt a1+ K, 11N + b, 2+ a0
5,0 =&, 1@ + b2+ 0§21+ &, 10l + b2 + 0]

gk 1 = k)

Gs(z) =-3 hN G7(z)

gé(z)(k) =1 -2 % hN 58(2)“()

b
6‘7(1)(") Y 55[@“‘%( A +b, g2t qﬂ‘s)j + A 45[Q(k)f( 2 +b,, “"]
5,0 =Bt a1 + b + o5+ K, 10Wia + b o+ o

The transverse shear strains are obtained from equations (12):
-1
(k) (k) (k) (k) (k)
leyz ] - [QM Q45:| lcyz } _ ‘:544 S45} lcyz] (22)
®xz Qs Uss %z S45 355) %%z

and by substitution of equations (21) one has:

(k) - (k)—(k (k)—(k) (k)—(k) (k)= (k)
ey = 5550 * 54205 o, + (S +5456¢ 10

(k)= (k) (k) (k) (k)= (k) | (k) (k)
£ [Sgeq  + 5,585 IV, £ [S50G,7 +s v,

4-5 8
(29)
(9 _ gl M5k W5k , (ks
yz [545(3] +S G ] +[5 G +S G ]
L sWgl s(k)e(")]vx (sg s(")e(k)]v

The in-plane displacements may be obtained by integrating the shear strains with respect

to z. From equations (10) and (23) one obtains, therefore:
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z

(k) _ (k) o (k) o (k) (k)
u —u°-f w, dn+G o +G, Uyz:i:G3 V, +G, vy

0
(24)

r4
Mo [ anrels? vl 2ol sy,

o)

where:

YN SR R (PSRN S (5
G.(2) -f[S B0 + 54550 lan + e

<

(25)

i= 1,2,3,4

Continuity of displacements at the interfaces of adjocent layers requires that:

)(k+1)

(k) _
Gi(hk) = Gi(hk (2¢)

(1

From equations (24) it can be seen that Gi(O)(])' and therefore ci , is zero. The

- . . k .
remaining constants of integration, ¢ ), may now be calculated from equation (26).

The in-plane strains are obtained from equations (10) by differentiation of the displace-

ments (24). Hence

z
(k) _ o (k) o k) o (k) (k)
®x &~ f Wrx dn+ G] ze,x * GZ C,).rz,.x * G3 V G4 Vy,
o
(27)
rd

(k) _ o_ (k) o (k) o (k) (k)
v ey f d‘n+G xz,y+Gb Gyz,in7v y;i:G8 VY)’

™
|

o]
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z
k) _ o (k) o (k) o gl e
y _exy-z f W dn+G Z,X+G] sz,y 6 yz X (27)
{cont'd)
(k) o (k) (k) (k) (k)y,
+C?u2 Uyz,in7 Vx,xiGB Vx,inB - 69 v,y

The functions Gi(z)(k) thus represent the effect of shear deformation in the laminate. If it
is assumed that the normal displacement, w, does not vary through the thickness of the
laminate, the integrals in equations (27) are replaced by zw? ; zw? ; and 2zw° H

xx YY Xy
respectively. This assumption, however, is not necessary for the special cases considered

in this report.

3.3 Laminate Siress Resultants and Stress Couples

It will be convenient to eliminate the normal strain from the lamina stress—strain relations

th . . . .
and express the siresses in the plane of the k' loming in terms of the in-plane strains and

the normal stress, O‘( ). The normal strain follows from the third of equations (12):
(k) _ 1 [—(k) (k) (k) _ (k) (k) _ (k) (k)]
2 T %z TNt T Q3¢ T Qgge, (28)
Qi3

After substitution of the above in the first, second, and sixth of equations (12), the in-plane

siresses may be written in the form:

(k) (k) k) gk v (k)

c"rx Q]l Q Q x 13 %%
- (k) .
o, Q_] 2 522 626 , + 523 %% 1% (29
ny 6]6 Q Qé exy é-36 O;y
where
5 9 (T (10
T T(k)
a' =30 -1 Q,
Y }Tf 23 z
G.;cy ny G-36
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Q..Q

and q.=q.-=q, -—=3 i=1,2,6 i=1,2,6
i i i Q33
= Q'3
Q.ﬁQ';z_l_. i=1’2’6 i=3
i [i Q33

The stress resultants and stress couples are obtained by integrating the stresses over the

thickness of each layer and summing the results for all layers, hence

3 . R ' W(k)

Nx N hk Gx
N >=z _[ fo 1 d (30)

N ) k_] hk-] _O’ J

Cixy Xy

. N

Mx N hk O-x '
JMY =S f fo, | =dz 31)
M ) e o

y Xy

Equations (31) therefore represent the stress couples about the mid-surface of the adhesive

layer .

3.4 Equilibrium Equations

Consider a thin slice cut from a double lap joint as shown in detail. A of Figure 1. The
surface GH for this case is not o free surface and therefore the normal stress will not be
zero but equal to G::' The shear stress along GH, however, is zero because of symmeiry.
The forces and moments acting on the upper and lower laminate of such a slice are shown

in Figure 3. Equilibrium of horizontal forces in the x- and y=directions yields

+N -6° =0
XU,X  Xyu,y Xz
(32)
+N +0° =0
xL,x xyl,y “xz

and

22



FIGURE 3 EQUILIBRIUM OF FORCES AND MOMENTS.DOUBLE LAP JOINT
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N + N -
Xyu,X yu,y yz

(+]

MapLox " NyL,y " Oyz =

Summing vertical forces gives the relations between the transverse shear forces and the

normal stresses at the mid-surface of the adhesive

+V -0 =0
XU, X yu,y z

A% +V +0° -c° =0
xL,x  “ylL,y "z Tz

Similarly equilibrium of moments in the x- and y-directions gives

M M -V =0
XU, X Xyu,y  Xu
MxL,x ¥ MxyL,y B VxL =0
ond
+M vV =0

M -
Xyu,Xx Yu,Y yu

MxyL,x * MyL,y - VyL

(33)

(34)

(35)

(36)

Equations (32) through (36) are applicable to both double lap and single lap joints, but for

the latter, cr; in the second of equations will be zero. The sum of the stress resultants in

the upper and lower laminate represent the total applied loading for the single lap joint

and one half the applied loading for the double lap joint. All moments are again calcu-

lated with respect to the adhesive mid-surface. [t must also be remembered that in a

double lop joint the lower laminate represents only one half of the laminated plate and

that the tronsverse shear forces and moments of the entire plate with respect to its middle

surface are zero.
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4.0 NARROW UNIAXIALLY LOADED JOINTS

4.1 General Remarks

Most of the joints tested as part of this contract were 1.0 inch wide uniaxially loaded
specimens and therefore it appeared reasonable to assume the joints to be in a state of
plane stress. This means the stresses o, gxy' and ¢ , are assumed to be zero while the
remaining stresses are constant along the width of the plate, i.e.
k

8o
The adhesive material will be assumed isofropic while the laminates are assumed to consist
of orthotropic layers {Section 3.1). Half of the adhesive layer, that above the reference
surface, will be considered as part of the upper laminate while the other half is taken as
part of the lower laminate. The stacking arrangement of the laminated plates need not be
symmetrical about the middle surface. The joint is assumed to be clomped at a distance L]
from the splice plate. This assumption does not affect the derivation of the governing
differential equations, of course, but will be used to establish the necessary boundary

conditions.

4.2 Single Lap Joints

4,2.1 Effect of Transverse Shear

Because of the plane stress assumptions most of the expressions in Section 3.2 are simpli-
fied considerably. For a laminate consisting of a single layer, equations (15) may be

written:

_ z
Ixz~ Oxz (l ) F;) ¥ [Q55pr ¥ Q45Cp).!:1 fz)

(37
_ z
vz "y (‘ ] E;)* [Qq5y * Qg1 2

. 0 .
and since for plane siress Uyz =g _ =0, one obtains:
yz
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ch=°:z( ‘F“‘) g—cp f(2) (38)

Equation (38) may be generalized for o multi-layer laminate by writing it in the form:

_o (._ (k)
9y =z \ 1 N —(Eyf(z) +bz+a ?, (39)
Continuity of shear stress at the interfaces of adjacent layers gives:
(kt1) _ (k) ] ]
a =q '+ - fth, ) (40}
[;(TJ S ] k
_ 55 755
and as before
a(]) =0

Since the shear stress vanishes at z = hN' one finds:

(N)
b= -F— (41)
N

The transverse sheor force, Vx' is obtained by integrating the shear stress over the thick-

ness of the lamincte, or:
(42)

where:

N
Ass =‘2' 2N E '(IZIEF(hk)“F(h 1)]+°(k)(hk'hk-})

and F(z} is as defined in Section 3.2, Sclving for P, from equation (42) and substituting
into (39) yields:

a)(:;) = G(]k)cr:z + é(zk)vx (43)

in which:
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3, 2% =1 - = - % N ”62(2)(")
N
= k) _ 1 [ 1 (k)]
G.(2V = — ﬁf(z)+bz+a
2 A55 55k5

(k)

from equation
Xz

From the second of equations (22), setting OS(Z) = 0 and substituting for ¢

(43), one has for the fransverse shear strain:
(k) _ o(k)exlk) o  =(k)
Sy = 555[6I O % G2 Vx] (44)

Substituting this into equation (10) and integrating with respect to z gives the displacement,

u
r4
AL [ ., dn+ng)0:zﬂ; (3(2")\/x (45)
[o]
where
r4
) _ k) £ =,k (k) .
G =55 Jf G ) dn + e, i=1,2 (46)
(]

(1)

It follows from (45) that the constant ci must be zero. Compatibility of displacement at

the interfaces requires:
6. ()M =6 m) =12 47

and hence the remaining constants can be determined. Differentiating the displacement
(45) with respect to x gives the longitudinal strain:
.
eik) - a: B f W7 xx dn + G(lk)G:z

o

(k)
’x:!:GZ Vx’x (48)

