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FOREWORD

This report describes a computer program developed at the Douglas
Aircrafl Division of the McDonnell Douglas Corporation, l.ong Beach,
California. The development of the Douglas Arbitrary-Body Aero-
dynamic Computer Program was started in 1964 and greatly expanded
in subsequent years under sponsorship of the Douglas Independent
Research and Development Program (IRAD). From August 1966 to
May 1967 the program development was continued under Air Force
Contract No. F3361567-C-1008. The product of this work was the
Mazrlk II version of the program as released for use by government
agencies in May 1967, Between 1967 and 1968 further Douglas IRAD
work and another Air Force Contract (F33615-67-C1602) produced the
Mark III Hypersonic Arbitrary-Body Program. The latest version of
the program as presented in this report is identified as the Mark IV
Supersonic-Hypersonic Arbitrary-Body Computer Program and was
prepared in the period of 1972-73 under Air Force Contract F33615-
72-C-1675. This contract was administered by the Air Force Flight
Dynamics Laboratory, Flight Mechanics Division, High Speed Aero
Performance Branch. The Air Force Project Engineers for this study
were Verle V. Bland Jr., and Captain Hugh Wilbanks, AFFDL/FXG.

At the Douglas Aircraft Company, this work was conducted under the
direction of Mr, Arvel E. Gentry as Principal Investigator. A number
of major parts of the new program were prepared by Mr. Douglas N.
Smyth. Mr., Wayne R. Oliver's work in applying the various versions
of this program to practical design problems contributed both in pro-
gram design and in program validation. A number of other people
contributed to the various phases of this work for which the authors
are grateful.

This report was submitted by the authors in November 1973.

This technical report has been reviewed and is approved.
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ABSTRACT

This report describes a digital computer program system that is
capable of calculating the supersonic and hypersonic aerodynamic
characteristics of complex arbitrary three-dimensional shapes.
This program is identified as the Mark IV Supersonic-Hypersonic
Arbitrary-Body Computer Program. This program is a com-
plete reorganization and expansion of the old Mark III Hypersonic
Arbitrary-Body Program. The Mark IV program has a number
of new capabilities that extend its applicability down into the
supersonic speed range.

The outstanding features of this program are its flexibility in
covering a very wide variety of problems and the multitude of
program options available,. The program is a combination of
techniques and capabilities necessary in performing a com-
plete aerodynamic analysis of supersonic and hypersonic shapes.
These include: vehicle geometry preparation; computer graphics
to check out the geometry; analysis techniques for defining
vehicle component flow field effects; surface streamline computa -
tions; the shielding of one part of a vehicle by another; calculation
of surface pressures using a great variety of pressure calculation
methods including embedded flow field effects: and computation
of skin friction forces and wall temperature.

Although the program primarily uses local-slope pressure calcu-
lation methods that are most accurate at hypersonic speeds, its
capabilities have been extended down into the supersonic speed
range by the use of embedded flow field concepts. This permits
the first order effects of component interference to be accounted
for.

The program is written in FORTRAN for use on CDC or IBM
type computers.

The program is documented in three volumes. Volume I is pri-
marilya User's Manual, Volume II gives the Program Formulation,
and Volume III contains the Program Listings.
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SECTION 1

INTRODUCTION

The basic objective of this work was to provide a theoretical analysis tool
for use in studying the acrodynamic characteristics of vehicles operating
at speeds from about Mach 2 on up into the hypersonic range. This pro-
gram was to be capable of predicting the aerodynamic characteristics of
arbitrary wing-body-fin configurations including the determination of em-
bedded flow region effects, the effects of wing-body and wing-fin interfer-
ence, and give improved viscous flow results. One key requirement was
that the geometry data input be compatible with the Mark III Hypersonic
Arbitrary-Body Aerodynamic Computer Program.

The basic tenet of this project was that it employ '"'engineering methods*'
that represent a realistic modeling of the actual flow about a shape. The
basic guide line was that the program produced should be a flexible engi~
neering tool, usable by the designer in day-to-day design and development
work, rather than a specialized research program requiring extensive
knowledge for successful operation and large amounts of computer time.

In addition to the above it was desirable that the new program retain as
many of the capabilities of the old Mark III Hypersonic Arbitrary-Body
Program as possible. This would make the program equally applicable
to interceptors and fighters and to space shuttle vehicles.

The result of this work in response to these objectives is the Mark IV
Supersonic-Hypersonic Arbitrary-Body Program. To a certain extent,
the Mark IV program is a re-structuring of the old Mark III program. It
does, of course, make extensive use of code from the Mark III program.
Moreover, the geometry decks prepared for the Mark III program are
still directly usable on the new program. However, the framework for
the Mark IV program differs from the old program in that each basic type
of analysis is accomplished in a separate program component. Each of
the major program functions are placed in separate components with the
interface between components provided by an executive routine and access
to appropriately stored and saved data.

The executive routine controls the order of calls to the Geometry, Aero,
Graphics, and Auxiliary Routines. The Geometry component has all of
the capabilities of the Mark III Mod 3 Hypersonic Arbitrary-Body Pro-
gram. These include input element, ellipse generation, parametric
cubic, and the Aircraft Geometry Option.

The Aero part of the program contains six major independent components:
Flow Field Analysis, Shielding, Inviscid Pressures, Streamline Analysis,
Viscous Methods, and Special Routines. Each of these components



generates data that is saved on storage units for subsequent use by other
components. Because of this new framework for the program all of the
input data to the program (except for the geometry data) is different
from that used on the Mark III program,

The Flow Field Analysis component is one of the key new capabilities of
the program. With it we can generate and store the external flow field
of a vehicle component. This flow field can then be retrieved by the
force part of the program and used to define the incident flow conditions
for another component, In this way we can account for the first order
interference effects between different parts of a vehicle. A surface
spline method is used to interpolate data within the flow field and for
several other purposes within the program.

The Shielding component also provides a new capability in the Mark IV
program. This option may be used to account for the shielding from the
external impact flow of one part of a vehicle by another part.

The new viscous parts of the program provide the capability of calcu-
lating skin fiction properties using an integral boundary layer program.
These computations are performed using external flow properties along
the program calculated surface streamlines.

The first Douglas arbitrary body program was started in July 1964,
almost ten years ago. The objective of the program at that time was to
fill the aerodynamic analysis gap that existed between the linear theory
methods (for simple shapes and low supersonic speeds), and the detailed
gas dynamic solutions using the method of characteristics or finite
difference techniques (simple shapes and very long computer times).
Linear theory methods have been improved considerably in the past ten
years, but they still cannot handle completely arbitrary shapes and they
do not account for the non-linear effects as Mach number increases.
Also, the detailed gas dynamic solutions still require too much machine
time for them to be classified as tools useful in the many day-to-day
studies in most vehicle design and evaluation efforts.

The Mark 1V Supersonic-Hypersonic Arbitrary-Body Program is pro-
vided as an engineering rather than a research tool. As such, the
accuracy of its results should not be expected to be as good as some of
the more exact methods (when applied to shapes and conditions where
they are specifically designed for). However, when solving problems
outside the range of the linear or more exact methods, or when studying
complex arbitrary shapes, the Mark IV program should produce very
useful results.

Throughout this report it will be assumed that the reader is familiar
with the contents of Volume 1, the User's Manual. Discussions of
earlier versions of this program are given in References 1 and 2.

This report contains descriptions of the analysis techniques used within
the program. Throughout these discussions an attempt has been made



to maintain mathematical notations consistent with the appropriate

reference involved. This will assist the reader in comparing the

approaches with the original reference material at some slight loss in
continuity within the present report. This policy has also been used
in the selection of many of the program variable names.

Volume I of this report contains the input instructions for this program.
Volume III contains the source language listings. The program will
run on CDC types of computers using the CDC FTN compiler. The
program also contains all the code hecessary for operation on IBM
computers, except that in the listed decks the "IBM only" cards are
made inactive with a C in column 1 and identified with an I in card
column 80. A small converter program is furnished to convert the
program form one machine to the other.



SECTION II

PROGRAM FRAMEWORK

The major features desired in this program were:

1. Provide the ability to analyze completely arbitrary three-dimensional
shapes.

2. Provide a component build-up capability where each vehicle component
may be of arbitrary shape.

3. Include a number of force analysis methods so that the program would
have the widest possible application to various vehicle shapes and
flight conditions.

4, Provide the capability to use the best force calculation method for each
vehicle component but leave the actual method selection up to the user.

5. Provide engineering methods to account for the effect of the flow field
generated by one component on the characteristics of another component.

6. Provide for convenient storage of data between program components.

7. Develop a total analysis system framework that is adaptable to con-
tinued improvement and expansion.

8. Keep the program as small and as fast as possible consistent with the
above goals and requirements,

9. Prepare the program decks so that they will run either on CDC or IBM
computers with a minimum of effort required to convert from one to the
other.

10. Keep the program input data as simple as possible consistent with the
requirements of program flexibility.

It is felt that the new Mark IV program meets each of these requirements
{although some new users may take exception to Item 10 above).

The Mark IV program is a modularized computer program designed to
handle a variety of high speed vehicle analysis problems. Mathematically,
the methods used in each program component are not what one would call
complex or sophisticated. However, when all of these capabilities are
tied together in one place, the result is a very large program with, in
many cases, some rather complex code. The functional organization of
the program is shown in Figure 1.

The detailed description of the various theoretical methods used in the
program are presented on the following pages.
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SECTION III

GEOMETRY

The new Mark IV Arbitrary-Body Program maintains all of the
geometry capabilities of the old Mark III program. However, in
the new program these capabilities are combined within a single
program component that can, if required, operate as a stand-alone
program. The basic capabilities of the new program include (1}
input elements, (2) ellipse generation, (3) parametric cubic, and
(4) the complete Aircraft Geometry Option of the Mark III Mod 3
program. These methods provide the flexibility required to
analyze a variety of shapes ranging from very simple surfaces to
the most complex forms. If desired, all of these methods could
be used in describing a single vehicle shape. This general
process is illustrated in the diagram below.

Program

Generated| {Parametric|  Aircraft User Supplied
Hand Input{ [ Elliptical Cubic Ceometry Shape
Elements Arcs Patches Option Generation

|
Arbitrary Shape

(Surface Elements)

The use of a basically simple geometry representation concept
has been a key feature in the development and success of the
Mark III Hypersonic Arbitrary-Body Program, Many of the
capabilities and options that were added to the program during
its years of development would not have been possible (or very
difficult to incorporate at best) if a more complicated basic
geometry approach had been used originally.

The principles involved in the application of each of these
geometry methods are discussed in detail in the User's Manual
and need not be covered here. The principal mathematical
techniques, however, are important from the programming
standpoint and will be discussed on the following pages.



The Surface Element Geometiry Method

The basic geometry method used by this program is the surface
element or quadrilateral method. This method was developed by

J. L. Hess and A. M. O. Smith for the Douglas Three~Dimensional
Potential Flow Program (Reference 3 ). For completeness, certain
parts of this report will be included in the following discussions.

The coordinate system used for this analysis is a right~handed
Cartesian system as shown in the figure below.

DIAGONAL VECTORS T, and T,
Th=Xs-Xy Ty=V¥s-Y, Tiz=23-2
Tox=Xe-Xe Toy=Yy-V: Tp=Z4-2,
UNIT NORMAL N=TyxT,

Nx = TZyle - leTZZ Ny = Nx/N
Ny = T1xTaz - TauTiz Ny = Ny/N
Nz = T2ley - TleZy ny = NN

N=vNZ+ N2+ N2
AVERAGE POINT
E:]/G(X1+X2+ X3+X4)
Y=Y+ Y8 Ys 4 Yy
T=WZ +Zy+ 23+ 2y
CORNER POINT PROJECTION DISTANCE
dy = nx(i -~ X+ ny(g - Y nz(i - Zk)

k=123 4
X CORNER POINT CODRDINATES
A X::( = Xk + ﬂxdk
YL = Yk + nydk
ZL. = Zk + nzdk

In the conventional use of this program the vehicle is usually positioned
with its nose at the coordinate system origin and with the length of the
body stretching in the negative X direction. The slight inconvenience of
this negative sign on the body stations has been accepted so that the
geometric data will be compatible with the Douglas potential flow pro-
gram (Neumann Program).

The body surface is represented by a set of points in space. These
points are selected on the body surface and are used by the method to
obtain an approximation to this surface that is used in subsequent cal-
culations, If the four related points of each set are connected by
straight lines we may obtain a picture of how the input surface points
are organized to describe a given shape. This has been done in Fig-
ure 2. The input scheme has been designed so that each point need
only be input once even though it may be a member of as many as
four adjacent sets of points. This is accomplished by the use of an
additional parameter for each point besides the X, Y, and Z values.
This parameter (known as the status flag) indicates whether a point is
a continuation of a column of points (STATUS = 0), the beginning of a
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Figure 2, Qutput from Perspective Drawing Program

new column of points (=1), the first point of a new section of elements
(=2), or the last point input for the shape (=3).

As may be seen from the drawings made by the Picture Drawing Fro-
gram, the different areas of a vehicle may require a different organiza-
tion and spacing of surface points for accurate representation. Xach
such area or organization of elements is called a section and each sec-
tion is independent of all other sections. The division of a vehicle into
a given set of sections may also be influenced by another consideration
since the force calculation program may be made to calculate the force
contributions of each section separately, using different calculation
methods.

The input surface points are not sufficient in themselves for the force
calculations. Each set of four related points which form an individual
element must be converted into quantities useful to the program. This

is accomplished by approximating each element area of the vehicle by

a plane quadrilateral surface. Since we are using four suriace points

to form an element, no single surface will contain the points themselves,
Also, adjacent plane quadrilateral edges will not necessarily be co-
incident. With a sufficiently small size of the surface elements this will
be of no consequence in the end results.

The mathematical technique used in converting an input set of four
points into a plane quadrilateral element is described below. The
figure below gives a representation of the input element points with
each point identified consecutively around the element by the sub-
scripts 1, 2, 3, and 4, respectively.



1 Y1 %y

x

i i i

2 %5 Y2 72
i i 1

3 X3 ¥ z3
i i i

4 ' R 24

The superscript i identifies the coordinates as input coordinates. We
next form the two diagonal vectors T; and T;. The components of
these vectors are

I | _ i i _ 1 i
Tix ™ %3 7% Ty = V3 -7 T = 73 -7

i i R i i
Tox ™ %% Toy = V49, T2, =247 2

We may now obtain a new vector N (and its components) by taking
the cross product of the diagonal vectors.

N = T, X T1
Ny = T?.y lz ly TZz
Ny N Tlx TZz h TZX le
N, = Tox Tyy - T Ty



e

The unit normal vector, n, to the plane of the element is taken as N
divided by its own length N (direction cosines of outward unit normal).

The plane of the element is now completely determined if a point in
this plane is specified. This point is taken as the point whose co-

ordinates, X, y, z are the averages of the coordinates of the four
input points.