It must be noted that the shear functions, G(ik) and ng), do not have the same meaning

as in Section 3.2.
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4.2.2 Variation of Normal Displacement

The integral in equation (48) will not be determined consistent with the assumed transverse
shear deformation., The stress equilibrium equations for narrow uniaxially loaded plates
reduce to:

), 0
X,X  Xz,z

(49)
I I

Z,z XZ,X

(k)

Integrating the last one with respect to z and substituting for Oy’ gives the normal siress

in the kfh layer:

og‘) =g)+ ng)o:z o E P(2k)\/ (50)

; X, X

o . .
where a_is the adhesive normal stress at the reference surface and the normal stress

functions are given by:

2
o =%§ - 2 - 7hy Py
Pz(z)(k) A] —(-EY F(z) + ]E b22 + q(k)z + p(zk)
55 555

Continuity of normal stress requires:

(k) _ (k+1)
PZ(hk) = PZ(hk) (51)
It follows from equation (50) that p(2 ) = 0. The remaining p( ) can be obfained from the
obove. Since the siresses o( ) and o, (k )ore zero, one may write for the nermal strain in

the kth layer:

09 20 2 500,09, S,

z z 13% 3392 (52)

where:

[s1=1Q1”
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Differentiating with respect to x and substituting the first of equations (49) gives:

(k) _ (k) (k) (k) (k)
rxz - "13%z,2 T 933%2,x

Substituting equations (43) and (50) one obtains after integrating:

W=y rplde cplge ey spldy el

"x xz 4 xz,xx" 5 'x7 6 x,xx 7 Tz,

where:

(k)

(k) _ k) 2 1 (k)
z) S| h PS(Z) *Pq

F“""z‘ N

3 N

P4(z)“‘ =5 f Py ) dn +p )

o

(0
P (2™ - -Ji[-ﬁf( )+b+p‘ :

P (2% = s f P ) dn + p)

o

(k) _ (k) (k)
P7(z) = 53

+p7

At the reference surface (z = 0), (i;) = w,x, and hence:

p§1)=o i=3,4,...7

(k)

The remaining constants pi

for two adjacent laminae at their interface, or

) 2 p )
Pt =P.(hy)

Differentiating equation (54) with respect to x and integrating with respect to z gives:

29
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(54)

are determined from the condition that the slope must be equal
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z
= .0 (k) o (k) o (k) (k) (k) o
f W7 xx dn = Wrxx ¥ P8 cxz,x ¥ P9 ze,xxxi P]OVx,x * P] 1 Vx,xxx * P1201,xx
)
(56)
where
z k-1 hm
(k) _ (k) (m) v =
P, = P. dn+ P, =3,4,...7
as@ = [P A 3 [ P
hk-l m=1 hm-l
4.2.3 Laminate Stress Resultants and Couples
Since ogk) and O’S;) are assumed to be zero and only the longitudinal strain, eik), is of
interest here, one may solve for the in-plane strains from equations (29). This gives
W N (R T R
X X 1 1
- g™ i (k)
€, [5] o, Zyr 9, 4T, (57)
“xy ny Z3 T3
where:
@, q, q,"
11 12 716
[6] =11, QA Qe
| Qg Qg6 g,
Z) Qs T %
z,t= @}, T, 1= (@],
Z3 Q) T3) %y

From the first of equations (57) one finds:

(k) _ 1
°x "=k
11

[0 4 700500 _ {0y
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and after substituting (48), (50), and (56), this becomes:

0= 10 e rly e Ll
€x xx 1 1 "xz,x 2 “xz,xxx

Oa_.

k) o (k) o (k) (k)
¥ RS cz+ RJf’f Gz,xx :ERS Vx,x iR(.’:. Vx,xxx (58)

where

(k) _ (k) (k) . S()p , y(k)y Tk
R](Z) - [G](Z) - PB(Z) + Z] PI(Z) j /Q'”

= 20 /5
(k) _ (k) ,=(k)
Ry = - Pyl /Qyy

)(k) _p (9™ 4 Z(k)P K 2% /Q(k)

(k) _
Rs(z) =[G,z

2( ] O(

Ré(z)(k) =P )(k) / a(k)

H(

For the case under consideration the equilibrium equations (32) through (36) reduce to:

XU,X Xz (59)

(60)

and

XU,X  Xu (61)
Adding the first and second of equations (59) and (60), one has:
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XU, % xL,x (62)
\Y +V =0
XU, X xL,
and therefore:
qu + NxL = Constant
{63)
Y +V , =Constant
Xu xL

The first constant is, of course, equal to the applied axial load, Nx; while the second
constant is zero from considerations of symmetry, so that:

V,=-V (64)

xL XU

Also by adding equations (61) and substituting the above:

qu,x+MxL,x=0 (65)

which means

M +M =M =Constont (66)
Xu xL X

With the use of equations (60) and (64), the longitudinal stress (58) may be written in the
general form:

o(k) - [ez - 2w’ o T(]k)] + Rsk)ci + R(k)oo

X 6“25 ! Z,X% 2 Xz,
11

XU, XXX

which is applicable to both upper and lower laminate. When the above is substituted into

the first of equations (30) and (31), one obtains the stress resultants and stress couples on

the laminates:

AU © _gu 0O u o U o
qu -Allex Bllw’xx+RHOxz,x I2Oxz,xxx
u v - N
* ZI vau,x " Zl2vxu,xxx qu (¢8)
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L o L o

. _,L o L o
N L=A lex_‘BHw’xx-rRchz,x IZsz,xxx

xL 1
L L \

* levxu,x ¥ ZIZqu,xxx - I\IxL
qu - BLIIIG: - D'illw?xx * R;]U:z,x ;ZO:Z,XXX (68
Ly Vo x " Lo M e
MxL - B!I-IE::: B Dll_-lw?xx * Rlil 2z,x ;2022:,)00(
* Z;vau,x * ZIZ-Zqu,xxx B M;cL

where

N
B P, 2 .2
Bi1=%3 Z =0 thy = hy_y)
k=1 91
N
R 1,3 .3
Dyy =3 gm“‘k - he)
k=1 211
N b,
Ry =+ Z [ R](z)(k) dz
k=1 by
N h
K (1) dz
R]2 =4 z f R2(z)
k=l h _;
N b
RZ] =4 Z f R](z)(k) zdz
k=1 h,
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=% z [ R,(z )(k)

klh

T(k)

N = D 2 B )
k=1 H

N (k)
M 1

M=x7), —azy“‘ -V
k=1 l]

2 f R 2% + & (29142
k=1 h
N h

T f (2" + R (24142
k= lhk !

-iz [LR()“"+R()“"J dz

klh

‘*2 [ ER()(k)*'R(Z)()] dz

k]h

In the above, the superscripts u and L are omitted for convenience.

4.2.4 Governing Differential Equations

Differentiating equations (68) and substituting into the first of equations (62) and into

equation (65), gives in matrix form:
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( O

o
XZ, XX
A.. B e Ry: Riw Z.. Z..716°
117 11 x,ox + 11T 712 71 12 J Xz, )0 | _ o (69)
Bip Dy [weex Rop Rop Zor Zon] [Viu, xx
| XU, XXXX]
where:
v L
A=A YA
oV L
B”—B”+311 , efc.
Solving for e:'x and w?xxx from equation {69) yields:
[ O
o)
Xz, XX
o = = = o= o
E:x,,x _ Rll R12 ZII 212 XZ, XXXX
o =|_ 7 _ 3 (70}
Wil Ro1 Rao Zo1 Zogd [V xx
| xu, xxxx |
in which:
_ - = -1
R Rz 2o Zigll P Bl [Re Rz Zn 4o
Ro1 Roo 4y 2y Biv Pyl IRar R 4y 2y

Substituting the first and third of equations (68) into the first of equations (59) and (61),

respectively, and using equations (70}, one obtains the following two coupled differential
equations:

o * 9 * 9 * * —
sz+RH c"rxz,:;cx.i-Rl2crxz,,x.)-cxx+ ZH qu,xx 212 XU , XXXX 0
(71)
%* o] * o * * =
21 ze,xx * R22 oxz,xxxx ¥ qu i 221 qu,xx * z2‘2 qu,xxxx 0

where:
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« __pY _au PR
RY1 =Ry - A Ry =B Ry

* = _ U _ U 7 _ U =
Rig=-Ryig —Ap Rip =By Ry
* _ 1] _ U - u =
R31 = =Ry =By Ry =Dy Ry,

£ __ gY _pY 5 Y F
Ro9 = ~Rog =By Ry =Dy Ry,

22~ "R
7] U = Uy =
1= Z A0 4n m B 4y
-ZY -AY. Z._ -8

z;l—-z” -gY. Z,.-DY. Z

NI

o
[

Nl

* = _ J _ u _
299 =Ly =B11 212Dy 2y

Combining equations (71) to eliminate V , one has:
XU , XXXX
v =tV +t g0 +to +1,0°
Xu,xx 1 Xu xz 3 XZ, XX 4 Xz,XXXX

where
b= 7_*2/5
= - Z*z/s

t,=R* t. +R¥ ¢

3 211 11°2

— 7% Tk * Tk
17 41 £32 7 Lo 4y

— +* x
ty=R3o t ¥Rty

Differentiating (72) twice yields:

o o
= + 1.0 tt,0 tt,0
XU, Xxxx | xu,xx  27xz,xx 3 xz,xxxx 4 xz,XXXKXX

Substituting equations (72) and (73) into the second of (71) gives:
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Q [#] .0 &)
= + + + 74
qu i'5 Iz f6 sz,xx f7 sz,xxxx f8 c’xz,x:r.xxxx (74)

in which:
t5 == 53f2 /52

te = =Ry + Zpp tytsaty) /sy

= _ p* *
ty= - Ryt oty tsgty) /sy

s, =1+

2 3t

]

= - ®
537 L1t Lty

- - *
tg = = 50 t4/5y

Differentiating equation (74) twice and substituting it together with {73) into the first of

equations (71), one obtains the following eighth order differential equation in czz:

g +C,0° +C,q° +C, a0 +5° =0 (75)
17Xz, XxxxxRxx 2 "Xz, XXXXXX 3 “xz, xxxx 4 “xz,xx Xz
where
C] =5y fB

= 7%
Co= 2ty ts,ty

= * *
Ca=Ria ¥ Aatatsyty

= * *
R v Aty tsyts

= T *
27 MM T AN

The general solution to the differential equation (75) may be written in the form:

8 hx

o _ i

o2 z Ao (76)
=1



where ki are the roots of the equation:

8 6 4 2 _
C]k +C2)L +C3K +C4k +1=0
By letting n = )\2 and dividing through by C] this becomes
4 3 2 _
n +C']n +C_2'r| +C-3n+c-4—0

where

i=1,2,3

_nl
]
doh:

= 1
c4—:

In general the solution of equation (78) will yield a pair of complex conjugate, or

(77)

(78)

imaginary roots, and hence the form in equation (76) does not lend itself for numerical

computations. Considering, for example, the case in which equation (78) has two real

roots, one of which is positive and the other negative, and ¢ pair of complex conjugate

roots, the solution, equation (76), may be written in the alternate form:

(+) X mopx
g =A e +A2e '*'A:3 cosB3x+A4 smBSx

5%
+e (A5 COSBSX+A6 sinBsx)

- X
+ e (A7 cosBsx + A8 sinﬂsx)

where ai is the real part and Bi the imaginary part of the complex root:

A, =a, 08,
[ | |

In general one may write equation (76) in the form

8
o —
cxz B z A[ cpi(x)
=1
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where each function epi has one of the following five forms:

a.x
e |

cosp.x
|
sinBix

a.x
e 1 cosBix

(s 99 ¢

e | sineix

For the case when the joini configuration is symmetrical with respect to the middle surface

of the adhesive layer, i.e.

v _,L
ALy = AL
v _ oL
Biy =By
pY. =pt

1"

it can be shown that Z’i‘l , 21'2, R"‘2'I , and R‘éz are zero and the two differential equations

(71) become uncoupled. Instead of equations {(80), one now has:

4
2= Ao
i=1
(81)
8
qu B z A p.x)
_ i=5

In addition, one finds for the symmetrical case:

Ri1=R127 2515 2y

]
N
Il
o
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4.2.5 Boundary Conditions and Solution
The eight constants, Ai in equations (80) or (81), must be determined from the boundary

conditions of the problem. The first four boundary conditions are as follows:

a0 =¢° (0) =0
Xz Xz

ol o _
o Z(L) =0

=g

XZ x

o (82)
V. =V_(0)=0

XU Xu

L _ =
Vo =V (L)=0

xu Xu

in other words, the adhesive shear stress and the transverse shear forces vanish at x = 0 and
x =L. In the Goland-Reissner analysis, the adhesive shear siress would have its maximum

value at these points, which is, of course, o viclation of the boundary conditions.

The loads and moments at the ends will provide the remaining boundary conditions. [t will
be necessary, however, to determine the strain and curvature at the reference surface

first. From equations (70), after integrating:

_5 © = 0 = =
ex-R]] ze,x+R120xz,xxx+ ZH vxu,x ]2qu,xxx 9
(83)
= = 0 = =
Wrex R2l cxz,»: * R22 0r:n(z,xxm: * ZZI qu,x * Z22 qu,xxx * AIO
Substituting this into equations (68}, one obtains:
= .R¥* ~© _p* 9 _ T _ T
qu Rll sz,x RlZze,xxx le qu,x 212 qu,xxx
u U ST
AL AT By A T N
(84)
N . =R** g° + R¥* 5° rH \f + Fh*
xL 11 "xz,x 12 "xz,xxx 11 " xu,x 12 " xu,xxx
L L ,
AN A9t By A~ N
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= _R%* ~° _p%x 9 _ 7 _ 7k
qu R2I ze,x R22ze,xxx 221 qu,x Z22V)t:u,xxx

v U ,
T8 Ag Dy A ML

— pwx . © 2% O * .
MxL R2] ze,x * R22 CT>ﬂ.’z,x>¢x * 221 vxu,x * 222 .qu,xxx
L L

B Agt Dy A - My

where the R?i and Z?i are as defined previously, and:

L L~ L=
*k —
RIT =R YA R T B Ry

L L - -
*k —
RIZ=Ryp T A Ryt B Ry

Ll s L -
RS =Ry T B Ry # Dy Ry,
R**=RL +B-. R +DL R
22 R2a "By Ryg Dy Ry

—

_ L = oL
2 =7 + A" 7 +B”22]

L L=
*k —
LT Lt A Lt B 4y,

L L = L =
*k —
Z Z..t+tB. . Z +DHZZI

L L = L =
k& —
2527 Lo By 41570 2y

With the additional two integration constants, A9 and A there are ten undetermined

‘
coefficients and therefore six more conditions are require];J for a solution. Although it
appears that eight more boundary conditions (two loads and two moments at each end) are
available, only six of them are independent, Because the first of equations (62) and
equation (65) were used in the derivation of the governing differential equations (71),

only three load and three moment conditions can be specified. As shown previously:
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M +M , =M
Xu xL X

N _+N
x

Xy

L=Nx

where Nx is equal to the applied load and therefore a known quantity. Mx represents the
total moment about the reference surface and can be determined from the condition that

the slope is zero at the ends and at the center of the joint.

In the region AC of the lower laminate (Figure 1), the strain and curvature will be

assumed constant and equal to Ez and G?xx’ respectively. The slope at C now becomes:

-0 _, =0
W, L] Wr (85)
The load and moment will be constant also, and are given by:
o _ _a Lm0 b -0
Nl =N T A71 8 7By Wi " NoL
(86)
o _ gk =0 _[l -0 .
MxL Mx BH ®x DH W xx MxL
By eliminating E: from equations (86) and substituting (85), one obtains the relation:
L =L
B D
e vyo_wgk =0 _ "1l -0
Mx * MxL L (Nx * NxL) Dl 1 Wriex T Vrx (87)
A ]
11
where:
_ i
D,,=D,;, - —
11 11 A”
In a similar manner one finds for region DE:
—L —L
W, =" L2 Wi (88)

and:
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BU [—)U
MM - N ) =gt (89)
X XU AY X XUy L2 X

|

An expression for the slope in region CD is obtained by integrating the second of equations

(83) with respect to x:

o _ = o] 5 (»] 5 _ - '
Wi T TR 9 % TR22% 2 xx T 221 Vu,x T 222 Viw,xxx " A10% T A 90

PN

Before matching slopes on both sides of points C and D, an inconsistency of minor
importance must be pointed out. According to equation (54), the slope varies through the
thickness of the laminate in region CD. However, beam theory was used in region AC of
the lower laminate and in region DE of the upper laminate to derive equations (87) and
(89). It would therefore be better to use the average slopes of the laminates at the ends of

region CD, These average slopes follow from equations {54), (60), (64), (82), and (%0),

hence:
WO — (PL - ﬁ- G_OO + (PL _ "'Z- VO + A
"x 4AV 22) XZ,XX 6AV 22) XU, XX 11
(on
-L _ .U ~ . 00 u = L '
Wig ™ (P4AV - R22)oxz,xx * (P6AV h ZZZ)VxU,xx ‘AIO L+ A] I
where:
1 m (N}
Py =7 Palp" + Plhny) |
_1 t) (N) m,, (N)
Poav =3 IPé(h]) P )P () 4 P h )
Substituting the above into equations (87) and (89), one obtains, after rearranging:
(PL -R.)%° +(PL -7 W + Al +iM -
4av " R22% 2 wx T Paav ™ Z02Voy xx T AT 5L x
11
L B
- —— J - — ]
=T M7 oT (N NG (52)

11 11

and:
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u = . oL U = L .
Paav ~R29%; wx T Paav ™ 222 Vou xx ~ 2108 T AN -
L L BY
2 =2|m N e (93)
BU X [_)U XU AU X b AV
1 1 1

Equations (92) and (93) provide the conditions necessary for the determination of the total
moment and the integration constant Ai 1 Six independent load and moment boundary

conditions are given by:

qu(o) =0
qu(L) =N

x
qu(x) ¥ NxL(x) - Nx
(94)
qu(o) =0
qu(L) - Mx
qu(x) + MxL(x) = Mx

Equation (82), (92), (93), and (94) represent o system of twelve conditions with twelve

unknowns. In matrix form one may write:
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70 | FH],] Hig --------- Hi 12 1A
0, o1 Hyv Ha2 Ho12 | |42
v, () - - - A,
v, (D - - - A
NXU(O) - - - A
qu * NxL B i - A7
qu(o) - - - Ag
M (L - - ; M,
eq. (93) - - - A9
eq. (92) - - - AIO _
Mot M) 1P+ Hi212] A0

The conditions involving the fransverse shear force are obtained from (74) and those
involving the stress resultants and couples are given by equations (84). Equations (95) may

be written in the compact form:

[H] {A*} = {C*} (96)
where the coefficients of [H] are given by:
Hy i =°'°i(0)
Ha,i ~ o
0,174
Hy o= (0
H5’i =ui(0)
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6,
H7,i =0
HS,i = pI(O)
H‘?:i = pi(L)

— u o 1] u = n
Hi0,i= Paay ~Rad il + Py = Zp))u7 (L)

_ L 5 n L = H
Hi1,1 7 Paay ~Rop [0+ Py - 259)40)

Hyp =0

vi

iv
= + e +
wi t5cpi técpi 1'7cp. fscpi

Wy = Ry - Ry - 2y 4y - 290

Pr= RS9 Ry - I - ¥ i=12..
Hyo =0 i=12,3,4  (=9,10,11,12
Hi g =H 15 =0 i=5,67,8
Hs 10 =He,10 =211
Hs 11 =He 11781
Hz00 =41
o =B
Hg 10 =Hg,10 = By
Hg 1 =Hg 11 =D,
Hy o =-1
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9,12
W2
10,9 "5
1
Hi0,1070
Hignn =t
Hig,127!
L
Hiyo =§]"
1
Hip,1070
Hyy =0
Hip 1271
Higo =-1
Hi2,10 "B
Hi2, 11 7Py
Hig 12=0

and the coefficients of the column matrix {C*}:

C'i* =0 i=1,2,3,4
* =N
C5 qu

C* =N_+N'
X XU

 — 1 '
C7 Nx+qu+NxL
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* = (% = kAT
Cg =C5=Mu
u
S B W1 (N_+N°
= — - —— )
10 Du XU AU x XU
1 1
Y Blfl
“hTooT M L"AT‘N TN
1 1
Cr. = M' +M!