_ B 1 i i i ]
X = y [Xl + XZ + X3 + x4
_ 1 i 1
SRR ILE R
- _ 1 i i i ]
z = 4 z1 + ZZ + 2.3 + 24

Now the input points will be projected into the plane of the element
along the normal vector. The resulting points are the corner points
of the quadrilateral element. The signed distance of the k-th input
points (k =1, 2, 3, 4) from the planeis

- = i v - i 7 - i =
dk = nX(X - xk) + ny(y yk) + nz(z Zk) k=1, 2, 3, 4
It turns out that, due to the way in which the plane was generated from

the input points, all the dk's have the same magnitude, those for points

L and 3 having one sign and those for points 2 and 4 having the opposite
sign. Symbolically,

dk = (- 1) (.‘J.1 k=1, 2, 3, 4

10



The magnitude of the common pProjection distance is called d, i.e.,

The coordinates of the corner points in the reference

are given by

Now the element coordinate system must be constructed.

d = ]d1,

coordinate system

k=1, 2, 3, 4

This

requires the components of three mutually perpendicular unit
vectors, one of which points along each of the coordinate axes of

the system, and also the coordinates of the origin of the coordinate
system. All these quantities must be given in terms of the reference
coordinate system. The unit normal vector is taken as one of the
unit vectors, so two perpendicular unit vectors in the plane of the

element are needed. Denote these unit vectors

vector ?i is taken as T

where

1 divided by its cwn length '1"1, i.e.,

11

The



The vector ?2 is defined by -t; = nx f;, so that its components are

tax nytlz B nztly
tZy - "k T Bt
tZz = n 1y - n'ytlx

The vec:tor_f'l is the unit vector parallel to the x or & axis of the

element coordinate system, while % is paraliel to the y or m axis,

and n is parallel to the z or § axis of this coordinate system.

To transform the coordinates of points and the components of vectors
between the reference coordinate system and the element coordinate
system, the transformation matrix is required. The elements of this
matrix are the components of the three basic unit vectors, ?]:, _tbz, and
7. To make the notation uniform define

ajp T oty 2 7oty 33 T T,
a,) T oty 82 T oty B3 T T,
231 T S 833 T Ty

11 12 13
421 422 423
431 232 233

To transform the coordinates of points from one system to the other,
the coordinates of the origin of the element coordinate system in the
reference coordinate system are required. Let these be denoted X

Vor %o Then if a point has coordinates x', y', z'in the reference

coordinate system and coordinates x, y, z in the element coordinate

12



system, the transformation from the reference to the element system
is

* oA ox) Foanlyt -y ) +oasE - )
Y = aZI(XT - XO) + azz(yl = YO) + 53.23(2I - ZO)
7 agiex) b anly' -y ) +oag(at - z))

while the transformation from the element to the reference system is

! =

x X + a; X + a5,y + 2z %
! =

vy Yo + 2p,% + aso¥ + az,Z
! = -

z Z + ay3% + a,3y + 2332

The corner points are now transformed into the element coordinate
system based on the average point as origin. These points have co-

ordinates x1'<, yl'(, z1‘< in the reference coordinate system. 'Their co-

ordinates in the element coordinate system with this origin are de-
noted by gk’ qk’

they have a zero z or { coordinate in the element coordinate system.
Also, because the vector tl, which defines the x or £ axis of the

0. Because they lie in the plane of the element,

element coordinate system, is a multiple of the "diagonal' vector

o b

from point 1 to point 3, the coordinate Tll' and the coordinate 113

are equal. This is illustrated in the figure below. Using the
above transformation these coordinates are explicitly

13
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St

Ee = ap b - R baLlyl -9 taglel -2
k =1, 2, 3, 4

N
e

ﬂk = a21(xi< -~ X) + aZZ(Xll( - ¥) + a23(zl'( -z

These corner points are taken as the corners of a plane quadrilateral.

The origin of the element coordinate system is now transferred to the
centroid of the area of the quadrilateral. With the average point as
origin the coordinates of the centroid in the element coordinate sys-
tem are:

_ 1 1 * sk ES sk sk B
E, ~ Em[gﬂﬂl'”z) + éz(n4—n1)}
2 4
- 1
o 7 -3

14



These are subtracted from the coordinates of the corner points in the
element coordinate system based on the average point as origin to
obtain the coordinates of the corner points in the element coordinate
system based on the centroid as origin. Accordingly, these latter
coordinates are

e = et
k=1, 2, 3, 4
e = T = Mg

Since the centroid is to be used as the origin of the element coordinate
system, its coordinates in the reference coordinate system are required
for use with the transformation matrix. These coordinates are

Xo = I’{—i_all §0+a21 1ﬂ'o
Yo = Yta g tasnn
Zo = z+a13 §0+a23 T]o

Since in all subsequent transformations between the reference coordinate
system and the element coordinate system the ceniroid is used as origin
of the latter, its coordinates are denoted X s Ve zo. The coordinates

of the average point are no longer needed. The change in origin of the
element coordinate system, of course, has no effect on the coordinates
of the corner points in the reference coordinate system.

The lengths of the two diagonals of the quadrilateral, t; and tp, are com-
puted from

0 = (k3 - £p)2
t2% = (k4 - £2)% + (N4 - )2

The larger of these is selected and designated the maximum diagonal t.
The body surface area and enclosed volume are determined by summing

up the contributions of each element. In terms of the coordinates of the
corner points, the area of the quadrilateral is

A = % (£3 - £1) (M2 - ny)

The incremental volume is given by the volume of the parallepepiped
formed by the element and its projection onto the x- z plane (the x - v
or y - z planes would have served equally well).

V = yoAnY
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Summary

The foregoing procedure may be briefly summarized as follows:

Each set of four points is converted into a plane-quadrilateral element
by the procedure shown in the sketch on page 7. The normal to the
quadrilateral is taken as the cross product of two diagonal vectors
formed between opposite element points. The order of the input points
and the manner of defining the diagonal vectors is used to ensure that
the cross product gives an outward normal to the body surface. The
next step is to define the plane of the element by determining the
averages of the coordinates of the original four corner points. These
points are then projected parallel to the normal vector into the plane of
the element to give the corners of the plane quadrilateral. The corner
points of the quadrilateral are equidistant from the four points used to
form the element. Additional parameters required for subsequent force
calculations, quadrilateral area and centroid, may now be calculated.

The spacing and orientation of the elements is varied in such a way that
they describe the vehicle shape accurately. Since four points are used

to define the plane quadrilateral, the edges of adjacent elements are not
coincident. This is not important, since the pressure is calculated only
at the guadrilateral centroid. This pressure is then assumed to be con-
stant over the surface of the element.

The plane-~quadrilateral surface description method is not as elaborate
as some of the other methods. It is important, however, to note that
the simplicity of the method permits the use of conventional cross-
sectional drawings in data preparation (no surface slopes required) and
the use of semiautomatic data-reading techniques. Also, as has been
illustrated in Volume I, computer-generated pictures are used in check-
ing the geometric data for errors.

Parametric Cubic

A second technique for describing three-dimensional curved surfaces is
also provided within the program. This is a mathematical surface-fit
technique and is identified as the Parametric Cubic Method because of
the general type of equations used.

Several different mathematical surface-fit techniques are described in
the literature. The one used in this program was adopted from the
formulation given by Coons of MIT (Reference 4 ). In this method a
vehicle shape is also divided into a number of sections or patches.
The size and location of each patch depends upon the shape of the
suriace,

The basic feature of this method is that only the surface conditions at the
patch corner points are required te completely describe the surface en-
closed by the boundary curves of the patch. The basic problem, how-
ever, is the determination of all the information reqguired at these corner
points, i.e., the surface equation requires corner point surface deriva-
tives with respect to the parametric variables rather than the X, Y, Z
coordinates. This has been solved by the use of additional points along
the boundary curves as will be described later.
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In the following discussions we will use the geometrical representation
of a surface patch as illustrated in the figure below.

BOUNDARY CURVE (FOR u = 0)
10 Xi(Oow)= Aw? + Bw2 + Cw + D
A= 200,00 - X4 ELS X
2IX(0,00 - Xi(0,8)] + S 00) + 2250,
B = 3(X(0,1) - X PLL Y L
(X:{0,1) - X,(0,0)) -2 Lo - g
_aX -
c == 00 D = X(0,0)
X, _ aX 38

BW_MZJTW f=],2,3FURX,Y,Z

BLENDING FUNCTIONS
Fi(u) = 3u? - 2u3 Fi(w) = 3w? - 2w?
Fofu) = 1 - Fyfu) Folw) = 1 - Fi(w)
SURFACE FORM
Kifuw) = Xi0,w) Folu) + X(1,w)F () + Xifue,0) Fo{w)
+ X 1YFa(w) = X0, 0) Fo(u) F ofw)
= X0 Fo (W) Fo(w) = Xi(1,00 F 1fu) F o(w)
Y = Xi(1L}F (u)Fy{w)

Since the basic surface-fit equations and their derivatives are presented
in Reference 4 , they need be only reviewed briefly in this report.

The X, Y, Z coordinates of a point on the surface are related to the two
parametric variables u and w. Thus, a surface in space is mapped
into the u, w unit square. The basic problem is to find the position

(X, Y, Z) of a point {(u, w) in the interior of the section surface. The
general procedure is to first find relationships for the four boundary
curves. These are defined as third-order polynomials in terms of the
parametric variables. The points on the boundary curves correspond-
ing to u and w (0, w and u, 0, etc.) are then calculated, A general
surface equation is used to calculate the properties at the point u, w.
This equation uses blending or weighting functions to properly introduce
the influence of each of the related boundary-curve points and the four
corner points. The blending functions also ensure the continuity of the
slopes across the boundaries between adjacent sections.

There are several methods for calculating the direction cosines of the
tangent vectors required in the calculation of the corner-point deriva-
tives. Most require the specification of additional surface-boundary
points, some of which may lie on the extensions of the boundary curves,
The derivatives must be calculated, since it would not be practical to
measure them directly from drawings. The method in this program in-
volves the use of circular arcs through three boundary-curve points, the
middle one being a corner point,

The first step in the computational procedure is to determine the equa-~

tions for the cubic boundary curves. The equation used is given by the
following relationship for u = 0,
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X.0,w) = Aw3 + BW2 + Cw+ D
1
where
8Xi aXi
A= 2 [Xi (0,0) - X, (0,1)] +52(0,0) + 5= (0, 1)
8Xi 8Xi
B = 3 [Xi (0, 1) - Xi (0.0)] - 2 55 (0,0) - 55 (0, 1)
BXi
C = Gw {0, 0)
D = Xi (0, 0)
Similar equations are needed for the other three boundary curves with u = 1,
w = 0, and w = 1.

The missing items required for the solution of the above equations are the
derivatives

0X, aXx
i

gw

{0,0), == (0, 1), etc

dw

In the Arbitrary-Body Program these are determined by passing a cir-
cular arc through three points, the middle point being the corner point

itself. For completeness, the development of this method is presented
and the sketch below is useful in following the derivation,
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This sketch is a view of the plane of the circle with U, . as the base coordinate.

The vectors Tl’ TZ’ and T3 are tangents to the curve at the points 1, 2, and 3.

The tangents make the angles 61, 62, and 63 with respect to U The chord

13°
lengths make the angles € and €, with respect to the vector 513.

One of the properties of circular arcs is that the chord angle is the average
of the two tangent angles,

_61+62 _62+63 61+.53
€ = —2% € S — € = —= 3
11 2 2 2 3 2
For the coordinate base selected ([_113), €3 = 0, therefore,
61 = -63 and 62 = € + €5

The tangent vector at point 2 is then given by

T2 = cos 62 Ul3 + sin 62UN

— £13 =

U =T » Lj3 is chord vector between points 1 and 3,
13 ' 13]

To determine ﬁN’ the binormal ﬁBN must first be found

Upn © Lig ALy,
U

ﬁBN = ﬁ"}ﬁ (unit vector)
S

Uy =~ Upn*Ups

Tke radius vectors (X, Y, Z) for the three points are

ry = X9+ Yl'] + Zlk
r, = X21+ Y2J+ sz
T = i B k
3 X31+ Yoj+ Zy
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The chord vectors between

the points are

le = or, -y = (XZ-X1)1+(Y2—Y1)J+(Z2+ Zl)k
L2,3 = T, - T, = (X3-X2)1+(Y3—Y2)J+(Z3-Zz)k
L13 = Tgo Ty S (X3-X1)1+(Y3—Y1)J+(Z3— Zl)k
and the chord angles
... e L 1L -_]5
COS8 el = i i COB8 €Z = 123 E
’ 12., ’ 13‘ l 23‘ } 13’
For convenience we will use the shortened notation:
le = ’le*, etc.
S s A T A S R A T A A
Ups =\ )il )i ()&
13 13 13
= 211+m13+n1k
Similarly
U, = £21+ m, j+n, k
i i ok
T
7 _ BN _ = = . m. n
U = X = 1 71
BN FBN‘ 13 12
I, m, n,
:(mlnz-m2n1)1—(£1n2 Q2n1)3+(£1m2-£2m
i j k
UN:UBNXU]_S: ()—()()
fl m) n
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R N R Ry N E
Tty oy m) - gy Uy my - gy )]

tolmypmy vy s my )+ fy (E) 0, - £, n)) ]k

Uy 7 Iy

i+ my + NN k
And finally we obtain the tangent vector
T2 = (ﬂl cos 32+[N sin 82) 1+ (m; cos 82 + oy sin 62) j

+ (nI cos §, + Ny sin 82) k

where
. X, - X, o Y, - Y, o Z,-2,
1 L, 1 Ly, 1 L,
1/2
_ _ 2 ) 2 ) z]
L13 = [(X2 Xl) +(Y3 Yl) + (23 Zl)
IN T -[ 0, (131 n, - EZ nl) + m, (}?1 m, - fz ml)]
my T oo my (g, -my ) s gy ) my - ml)]
N T ’ml () 0, - m, o)+ £y 4, - £ nl)l
and
po2"h Rt o - 2%
2 L, 2 L, 2 L,
1/2
- _ 2 _ 2 _ ﬂ
le = (X2 Xl) + (Y2 Yl) + (22 Zl)

The final end point derivatives are then found from

90X, X, 8s
5 = - . = TiAS; 1i=1,2,3 for X,Y, Z.
w as awW
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g_—:v = the boundary length since Aw = 1 on the unit square patch
I=2NB-1 , . , 1/2
as = [(Xul’xﬂ USSR S UM CS SIS RS !
I=2
I = 2 at the starting corner point

NB - 1 at the final point on the boundary curve

—
i

NB = number of points input on the boundary with one point
extending off each end of the boundary curve,

Once the boundary curves are found the values required for the general
surface equation can be calculated. This equation is given below.

X.(u,w) = X(0,w)F (u) + X,(1, w)F (u) + X, (u, 0)F _(w)
+ Xlu, DF (W) = X,(0, 0)F_(u)F (w)
- X.l(O, l)Fo(u)Fl(w) - Xi(l, O)Fl(u)Fo(w)
- XL DE (0)F (W)

where the terms Fo and F. are blending functions given by

1

3u2 - 2113 Fl(u) = 3W2 - 2w3

]
—
£
I

5|
£
il

1-F,(u) F (w) = 1-F(w)

The program does not use the parametric cubic geometry data directly in
the pressure calculations. Instead, the parametric cubic data are used in
creating surface elements by a systematic variation of the parametric
variables w, and u,

One advantage of the mathematical surface-fit technique over the plane-
distributed-element method is the smaller number of surface points re-
quired to describe a shape. However, additional points are required on
the boundaries to determine the required corner derivatives., This method
1s not as adaptable to semiautomatic data-reading techniques, since the
organization of the required input data is more complex. The accuracy

of this method depends upon the distribution and orientation of the surface
sections, just as the plane-distributed-element method depends upon the
distribution of the elements,
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Aircraft Geometry Option

The primary purpose of the Aircraft Geometry Option is to provide a
convenient means for generating detailed element geometry data for con-
ventional airplane types of configurations that are made up of a fuselage,
wings, horizontal tails, canards, fins, and nacelles or pods. The input
to the Aircraft Geometry Option is in the form of fuselage coordinate data,
airfoil ordinates and general planform shape, and element increment
control data. The output consists of the standard surface element data
(TYPE 3 data cards) in the format required by the components of the pro-
gram. The configurations that may be generated with this option are
very general in nature and include such capabilities as an arbitrarily
shaped fuselage with camber, cambered wings defined by a number of
airfoils, nacelles and external stores with circular cross sections, and
vertical fins. The capabilities provided by the Aircraft Geomesatry Option
may also be used in conjunction with all the other geometry generation
and input features of the program to form a single vehicle shape. For
example, it is possible to generate the wing and tail of a configuration
using the Aircraft Geometry Option, to input a portion of the fuselage
using input elements, and to complete the configuration using ellipse and
parametric cubic generated data.

As a special note it should be pointed out that the Aircraft Geometry Option
was originally prepared as a tool in checking out the geometry data for the
NASA Harris Wave Drag Program. This capability has been maintained

as a sub-set within the Aircraft Geometry Option in its present form.
However, an additional aircraft surface type has been added that permits
the use of arbitrarily oriented airfoils in describing wing and tail types

of surfaces. Also, the Aircraft Geometry Option permits the use of
arbitrarily orientated pods or nacelles.

The input requirements and capabilities of the Aircraft Geometry Option
are discussed in sufficient detail in Volume I. However, there are two
parts of the Aircraft Geometry generation process, that of pods or
nacelles and the general airfoil surfaces, that do need a bit more on
the mathematical development, This information is given in the
following discussion.

Pods or Nacelles

A pod or nacelle is a body of revolution with its axis arbitrarily located
with reference to the vehicle axis system. This increased capability
has been added without affecting the NASA Wave Drag Program input
format (the NASA program is limited to having the pod axis parallel to
the vehicle X-axis). The pod is defined with respect to its own coordi-
nate system (X'-Y'-Z'), the orientation of which is considered tc have
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bezen achieved through a vaw-pitch sequence of rotations. The para-
meters used in defining the pod and the formation of surface elements
are illustrated in Figure 3.

Figure 3. Pod or Nacelle Geometry.

The yaw angle ¥ and the pitch angle @ are derived by the program from
input coordinates of the pod origin and end point;

sin 6§ = (ZE - ZO)/L
sin ¥ = (Yo - YR}/ L * cos )
where L is the length of the pod,

1/2
)2. 2}

i

L = [(Xo Xl + (Yo - YE)2 + (Zg - Zg)
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The surface coordinates in the vehicle axis system are given by

X - Xg -X!
— -1 1

Y- Yq = (B ), Y

- 1

i Z ZO | Z

where (E-l) _g is the rofation matrix E™! derived in Section XI1
with ¢ set equal to zero, and

[
I

+1 for arbitrary-body program input coordinates
-1 for NASA Wave Drag Program input coordinates

I

Carrying out the multiplication the surface coordinates become

X

1

JXy-X"cos 8 cos ¢ -Y'sin¥ + Z' sin @ cos ¢

Y=Yq5-X"cos g sin¥ + Y'cos ¥ + Z'sinfsin o

N
il

ZO+X' sin @ + Z' cos §

In the pod coordinate system, a ‘Z'
radius distribution, R, is specified
as a function of X'. Therefore,

Y' = Rcos w +w

-Y'
Z' = R sih w —w

The meridian angle w is taken to have
zero value along the Y'-axis to auto-
matically account for the sign of Z',

The final expressions for the surface points in the vehicle axis system
are thus given by

X =jXp -X'cos @ cos ¥ + R(sin w sin 6 cos ¥ - cos w sin )

Y =Y, - X'cos # sin ¥ + R(sih @ sin § sin ¥ + cos @ cos ¥)

il

Z =24 + X' sin + R sin w cos @
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The input information required to define a pod or nacelle is as follows,

1. Number of pods (up to 9).

2. Number of stations to be used in the pod radii distribution
input (2 to 30). This is the same for all pods.

3. The X-Y-Z coordinates of the origin and end of each pod
in the vehicle coordinate system.

4, A table of X-ordinates (relative to pod origin} for the pod
radii distribution.

5. Pod radii distribution for each pod.

The order of the generated surface points is from the bottom around to
the top. The first point of each pod has a Status of 2, each new station
starts with a Status of 1, and all other points have Status = 0. If the last
point for a station fills only the left half of the Type 3 Element Data Card,
a dummy point is generated to fill the right half of the card. When the
pod axis lies in the X-Z origin plane, only half the pod is generated
(90° = @ = +90°). Otherwise elements for the complete pod are
determined.

In addition to specifying the axis orientation, the number of elements in
180° may also be specified. If this expanded capability is not used and
the input fields are left blank, the program assumes the pod axis is
parallel to the vehicle axis, and elements are generated every 15° in w.

General Airfoil Surfaces

This geometry surface type may be used to generate surfaces that are
defined by airfoil sections having arbitrary orientations in space. The
airfoils are not confined to fixed planes. This more general approach
permits the use of non-streamwise airfoil sections and is useful in
describing intersecting components such as the wing and tail fuselage
junctures. Input cards for this surface type cannot be used in input
to the NASA Wave Drag Program.

The general airfoil surface is defined by connecting two or more airfoil
sections with straight lines. The orientation of each airfoil is given by
coordinates of the leading and trailing edges and an airfoil rotation angle.
The techniques used in defining these airfoils and in performing the
necessary transformation to obtain the required Z-Y-Z coordinates in
the vehicle coordinate system are discussed below.
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Each airfoil section is defined relative to a coordinate system fixed
within the airfoil. The airfoil thickness displacements may be measured
either from the mean-camber line along a line perpendicular to the air-
foil axis or on a line that is normal to the mean camber line. This latter
method is used in some of the early NASA airfoil documents. All airfoil
section parameters are expressed as a percent of the airfoil chord. The
parameters used in defining an airfoil are illustrated in Figure 4. 1In
this illustration the airfoil lies in the N-¢ plane.

+2Z

)

Figure 4. General Airfoil Coordinate System.

The coordinates of a point on the surface of the airfoil are given by
the following relationships.

77p = { + DZ *= T % cos
p = £-DZ %7 * sin
Wh
cre Zc(f)
= , the mean camber line distribution
C
T = t—((—:—6--)- , the thickness distribution
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tan 8§ = %g ., the slope of the mean camber line

DZ

+1.0 for the upper surface (thickness
measured in the +7 direction)

-1.0 for the lower surface (thickness
measured in the -7 direction)

In the above general equations the point 7 _, £ on the airfoil is derived

by using a thickness distribution measured along a line normal to the

mean camber line. If the surface point is to be on a line normal to the
airfoil chord line, the parameter § is set equal to zero. Both options

are available in the program. The upper surface of the airfoil is generated
first and followed by the lower surface.

The airfoil coordinates (£, M) are next transformed to the vehicle axis
system, The £-m plane orientation is considered to have been achieved
through a yaw-pitch-roll sequence of rotations. The yaw angle ¥ and
pitch angle # {and also the chord length C) are derived by the program
from the input coordinates of the airfoil leading and trailing edges.

2

2 > 1/2
C = [ Xpgp -~ Xmp) +t Vg -Yrr) + (Z1g - Z7R) }

sin # (ZTE - ZLE)/C

gin ¥ = (Y. - YTE)/C * cos 4)
The roll angle ¢ is input explicitly and together with ¢ and @ are
positive in the right-handed sense of the reference system,
Zero values for the rotation angles indicate the airfoil is orientated

parallel to the X-Z plane. Zero yaw and pitch angles and a +90°

degree roll angle gives an airfoil in the X-Y plane (such as a vertical
tail root airfoil).

The surface coordinates in the vehicle-axis system are given by

- ] = F =
X - JXLE —§
-1
Z-21E n
L. - - .

The rotation matrix E_l is derived in Section XII. Therefore, the
desired airfoil surface coordinates are
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X=JX1g-[§cos 8 cos ¥+ 7 (sin 6 cos Y cos ¢ + sin ¢ sin ©)]*C/100

Y=Y - [€£cos @ sin ¥ + 71 (sin @ sin Y cos ¢ - cos Y sin @)]*C/100
Z=Zyg t[&sin@ +7m cos # cos @ ]%*C/100

where
j = +1 for Arbitrary-Body Program input coordinates (-X)

-1 for NASA Wave Drag Program input coordinates (+X)

i

The input information required by the Aircraft Geometry Option to define
a general airfoil surface is as follows,

1. Number of airfoils.

2, Number of airfoil percent-chord points used to
define the airfoils,

3. Flags to control the thickness distribution type,
generation of tip and root closure elements, and
repetitive use of mean camber line and thickness
distributions,

4. A table of percent chord locations that are to be used
for the airfoil thickness and camber distributions.

5. The X-Y-Z coordinates of the leading and trailing
edge of each airfoil section.

6. The roll angle @ of each airfoil section,

7. The mean camber line ordinates in percent-chord
at each percent chord location for each airfoil.

8. Thickness distribution in percent chord at each
percent-chord position for each airfoil.

This surface type differs from those previously described in that repeti-
tive use may be made of the arbitrary airfoil option on a single pass
into the Aircraft Geometry Option. This stacking option allows wings,
fins, etc., to be generated on a single pass into the Aircraft Geometry
Option. A contraol flag also permits repetitive use of airfoil data for
subsequent airfoils to save input time when all the surface airfoils are
identical. Tip and root closure elements may also be generated to give
a completely enclosed surface,
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Control Surface Geometry *

The geometry data for a control surface flap are input to the program in the
undeflected position. The methods used in transforming these data to the re-
quired deflected position are cutlined in the following discussion.

The coordinate system used in these derivations is shown in Figure 5.

Figure 5. Control Surface Angle Definitiocns,

The general procedure involves a coordinate shift and an appropriate rota-
tion to a hinge-line centered coordinate system such that the new Y-axis
{Yo) lies along the hinge line. For ¢ and ¢ equal to zero and with the flap
surface normal in the negative z-direction, the hinge-line centered coordi-
nate systern has the same directions as the body-axis system. The corner
points, centroid, and normal vector (direction cosines) for each element
of the flap are transformed into this system. Since the flap is a rigid body
this information is independent of flap deflection and the hinge moment
factor (moment per unit normal force) need only be determined once. How-
ever, the force magnitude is a function of the deflection angle and requires
having the geometry of the deflected flap in the vehicle-centered coordinates,

&
Note: Control surface deflection is not in the Mark IV Mod 0 release
but will be added at a later date.
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The coordinate system shift is given by

X' - X-X
HL4
Y' = Y-Y
HL4
Z' = 7 - 7
HL4
where

{ )HL is to point 4 on the hinge line
4

The new coordinates of the flap in the shifted and transformed coordinate
system are given by

x| [ x|
vyl = [E] Y!
Zb A
where
=] - Lol ]
J
cosy sin 0
[\I,:, = |-siny cos 0
0 0 1
$ = rotation about the 7' -axis
1 0 0
{@j} - 0 cos® sin¢
0 -sind cosd
¢ = rotation about the X'o—axis
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The final rotation to the deflected position (§; is the control surface
deflection) is given by

XO(S XO X
e
l} T
Yo | = [e) |0 - [e] (=]
1 i
Zoée A 7z
where
cos 6, 0 - sindg
[%] = 0o 1 0
sin O, 0 cos 6e

The coordinates of the deflected flap are then transformed back to
vehicle centered coordinate system, first through the inverse rotation

1 Y
X'5, B X0,
1 . 1
ZI1 Z1
b 05,

and then by the coordinate shift

Xﬁe = X Se + XHL4
i

Yée = Y Ge + YHL4
1

Zée = Z 66 + ZHL4

The rotation angles are defined for a right-handed system and are
found from the relationships

-1 { gLy - XHig C -1 | FHL] - ZHLy
o= sin T and ¢ = - sin Ty
XY

where _ N 5 Lp

Ly = | RHpy - XuLg) + (YHL,) }
and T ) 1/2

2
Lyz = {(Lxy™ + (Zuny; - Zuny) ]

A check is made in the program and if YHI; < YHL,4 then the yaw

rotation angle is set to Y = 7 - ¢ to position the hinge line in the
proper quadrant.
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The third rotation angle 8. 1is, of course, specified for a given prob-
lem. It should be noted in the present approach, that the coordinate
system is rotated through the angle 6., positive in the right-handed
sense for the system defined. Relative to the physical problem, posi-
tive 0 corresponds to a flap deflection into the flow.

The hinge moment factor (HMFCT) is simply a function of the element

geometry and location, and is defined as follows., The total moment
of an element is (considering only inviscid forces)

0o = - RyxTF) = PRy x Nj)AREA

where

RO is the radius vector to the element centroid,

P is the net surface pressure,

and AREA is the element area,

The hinge line moment is just the ?'0- component of the total moment;
MHL = MYIO = J IO L] MlO = P (HMFCT)

where

11

HMFCT = (Zg Nxt, - X Ny ,) AREA

Once the deflected flap is properly oriented in the vehicle centered co-
ordinates, the force on each element and hinge moment are determined.
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SECTION 1V

GENERAL INTERPOLATION METHOD

The extension of the Arbitrary-Body Program to lower Mach numbers
will require greater use of the Second-Order Shock-Expansion method
in calculating surface pressures and flow fields. This requires that
streamlines be defined prior to the start of the pressure calculations,
These same streamlines may also be used in the viscous calculations
and in these applications it is necessary that the number of streamlines
be kept reasonably small, It would be impractical to expect that a
streamline would pass through every surface element, let alone through
the actual centroid of the element. It will therefore be necessary to
calculate surface properties (both pressures and skin friction) along a
number of streamlines, and to then use some interpolation scheme to
arrive at the properties at each element centroid for use in the force
integration,

Briefly, the problem may be stated as follows:

The flow properties are calculated on a grid of points defined by stream-
lines. The vehicle forces will be summed over a grid of points defined
by the element centroids. The problem, then, is to determine the flow
properties at the centroids by interpolation,

There are two general classes of interpolation. These are "interpolation
in the small"” or local fit and "interpolation-in-the-large' in which an
entire surface or section is fit. Harder and Desmarais have presented a
method, the Surface Spline, which is an ingenious resolution of the clas-
sical problem of two-dimensional interpolation. It is an "interpolation-
in-the-large' scheme with all the associated convenience (irregular grids)
and with accuracy rivalling the local {fits,

The Surface Spline Method is the basis for the general interpolation pro-
cedure used throughout the Mark IV program. It is used for interpolating
flow fields to determine interference effects, for interpolating surface
velocities to calculate streamlines, and for interpolating surface proper-
ties to calculate forces (inviscid and viscous).

Surface Spline

The surface spline is based on the small deflection equation of an infinite
plate that deforms in bending only. The procedure is to represent a

given deflection as a symmetric deflection due to a point load at the origin.
The entire surface is then taken as the sum of all the point load distribu-
tions, subject to the boundary condition that the surface becomes flat at
large distances from the origin. This results in a system of linear
equations which is solved for the required loads or in the present applica-
tion, for the spline coefficients. The final system of equations is
presented below (details of the derivation are given in Reference 5 ).
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A function W;j is specified at n independent points (x-l, Yi) i=1, n.
A system of n+ 3 equations must be solved for the n+3 unknowns a

ay, ap and F; (i=1, n). ©

Fi+ Fp+...+ F_=0

X1F1+ X2F2+..-+ XnFn:O

y1F1+ Yo Fo +0 o0 t Vpfp =0

S
t

n =

- 2 2
where Aij = rij In rij

2 2 2
and rij = (x5 - Xj) + (Yi - YO)

It is convenient to express these equations in matrix form as follows:

0 0o ol 1 1 1 1 a, 0
|
0 0 0 : X] Xy Xj X, aj 0
0 0 0 : V1 Yo V3 - Yn as 0
_____ e
L x) vy : Ay A A3 c B | B = | Wy
Loxp vp | Azl App Ao A | F2 W2
| . L]
! - . L
|
: . .
1 x, Yn i Anl AnZ An3 » Apn FnJ Wn
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Using the partitions indicated for the system coefficient matrix and
compacting the notation, this may be rewritten

B i xyt
e = H
o AT Cii k{
i 1]
where
i = 1,n
i = 1l,n
k = 1l,n+3
{ = 1,M

These equations are to be solved for the spline coefficients, [Ckf]'
[Hy ; ] represents the known functions at the given points:

ng =0, HZE = 0, H3ﬂ = 0, H4£ = Wy, HS,E :WZ’ etc.