12 Xu xL

Solving the set of simultaneous equations (96) yields the unknown coefficients A’i" and

therefore Ai and Mx'
(a*) =17 (c4 N ]

After determination of the coefficients A,, the shear and normal siresses in the adhesive
may be calculated from equations (80) and {60), or in the symmetrical case from equations
(81) and (60). The interlaminar shear and normal stresses in the adherends may be
obtained from equations (43) and (50), and the longitudinal stresses in the laminate are

given by equation {67).

4.3 Double Lap Joints

For the upper laminate, the analysis is identical to that for the single lap joint, but some
minor modifications are required with respect to the lower lamincte. As a result of sym-

metry, the laminated plate as a whole will not ‘incur any bending and therefore it will be
reasonable to assume the shear function, P to be zero for the lower laminate. With this

assumption, the transverse shear stress will vary linearly through the laminate according to

(k) _ o z
s ~Ory (] - F[\T) (98)

the relation:

while the shear strain eikz) becomes:
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=515

Substituting this into equation (10) and integrating with respect to z yields for the
fongitudinal displacement:

z .
U(k) = Uo - f d'r] + G(k) ° (100)

o)

2
G,( BN Sg‘s) ( iﬁj—)w%“)

The longitudinal strain is obtained by differentiating the displacement (100) with respect

where

to x. Hence:

z

(k) _ o (k) o
€. =€ - fw,xxdn-l-G] sz,x (101)
[w]

The sheor force acting on the lower laminate becomes:

v =-1.°

xL 20xz h

N (102)

The normal stress in the krh layer is found by integrating the second of equations (49) with
respect to z and substituting (98):

2
L s e e (103)
z z  Xz,X 2hN

Equation (53) is valid. By substituting the expr.essions (98) and (103) and integrating the
result with respect to z, one has for the slope:
W =2 pldge s pldge L pldge (104)
x 4 %z zZ,x 7 Tz,x
where

3( )(k) — S(k) Z (k)

13 hN ®3
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2 3
(k) _ (k) (k)
Py2) S33( T H )+p4

FRCHPCING

(k) (K (k)

The constants Py s Py s and p; ore determined from conditions of slope compatibility of
adjacent layers at their interfoces. From the above one obtains:

z

k
[ w, dn=zw®  +ple  pl)o +plllpo (105)
XX XX

8 "xz,x 9 "xz,xxx 12° zZ,X
o

in which, as before:

ELE f P )’ )dn+2 f P ™ ’dn

hk-—l m=1 h -1

- i=3,4,7

The equilibrium equations for the double lap joint are the same as those for the single lap

joint except that in place of the second of equations (60), one has:

\' +cr —cr =0 (106)

xL,x

The longitudinal siress for the lower laminate may now be written:

(k) _ 1 {k) o (k)] , k) o (k) o
Crx al ) [ T EWrex T] +R] ze, xz XXX
11
(k) {k)y,
+R3 Vx u,x +R4 XU , XXX (107)
which is identical to equation (67), if the quantities P( ) (k), and ng) in that equation

are set equal to zero. Equations (64) and (65) are no Fonger vahd but the first of equations

(62) still applies and hence:

N +N =N (108)

Xu xL X
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As mentioned previously, however, Nx in this case represents only half of the applied
lood. The expressions for the stress resuitants and stress couples given by equations (68)
remain valid, but the coefficients, RII'i and Z:'i, must be modified in accordance with
(107). Since the slope of the lower laminate is zero for z = hN’ one has from (104}, and
the first of equaﬁpns (60):

xz Xx XU, XX

Differentiating the above, substituting into the first and second of equations (68), and
using (108) yields:

(N) -
tz qu,x+[212+BHP7(hN) ]V SN NN,

11 XU , XXX X xL

o (N)
An€x+[R1 B 3 Oxz,x [Rl +'511"4(“ ) Jx XXX

and hence:

o — —

RH Xz, x+ RIZsz XXX * Zl1vxu,x+ ZIZqu,xxx

+—__(N +N'U+N' (110)

A” xL)
where
By == [Ryy 8P ™) /4,
Rip == [Ryp* By P4(hN)(N)] /AN
2= - /Ay,
2=~ 121,78 1P|§(hN)(N)] /A
After substituting (109) and (110} into the first and third of equations (68), and using the

equilibrium equations (59) and (61), one obtains two fourth order differential equations

identical to (71). The coefficients R’i’"i and Z’;‘i for this case are given by:

51



* =
ot

L
R]Z

* =
R2]

* —
R2.‘2

L
Z”

* =
%32

L=
2

* =
232

__RU

=7

==-2Z

u -
11

U

12~

~-R
-R

u
-R2] -

22~

U
-Z.” -

uU

_212._

u -
21

u -
22

n
U —
Al Ryg
.
Bl Ry

VR

B Rz

u —
Al 4

u —
Al 4y

11

U —
B11 212

U
“B

u oL
-Dyy Pyl

_ L, (N
A Ryq - By Pathy)

v L (N)
- By Palhyy

u L (N)
- Dy, Pl

N)

N

PLin )™

TR u L (N)
Biy 211 - Py Prhy)

The governing differential equation (75) remains unchanged but the modified definitions

for R?i and Z’i"i must be used to determine the coefficients C] through C4. The solution is

then again given by equation (80).

Equations (90) and (109) represent the slope at the reference surface for the single and

double lap joint, respectively. The two expressions become identical by setting:

21

R =

22

_ol
R —P3(hN)

(N)

Ly ((N)
Pahy

5 _pby ((N)
Zyp = Pothyy)

Z,, =A

21

10

for the double lap joint. Similarly, by letting:

1

A

11

52
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n-

0

N NG TN =49
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in equation (110), the expression for the sirain s: becomes identical to that given by (83)
for the single lap joint. The correctness of (111) can easily be verified by substituting
Alp=0in the seventh of equations (95). Since equation (66) is not applicable and the
condition of zero slope at the ends of the joint (point A) is satisfied automatically, the
last two of equations (95) are discarded for the double lap joint. By dropping the last
two columns of thle coefficient matrix [H] (those corresponding to AIO and Ai I) a system

of ten equations with ten unknowns remains; the solution of which is given by (97).

4.4 Numerical Results

A number of runs were made with the computer program BONJO | in order to verify the
numerical results and to study the effect of certain parameters. No experimental data
could be found that provided information with regard to the siress distributions within a
joint as virtually all such data deals with overall joint strength or average shear siresses.
Comparisons were made, however, with the Goland-Reissner analysis and with finite

element analyses performed at Lockheed. The results are presented and discussed below.

4,4.1 Adhesive Shear and Normal Stresses

Adhesive shear and normal stresses were calculoted for a single lap joint with aluminum
adherends, using the Goland-Reissner procedure for joints with relatively inflexible
cement layers as reported in reference 1, The same joint was then analyzed in detail with
BONJO | (symmetrical version) in order to make a direct comparison between the two
procedures and study the effects of fransverse shear and normal stresses in the adherends on
the adhesive stress distributions. These effects are ignored in reference 1. Curves @
and @ in Figures 4 and 5 show o direct comparison of the adhesive shear and normal

stresses between the GolondReissner procedure and BONJO |,

It can be seen from Figure 4 that the peak shear stresses do not occur at the ends of the
joint and that the magnitude of these stresses is considerably lower than those calculated

with the Goland-Reissner approach. This is atiributed to the fact that the fransverse shear
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moduli as well as the elastic moduli through the thickness of the joint have finite values
in the Lockheed analysis. Curve @ shows the adhesive shear stresses obtained with
BONJO 1 if both the fransverse shear modulus and the modulus of elasticity of the
adherends in the direction normal to the plane of the joint are made very large and it is
shown that the stresses in this case agree much closer with those of reference 1. Curve @
represents the case when only the effect of transverse shear is accounted for, while curve
@ takes only the normal stress into account, A somewhat surprising result is that the
Icfger part of the difference between the two procedures lies in the fact that, in the
Goland—Reissner analysis, the adherends are assumed to be incompressible in the direction
norma| to the plane of the joint. A comparison between the two methods with regard to
the adhesive normal stresses (peel stresses) is shown in Figure 5. Again, most of the dif-
ference is caused by assuming that the adherends are incompressible normal to the plane of

loading.

The effects of transverse shear and normal stresses in the adherends on the adhesive shear
stresses have also been investigated for an aluminum double lop joint. The joint was first
analyzed by using the actual isotropic material properties of aluminum. The resulting
shear stresses are shown in Curves @ of Figures 6 and 7. These curves therefore
represent the actual shear siresses for the joint under consideration. In order to determine
the effect of transverse shear, the same joint was analyzed again after orbitrarily decreasing
and increasing the transverse shear modulus G' by a foctor of 10. This is shown in Figure
6 by Curves ® and @ , respectively. No appreciable change in shear stresses
resulted when the modulus wos increased but when the modulus was decreased from

4.0 x IC!6 to 4.0 x 105 psi the peak shear stresses were reduced significantly. The effect
of the normal stresses in the adherends on the adhesive shear stresses was determined in the

same manner and the results are shown in Figure 7.

The effect of using finite values for the transverse shear and normal stiffnesses in the
adherends on the adhesive shear stress distribution in a composite double lap joint is shown
in Figure 8. In this case BONJO | is compared with the modified Goland Reissner method
described in Chapter 2.0. The magnitude of the peak shear stresses computed with the
latter method was more than 50 percent greater than those calculated with BONJO |,
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These results substantiate the statement made earlier that an analysis based on the

Kirchhoff assumptions could lead to unacceptable errors.

The presence of residual thermal stresses may become important in the analysis of composite
joints. These siresses are caused by bonding at elevated temperature and subsequent
cooling to operating temperature. The adhesive shear and normal stresses in a boron/
aluminum double lap joint caused by a temperature differential of -175°F is shown in
Figure 9. Since the thermal shear stresses are positive on one side of the joint and nega-
tive on the other, they will usually cause an increase of the maximum adhesive shear

stress in a loaded joint. This is illustrated in Figure 10, which shows the joint subjected
to a load of 2250 lbs. The adhesive shear stresses due this load are compared with those
resulting from the same load plus a temperature differential of -175°F. The maximum

adhesive shear stress was increased from 3550 to 5400 psi as a result of thermal effects.

Comparisons with finite element analyses (FAMAS*) were made for o few lap joint con-
figurations and good agreement with BONJO | was obtained in all cases. One of these
cases will be presented here. The joint configuration and the material properties used are
given in Figure 11. The joint was modeled with triangular anisotropic constant stress
elements in the x-z plane as shown in Figure 12. Element stiffness properties corre-
sponding to a plane stress condition (cry = ny = Gyz = Q) were used in the program. A
comparison of the adhesive shear and normal siresses obtained with the two methods is
given in Figure 13. Agreement between the two procedures was exiremely good except in

the immediate vicinity of the joint edges where, as expected, it was not possible to

approach a zero shear stress condition with the finite element analysis.

4.4.2 Adherend Stresses

Axial siresses in the boron laminate and the titanium splice plate for the joint configura-
tion shown in Figure 11 were calculated with BONJO | and FAMAS for the purpose of

comparing results. The titanium was divided into four equal slices and the stresses were

*Flutter And Matrix Algebra System; Lockheed developed anclysis programs.
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calculated ot the five locations shown in Figure 14. Finite element results are shown at
the outer surface, the midsurface and at the titanium/adhesive interface. The stresses
across the thickness of the splice plate are essentially uniform for a large portion of the
joint. In areas of appreciable bending BONJO | shows generally higher gradients than
FAMAS, but it appears that this is a result of the fact that the FAMAS model was not
detailed enough in these areas. Axial stresses in the boron laminate were calculated and
plotted in Figure 15 for the three locations shown. Good agreement with the finite ele-
ment analysis was obfained. Finally Figure 16 shows a plot of the transverse shear stress
and normal stress at the joint cross section x = 0.025" which is near the point of maximum
adhesive shear stress. Finite element results are not shown here but aogreement with FAMAS

results was excellent.

4.5 Joints with Non-Linear Adhesive Stress-Strain Behavior

4.5.1 General

A major drawback of the method of analysis described in Sections 4.2 and 4.3 is the fact
that it is based on the assumption that all siresses in the joint remain in the elastic range.
This assumption may usually be justified with regard to the stresses in the adherend
materials, but the joint configuration is generally such that the adhesive stresses will
reach the proportional limit of the material ot an early stage of loading. For this reason it
became necessary to extend the linear analysis, to permit non-linear stress-strain behavior
in the adhesive material. Several iterative type methods were investigated to solve this

complex problem. Some of these are discussed below.

4,5.2 Secant Modulus Approach

The portion of the joint defined by 0 < x < L (see Figure 1) was divided into regions and
secant moduli were calculated for the adhesive material based on the average stresses in
each region. These secant moduli were then used in place of the elastic moduli of the
adhesive to obtain the coefficients of the governing differential equations for each region.
Conditions of continuity and compatibility were satisfied between adjacent regions, which
together with the boundary conditions at the ends of the joint were necessary to obtain a

solution. This procedure was used to establish basic joint design parometers early in the
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program but it turned out to be unsatisfactory for joints in which a relatively large portion
of the bond layer is in the plastic range. Computational difficulties arise when matching
boundary conditions between adjacent regions because of the discontinuous nature of the

analysis. For this reason development work using this approach was discontinued.
4.5.3 Analysis Based on Deformation Theory of Plasticity
The theoretical work for this procedure has been completed and is described below.

Assuming that the only non-zero stresses in the adhesive are the shear stress, c:z, and the

) . . . .
normal stress, g_, one may write the stress=strain relations in the adhesive as:

e =-%ao+e
X E”z “xp
e =-2ate
y E'z “yp
1o (112)
e.=z0_*e
z Ez Tzp
o
0’XZ
===+
*xz2 G E:xzp

wheree ,e , e
xp’ “yp’ “zp
equivalent total strain and tofal plastic strain are defined by the expressions:

, and exzp are the plastic strain components. The equivalent stress,

_ 7 2
g = 5o + 30°
z Xz
- =__l . 2 _ 2 _ 2 g_ 2
€ 3\/2[(6:x ey) +(ey ez) +(€'x ez) +2€xz (113)

- _1 2 2
= - -+ - - —_
3 \/ 2l(€xp eyp) (eyp ezp) ¥ (exp 2p "3 ®xzp

which are related by the equation:

- +vlg -— q -
A T (114

With the assumption that the volume remains constant in the plastic range one obtains:
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- . fip2 2 1 1 2
ep—2\/-j Iexp+ ezp-gexpezp'f“exzp (115)

It can be shown that the individual plastic strain components are given by:

€
__Pp°
Xp 25 z
5
EZP ‘:'g—O'z (]16)
3c
PO
xzp a- Xz

By using a Ramberg-Osgood representation of the siress—strain curve in the yield region

one has

E 1 5 n-1
~_E=%(c ) (117)
a

and since n and 0 7 are constants for a given material, the plastic strain components

(116) may be determined if the siresses GZ and c:z are known.

If in the linear analysis procedure, the elastic siress-strain relations are replaced by
equations (112) and if the plastic strains are assumed constant through the thickness of the

adhesive, the two governing differential equations are no longer homogeneous but in the

form:
o0 +R* o°  +R* o° +Z% V + 25V =
xz 11 "xz,xx 12 "xz,xxxx 11 " xu,xx 12 " xu,xxxx
il E:>f:zp,xr: L ezp,xxx
(118)
* ° +R* +° + 7k * =
21 cxz,xx R22 sz,xxxx ¥ qu ZZI qu,xx * 222 qu,xxxx
"3 Exzp,xx "4 e:z|:>,><xx
where
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As was done in the linear procedure, the two differential equations {118) may be combined

into a single eighth order differential equation:

7
o o o
1 ze,xxxxxxxx * C2 sz,xxxxxx * C3 sz,xxxx * C4 Xz, xx Z NG
l
(119)
where
P " M®xzp
P3 T ﬂ2€zp
*
4= (T - Zngle,
F =< (Z*

*
212 ™ LNl
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= 4
Pe=(Z5m - 19

P =_ * T
Pr= = (25 - Z3%,,

In deriving the differential equation (119), the following expression was obtained for the

transverse shear force in place of (74)

o o o
V. =t +t.0 + t +ta
xu  5xz 6 XZ, XX fxz,xxxx 87 Xz, XxxXxxx

1']5€xzp,xx * TitSezpn,xxx * T.|7€:1(zp,>'o<>o< * n8€zp,xxxxx (120)
where
s
3
Ne = ==—"m; *n
5 5 1 3
$
n,=—n n
6 54 2 4

__ 1 £ _ o T
Ay (1257 ~M3779

-1 *
875, (MyZ57 ~ M4 %79

and 53 and s4 ore as defined in Section 4.2.4,

Since a direct solution of equations (120) is not possible, an ifercﬁive procedure must be
used so that the plastic strains ond their derivatives will be treated not as unknowns, but
as known quantities obtained from the previous iteration. Attempts to represent the plastic
strains by continuous functions such as fruncated Fourier series or power series were unsuc -
cessful because of the exiremely high gradients that exist near the edges of the joint.
Other possibilities were investigated, the most promising of which appeared to be the use
of Green's functions coupled with a numerical integration procedure. Using the latier

approach, one may write the solution of the differential equation (119) in the form:

8 x 7 .
|
c:z=ZAcp(x)+fZP(g)5’-G—(i‘i‘—§)dg . (121)
dx
i=1 o i=
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where G(x - €) is the Green's function of the differential operator:

8 6 4 2
d d d d
K)=C, —5+C,—+C,—+C, —5
1 de 2 dxé 3 dx4 4 dx2

+1

The first summation in equation (121) represents the elastic solution to the problem. The
form of the Green's function is dependent on the type of roots resulting from the lineor

solution. In general, one has:

4
Glx-8)=> K gl -2) (122

n=1
in which each of the functions cp: has one of the following forms:
1) sinha(x -£€)
2) sina(x - )
3) sinhalx - &) cosplx - &)
4) cosha(x - &) sinp(x - €)

corresponding to a real positive, a real negative, and a pair of complex conjugate (or
imaginary) roots of equations (78), respectively. For convenience it will be assumed that

the Green's function contains one of each of these forms, hence:
G{x -g)= K] sinhal(x -E)+ K2 sinas(x -2)+ K3 sinhc:.s(x - £} cosBs(x -£)

+ K4 chshccs(x - £) sinss(x -£) (123)
The constants Kn are determined from the conditions:

d6(0) _d°6(0) _4°6(0) _,

B L3 g
7
d’G(0) _ 1
0.1 (124)
dx 1

Higher derivatives of the Green's function are given by:
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n-1
n n-1
d Gix-8) . K@y cosha, (x - £) + (-1) 2 K8 costylx - 2)

n

dx
+ (anl‘(3 + an4) coshas(x -£) cosss(x - E)

+ (unK4 - an3) sinha5(x -8} sinss(x -E)

" m (125)
Q"‘T;—Q =K, a7 sinhas (x - ) + (<12 K BT sinBfx - 2)

dx
+ (GmK3 + me4) coshas(x - £) sans(x -£)

+ (me3 - ch4) sinh cns(x - ) cosss(x - £)

where m is an even and n is an odd number, and:

b =Bsb 1 050

n

bm - %5%m-1 ” B5bm-l

Equations (125) may be written in alternate form:

X o X

d"G(x - %5 5
__(x_§l= ng(g)e cosgsx + gzn(g)e 5|nB5x

dx”
'CLSX -(15x
+ 93n(§)e cosBox + g4n(§)e sing .