The additional parameter £ refers to the number of functions to be inter-
polated. For example, the flow field data are interpolated for six functions;
Mach number, the three-direction cosines of the velocity vector, pressure,
and temperature, In this case M= 6 and the spline coefficients are found
for all six functions with one calculation of the coefficient matrix, The
matrix solution is obtained using the Douglas SOLVIT Routine, details of
which are given in Reference 6. The method is simply Gausian triangu-
larization adapted to the requirements of the computer for the case where
the coefficient matrix is too large to fit into core.

Linear Spline

The same approach could be taken to define a one dimensional or linear
spline. Consider a function dependent on y only., Terms involving x
would be removed and the system reduced to order n+2. This would
involve changes in the coding logic. However, the above equations are
readily adapted to a function of one variable, A function independent of
X is equivalent to putting x equal to a constant, say x.. The second
equation of the system becomes

Xe (Fy + Fy + Fp+. 0. + F))=0
This is a multiple of the first equation and the system is indeterminant.
Also, since the function is independent of x then a; should be equal to
zero. This is easily accomplished by setting the term B(2,2) = 1, The
second equation now becomes

a+XC(F1+F2+F3+...+Fn):0

1
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The term in brackets is zero by the first equation and thus a; = 0. The

system is no longer indeterminant and the solution of n+3 systerm proceads

as before.
The values of the B matrix are summarized as follows:

1. Surface Spline

W; = function of both x and y

0 0 O
B = 0 0 0O
0 0 0O

2. Linear Spline, Independent of x

W; = function of y only
X = constant = x
c
(]
B = 0 1
0 0 O

3. Linear Spline, Independent of y

W; = function of x only
y = constant = Ve
0 0
B = 0 O
0 0

Symmetry

If the function being interpolated has a plane of symmetry, then use can
be made of images to improve the accuracy of the fit. Consider WJ
specified at n points (x:, y.) in the range x; < x. < x, and also W; sym-
metrical about x,. The sstl:em of equations codld be written incl]uding
n images in the range x, < x; =< (2xy - x1). Transforming the x

. o ]~
coordinate to

and using -j notation to represent the images the 2n+ 3 system of
equations is
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n
S, & -0
-n
n
E ViFi =0
-n

n
|:ao+ $J al-i-yj a, + ZAj’iFi = Wj:\ i = -n,n
i==-n

Adding symmetric pairs of equations

2ag ta(§ydy) Fanlyytyy) f Ay AL JF L

+ (A,

i,-1 +A-j,-1)F..1 + (Aj’1+ Ay Fp +..

+(A. +A . F

J, 1t RAERS n:(.w'j-[—wj)

Using the definition of symmetry

ﬁ_i = '51
LA T 41
W—i = W
and also, that A.. = :t"2 fn r..2
’ ij = T i
2 2 2
where ri,j = (51 - fj) +- (Yi - YJ)

it is easily shown that

2 2 2 2
T3 T Tiej (§, + Ej) + vy -Yj)
and 2 2
T, . = T. ..
-1,-] 1,1

Therefore,



and the system becomes

n
Z F, =0
1

n
2 viF =0
1

n

izl
where _ 5 >
Ai,j = rij in ri,j
— a 2 2
i,y T (Xi + Xj 2x )7+ (y; - yj)
The order is reduced to n+2 and a; = 0. As was the case for a linear

spline, the n+3 system can be solved by changing the B matrix and
setting x = x. in the [xy] and [xy!] matrices.

Similar results can be obtained for y symmetry and for both x and y
symmetry.

Application of the Surface Spline for Interpolation

The surface spline, or any other interpolation scheme, needs to be
specified in appropriate coordinates to do the job correctly. For example,
consider the flow over a swept wing. Interpolation relative to the space
coordinates used to define the quadrilateral elements will produce
erroneous results. The interpolation must be done in coordinates consist-
ent with the physics of the problem and for flow on a swept wing, distance
from the leading edge and distance along the span would be proper.

The surface spline, due to the nature of the basic solution (symmetric
point load) works best in a2 one-to-one domain of the independent vari-
ables. That is, for the swept wing, coordinates of relative chord and
relative span would be used defining a range of both x and y from 0.0 to
1.0.

The process of selecting and scaling the appropriate coordinates is
referred to as normalization in the Mark IV program. Two different
categories of data normalization are used in the Mark IV program. These
are surface data and flow field data. The normalization procedures for
each are described in the following sections,
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[T]

Surface Data Normalization

Interpolation of surface data is involved in the Surface Streamline Option,
in the Input Pressure Option, and in the Viscous Program Option. The
surface geometry, input in body reference coordinates {xr, yr, zr) is
first transformed to the required local reference system., The local sys-~
tem is defined by the orientation parameters Xqg, Vq4s Zgs 179 6y, and (,‘bo.,
The local coordinates {x, v, z) are given by

[X! v, z]l = [T] [xx, vy, ZZ]

where
(cosﬂocosdlo) (cosﬂosinlbo) (-sing,)
(-cos¢Osin¢0+sin¢osin60cosllto) (cosqbocoslflo+sin(f)osinﬂosinl,bo) (sinqbocosl,bo)
(sin¢osin¢o+cosqbosin()ocos 116) (—sin¢ocos¢o+coscb()sinﬁosintbo) (cos(,‘bocos 90)
and XX = XI - X/
YY = yr -y,
zz = zr - Z,

Also calculated are the axial, radial, and meridian coordinates:
A = x
R = (y2 + 22172
¢ = ARCTAN (y/-z)

li

Six coordinates (x, v, z, A, R, ¢) are now available in the local reference
system and the pair of independent variables to be used for interpolation
are selected by the input flag INORM. The five options available are;

INORM = 0, ¢ = f{A,R)
INORM = 1, z = f(x, v)
INORM = 2, vy = f{x, z)
INORM = 3, x = f(y, z)
INORM = 4, R = {(A, ¢)

To scale the data, the surfaces are grouped into two types: bodies and
lifting surfaces (indicated by the input flag ISURF = 0 and 1, respectively).
More complex surfaces may be composed from combinations of these two
types. In addition, four boundary points must be input to scale the data.
These points are input in the body reference system and transformed to

the six local coordinates. The boundary data are used differently for each
surface type.

An example of the use of the boundary data for each of the two surface
types is discussed in detail,
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I. Bodies (ISURF = 0)

Consider a fuselage with approximately an axially-symmetric cross-
section shape about the x-axis.

Z
4

The flow field is calculated using the Second-Order Shock-Expansion
Method in a number of meridian planes, say five,

Z
)

¢5= (0
qbZ

$=0

Having done this, the flow properties at the centroids of the elements are
required in order to calculate the forces or streamlines on the body. The
meridian flow data has been stored on Unit 10 and will be recalled for
use in the surface interpolation routine.

For this case the obvious choice of independent variables is the axial
coordinate {A) and the meridian angle {(¢) (i.e., INORM = 4),

The following boundary data are input:

XB(l) = X1 XB(2) = XN
YB(l) = 0.0  YB(2) = 0.0
ZB(1) = 0.0  ZB(2) = 0.0



XB(3) = 0.0 XB({4) = 0.0
YB(3) = 0.0 YB(4) = 0.0
ZB(3) = -1.0  ZzB(4) = 1.0

The interpolation will be performed over the length of the body (X1=X=XN)
and for (0 = ¢ =< 7).

If there happen to be large variations in flow properties between ¢ = 0 and
¢ = m (because of large &, or Mqy,)s then the interpolation could be seg-
mented, For example, use three segments with ranges (0.0 = 4')1 = 609,
(60° = d)z <120°) and (120° = ¢3 = 180°), Since the surface spline is a
global fit, segmenting will relax the constraints that must be met.

II, Lifting Surface (ISURF = 1)

Consider a wing whose leading edge and trailing edge are approximately in
the x,v plane. The flow properties on a lifting surface vary essentially

with relative chord (x/c) and relative span (y/b) and the surface should be
normalized with respect to these parameters., Therefore, use INORM=1,

//,///3

flow planes
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The four boundaries are input as indicated on the sketch. They are first
transformed to local coordinates and the following parameters calculated:

Root Chord, CR
Tip Chord, CT
Local Span, B

XB(2) - XB(1)
XB(4) - XB(3)
YB(3) - YB(1)

[t}

1]

The normalized coordinates (x/c, y/b) for a given point on the surface
(x,v,z) are

x/c = (x - XLE)/CY

y/b = (y - YB(1)/B
where XLE = XB(l) + (XB(3) - XB(1)) * y/c
and CY = CR + (CT - CR) * y/c

Flow Field Data Normalization

The flow field about a component is made up of various flow regions. In
the previous example of flow on a body, each meridian plane would be
designated a flow region. Each region is specified by two boundary curves
{the body surface and the shock wave) and, if desired, by points within the
field.

o

urface

120001027000/ /. L o
A Ay AL

body S

A typical flow region is shown in the sketch in the form of radial versus
axial distance. The nose station is AN and the body length is shown
at Ay,. Proper normalization is obtaihed using a relative axial distance
and the shock-layer distance.
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For a point located at A;, Ry, the normalized coordinates are

O S
_ R. - Rnp.
R. = i 1

' Re; - Rpy

Curves of body radius (Rp) and shock radius (Rg) as a function of axial
distance A are obtained using the linear spline.

As an example of the appropriateness of the normalization and the accuracy
of the surface spline, a conical flow field is shown in Figure 6. While
this is a particularly simple case, exact analytical results are available
for definition and comparison. The flow region was defined by six points
on each boundary curve (at stations A = 1.0, 2.0, 4.0, 6.0, 8.0 and 10.0)
and five interior points were specified at each of three stations (A = 1.0,
6.0 and 10.0), Figure 6 presents results for speed of sound ratio,
pressure ratio, and radial velocity component interpolated at A =4.0, and
clearly show the accuracy of the method.
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Figure 6. Conical Flow Field
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SECTION V

FLOW FIELD ANALYSIS METHODS

At very high hypersonic Mach numbers the vehicle generated flow sys-
tem is relatively close to each vehicle component. For these types of
flow systems the importance of component interference is diminished
and component build-up methods may be used with considerable success.
However, as the flight Mach number is reduced down into the supersonic
speed range interference effects become very significant. Interference
effects also may be important even at the hypersonic Mach numbers if
the vehicle is composed of discrete components such as is the case for
airplane type wing-body-fin configurations., Past experience has also
indicated that even the blended or all body shapes may have significant
interference-type effects when analyzed in vaw.

A really accurate analysis of this problem including interference effects
would require a three-dimensional method of characteristics solution.
However, present mathematical and programming techniques and digital
computer size and speed limitations preclude the application of the
method of characteristics to typical preliminary design problems,

Prior to the advent of the large scale digital computer a number of
approaches were used in the analysis of interference effects on wing-~
body-fin configurations at supersonic speeds. These methods, for
example the work of Kaattari in Reference 7, have since been replaced
by the linear theory finite-element computer programs. However, these
early hand computational methods did do a pretty good job in the low
supersonic Mach number range and for the simple wing-body-fin con-~
figurations for which they were derived. The general approach in these
methods was to look at each aspect of the flow and, with appropriate
assumptions and simplifications of the vehicle shape, to approximate
the overall effect of the flow on downstream components. These
methods usually did not give detailed pressure distributions, but instead
only accounted for the interference effects in a gross way on the final
vehicle aerodynamic coefficients. Of course, significant changes in
vehicle shape (such as body cross-section) were not always reflected in
answers. Also, frequent use of slender body theory meant that the
results could not be extended up into the hypersonic speed region.

The use of the digital computer has led to methods that largely replace
these older hand, "engineering' methods of solution (the one notable
exception being the USAF DATCOM). These computerized methods,
which are usually based on linearized theory, have been summarized

by Carmichael in Reference 8 , and by Bradley and Miller in Reference
9 . One method in wide use today is the one of Woodward (Reference

10) that uses finite elements or boxes to which potential methods are
applied. However, the computer programs based on these methods are
presently restricted to simple body-of-revolution and wing combinations.
Even with the addition of dihedral panels,as has been recently achieved,
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the representation of a shape is far from what could be called "arbitrary',
This fact, coupled with the inherent limitations of linear theory, means
that it has limited direct use on the more general problems involving
complex shapes and a wide Mach number range.

The interference problem, therefore, resolves into one that (1) deman<s
the ability to handle arbitrary shapes from the geometry standpoint, and
(2) accounts for interference effects using engineering methods, yet
retains all basic features of the true flow fields.

The fundamental approach taken in the Mark IV program is one of flex-
ibility. It was desired that the surface pressure method used for one
component not be inherently related or dependent on the flow field method
used on another. The vehicle is represented by a humber of components
and the most appropriate flow field method is used depending upon the
component shape and flight condition. This analogous approach was a
large factor in the success of the Mark III program.

The Mark IIl program, which already does a pretty good job of predicting
the vehicle characteristics, may be looked upon as the first order solu-
tion. Its weaknesses can be mainly attributed to certain regions {e.g.,
vertical fin, wing carryover to fuselage) associated with particular con-~
ditions (e.g., high angle of attack or yaw) and shielding effects. It thus
seems logical to build up the vehicle flow field in a step-by-step or
component-by-component fashion. For example, the vertical would be
analyzed in the symmetry plane subject only to the body flow field. Next,
the effect of the wing field alone, then the sum of body and wing. Finally,
the combination of the wing (analyzed subject to the body field) and the
body field. In the last case the complete body flow field is not required
to define the wing field, but just the body flow field properties in the
vicinity of the wing leading edge are sufficient.

The framework of the Mark IV program is designed to facilitate just this
type of operation. The flow field data of a component can be saved and
then interrogated during subsequent calculations or future runs. In the
pressure calculations, a given component is identified by the user as
possibly being influenced by up to four flow regions. The local properties
in each flow region must have been previously generated or input and
stored on the flow field direct access data unit 10. In the analysis, each
element is first checked to see what flow region it is in. The appropriate
flow table is then selected and the local properties determined using the
surface spline method.
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Component Flow Field Analysis

The Mark IV program is structured so that a variety of flow
field methods can be employed. A proper perspective of the
program capabilities is obtained by an examination of methods
listed in the accompanying table. The solutions have been
separated into four main categories with selected individual

methods appropriately listed. Those enclosed in | BOXES

are methods incorporated in the Mark IV program. Those
marked with an asterik (*) are available and could be added
at some future time., The remaining methods are consider-

ably more involved with regard to both complexity and
increased run time and far exceed the requirement of ''engi-
neer methods', In principle, however, they could be added
to the basic framework of the new program for special
purposes or final design point analysis.