+ gsn(%') cosBax + gbn(i) Sinf o

CL-IX 'G.]X
*97,E)e  *ag (E)e =
8 .
> 9, B0 (126)
i=1
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and similarly:
8

de(x -8) _ n
SRR 0 @k

m
dx i=1

where:
-asg — —
gln(g) =e K, cosfE - K, sin65§)

_asg B _
an(g) =e (K] sing & + K, cosﬂsg)
asg _ _

93,8) =e ~ (K, cosB g + K, sin,%)
ags _
94,8) = 7 (K sinBE -K, cosB &)

n-1
g5n(§) = (1) 2 Kzag cosf,g
n-1
gén(é)=(-1) 2 K3Eg sinB4%

1 n -G'Ig
97,8) =70, K e

1, %5
9g,8) =501 K e

and:

_dasg - —
g]m(g) =@ (-K3 sin65§ - K4 cosBsg)

_asg . _
9,n,8) = e (K3 cosB g - K, sing %)

a,5§ _ _
gam(g) =g (-K3 sinBSQ + K4 cosBsg)

ags _
94,8 =e " (KjcosBE + K, sinBE)

m

7 ,
95 ) = - (=) K, By sin£
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m
2
9,8 = (-1)° K, B3 cosB g
im, N
I =70 Ky e
_lm, %5
9gm®) = -0y Ky e

= 1
K] = (anK3 + an4)

(an_K4 - an3)

(@ K

]
3= 70 Kyt b K

- meS)

In addition to {124) the following conditions must be satisfied:

-Ei-i-L(G)=0 i=2,3,...

dx

where L is the differential operator defined earlier. Equations (127) lead to the

expressions:

oo __ <2

dx9 C?

d”G(O) 1 .2

T 3G

dx C
1

4760 1 e cc e, .8

dxla C4 17273 174 2)
1

The solution (121) may be written in the form:
8

07, = Z] [A;+ E601p.00
-
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where:

k=2 o

It can be shown that the transverse shear force, qu, the stress resultant, qu, and the

stress couple, qu, can be expressed as:

8
Vi, = 2 LA+ A 60240

—

[A +A(x)]u(x)+A A +BY A - N!' (130)

? 11710 Xu

Xu

Z
]
TV e

8
z A +A(x)]p(x)+B Ao+ DY AL, - ML

where the functions LLr (x), W. (x),r and p (x) have been defined as part of equations (96).

The average slope of the lower laminate at x = 0 and the average slope of the upper

laminate ot x = L are given by:
8

-0 L 5 n L = n V
=> ’(P4AV RO+ Py - Zzz)wi(o)lAi
=

1 '} - L * - T*
TART ][(Rzz Paavi{Zagng = Zingt
PS o =T AR R )] -kt (1 —ab)) e® (131)
cav ~ 222 R ~RIng| -3t 2’| ®zp,x
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8

= 2 [Paay - Ryl + (Peay = ZptiL)] [A, + K (1)
i=1

1 *
* Al A |c |Ry2 - Paav)(Zs M2~ A4
+ Poay = Zd R, ~REn )| + 50 (14 ab,) o (132)
AV T T22Vt222 T 12 4 2 |Tzp,x
L u L u . . . .
where P4AV’ P4AV' PéAV’ and PbAV are as given in equation (?1). Instead of equation
(96) one has for the non-linear problem:

[H]{A*} = {C*} + {Ap} (133)

which differs from the linear case only in the addition of the column matrix {AP} . This
matrix contains all the plastic strain terms. The non-zero coefficients of {Ap} may be
obtained by using equations (129), (130), (131), and (132) in place of the corresponding

elastic relations, in the formulation of the boundary conditions. They are given by:

8
8,0 == Y Ke )
i=1
8
8 == > ALy L)
i=!
8
88 == ELwO
=1
8
2,(9) = }:] A (L1
-
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o]

8 (10 =Y E (L) | @y - Pip 0L + (2 - Pip D201
i=1

1 — u = U
‘l <, [(Rzz - Paav (23900 = Z1ng) ~ (Zy5 =PI Rong -RY0y)

1
+ itu(l + Abz)

€
zp,x

= L
= - * - - * _R¥*
A1) l [‘Rzz 4AV (222'”2 238 - (22 = Peav)Rogng -Rigng)
e -ayle®
2« 2

in order to determine the coefficients, A‘i", in equations (133), the coefficients, Ap’ must
be known. This in turn requires a knowledge of the plastic sirain distributions in the
bond-layer. The solution to this problem may be obtained by successive approximaticns,
starting with the assumption that the plastic strains, and hence the coefficients of {Ap} ;
are zero. Initial values for the plastic sirains are therefore obtained based on elastic
adhesive stresses. The plastic strains are computed ot a number of stations along the
length of the joint, so that a numerical integration procedure may be used to evaluate the
integrals necessary to determine the coefficients Xi(x), defined in equation (129). After
caleulating the coefficients of {f_\p}, new values for A‘.;‘ may be obtained by solution of
equations (133}. This leads to a new set of adhesive siresses and plastic stroins. The

above process is repeated until the desired convergence is obtained.

Although the procedure described above appears sound, a number of computational
problems dealing with accuracy and convergence are anticipated. Since the development
of a non-linear analysis program of this complexity is outside the scope of the present
contract, it was decided to develop an approximate but far less complex appreach as an

interim method of analysis.
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4.5.4 Plastic Zone Approach

An analysis procedure and associated computer program was developed for bonded joints
with non-linear adhesive siress—strain behavior. The analysis uses a "plastic zone"
approach together with a two-stage, elasto-plastic, effective stress—sirain curve. The
assumption that pldstic zones develop at the ends of the over-lop when the adhesive
stresses reach o certain (maximum) value, and then spread inwardly toward the center of
the overlap when the load on the joint increases, was reported by Douglas Aircraft
Compony, Inc. (reference 6). The Douglas analysis, however, ignores the presence of
normal siresses in the bond-layer and assumes that the shear stresses are constant inside the
plastic zones. In practice neither the shear stress nor the effective siress will be constant
for any appreciable distance along the bond-layer. Nevertheless, it was felt that inte-
grating the "plastic zone' concept with the linear bonded joint analysis (BONJO 1) would
provide a good approximation for the anclysis of bonded joints in which the adhesive was

stressed above its yield strength.

The effective siress is defined accoring to the Von Mises condition as:

_ 02 02

o=\/o, * 3oxz
which is identical to the first of equations (113}, The effective siress inside the plastic
zones is assumed constant and equal to the maximum stress obtained from a unidirectional
siress-strain curve. The stress-strain behavior of the adhesive between the plastic zones is
assumed to be linear elastic; hence, the slope of the effective stress~strain curve in this
region will be equal to 3G. As illustrated in Figure 17, the two-stage stress-strain curve
used in this procedure is obtained by extending the elastic region until the uitimate siress
is reached, at which point the strain increases without further increase in stress. Deter-
mining the length of the plastic zones is a quickly convergent iterative process. Initially
an elastic solution is performed and adhesive shear and normal stresses are calculated at
76 locations as indicated in Figure 18. The initial lengths of the plastic zones are
selected so that the effective stresses are below the maximum siress level at all locations
situated between the two zones. After the plastic zone lengths cre obtained, the shear

and normal stresses within those zones are reduced proportionally so that the resulting
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effective stress becomes equal to its maximum value, or:

g
o] max o o] max o

= o = o (134)
Xzp Xz zp 5 =

Gl

In the next step, an elastic analysis is performed for that portion of the joint which is
between the two plastic zones. Although the analysis itself is identical fo that discussed
in Sections 4.2 and 4.3, new boundary conditions must be established for this problem,
which may be obtained from the known shear and normal stresses inside the plastic zones.
Denoting the length of the plastic zone near the end of the splice plate (x = 0} by X4 and
that near the center of the splice plate by Xor the foilowing boundary conditions are
defined for the center portion of the joint:

0% =4 (x,)
Xz xzp |

oL_ o
%z~ szp(L ) x2)
o Fl o
A" =f g  dx
XU zp
o
L
VL = - oo dx
XU zp
L-x.2
0
N = c°  dx (135)
XU xzp
o
L
NL =N - fco dx
XU x Xzp
L-x2
N® =N -N°
xL X XU
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L _ ) o (135
qu Mx _/-fdzp dx dx cont'd)

For a single laop joint, the condition

qu(x) + MxL(x) = Mx (136)

is also needed in order to obtain o solution. The total moment, Mx’ may be determined
from the condition that the slope is zero at the ends and at the center of the joint. All

integrations in equations (135) are performed numerically in the program.

The effective stresses resulting from the above analysis ore generally as shown by the
dashed line in Figure 18. Since the effective stresses at points A and B exceed the maxi-
mum stress level, the plastic zone lengths are increased and the entire process is repeated
until the difference between the plastic zone lengths of successive iterations becomes

negligible.

Figure 19 shows the peak adhesive shear siresses and the final plastic zone length at each

side of the joint as a function of the total applied load, for the configuration D specimen.
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V. FINITE ELEMENT ANALYSIS

1.0 GENERAL

Finite element analyses were performed as part of this contract for the purpose of
evaluating the numerical results obtained with the closed form analysis program, BONJO 1,
These results were presented and discussed in Chapter {lt, Section 4.4. In addition,

finite element analyses were made for some of the step joint and mechanical joint speci-

mens, which will be described in this chapter.

Lockheed FAMAS Program 97 was used to perform the numerical calculations. This pro-
gram employs the direct-stiffness displacement method to perform a linear structural
analysis for deflections ond internal loads of statically loaded structures. Formulation and
decomposition of the structural ~stiffness matrix are done in double precision. Anisofropic
triangular constant stress elements were incorporated in this program. Several options are
available to input the material properties so that either a plane stress or plane strain
anclysis can be made. A capability to determine thermally induced stresses or strains in

anisotropic structures has recently been added to the progrem.

2.0 STEP LAP JOINT ANALYSES

Analyses were made of two different step lap joints of the Configuration 'B' small scale
specimens. Detailed dimensions and material specifications are given on Drawing No.
7226-13021B in Appendix C of Volume Il. The first joint analyzed utilizes o 16-ply boron
laminate (-13 specimen) consisting of 8 plies at 0° and 8 plies at +45°. The laminate is
bonded to an aluminum adherend in three steps of 0.50 inch overlap each. The adhesive
thickness was taken as 0.0042 inch, which was the approximate average thickness of all

test specimens. The pertinent part of the finite element model used for the analysis is shown
in Figure 20. A finer grid is used near the ends of each step since higher gradients exist

in these areas. Figures 21 and 22 show the adhesive shear and normal stresses, respectively,

along the length of the joint. Both types of stresses peak at the ends of each step and
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have their maximum values at the end of the last step where the aluminum to boron thick-
ness ratio is largest. The longitudinal stresses in the aluminum adherend along tlf\_q'eg
parallel surfaces are presented in Figures 23, These surfoces are situated so rhm?édéh one
represents the mid-plane of a row of elements adjacent to the bond-layer of 5ﬁ3‘3f"?he
steps. The s*ressesnalorug a gwen sur{acigcftasent to thg bond oner bu:H up rap|dly
toward_ the encﬁ’ of . fhé step and: thqn drop ;h&f‘pfy df. rhe begmning of 1hef nexf sfep wben
the adherend" rhsckne.ss lS mcrecsqd 'l'lftzej l@ngltudmal sfresses in fhe boron iamma're are
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3.0 MECHANICAL JOINT ANALYSES

Two separate finite element models were constructed in order to perform o detailed
analysis of one of the Configuration 'E' small scale specimens. Dimensions and material
specifications are given on Drawing No. 7226-1302IE in Appendix C of Volume Il. The
-1A specimen assembly consisting of an 8-ply boron laminate (=21 specimen) and a
titanium splice plate was selected. Two 0.012 inch thick titanium shims were inter-
layered with the boron in order to provide sufficient bearing for the fasteners. The first
model which is shown in Figure 27 is for the purpose of performing a detailed analysis
through the thickness of the joint. Isofropic triangulor plate elements are used for the
titanium splice plate, titanium shims, adhesive layers, and fasteners. Anisofropic
triangular plate elements are used for the boron laminae. In order to properly account for
pin bending and to determine the bolt beoring loads on the individual layers of the joint,
the elements of the fasteners are connected to those of the joint plates with springs that

are permitted to take compression loads only.

In order to study the stress distribution around the fastener holes o second finite element
model was constructed. The lotter model consists of triangular plate elements in the
plane of the joint and represents a layer of titanium or boron. Again, compression springs
between the fastener and plate elements are used to obtain the bearing stresses caused by

the bolt in the layer under consideration. This second model has been shown in Figure 28.

Average bearing stresses in the two fasteners were calculated for an applied compression
load of 1000, These stresses were obtained from the first model by dividing the final
forces in the springs, between the fasteners and joint plates, by their respective areas of
confact. An iterative analysis was used to assure that all final spring forces were com-
pression by successive elimination of the tension springs. The averoge bearing stresses thus
obtained are shown in Figure 29. Peripheral bearing stresses on the fasteners were deter-
mined with the use of the second finite element model. Figure 30 shows those fransmitted

by the upper titanium shim as a function of the angle 6.
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Loading and unloading of the titanium shims has been studied. Figure 31 shows the shear
stresses in the adhesive layer on both sides of the upper titanium shim resulting from an
applied compression load of 1000f. Pedk shear stresses, of course, occur near the
fasteners where the loads are introduced into the shim. The position of the fasteners is

indicated in the figure.

Net section tensile siresses for the lower titanium shim and the 0° boron layer in the
center of the plate are shown in Figures 32 and 33, respectively, for a load of 1000 lbs.
These siresses were determined by toking the average siresses acting on the layers, as
obtained from the first finite element modle, and applying them to the second model.

The stress concentration factor appears to be significantly higher for the boron.
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V. PHOTOELASTIC STRESS ANALYSIS ~ BONDED JOINTS

1.0 GENERAL

An attempt was made to provide an experimental verification of the analytical stress
analysis methodclogy developed under the program {Chapter IlI). This verification was
limited to the linear analysis regime because of its relative importance in serving as the

foundation of the subsequent non-linear analysis.

Basically, three experimental phases were accomplished during the program. The first of
these involved the fabrication and photoelastic test of a Configuration D double lap joint
having aluminum odherend strips and gloss splice plates. This phase is described in
Section 1.1. During the second experimental phase, Configuration A and D joints were
tested to determine the stress distribution at the surface of its titanium splice plafes.

This second phase is described in Section 1.2. Finally, Section 1.3 describes the third
experimental phase in which strain gage results were obtained for several configuration
A and D specimens. These results were used to provide an independent check on the

onalytical and/or photoelastic results.

1.1 PHOTOELASTIC RESULTS - ISOTROPIC ADHEREND

This phase of the investigation was initiated in an attempt to verify an existing closed-
form solution for the siress disiribution in a linearly elastic, elastically isofropic jeint
adhesive. In order to achieve this goal, a photoelastic model of a double lap joint was
constructed. The adhesive layer was simulated by a thin layer of epoxy photoelastic
material. A reflectivecoating was painted on one side of the specimen, between the
aluminum/epoxy interface, to allow determination of isochromatic lines. Although the
optical sensitivity of glass is low relative to that of the adhesive layer, a reflective
coating was painted between the epoxy/glass interface on the other side of the specimen
to determine any confribution to the overall fringe pattern made by the glass. A schematic

of this model is shown in Figure 34.
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Aluminum Coating)
SECTION A.A

FIGURE 34 PHOTOELASTIC MODEL

The model was constructed to allow determination of the stress distribution (Ux, Uy'

),

g
xy

in the plane of the adhesive layer. Although the analysis of this configuration is based on

the assumption that these stresses are zero (for relatively "narrow" joints), it was antici-

pated that at least some sort of distribution could be determined photoelastically. No such

distribution could be obtained. Two models of this type were constructed and subiécted to

monotonically increasing sequences of static loads until the glass splice plates failed in

tension {Figure 35).
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FIGURE 35 VIEW SHOWING FAILED GLASS
SPLICE PLATES ON PHOTOELASTIC MODEL

In both cases, the epoxy used to model the adhesive layer was of sufficient sensitivity so
that at the recorded failure load level, the shear siress, Oy’ should have produced at
least one full fringe in the central portion of the bonded area. The fact that no
appreciable fringe pattern was observed in this area when the model was viewed normally,
means simply that the stresses cx, G, ny were of much lower magnitudes than was Oy’
This observation is, of course, in direct substantiation of the assumption made in the

analysis that o, 0 , and g_ can indeed be neglected.
x' Ty Xy

Although the anticipated measurement of a detailed stress distribution was not accomplished,
the results which were obtained do seem to achieve the desired end goal. They substantiate
the validity of the assumption that the adhesive stresses g and ny are negligible in com-

parison witho_andag__.
z XZ
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1.2 PHOTOSTRESS RESULTS - COMPOSITE ADHEREND

During this phase of the program, an attempt was made to obtain a correlation between
analytical joint=stress predictions ond experimentally determined joint-stress. The experi-
mental information was obtained by bonding pads of birefringent material to the splice

plate surfaces of several joint specimens.

Three such specimens were considered: a 1.1"-wide. specimen, a 3.0"-wide specimen,
ond one having a width of 9.0 inches. All three types of specimens had Oo/i45° boron-
epoxy adherend laminates and splice plates made of Ti-6A1-4V annealed material. The
data obtained were reduced, using the shear difference method, to obtain stress and/or

strain components at several desired locations.

1.2.1 1.1"-Wide Specimen

A photograph of this specimen is shown below in Figure 36. The birefringent pads used on
this specimen were cut from a 0.042"-thick sheet of Photostress, Inc., S-16 material.
The titonium splice plate was 0.039" thick and the base adherend was cut from an 8-ply

symmetrical laminate.

Two models of the type shown in Figure 36 were tested. The second of these models was
tested in an attempt to resolve difference between experimental and analytical results

discovered during considerotion of the firsi model.

The experimental investigation on the first model was conducted by loading the specimen
to a 1000 Ibf load level and using a reflective polariscope to obtain isochormatic and
isoclinic photoelastic data. These data were reduced to obtain the axial stress com-
ponent, g_, plotted in Figure 37. The 1 KIP load applied to the model was not sufficient
to cause appreciable yielding of any of its constituent materials. The results obtained
were therefore compared with analytical predictions obtained from the linear, closed-form

analysis developed under this program.
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BORON BASE ADHEREND

PHOTOELASTIC COATING OVER
TI SPLICE PLATE

FIGURE 36 1.1"-WIDE CONFIGURATION "D" SPECIMEN WITH
BIREFRINGENT PAD BONDED TO SPLICE PLATE

The analytical results obtained from the closed-form analysis do not agree with photostress
results within acceptable tolerance (Figure 37). Although the shapes of the "closed-form”
and "photostress" curves are similar, the difference in siress magnitudes is thought fo be
too great to ignore. A complementing finite element analysis was done in an attempt to
help resolve this difference. The result of this analysis is also shown in Figure 37. This

latter (finite element) analysis tends to lend more credence to the "closed-form"

analytical results than to the experimental results.