To obtain this flexibility of choice, a common interface
between the flow field methods and the rest of the program

was established, The flow field data about a given compon-
ent are specified in a number of planes. For example, the
flow field about a body of revolution would be defined in

meridian planes., This concept of flow planes was arrived at

by consideration of (1) the shock-expansion method as a
primary means of generating the data, and (2) the Surface
Spline Method as primary user of the data. All the flow
data are stored on a direct access unit (10) in a standard
format and are readily accessible by other options of the
program. For example, the flow field about a body is gene-
rated using the second-order shock-expansion method in the
Flow Field Option of the program. This data may then be
accessed by other options of the program to calculate the
following:

1. Forces on the wing subject to the body field.
2. Forces on the body.

3. Streamlines on the body and the viscous
forces on these streamlines.
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TABLE OF FLOW FIELD ANALYSIS METHODS

I INPUT FLOW FIELD

Tabular Distributions of Quantities
Throughout the Flow Field

II EMPIRICAL APPROACHES

Shock Shape Correlations

Surface Pressure Correlations

Local Correlation Factors

III APPROXIMATE ANALYTICAL APPROACHES

Generalized Shock Expansion

Second-Order Shock Expansion

Conical Shock Expansion

*Two-Dimensional and Axially Symmetric
Method of Characteristics

*Linear Theory (Potential Solutions)
*Linear Theory (Wave Drag)
Linearized Method of Characteristics

Iterative Schemes

IV EXACT ANALYTICAL APPROACHES

*Conical Method of Characteristics
Integral Methods

Three-Dimensional Method of Characteristics
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Shock-Expansion Method

The concept of shock-expansion was first introduced by Epstein in 1931
for calculating airfoil pressures and was extensively developed by the
NACA in the early 1950's. Briefly, it was extended by Eggers,
Syvertson, and Kraus (Reference 11) to include the determination of
the shock shape and thus the entire flow field, and further by Eggers
and Savin (References 12 and 13) as the "Generalized Shock Expansion
Method" to include three-dimensional hypersonic flows. A so-called
second-order term in surface pressure was later added by Syvertson
and Dennis {(Reference 14). The generalized method was derived from
consideration of the full three-dimensional characteristics theory.
Through an order-of-magnitude analysis based on the hypersonic
similarity parameter, it was shown that disturbances associated with
divergence of streamlines in planes tangent to the surface are of
secondary importance compared to those associated with the curvature
of streamlines in planes normal to the surface. It was further shown,
consistent with the above result, that the streamlines may be taken as
grodesics, For a body of revolution then, the flow may be analyzed in
meridian planes; a result exactly true at zero angle of attack and only
approximate if the body is inclined to the flow.

The basic premise underlying the shock expansion procedure is that
only the principal characteristics in the flow need be considered, with
reflections from the shock wave and from vortex lines being negligible.
Development of the theory is presented in most texts on high speed flow
(e.g., Hayes and Probstein, Reference 15) and the detailed equations
are presented in the aforementioned NACA publications. In the follow-
ing discussions on the application of the method in the Mark IV program,
only those equations vital to the presention are given. The shock-
expansion methods are collectively referred to as the Shock-Expansion
Method. The specific forms of two-dimensional, three-dimensional, or
second-order are accessed via input flags which simply include or
delete terms as required.

The starting point for the Shock-Expansion Method was a program
developed in Reference 16, and was very helpful on getting a ''quick
jump' on the problem. The final form is highly modified, incorporating
for example, the Mark IV oblique shock and cone solutions. The
experimental data of NASA TN D-6480 (Reference |7) were used exten-
sively as a guide in the exploration of various alternatives,

To use the shock-expansion method it is first necessary to define the
flow line or path along which the calculations are to be made. Ideally,
such a path should be a streamline but generally this is not known. The
true path is approximated by a flow line defined as the intersection of
the flow plane and the surface geometry. The flow plane (also referred
to as the cutting plane) may be specified with arbitrary orientation and
the profile shape is automatically obtained from the quadrilateral
elements,
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Surface Pressure

The profile shape is represented by a series of wedge or cone frustums
as shown schematically in Figure 7 . The flow on the first segment is
given by the oblique shock or cone solution and the pressure on the
downstream frustums is given by

- -1
P =P, ~ (P, -P,)e

where .
P. is the pressure on a cone of

the same angle as the frustum

P  is the pressure resulting from
a two dimensional expansion
between successive frustums

n is proportional to the pressure
gradient and distance down-
stream of the corner

If the surface is two dimensional or only first order expansion is desired,
then 7 = 0 and the pressure is simply

P = P,

The relationship between the first and second order pressure are also
shown on Figure 7.

Calculations were made for the configuration of NASA TN D-6480 (Refer-
ence 17) which is shown in Figure 8 as loaded using the Ellipse
Generation and Aircraft Geometry Options. Comparisons of the first

and second order shock expansion methods with the experimental data at
zero angle of attack are presented in Figures 9 and 10, Also shown
are results from a Method of Characteristics Program (based on the
supersonic flow field programs developed at NASA by Inouye, Rakich,
and Lomax, Reference 18). The data aft of x/1. = 0.5 are influenced by
the wing and should not be considered in the present comparisons as this
effect is not accounted for in the calculations. All three methods used
conical flow starting conditions. The agreement between the second order
expansion and the method of characteristics is good at Mach = 2.3

(Figure 9 } and excellent at Mach = 4.63 (Figure 10), Both are in far
better agreement with experiment than the first order shock expansion,
especially at the lower Mach number. The first order method is very
sensitive to the starting cone solution. The second order method does
not have this difficiency as the pressure is continually adjusted by the
limiting cone value, P_.
Since these results are a.t zero angle of attack, P, was obtained using

the tangent-cone method.™ Attention is now directed to the angle of attack

*See Section VIII, Inviscid Pressure Methods
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Figure 7. Schematic of Shock Expansion Method
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Figure 8 . Geometric Representation of NASA TN D-6480
Configuration
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cases and, in view of the results just given, only the second-order
shock-expansion method was used in the analysis. The first attempt
used the local impact angle to define the tangent-cone limiting condi-
tion, Typical results at Mach = 2.3 on the windward centerline (¢=0)
are shown in Figure 11 and the predicted pressures were too large,
It was then decided to use the inclined cone method™ to define the
limiting conditions and the results at the same conditions are shown
in Figure 12. The agreement of the calculated and experimental
pressure coefficients is good and very much better than the simple
tangent-cone approach,

Comparison of the circumferential pressure distributions are given
for the Mach=4.63 case in Figures 13 through 17. The ¢=0 results
are in very good agreement whereas the ¢= 60 and ¢= 120 results

are only in fair agreement. The data along the leeward centerline

(b = 180) showed higher C.'s than the ¢= 120 meridian data. This
was felt to be the result otpa viscous induced recompression and

these data have been left off the figures for clarity. Also, only those
data not influenced by the presence of the wing have been included on
the plots. To check the method at stations aft of the maximum dia-
meter, the body-alone configuration of Reference 19 was also
analyzed. This is a body of revolution symmetrical about x/L=0.57
and truncated with a finite base diameter. Pressure distributions are
compared at Mach = 2.5 at Zero angle of attack (Figure 18), 2° angle
of attack (Figure 19}, and 4° angle of attack (Figure 20). Both the
windward (¢ = 0) and leeward {¢p = 180) centerline data are shown for the
angle of attack cases. The windward data are in good agreement over
the length of the body except at the very aft locations. These discre-
pancies are probably a result of sting interference. The leeward
data show the recompression effect previously mentioned, being more
pronounced on the aft portions of the body where the viscous effects
become dominant.

Shock Wave Shapes

At zero angle-of-attack, the Douglas developed tangent-cone method
provides excellent results for both the surface pressure and shock wave
angle. At angle of attack, the inclined cone method provides two means
of predicting surface pressure. However, no similar method for pre-
dicting shock wave angle is available. What is needed is a relationship
for shock angle analogous to Jones' pressure coefficient formula. Lack-
ing this, an empirical solution has been devised which follows the trend
of exact results. In summary, the tangent-cone impact method is used
to calculate the Mach number normal to the shock wave, which in turn
is used to calculate the pressure ratio across the shock. 'This pressure
ratio is then modified by a factor to provide agreement with the zero
angle of attack results,

*See Section VIII, Inviscid Pressure Methods
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Second-order shock-expansion
using impact tangent cone
as limiting condition
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Figure 11. Comparison of Experimental and Theoretical
Body Pressure Data Using Impact Tangent
Cone as Limiting Condition; M =2.3, ¢=0°



Second-order shock-expansion
using inclined cone as
limiting conditien
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Figure 12. Comparison of Experimental and Theoretical
Body Pressure Data, Using Inclined Cone as
Limiting Condition; Mg = 2.3, ¢= 0°
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The shock normal Mach number, M,4: as given by the tangent-cone
impact method is

M,y = K¢ Mp sin §; + EXP (-K. Mp sin §;)
where

My, is the Mach number in a particular ¢ -plane,

8; is the impact angle Mp makes with the surface,
and

K. = 2(Y+1)/(y +3)
The pressure ratio across the shock wave, P, is then calculated
as

Py )
PS = Psi ( PSi a:o

where P,; is the impact pressure ratio across the shock

- [ZYan - (Y+l)]/”’+1)’

(Ps)m__0 is obtained from the zero angle of attack cone
- results

and

(Psi)a:O is the impact pressure ratio across the shock

at zero angle of attack

Calculations using this method have been compared with the exact
solutions tabulated in Reference 20. The cases selected were for a
10-degree semi-apex cone at angles of attack of 0, 5, 10, and 11
degrees. Results for freestream Mach numbers equal to 2, 5, and
10 are shown in Figures 21, 22, and23 , respectively. The method
has also been compared with the experimental data given in Refer-
ence 13, These data are for Mach = 5,05 at angles of attack of 0, 5,
10, and 15 degrees. The results for a cone semi-apex angle of 11.42

degrees are presented in Figure 24 and for 18.92 degrees in Figure
25,

In summarizing the data comparison presented, the method devised
for calculating shock shapes does closely follow the exact and
experimental results. In view of the approximate solution used, the
results are in fact remarkable. Noteworthy in this respect are the
10-degree cone results at Mach = 5,0 and the 11.42-degree cone
results at Mach = 5.05.
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O Cone tables (AGARDOGRAPH 137)

Mark IV

fay a= 0°

Figure 21. Shock Wave Shape Comparison for
a Cone; M_ =2.0, g = 10°
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O Cone tables (AGARDOGRAPH 137)

Mark IV

(b) a=5°

Figure 21. - Continued
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O Cone tables (AGARDOGRAPH 137)

Mark IV

(¢} a = 10°

Figure 21. - Continued
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@) Cone tables (AGARDOGRAPH 137)

Mark IV

(d) a=11°

Figure 21. - Concluded

71



O Cone tables (AGARDOGRAPH 137)

Mark IV

Figure 22, Shock Wave Shape Comparison {or
a Cone; Moo: 5.0, 9C= 10°
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O Cone tables (AGARDOGRAPH 137)
Mark IV

Figure 23. Shock Wave Shape Comparison for
a Cone; M_, =10, 6. =10°
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Q Experiment (NACA TN-3349)
Mark IV

- —— — Ceneralized shock expansion ( o = 15° only)
(NACA TN-3349)

Figur: 24. Shock Wave Shape Comparison for
a Cone; Mg,=5.05, 8.= 11.42°
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©  Experiment (NACA TN-3349)
Mark IV

~ = — ~ Generalized shock expansion (a=15°
(NACA TN-3349)

Figure 25. Shock Wave Shape Comparison for a
Cone; M_, =5.05, Gc = 18.92°9
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A basic condition in constructing the flow field about a two—c%imensional
body using the shock expansion method is that the pressure is constant
along Mach lines emanating from the surface. I.n the case of flow about
a three-dimensional body, this condition is modified to account for the
conical flow at the nose. In the conical region there is a pressure
difference, APy, between the surface and the shock wave

AP, = Pep - Pgp
where P, is the cone surface pressure ratio at the nose
and Pgn 1s the cone shock pressure ratio at the nose

It was suggested in Reference 12 that this AP be used to represent the
net pressure change between the body surface and the shock along each
Mach line emanating from the surface downstream of the nose.

That is,

PS = Pb - APn
where Py 1is the shock pressure ratio
and Py is the body pressure ratio

It has been found that this expression permits too fast a decay in the
shock pressure. To compensate for this, a damping factor, f, is
introduced;

PS = Pb - AP . f

The form used for f is simply the ratio of the local surface deflection
angle to the nose cone angle and the value of Pg is limited to 1.0 as a
minimum value.

Comparison of the shock shape calculated by this procedure and the
method of characteristics is shown in Figure 26 for the body of NASA
TN D-6480. Calculations are also compared with the experimental
data of Reference 13 in Figure 27. The body is a fineness ratio 3
ogive and test conditions are 10-degrees angle of attack at Mach =5.05.
The results are very good at the nose but tend to deteriorate down-
stream. This points out an additional problem which will be encoun-
tered in calculating shock shapes on bodies. Namely, the errors are
accumulative. Thus it will be difficult to accurately predict the
extent or breadth of the shock field. This is compensated for some-
what in that the pressure progressively weakens downstream.
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M_=5.05 o= 10
Ogive nose angle = 18.92°

O Experiment (NACA TN-3349)
Mark IV

-90° +90°

¢

Cross—-section
looking aft

Figure 27. Shock Wave Shape Comparison for Fineness
Ratio 3 Ogive; M_,=5.05, a = 10°
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Flow Field Calculation

The complete shock expansion flow field analysis method is demon-
strated on the configuration of NASA TN D-6480. The methods for
surface pressure, shock wave shape, and the Surface Spline inter-
polation are combined to calculate the wing pressure distribution
subject to the body flow field. The Mach = 4.63 data at zero angle of
attack are used for comparison. While this angle of attack is not the
most representative from the standpoint of force calculations, it
permits parallel calculations using the method of characteristics to
further assess the method.

The configuration planform and flow region are shown in Figure 28,
Figures 29, 30, and 31 present the Mach number, pressure ratio,
and flow angle, respectively, behind the body shock wave. Figure 32
gives the Mach number along the body surface, (The pressure distri-
bution on the body was previously presented in Figure 10). The shock
wave and the body comprise the two boundary curves used in the
Surface Spline. The locations at which the data were stored on the flow
field unit (10) are indicated on the x-scales of the plots. Figure 33
shows the location of a right-running characteristics along which the
flow was interrogated, Results of the Surface Spline interpolation for
local Mach number, pressure ratio, and flow angle are compared with
the method of characteristics calculation in Figures 34, 35, and 36,
respectively. The differences due to the different boundary conditions
at the shock wave are to be expected. The general character of the
flow is fairly well maintained. Most remarkable in this respect is the
B curve (Figure 36). It should be reemphasized that only values along
the boundary curves have been used - that is along curves through the
points labeled "shock'" and "body!''.

Finally, the pressure distributions on the wing at four span locations
are shown in Figure 37 and 38. Both flow fields have been used in
conjunction with the tangent-wedge and tangent-cone pressure methods.
These two pressure methods were also run without the body flow and
all are compared to the experimental data., A first observation of the
figures show the tangent-wedge method more appropriate for the con-
dition run, A second and more subtle observation is that the body flow
field causes a concavity to the pressure distribution on the forward
half of the wing. This is best seen on the inboard station {y/(b/2) =
0.258) and is consistent with the experimental data. Thirdly, the
outboard station (y/(b/2) = 0.815) clearly shows the effect of the body
shock crossing the wing section (at~ x/c¢ = 0.25).
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SECTION VI

SHIELDING EFFECTS

In the conventional Newtonian formulation of hypersonic flow the pressure
coefficient is zero on those portions of the body that are invisible to a
distant observer who views the body from the direction of the oncoming
freestream. That is, the pressure coefficient is zero on portions of the
body that are hidden or shielded by upstream portions of the body surface.
To obtain accurate force and moment calculations, such shielded surfaces
must be identified and eliminated from the computation. A procedure for
accomplishing this is presented in the following discussion™ A general
summary of the approach will be presented first followed by a more
detailed description of the theory.