The experimental curve in Figure 37 was corrected for tensile reinforcing effect arising
from the fact that the coating material itself carries some load. The derivation of this
correction factor is based on the assumption that the coating is in a constant uniaxial

state of stress. This assumption is obviously incorrect since the splice plate undergoes
bending as well as longitudinal tension. A bending correction should therefore be applied
to the photostress results. Since the degree of splice plate bending cannot readily be

assessed, no such bending correction can be made.
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STRESS - FIRST 1.1" WIDE CONFIGURATION "D" SPECIMEN
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An attempt was made to further resolve the differences between the three curves shown in
Figure 37. This wos done by placing strain gages at selected locations along the center-
line of the surface of the splice plate of the second 1.1"~wide joint. The second joint
specimen was a 16-ply thick laminate. After strain gage results were obtained, the goges
were removed and photostress material bonded to the splice plate surfaces. A photostress
investigation was then performed on the same model. These new strain gage and photo-
siress results were compared not only with each other, but with closed form analytical
results as well. The results of this comparison are presented on Figure 38. 1t can be seen
that these three types of results correlate much better than comparable results obtained from

the first specimen .

1.2.2 3.0"-Wide Specimen

Figure 39 shows a sketch of the 3.0"-wide specimen discussed in this section. The speci-~
men was of the 3.0"-wide, Configuration "A" variety. The Oo/ﬁ:45° base adherend

material was fabricated of Narmco 5505 boron/epoxy and was an 8-ply thick symmetrical
laminate. The splice plate was cut from o sheet of Ti~6A1-4V annealed material and haod

a 0.0425" -thick birefringent pad bonded to a portion of its surface as shown in Figﬁre 39.

Photosiress data obrained at each of the grid nodes were used to obtain normalized plots

of splice plate surface stress. Figures 40 and 41 show the longitudinal and transverse

stress components, respectively. The longitudinal component displayed in Figure 40 was
evaluaied along line CD (Figure 39), The transverse component of Figure 41 was evaluated

along line AB.

The obvious anticipated symmetry about lines AB and CD is not particularly evident from
the experimental results presented in Figures 40 and 41. This would seem to indicate that
the dota on which these results are based are somewhat questionable. The explanation for
this apparent discrepancy may well be the bending undergone by the splice plate as a
result of the asymmetry of the joint about its midplane. In order to properly interpret the
photostress data, a correction factor must be used to account for the degree of bending

caused by this asymmetry. Such a factor cannot readily be obtained for the situation
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herein discussed and, therefore, no such correction was made to the results presented on

Figures 40 and 41,

1.2.3 9.0"-Wide Specimen

Figure 42 shows a sketch of the 9.0"-wide specimen discussed in this section. The speci-
men was of the 9.0"-wide, Configuration "A" variety, having a base adherend fabricated
of Narmco 5505 boron/epoxy. The laminate was of an 8-ply thick, (00/¢45°/0c‘)2 con-
figuration. Three pads of birefringent material were bonded to the splice plate at the

three locations shown in Figure 42,

Photostress data obtained at each of the grid nodes were used to obtain normalized plots of
splice plate surface stress. Figures 43 and 44 show the longitudinal and transverse siress

components, respectively, evaluated along selected lines on each of the three photostress

pads.,

in similarity with results presented previously for the 3.0"-wide specimen, the symmetry
about the specimen centerlines is not particularly evident from the plots of Figures I43 and
44, |t is thought significant, however, that the shapes of the curves displayed on Figures
40 and 41 as compared with those displayed on Figures 43 and 44, respectively, are similar.

1.3 STRAIN GAGE RESULTS

Strain gage results were obtained on all three specimen widths. These results were

obtained by placing strain gages on the surface of the titanium splice plate to obtain data
along the same lines at which photostress data were obtained. Each such ¢luster of goges
wos arranged as shown in Figure 45. Gaoges 1 through 5 were oriented longitudinally and

gages 6 and 7, transversely.
The results obtained from the second 1.1"-wide configuration "D" specimen are plotted on

Figure 38. These results are compared with corresponding photosiress and analytical

results. The maximum joint load of 3000 IbF was chosen to avoid yielding of either splice
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plate or adhesive. Strain readings of all seven gages were recorded at 300 Ibf load incre-
ments up to the moximum (3000 lbf) load level. Strain-load plots obtained from these

readings were judged to be sufficiently linear to satisfy the purpose of the investigation.

Goge No. 6 exhibited the most pronounced deviation from linearity. The strain~load plot
for this gage is shown in Figure 46, Figure 38 shows that the closed form linear analytical

predictions compare favorably with strain gege results along the longitudinal centerline.

Strain gage results obtained from the 3.0" wide joint specimen are displayed in Figures 47
and 48, Comparable results obtained from the 9.0" ~wide specimen are shown in Figures

49 and 50.
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LONGITUDINAL DISTANCE FROM SPLICE FLATE EDGE

FIGURE 47 SPLICE PLATE SURFACE LONGITUDINAL STRAIN COMPONENT -
3.0" WIDE CONFIGURATION "A'" SPECIMEN
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TRANSVERSE DISTANCE FROM CENTERLINE OF BIREFRINGENT PAD

FIGURE 48 SPLICE PLATE SURFACE TRANSVERSE STRAIN COMPONENT -
3.0" WIDE CONFIGURATION "A" SPECIMEN
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LONGITUDINAL DISTANCE FROM SPLICE PLATE EDGE

FIGURE 49 SPLICE PLATE SURFACE LONGITUDINAL STRAIN

COMPONENT - 9.0" WIDE CONFIGURATION "A" SPECIMEN
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TRANSVERSE DISTANCE FROM CENTERLINE OF BIREFRINGENT PAD

FIGURE 50 SPLICE PLATE SURFACE TRANSVERSE STRAIN COMPONENT -

9.0" WIDE CONFIGURATION "A" SPECIMEN

123



REFERENCES

Goland, M., and Reissner, E., "The Stresses in Cemented Joints," Journal of
Applied Mechanics, pp. A17-A26, March 1944,

Volkersen, O., "Die Nietkraftverteilung in Zugbeanspruchten Nietverbindungen mit
Konstanten Laschenquerschnitten,” Luftfartforshung 15, pp. 4-47, 1938.

Szepe, F., "Strength of Adhesive-Bonded Lap Joints with Respect to Change of
Temperoture and Fatigue,” Experimental Mechanics, pp. 280-286, May 1966.

Anon., "Structural Design Guide for Advanced Composite Applications, " Advanced -
Composites Division, Air Force Materials Laboratory, Air Force Systems Command,

Wright-Patterson Air Force Base, Ohio,

Whitney, J. M., "The Effect of Transverse Shear Deformation on the Bending of
Laminated Plates," Journal of Composite Materials, Vol. 3, pp. 534-542, July 1969.

Technical Documentary Report No. ASD -TDR-63-447, "Research on Thermomechanical
Analysis of Brazed or Bonded Structural Joints," September 1963, Air Force Flight
Dynamics Laboratory, Research and Technology Division, Air Force Systems Command,

Wright-Patterson Air Force Base, Ohio.

124



UNCLASSIFIED

Security Classification
P

DOCUMENT CONTROL DATA-R&D

(Security classification ol title, body of abairact and indexing annotation must be entered when the overall report is clagalfied)

|. ORIGINATING ACTIVITY (Corporate author)

Lockheed-Georgia Company
A Division of Lockheed Aircraft Corporation
Marietta, Georgia 30060

28. REPORT SECURITY CLASSIFICATION
Unclossified

2b, GROUP

3. REFCORT TITLE

DEVELOPMENT OF AN UNDERSTANDING OF THE FATIGUE PHENOMENA OF BONDED
AND BOLTED JOINTS IN ADVANCED FILAMENTARY COMPOSITE MATERIALS

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)
Final Technical Report

August 1970 through April 1972

5. AUTHOR(S) {Firat name, middle initial, last nams)

John N. Dickson, Teh-Min Hsu and James M. McKinney

4. REFCRT DATE

78. TOTAL NO, OF PAGES 7h. NO. OF REFS

4364

<

d.

June 1972
) Fgé'g?cs:;a-cétﬂlv-a?)% 98, ORIGINATOR'S REPORT NUMBSER(S)
b. PROJECT NO. AFFDL-TR—72 ‘VOI |

#b. OTHER REPORT NOQIS) (Any other numbers that may be assigned
thia report)

ER-11319

1. DISTRIBUTION STATEMENT

Approved for public release, distribution unlimited.

1. SUPPLEMENTARY NOQTES

Volume |, Analysis Methods

12, SPONSORING MILITARY ACTIVITY

Air Force Flight Dynamics Laboratory

Air Force Systems Command
Wright-Patterson AFB, Ohio

13. ABSTRACT

This is Volume | of a final report presented in three volumes: Vol | = Analysis Methods; Vol 11 -
Fabrication, Inspection and Testing; Velume Il - Fatigue Analysis and Failure Mode Studies.
This velume describes the analytical methods that were generated or used as part of this program.
The main body of this volume is divided into three chapters as follows: Closed Form Analysis
Methods, Finite Element Analysis, Photoelastic Stress Analysis. Emphasis was placed on the
development of closed form analysis procedures for bonded joints in laminated composites. A
comprehensive linear analysis method and associated computer program (BONJO 1) has been
developed. Numerical results obtained with this program are compared with finite element
analyses, strain gage data and photoelastic results. A "Plastic Zone" approach was used fo
extend BONJO | to include joints with ideally elastic-plastic adhesive stress-strain behavior.
The theoretical development of a rigorous non=linear analysis procedure for bonded joints has
been presented, however, this method was not carried beyond the exploratory stage.

Finite element analyses used to evaluate the step lap bonded joints and bolted joints are presented
ond discussed. Photoelastic stress analysis procedures used in the program are described in the
final chapter together with the results obtained.

DD "V.1473

UNCLASSIFIED

Security Classification




UNCLASSIFIED

Security Classification

KEY WORDS

LINK A

LINK B

LINK C

ROLE WT

ROLE wWT

ROLE wWT

bonded joints

mechanical joints

joint analysis

boron composite materials
fatigue testing

failure modes

fatigue endurance

fatigue analysis
photoelastic stress analysis
material properties

joint fabrication

non~-destructive inspection

UNCLASSIFIED

Security Classification