With respect to any given direction of the freestream every portion of the
body may be classified as either forward-facing or rear -facing. On a
forward-facing portion of the surface the dot product of the local outer
normal vector with the freestream velocity vector is negative, On a rear-
facing portion of the surface the corresponding dot product is positive
Rear-facing portions are always shielded from the freestream direction,
and accordingly they do not contribute to the force or moment integrals,
The identification of rear-facing surfaces may be performed easily in
terms of the above-mentioned dot product. On a convex body, such as an
ellipsoid, rear-facing portions of the surface are the only portions that
are shielded, and no problems arise. Nontrivial identification problems
arise for partially concave bodies or for multiple bodies, where some
forward-facing surfaces may be shielded by upstream forward-facing
surfaces,

A typical example of shielding on a vehicle in both pitch and yaw is shown
in Figure 39. Note that the lower part of the tail and the aft side of the
fuselage is shielded from the freestream as is a part of the canopy. Since
the basic pressure and force calculations are very rapid, the procedure
for identifying shielded quadrilateral elements must also be fast to avoid
substantial increases in overall computing time. For some applications
flat portions of the body are represented by very large elements, having
dimensions that are not small compared to the body dimensions. Thus, it
is not sufficient to consider elements as either completely shielded or not
shielded at all, but the case of a partially shielded element must be
accounted for. Also, the procedure must handle the situation where an
element is shielded by an element that is itself shielded by a third element.
Finally, the direction of the freestream velocity must be arbitrary. Con-
siderations of a general freestream and a small computing time eliminate
a procedure like that of Reference 39. This latter procedure cannot handle
a freestream normal to the body axis and is very time consuming because
it must calculate a very large number of incremental angles, which pre-
sumably must be obtained by means of inverse trigonometric functions.

The low computing time of the Mark IV Program in cases of true hyper-
sonic flow are due to the fact that flow conditions on each surface element
are independent of conditions on the other elements. Thus, the flow

* The shielding analysis method described here was derived
by J. L. Hess.
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Figure 39. Picture of Vehicle in Pitch and Yaw Illustrating
the Shielding Problem.
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calculation need be done only N times, where N is the total number of
elements on the body. A general routine for identifying shielded ele-
ments must allow the possibility that any element may shield any other
element. Thus, the test for the shielding of one element by another
must be performed a number of times of the order of N2, {The actual
number of tests is approximately 1/2 N2, If the clements are ordered
in a sequence, each element need be tested for shielding only with suc-
ceeding elements of the sequence, because preceding elements will
already have been tested.) Thus, for N of the order of 1000 the shield-
ing test may require more time than the flow calculation., On the other
hand, each element is shielded by at most a few elements, so the total
number of shieldings is of the order of N. (There would be N2 shieldings
only if every element shielded all other elements. ) Thus, the key to a
rapid procedure is a very simple test that can be applied to two elements
and that will quickly indicate the impossibility of shielding for most pairs
of elements. Then the cases of near or actual shielding can be treated
more elaborately, because their total number is of order N, Any geo-
metric quantities connected with an element that can aid the computation
should be calculated once and for all at the outset and stored, because
again only N such calculations are required. Accordingly, the projec-
tions of the elements in a plane normal to the freestream velocity are
obtained. For each projected element the maximum and the minimum
values of the coordinates of the four corner points of the element in this
plane are recorded once and for all, Now for the large majority of
element pairs the maximum value of a coordinate for one element is

less than the minimum value of that coordinate for the other element,
and thus no shielding is possible. This is the required test, which
could hardly be simpler.

Additional simplification and computing-time reduction are obtained by
having the user of the program input the elements grouped into "simple
sections', such that no forward-facing element of a section shields any
other. This eliminates the need for testing within a section and
simplifies the handling of the case when an element is shielded by an
element that is itself shielded by a third element. Moreover, the group-
ing into sections should be easy for the user to accomplish. For example,
any convex portion of a configuration is input as one section. The organ-
ization of surface elements into panels exists in the Mark IV Program.
The shielding procedure simply utilizes this feature.

If a pair of elements fail the simple shielding test, one element may or
may not shield the other. As mentioned above, the projections of the
elements into a plane normal to the freestream velocity are obtained
once and for all. The required calculation determines whether or not
the two projected elements overlap and determines the common region,
if they do overlap. The projected elemeants overlap if and only if at

least one side of the first element intersects at least one side of the
second. It is not sufficient to test whether or not the corner points of
one projected element lie inside the other element, because the projected
elements may overlap even if all corners of each element lie outside the
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other, as illustrated in the sketch helow. For convex elemepts a side
of one can intersect at most two sides of the other, The region common
to two quadrilateral elements is a polygon with at most ei.ght sides.(see
sketch), The computational task is to determine the vertices of this

ist element

2nd element 2nd element

Ist element

Two Possible Intersections

polygon., As shown in the sketch, each vertex is either an intersection
of two sides, one belonging to each projected element, or a corner of
one projected element that lies inside the other. Once the polygon is
known, it is divided into from one to three quadrilaterals, one of which
may have three sides (a special case of a quadrilateral with one side of
zero length). This is done so that in subsequent operations all elements
are quadrilaterals.

If the projections of two elements overlap, the more downstream ecle-
ment of the two is determined by considering the distances of the two
elements from the plane normal to the freestream velocity. The more
downstream of the two is the shielded element. It is a simple matter
to project the above-described region of overlap (a polygon divided into
quadrilaterals) onto the shielded element. This projection is denoted
a negative element (or elements).

Finally, all negative elements are known, together with their projections
on the plane normal to the freestream velocity. The next stage of the
calculation determines the effects of multiple shielding where an element
is shielded by an upstream element, which is in turn shielded by a third
element. This situation arises when an element is shielded by two (or
more) elements, and the two shielded portions overlap. In the present
framework the condition is that two negative elements overlap, which

is a special case of shielding., Thus, the negative elements are examined
for shielding in a manner roughly similar to that outlined above.
However, there are some simplifying conditions that ensure that the
process of accounting for multiple shielding requires very little computing
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time compared to the basic shielding procedure described above. The
principal simplification arises from the fact that the only negative ele-
ments that can overlap are those that correspond to the same shielded
element. Since all negative elements for each shielded element are
calculated sequentially and stored together, the searching procedure is
very short. A frequently occurring situation consists of two adjacent
elements of a section both shielding the same element of another section.
In this case it is known in advance that the two shielded portions cannot
overlap. The area common to two negative elements is again a polygon
that is determined in the above-mentioned way and divided into quadri-
laterals. The resulting element is a positive element like the original
elements.

The multiple shielding process can be carried on indefinitely to account
for an element that is shielded by many others. However, the first
application described above appears to cover all cases of practical
interest. Simple shielding corresponds to the case where two forward-
facing elements lie on a line parallel to the freestream velocity, The
first application of multiple shielding covers the case where two forward-
facing elements are on a line parallel to the freestream. It is planned

to restrict attention to this case initially. This does not restrict the
number of sections into which the body may be divided.

After the above elements have been generated, forces and moments on
fthe body are calculated in the usual way by summing the contributions of
all the elements. The contributions of the negative elements are multi-
plied by minus one before summing. The positive elements arising from
the overlap of two negative elements are summed as they stand. Thus,
for example, in the case of simple shielding the contributions of all the
original elements are first added, and the contributions of the shielded
portions of the elements are later subtracted to give the desired net
forces and moments.

With this general approach description as background, the following
discussion provides the detailed procedures used in the shielding
computations,

Given a body represented by plane quadrilateral surface elements and
given a direction, determine what elements and/or parts of elements
are visible to a far-distant observer in the given direction. For a com-
pletely general procedure all combinations of shielding elements must
be considered. Thus, every element has a potential effect on every
other and the "calculation' involves an effort of order N2, where N is
the number of elements. For the large majority of element combinations
the '"calculation' consists of a test whose result is negative. Thus the
basic ''computational operation' is very fast., However, a calculation of
the order N2 can be expected to be time-consuming compared to a much
more complicated calculation of order N, such as is accomplished in
other parts of the Mark IV program. The principal criterion for
formulating a calculation procedure is computation speed.
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Division of the Body in Simple Sections

To reduce computing time and simplify the programming logic an assump-
tion is made that somewhat restricts generality of the method and relies
on the user to furnish some judgment in inputing a body. However, the
scheme adopted appears to apply to all bodies of practical interest for all
observation (freestream) directions. Moreover, the judgment required
of the user appears reasonable.

First forward-facing and rear-facing elements must be defined. Suppose
there is a vector along the observer's line of sight., Take the dot product
of this vector with the unit normal to the element. The dot product is
negative for a forward-facing element and positive for a rear-facing
element. (See sketch.)

k 5
rear—-facing forward-facing
element element
observation direction
—_— —————
X (freestream)

Rear-Facing and Forward-Facing Elements

The input elements are organized into sections as described in Sec-
tion III, However, it is assumed for the present that the user divides
the body into sections in a way that aids the program. Specifically, it
is assumed that the body is divided into simple sections. A section is
defined as simple if and only if any line parallel to the observation
direction intersects no more than one forward-facing element of the
section. For example, any entirely convex or entirely concave section
is a simple section for all observation directions. See parts (a) and
(b) of the sketch below.

A mixed concave-convex section is not a simple section for all obser-
vation directions, but it may be for some directions. Usually it is
possible to divide the concave-convex section into two simple sections
along an inflection line as shown in (c) in the sketch. At worst it might
be necessary to run two cases, one divided one way for certain
directions and one divided another way for other directions.
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(a) Convex Section (b) Concave Section

Element Formation

division

]

-
n

(c) Convex-Concave Section

The procedure for forming elements is a slight addition to the present
procedure, and several additional quantities are stored. The present
procedure first calculated the coordinates of the four corner points of
the quadrilateral element in the reference coordinate system in which
the body is input. These are transformed into coordinates based on the
element, and the reference coordinates are presently discarded. In the
new scheme the reference coordinates of the corner points must also be
stored with the geometric quantities that define an element.

Body Rotation

The body is rotated to make the observation (freestream) direction lie
along the negative x-axis, Standard rotation formulas are applied,

Rear-Facing Elements

Each element whose normal vector has a negative x-component is
eliminated from consideration. This can be done either at this stage
or as the element occurs in the procedure below.

Max-Min Coordinate Computation

for Each Forward-Facing Element

Iet the zy-coordinates of the corner
Vik» 2 Where k=1, 2, 3, 4, Determine

points of an element be denoted

Ymax = max (v}, vz,
Ymin = Min (yj, Y2
max = max (21, 22,
Zmin = Min (zl, Zs,

These must be recorded either lo
physically by storing the selected

forward-facing element.

Y3: V4)
Z3, 24)

ZB’ 24)

gically by integer designation or
max-min coordinates an additional
time. This last would add four additional storage quantities for each
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Section Ordering

While the computation (A-1) above is proceeding, the maximum value of
% for each element is computed but not stored. It is compared with the
largest maximum of previously considered elements. The final result is
the largest value of x of any forward-facing element in the section. Call
this x{MAX). The sections are ordered in increasing order of X(MAX)
starting with the smallest. With this definition, each section is behind
all subsequent sections as viewed from the observation direction.

Basic Problem. Element Overlap

The basic problem of this computation consists of determining what
clements are blocked or shielded by others as seen from the observation
direction and of determining the geometry of the shielded region. All
calculation up to here has been preparator% and has becn done essentially
once for each element or N times - not N=.

Since the observation direction is parallel to the x-axis, the question of
whether or not one element shields another is equivalent to whether or
not their projections in the yz-plane intersect or overlap. This is the
test that must be made an order of N2 times. Some information is
already available before any testing:

a. Elements in the same simple section cannot shield the
other,

b. If two or more elements of one section shield one element
of another section, the various shielded portions cannot
themselves overlap.

c. If the yz-projections of two elements overlap, it is the
element of the higher-ordered section that shields the
element of lower-ordered section - not the opposite.

Projected Elements

An element is projected into the yz-plane by simply ignoring the
x-coordinates and considering only the yz-reference coordinates of the
corner points. The element in the yz-plane that is obtained this way is
denoted a projected element. It is the projected elements that are
tested for overlap.

Direct Coordinate Test

The sections are considered in order beginning with the lowest ordered.
Each projected element of a section is tested for overlap with all ele-
ments of all subsequent sections. This test is done in more than one
way to minimize computing time in comparing two elements; one is
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called the first element and the other the second element. It is natural
to denote the element that is being tested for overlap with all others (of
subsequent sections) as the first element., Thus, if there is overlap, it
is the first element that is shielded by the second.

Most element pairs are "sufficiently disjoint" so that their nonoverlap
can be revealed by the very simple direct coordinate test. Sup;lJOSe the
first projected element has corner point coordinates Yk(l): zk( ), and
the second has corner point coordinates yk(z . zk(l), where in both
cases k=1, 2, 3, 4, Maximum and minimum y and z are known for
each element from (A-1)

A sufficient condit}on for nonoverlap is that all yk(z) are greater (or

less) than all Yk A similar statement holds for the z's., These
conditions are equivalent to the following inequalities
(2) (1)) (2) (1)
(anax " Ymin Ymin - Ymax/ 7 0

(A-2)

max min min max

(@) - 7 (D) (202 - 2 (D) > 6
If the y inequality is satisfied, the two projected elements do not overlap,
and the z inequality need not be performed.

To see the meaning of the inequalities (A-2), let the first projected ele-
ment be as shown in the sketch below. The y inequality is satisfied for

1) (1)
(V2( 229 ")

1)y @)
(y]_ 221 ) element y;l),zgl))

1) Q1
(yi)zé ))
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all second elements that lie entirely in region R or entirely in region L.
Probably most elements do so and thus, one test is required. The
inequality is not satisfied for second elements that intersect or lie
between the solid vertical lines. However, the z-inequality is satisfied
for all such elements that lie entirely above or below both dotted hori-
sontal lines. Probably most second elements that do not satisfy the
y-inequality do satisfy the z-inequality.

The very simple_inequalities (A -2) reveal nonoverlap for most element
pairs and the N2 part of the calculation consists mainly of these
two tests (only one in a majority of cases).

Teft~-Right Test
This is applied to a pair of elements that fail to satisfy inequalities (A-2).

The "side vectors' of the first projected quadrilateral element are needed
and probably those of the second. These are to be computed ahead of
time for all elements and stored. The side vectors are

-> -
5

>
12 = (YZ - YI)J + (ZZ - Zl)k

> + -
Sp3 = (V3 - ¥pll + (25 - Zp)k
- > >
Sa4 ~ (Y4 - Y3)J + (24 - 23)k

- - ->

541 = (Yl _Y4)J + (Zl —Z4)k

Superscripts 1 and 2 will be used to denote quantities associated with
the first and the second projected elements, respectively. Now two
projected elements overlap if and only if one of the following conditions
is satisfied. Either: (1) at least one side of the first intersects at least
one side of the second, or (2) one element completely contains the other.
This last occurs infrequently and is handled separately. Thus, the basic
operation here is to determine if a particular side of the first element
and a particular side of the second element intersect. Consider the side
12 of the first element (the procedure is identical for the other sides).

A point (y, z) is said %o)lie to the left of this side if it is left with respect
- (1

-5
to the side vector s,, . Form the quanitity

R AR SR I L (A-4)
Now > (1) N N
512 x rlz {y, z) = [le {v, Z)] i {A-5)
where
Lyt = (-l -y - y{hed A ae
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and four differences in Ly have already been computed. Lj)ao(y, z) is

the perpendicular distance that the point (y,z) lies to the left of the
extension of side 12 (see sketch below). 1In particular, Lialy,z) is
positive if (y,z) is to the left of 12 and negative if it is to the right.
Now side 12 of the first projected element and a side of the second
projected element intersect if and only if the end points of each are in
opposite directions with respect to the other, This requires that one
endpoint of the side of the second element lies to the left of side 12 of
the first element and the other end point of the side of the second ele-
ment lies to the right of side 12 of the first element. A similar state-
ment must hold for the end points of side 12 of the first element with
respect to the side of the second element.

o (y,2)
\ -
\\le(y,Z)/ ~
\ -~
y/
-~
o (1)
)(Yél) szz )
=(1)
512

1
yil)'zi )

( )

Thus, first consider side 12 of the first element and compute left
distances for all four corner points of the second element

2 2)

L), 23
@) ()

Lrabz ™ 27) (A-7)
@) @),

If all four are of the same sign, no intersections with side 12 are
possible, If two consecutive Lz are of opposite sign (counting the
first and last as consecutive), an intersection of side 12 with the side
between the two points in question is possible. For example, if
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le(y(lz), z{z)) and LIZ(Y{ZZ)’ z(zz)) are of opposite sign, an intersectlon.
of side 12 of the first element and side 12 of the second element is possible.
To verify the possible intersection , take the pertinent side of the second
element (12 in the example) and compute L's for the two end points of

side 12 of the first element. There is an intersection if and only if these
are of opposite sign. Such a check is necessary only for the ''sign chan_ges”
of the sequence (A-7). If two consecutive Lj, of (A-7) have the same sign,
the side of the second element between the points in question cannot inter-
sect side 12 of the first element. For convex elements, a side of the first
element can intersect no more than two sides of the second element.

The above procedure is repeated for all four sides of the first element.
The results determine which sides of the first intersect which sides of
the second. Also calculated are the sixteen L's of the four corner points
of the second element with respect to all four sides of the first element
and the L's with respect to the sides of the second for cases of possible
or actual intersection.

Final Element Classification

The procedure above determines whether any of the sides of the two
projected elements intersect. If there are intersections, the two ele-
ments overlap. If there are not, there are three possibilities. Either:
(1) the elements do not overlap, or (2} the first element completely
contains the second, or (3) the second element completely contains the
first. If there is no overlap, this phase of calculation is complete and
logic proceeds to the next element pair.

The first element completely contains the second if and only if all sixteen
of the L's of the corner points of the second element with respect to the
sides of the first element are negative.

The first element is completely contained in the second if and only if the
I's test showed that each side of the first element had exactly two pos-
sible intersections with sides of the second element and all eight turned
out not to be intersections.

General Handling of Overlapping Projected Elements

The basic calculational task for overlapping projected elements consists
of determining the polygonal area common to the two elements, projecting
the polygon onto the shielded element (the first element in this scheme),
and treating the result as a negative element in force and moment calcu-
lations. That is: (1) generate all necessary geometric quantities
describing the shielded portion, and (2) put them aside for later use as

a negative element.

Completely Contained Projected Elements

If the projection into the yz-plane of one element completely contains
the other, there are two possibilities which are treated as described
below.
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The first possibility is that the contained element is shielded. This means
the first element is contained. In this case a duplicate of the first element
is added to the negative elements and no additional overlap comparisons
are made with that particular element as first element, However, the ele-
ment is maintained among the normal positive elements and any previous
intersections are left undisturbed. This last consideration is the reason
for this unusual treatment. If the first element were to be simply elimi-
ated, a search for previous intersections would have to be made, and they
would have to be eliminated also. However, there is noe point in looking
for subsequent overlaps.

The second possibility is that the contained element shields the other, i.e.,
second element is contained. In this case the negative element is the pro-

jection of the contained (second) element onto the containing (first) element.

Overlapping Projected Elements with Intersecting Sides

The usual case of overlap is that for which one or more sides of the pro-
jected elements intersect. For convex elements, a side of one element
intersects: (1) no sides of the other element, (2} one side of the other
element, or (3) two sides of the other element, The first element is the
one that is shielded. The negative element is the pProjection on the first
element of the common area of the projected elements in the yz-plane.
The principal task is to determine the common area of the elements in
the yz-plane and to divide this area into quadrilaterals and/or triangles.
Projection of the area onto the first element is then rather easy. The
cormmon area is a polygon. All vertices of the polygon are determined
in clockwise order about the perimeter. (Recall that the four corner points
of any forward-facing quadrilateral element are in clockwise order in the
vz-plane. )} The vertices of the desired polygon consist of: (1) points of
intersection of the sides of the two quadrilaterals, (2) corner points of
the first element that lie inside the second.

The yz-coordinates of the intersections can be written down easily in
terms of the L's calculated as in equation (A-6). Basically, a 2x2 set
of linear equations is solved, but some of the work has already been done
in calculating L's. Thus, for each intersection point its yz-coordinates
and a designation of which sides of the two elements intersect at that point
are available. A corner point of the second element lies inside the first
if and only if all four of the L's that apply to that point are negative.
Thus, the information for tagging each corner point of the second as lying
inside or outside the first is already available. Generally, the same
information is not available for all four corners of the first element,
because all sixteen L's of the corners of the first element with respect
to the second have not been calculated by the procedure.

Two cases will be considered separately: (1) at least one corner of the
second projected element is inside the first, and (2) no corner of the
second is inside the first. The difference between these two cases lies
soley in the rule for initiating the vertex search, Once the process has
begun, it is identical in both cases.
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If a nonzero number of corners of the second lie inside the first case 1),
start with the lowest aumbered corner (1, 2, 3, or 4}, The first vertex
of the common area polygon is simply that corner point. Now consider
the side of which the given corner is the initial point. For example, if
the first vertex is corner point 3, consider side 34. Now check the
information on intersections to determine how many times this side
intersects sides of the first element. There are only two possibilities:
sero ‘o one. (Lf a side has two intersections, both of its end points must
be outside the other element). 1f there are zero intersections, the other
end point of the side (corner point 4 in the example) is also inside, and

it is the next vertex of the common area polygon. In this case the calcu-
lation proceceds to the next side (41 in the example}. 1If there is one
intersection, it is the next vertex of the common area polygon. In this
case, determine which side of the first element has been intersected;

then determine whether or not there is another intersection on this side
of the first element. If there is, it is the next vertex. If not, the ter-
minal point of the side, e.g., corner point 3 on side 23, is the next vertex.
In the latter case the next stage of the calculation is like the original stage.
In the former case, the next stage is like that following the first intersec-
tion with a side of the element. It can be seen that there are only four
truly distinct operations in the above :cheme corresponding to the fact
that there are only four essentially different starting points. The
operations of the procedure for determining vertices of the common area
polygon may be divided into four categories, associated with the four
kinds of starting points, as follows:

1. Interior corner point, first element.

2. Interior corner point, second element.

3. Side intersection - continue first element.
4, Side intersection - continue second element,

The third category refers to the fact that if previously an intersection
with a side of the first clement has been determined by extending a side
of the second element from within, then the next vertex is to be sought
on that same side of the first element. Category 4 refers to an
analogous situation for a side of the second element. Obviously, cate-
gories (1) and (2] and categories (3) and (4} are symmetric and only two
algorithms are needed., For each category there are exactly two
possibilities for the next vertex depending on whether or not there is an
(additional) intersection on the side in question, The possibilities are
illusiratad in the sketch below, where solid lines are used to denote the
first element and dotted lines are used for the second element.
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Determination of Vertices of the Common

Area Polygon
Category

No Intersection

Intersection

The basic procedure can be summarized by the table below:

Category Category (1) Category (2) Category (3) Category (4)
Interior Interior Intersection Intersection
Starting Corner Corner Continue Continue
Point First Second First Second
Element Element Element Element
Does side have
an {additional)
intersection? Yes No Yes No Yes No Yes No
Next vertex I T(1) I T{2) I T(1) I T(2)
Next category {4) (i) (3) (2) (4) (1) {3) (2)
I =

the intersection point

terminal point of the side of the first element
terminal point of the side of the second element

T(1)
T(2)
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As mentioned above, there are two cases as far as start?ng‘ th_e ab}:;ve
procedure: (1) start at a corner of the second element that 1is insidz the
first (category (2) ), or {2) there are no such corners. The second case
is further divided into two parts so that altogether there are three

starting conditions.

1f no corner of the second element lies inside the first, gonsider first
the lowest ranking side of the first element that has two lntersef:t}o_ns
(if there is one). Determine which intersection is nearer the initial
point of the side. Take that intersection as the first vertex (?f the
common area polygon and the other as second vertex. Th=n c.ontlnue
the above procedure commencing with the second intersection as
starting point with the category (4) procedure.

if no side has two intersection points, take the lowest ranking side of the
first element that has an intersection and test the two endpoints of the
side one by one to determine which one is interior to the second element.
(One must be because there is just one intersection.) This involves ex-
amining the signs of some L's, some of which may already be computed
from equation (A-6). If one end point is interior, the other cannot be, and
there is no need to test it. There are two possibilities. If the initial
point of the side is interior, take it as the first vertex, the intersection
as the second vertex, and initiate the above procedure starting with the
intersection and category (4). If the terminal point is interior, take the
intersection as first vertex, the terminal point as second vertex, and
initiate the above procedure with the terminal point as starting point and
category (1).

Tn all cases the above procedure is continued until the next vertex deter -
mined is the first vertex. That is, continue until it "comes back where

it started'". Now all vertices of the common area polygon are known in
clockwise order in the yz-plane.

Division of the Common Area Polygon Into Quadrilaterals

It would be possible to deal with the common area polygon directly as a
polygon, but it appears more efficient to subdivide it. The polvgon has
either 3, 4, 5, 6, 7 or 8 sides. Associate the vertices in consecutive
groups of four with possibly three in the last group. The groupings are
as follows {other groupings are possible):

VligéiZis Groupings of Vertices
3 123
4 1234
5 1234 451
6 1234 4561
7 1234 45617 471
8 1234 4567 4781
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Thus the polygon is divided into either one, two, or three elements,
Either all of these elements are quadrilaterals or all but one are. The
remaining element (if any) is a triangle, which is a special case of a
quadrilateral. These are the projections of the negative elements
associated with the intersection of the two original elements.

Formation of the Negative Elements

The yz-projections of the negative elements that are obtained above must
be projected onto the shielded element, which is the first element of the
two original elements., The most efficient way to do this is to compute

adjust these quantities by means of the Xx-component of the normal vector
of the shielded element. This is a well-known procedure. In typical
cases the number of element shieldings should be of the Same order or
less than the number of elements. Thus, the computing time for forming
the negative elements should be no greater than that for the original ele-
ment formation. Also recorded are the shielded and the shielding element
for each negative element,

Multiple Intersections

The procedure is now finished unless there are multiple intersections,
These occur when the yz-projections of two or more hegative elements
overlap. This situation arises only when at least three forward-facing
elements are intersected by a line parallel to the observation direction.
FFor a closed body, this means that some line parallel to the obscrvation
direction must intersect the body at least six times. These considera-
tions are illustrated in the sketch below, The case when some line
parallel to the observation direction intersects exactly three forward-
facing elements and no line interseccts more than three is denoted simple
multiple intersection, because only two (not more) negative elements
overlap in their yz-projections. It appears that all bodies of practical
interest are included in the case of simple multiple intersection, and
attention will be restricted to that case,

observation observation
direction direction
———— ——
(freestream) (freestream)
(a) No multiple intersection (b) Simple multiple intersection
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Pressure and Moment Calculation in the
Case of No Multiple Intersections

These are done exactly as they are in the existing Hypersonic Arbitrary-
Body Aerodynamic Computer Program. Pressurecs and moments are
computed for all elements. When they are added together, the contrl.bu—
tions of the negative elements are reversed in sign. Thus, the contribu-
tion of a shielded portion of an clement is added positively with the
clement itself and then cancelled by adding the negative effect of the

corresponding negative element.

Determination of Simple Multiple Intersection

Negative elements are stored according to the first or shielded element
and are labeled with what element did the shielding and to what section
the latter belongs. It is easy then to search for cases where one element
is shielded by more than one other element, because the corresponding
negative elements are stored together., If this occurs, the area common
to the negative elements must be determined so that it will not be sub-
tracted more than once.

If an element is shielded by two or more elements of the same simple
section, the resulting negative elements cannot overlap. Thus, the
condition for multiple intersection is that an element is shielded by
elements from two or more different sections.

Determination of the overlap of negative elements is essentially the same
as the original element-overlap calculation. First, notice that all ele-
ments are in the same plane, namely the plane of the shielded element.
Thus, all calculations are carried out in this plane and no projection is
subsequently necessary.

The logic of the calculation is as before. The negative elements for each
section are tested for overlap with those of each succeeding section and
common area polygons computed. Now, however, the "unit calculation"
consists of several comparisons because each negative element may con-
sist of several quadrilateral elements. The resulting common area
polygons are associated with the lower (shielded) section. The resulting
'megative elements' are positive elements and are treated as such in the
force and moment calculations. Thus, the fact that two negative elements
overlap means that by subtracting the contributions of both of them in the
force and moment computations, too much has been substracted. This is
corrected by addition of a positive element identical to the common area
of the two negative elements.
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SECTION VII

COMPUTATION OF VEHICLE FORCES

Calculation of Local Flow Conditions

In the geometry part of the program the input element is converted into
a plane quadrilateral element. The quadrilateral is described by its
area, the coordinates of the centroid of the element, and by the direc-

tion cosines of the surface wunit normal. In the force calculation
methods we must also know the angle that the element makes with the
freestream velocity vector (the impact angle). This angle changes as

the vehicle attitude {angle of attack, yaw, and roll angle) changes. The
impact angle may be found from the following relationship:

8§ =m/2 -6
cos @ = [_1 - _\_f
al [V
where
n is the unit normal outward from the surface with
direction cosines n_, n_y, n,
Vv is the local velocity vector with direction cosines in

the vehicle coordinate system given by VX, Vy’ VZ

The direction cosines of the unit surface normal are given by the
quadrilateral calculations. The value of the local velocity vector V
depends upon the vehicle attitude with respect to the freestream direc-
tion and its angular rotation rates, and is derived in the discussion
below. The rotation directions are consistent with the conventional
stability body-axis system. The coordinate system, however, is
changed to be consistent with the geometric description system

discussed previously.
Z

1’1—{

rROD

=

where X P v
P rolling velocity
Q = pitching velocity
R = yawing velocity
1 = total angular velocity
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ment of the vehicle with respect to the
hicle rotation rate and the position of the
The radius vector from an
int on the surface is

The movement of a given ele
freestream depends upon the ve
element relative to the rotation center.
arbitrary reference point on the vehicle to a po
given by

r o= (x-xo)“i-i- (y—yo)3+(z-zo)1-<

where X, Yo %o 18 the moment reference point (center of gravity).

The total angular velocity is given by

O = Pi-Qj-Rk
The freestream velocity vector is given by
Vg = V‘I’xl + Vooyj + Voozk

The total velocity vector relative to the surface element is obtained by
combining the above relationships as follows:

Vsz-er

The local velocity vector therefore becomes

\% }me + [Q (z-z_) - R (y-—yo)]% i

3wa + |:R (X-XO) + P (Z-ZO)]E ;

3sz - [P (y-y,) +Q (x-xo)}i k

+

+

<i
I

or vV i+ ¥ T
x ! VYJ+Vzk

where

n

v v 7= -
« o + [Q ( ZO) R (y—yo)]
= Vm + [R (X-XO) + P (z—zo)]

i]

y
z V, = [Ply-y )+ Q (x-x)]

The total local velocity is given by

B 2 2 2
Viocal = \/VX * Vy v,
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The conventional surface impact angle is then given by

-1 -nXVX-nV—-nV
6 = m/2 - cos ( r ¥ zz)
7
local
where nes,n_,n_ , are the outward surface unit normal direction cosines

To complete the preceeding computations we must obtain the freestream
velocity components; Vi, » and Vg, These equations are derived

below by using the conventional’right-handed coordinate system and apply-
ing the necessary rotation matrices using a yaw-pitch~roll sequence.

x’ Voo

Rotation about x-axis, yaw

cos P sin 0
(Y] = -sin ¢ cos 0
0 0 1
Rotation about y-axis, pitch
cos g 0 -sin @
[6] = 0 1 0
sin @ 0 cos @
Z”!
Rotation about x-axis, rolt i
z.,7'
1 0 0
[b] = 0 «cosd sind
0 -sin¢ cosd

The complete rotation matrix is as follows

(Al = [$][6] [¥]

cosfcosy cosO siny - 8in @
[A] = | sind sinf cos - cosd singy  sind sinf sinP+ cospcos¥ sindcosh
cosd sinf cosy + sindsing cos@sind sing - sindcosy¥ cosdcosl
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0% -Voo Vo cos@ cos

Vc;); = [A] 0 = -V, sind sinf cosy + V_ cos¢ sinys

Vo10“ 0 Vo cosd sinf cosy - V, sing siny
z

To be consistent with the coordinate and sign conventions used in the
program we must now apply the following relationships

1 11 e 1y

Vo = Yeox» Yo, = “Veoy Vo, = Yo

B="l‘, q’):d)

R
n
>

where

LQ
It

angle of attack (+ with vehicle nose up)

sideslip angle (+ with vehicle nose left)

e ™
(T

roll angle (+ with right wing down)

The freestream velocity components are, therefore, given by

Voox = - Voo cosa cos f3
Vooy =V sing sina cos B + V, cos® sin
V, = V,cos¢sina cos B -V sin¢ sin

Coefficient Transformations

The conversion of the axial force and normal force coefficients to lift
and drag coefficients requires the following matrix operation.

Cp -Ca
Cy :[A]1 Cvy
cy. -Cyq
where
1 cosf cosy sindsinBcosP - cospsiny cosdpsinfcosP+ sindsiny
[A] = cosf sinyy singsind sinP+ cosdcosy cosdsing sin - sinpcosy

-sinf sind cosf cos® cosh
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Since _ ' B | 1 '
CD - = CD s CL - - CL 3 CY - CY

0 » B —'l’ H] qb ¢

44

|
H
I

the final force coefficient transformation equations become

Cp = Cp cosacosf - Cy sing sina cosfB - Cy cosd sinp

+ Cp cos¢ sina cosfB - Cyy sing sinf

Cy = Cp cosa sinB—CY sin® sin e sinﬂ+CY cos ¢ cos B
+ Cp cosd sina sinf + Cy sind cos B
Ci, = -Cp sina - Cy sin¢ cos a + Cy cosd cosa

In some parts of the program it is necessary to know the direction in
which an element shear force is acting (i.e., free molecular flow, skin
friction). This direction is assumed to be in the plane of the surface
outward normal and the local incident velocity vector, and is determined
by taking successive vector products as follows.

Surface Velocity Vector

The procedure is illusirated in the
accompaning sketch were the in-
cident velocity vector is defined
as

Vo= Vit Vi o+ Vik

and the surface normal as

N:nXi+nyj+nzk

First, a surface tangent vector (T) is defined by the cross product of the
normal and velocity vectors;

T = Tei+ Ti+ Tk

where

—
It

n VZ-nZV

TY = n, VX - ng Vz
Tz = ng VY - ny Vx
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Then the direction of the shear force (8) is given by the cross product
of the surface tangent and normal vectors;

S - S.i+S_j+t5 k
Y Z

X
where
SX = Tynz - TZ nY
Sy = TZ n - Tx n,
SZ = TX ny - TY n,

Pressure Coefficient Corrections

In the program force calculations the pressure on each element is calcu-
lated completely independent of all other elements {except the shock-
expansion method}. If the vehicle is rotating the local pressure coefficient
must be corrected back to freestream conditions. This is accomplished
by the following relationship.

C — Vlocal ¢
Py~ TPlocal v,

Cp = pressure coefficient based on
1 local conditions and including
vehicle rotation rate correction

where

local pressure coefficient without
local rotation rate velocity
correction

1
Cplocal =

When interference effects are being accounted for, the pressure coefficient
is determined on the basis of a "'local’ freestream condition as interpolated
from the flow field data., This coefficient is corrected to the real freestream
conditions by the equation below,

8% p
(Cplz ME + 1.0) Ei -

oo

Cp = % M 2

co

where
CP = pressure coefficient based on freestream
conditions
Cp = pressure coefficient based on local

/4 interference flow field

My = Mach number based on local interference

flow field, FS(6)
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by

- = ratio of local interference flow field

Poo pressure to freestream pressure,
DINFIL.(5)

M00 = freestream Mach number

Vehicle Force Coefficients

In the arbitrary-body program, the contribution of each element to
three force coefficients and three moment coefficients are calculated,
The basic relationships to accomplish this are as follows:

axial force ACA = (Cp n,-CeS)) gé
ref
. _ AA
side force ACy = (Cp f - cfSY) Ch
ref
normal force AC. =-(C_n_ +C,S.) 4a
N Pz %z’ §
ref
rolling force 4ac = Ac. 2 4 AC z
J4 vy b N b
. . x z
pitching moment 4C_ = ACy T +4C, -
c c
. - X pA
yawing moment AC_ = ACy 5 - AC, 5
where
A4A = element area
Ce = surface skin friction shear
force coefficient
5.,5,S = direction cosine components
x' Ty Vg .
of surface velocity vector
b = reference span (lateral and
directional moment coefficient
reference length)
c = mean aerodynamic chord (for
longitudinal moment reference)
X, V, 2 = distances from the center of
gravity
X

centroid ~ ¥cg» etc.
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The minus signs in the above equations are required because of the sign
conventions on x and z in the body coordinate system (x positive
forward, and z positive upward).

The total force and moment coefficeints are obtained by summing the
contributions of all the elements:

Cp = 2 AC,
Cy = 2 ACy
Cyp = 2 ACy
C,, = 2 AC,,
c, = 2. AC,
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SECTION VIII

INVISCID PRESSURE METHODS

Many of the pressure calculation methods used in the analysis of high-
speed shapes are listed in Figure 40, Anp attempt has been made in the
preparation of this figure to indicate the interrelationships of the
methods (the information can, of course, be organized in many different
ways). Some of these methods are more applicable to the arbitrary-
body problem than others.

The method of characteristics is the eventual ideal approach for the
calculation of forces on three-~-dimensional shapes at high speeds. It
will require starting solutions for three-dimensional blunt bodies of
arbitrary shape. The development of a method of calculating three-
dimensional boundary layers would permit the use of an iterative
process to account for the viscous-inviscid interaction. Although this
approach has been used for some very simple shapes, the complete
solution for arbitrary shapes is some time away. Significant progress
is also being made in the solution of the inviscid flow field by finite
difference methods, However, present mathematical techniques and
digital-computer size and speed capability must be reserved for simple
shapes or important detail design applications where very large com-
puter times might be acceptable,

Many of the other methods shown in Figure 40 would be useful force-
calculation methods for inclusion in an arbitrary-body system. The
selection of the proper method in a given application depends upon
the vehicle-component shape and flight condition and must be selected
by the engineer on the basis of his knowledge and experience in the use
of each method.

Three basic paths of obtaining the inviscid pressure in the Mark IV
program exist, The first path is the most frequently used and is the
calculation of pressures by one of the simple impact or expansion
pressure methods. These methods require impact angle, or a change

METHAD OF CHARACTER\ST\L‘SE

SHOCK-EXPANSIGN SPECIAL TECHNIQUES
[ 1 i
ANDTL-MEYER SLUNT BODY MALL ViSCOUS
PREXBI\NS\DN | [ METHODS DISTURBANCE INTERACTION
NEWTONI AR SIMILARITY
TECHNIQUES
MODIFIED

HEWTONIAN

1

RAREFIED
GAS DYNAMICS

FREE MOLECULAR
FLOW

EXACT CONE
THEDRY

OBLIGUE SHOCK
THEJRY

TANGENT WEDGE

SMALL DEFLECTION
EQUATIONS

EMPIRICAL ESMPIRICAL
RELATIONSHIPS RELATIONSHIPS

NEWTONIAN

TANGENT CUNE

I

NEWTONIAN-
PRANDTL-MEYER

SMALL DEFLECTION
EQUATIONS

EMPIRICAL
RELATIONSHIPS

Figure 40, Pressure Calculation Methods
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in angle of an element from a previous point &nd in some cases the free-
stream Mach number (Mg,). These methods, in this mode, are used
without any interference effects as in previous HABS programs. The
next section presents a discussion of these simple impact type pressure
calculation techniques.

The second path to obtaining pressures includes the calculation of inter-
forence effects from one component on another. This capability uses
some of the simple impact methods but with local conditions determined
from the flow field of another component. This method of obtaining
inviscid pressures with corrections for these interference effects is
discussed on page 114,

The final path for determining the inviscid pressures on the quadrilaterals
of a shape is by means of interrogation of previously stored pressure data,
This stored data may be either calculated or experimental results. The
stored pressure information is not required at the quadrilateral centroids
since interpolation of pressures can be accomplished. Pressures, once
obtained at the centroid of each quadrilateral, are summed in the same
manner as the previous two approaches to obtain final vehicle forces. A
discussion of this method is presented as the last section,

BASIC PRESSURE CALCULATION METHODS

The arbitrary body force computer program contains a number of optional
methods for calculating the pressure coefficient. In each method the only
geometric parameter required is the element impact angle, 0 , or the
change in the angle from a previous element.

Before the program calculates the pressure on each surface element, it
checks to see if the element is facing the flow (in an impact region) or
facing away from the flow (in a shadow region). The methods to be used
in calculating the pressure in impact and shadow regions may be specified
independently. A summary of the program pressure options is presented
helow.

Basic Pressure Calculation Methods

Mark IV Mod 0 Program

Impact Flow Shadow Flow
1. Modified Newtonian 1. Newtonian (Cy = 0)
2. Modified Newtonian+Prandtl-Meyer 2. Modified Newtoniant+Prandtl-Meyer
3. Tangent wedge 3, Prandtl-Meyer from free-stream
4. Tangent-wedge empirical 4, Inclined cone
5. Tangent-cone 5. Van Dyke Unified
6. Inclined cone 6. High Mach base pressure
7. Van Dyke Unified 7. Shock-expansion
8. Blunt-body shear force 8. Input pressure coefficient
9, Shock-expansion 9. Free molecular flow
10. Free molecular flow
11. Input pressure coefficient
12. Hankey flat-surface empirical
13, Delta wing empirical

14. Modified Dahlem-Buck
15. Blast wave
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Since most of these methods are adequately discussed in the literature
they will be reviewed only briefly in this document. The blunt-body
shear force and the boundary-layer induced pressure methods are
discussed in detail in the section describing Viscous Force Methods.

Modified Newtonian

This method is probably the most widely used of all the hypersonic
force analysis techniques. The major reason for this is its simplicity,
Like all the force calculation methods, however, its validity in any
particular application depends upon the flight condition and the shape
of the vehicle or component being considered. Its most general ap-
plication is for blunt shapes at high hypersonic speed. The usual
form of the modified Newtonian pressure coefficient is

2
C = K sin
P )

In true Newtonian flow (M=o, Y= 1) the parameter K is taken as 2.
In the various forms of modified Newtonian theory, K is given values
other than 2 depending on the type of modified Newtonian theory used.
K is frequently taken as being equal to the stagnation pressure co-
efficient. In other forms it is determined by the following relation-
ship (Reference 36).

C
K - Prose
si 28
™ nose
where
C = the exact value of the pressure

Prhose coefficient at the nose or leading
edge

Snose - impact angle at the nose or leading

edge

In other work K is determined purely on an empirical basis.
K = fn (M, @, shape)

When modified Newtonian theory is used, the pressure coefficient in
shadow regions (8 is negative) is usually set equal to zero.
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Modified Newtonian Plus Prandtl-Meyer

This method, described as the blunt body Newtonian + Prandtl-Meyer
technique, is based on the analysis presented by Kaufman in Reference
21. The flow model used in this method assumes a blunt body with a
detached shock, followed by an expansion around the body to supersonic
conditions. This method uses a combination of modified Newtonian and
Prandtl-Meyer expansion theory. Modified Newtonian theory is used
along the body until a point is reached where both the pressure and the
pressure gradients match those that would be calculated by a continuing
Prandti-Meyer expansion.

The calculation procedure derived for determining the pressure co-
efficient using the blunt body Newtonian + Prandti-Meyer technique
is outlined below.

1. Calculate freestream static to stagnation pressure ratio
Y 1
V-1 P2 -
P > 2{1\/100-(?—1}Yl
P = 2 = U ——
Py (v + 1) M Yo+l
2. Assume a starting value of the matching Mach number, M
(for Y= 1.4 assume Mq: 1.35) 4
3. Calculate matching point to free-stream static pressure ratio
Y- 1
Q = f_q-_ = 2
Pq 24+ (Y-1)M 2
q
4, Calculate new free-stream static to stagnation pressure ratio
vim o
Pe = Q- 2 1
4M_ - 1) (1 -9Q
q
5. Assume a new matching point Mach number (1.75) and repeat

the above steps to obtain a second set of data.
6. With the above two tries use a linear interpolation equation to

estimate a new matching point Mach number. This process is
repeated until the solution converges.
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Fud B

7. Calculate the surface slope at the matching point
sinz 1) = Q-P
q

1-P
8. Use the Prandtl-Meyer expansion equations to find the Mach
number on the surface element, M6

9. Calculate the surface pressure ratio

where

M. is provided as an empirical correction factor
Py is the pressure on the element of interest

10. Calculate the surface to freestream pressure ratio

11,  Calculate the surface pressure coefficient

Cp

1]
v
8
Y
T
8"0 O:O
1
ot
S

5 Y M

The results of typical calculations using the above procedure are
shown in Figure 41 Note that the calculations give a positive pres-
sure coefficient at a zero impact angle. As pointed out in several
references these results correlate well with test data for blunt
shapes. However, if the surface curvature changes gradually to
zero slope some distance from the blunt stagnation point the pres-
sure calculated by this method will be too high. This is caused by
characteristics near the nose intersecting the curved shock system
and being reflected back onto the body. If the zero slope is reached
near the nose (such as in a hemisphere or a cylinder) this effect has
not had time to occur.

Tangent-Wedge

The tangent-wedge and tangent-cone theories are frequently used to
calculate the pressures on two-dimensional bodies and bodies of
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Figure 41. Blunt Body Newtonian + Prandtl-Meyer
Pressure Results
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revolution, respectively, These methods are really empirical in
nature since they have no firm theoretical basis, They are suggested,
however, by the results of more exact theories that show that the
préssure on a surface in impact flow is primarily a function of the
local impact angle. In this program the tangent-wedge pressures are
calculated using the oblique shock relationships of NACA TR-1135
(Reference 22). The basic equation used is the cubic given by

(sin2 9S )3 + b(sin2 85)2 t c (sin2 es) +d

= 0 or
R3+bR2+cR+d = 0
where
BS = shock angle
5 = wedge angle
2
_ M- 4+ 2 . 2
b = - _T—M - ¥ sin §
2 2
c = ML loryt, v-zlein26
M M
coszé
d = - 4
M

The roots of the above cubic equation may be obtained bY us_,ing the
trigonometric solution procedure {see Reference 64) as indicated

below.

¥y = 2 V-p/3 cos (w/3) - b/3
Y, = =2 - p/3 cos (w/3+ 60°) - b/3
Y3 = =2 /- p/3 cos (w/3 - 60°) - b/3
R - vy - b/3
R, T Y- b/3
Rj = Y3 - b/3
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Y3 = roots of the reduced cubic equation
_ b’

P = - —3— + ¢

q = 2(b/3)3 - % + d

cosw = d

ETAYES

Ri = sin2 B, roots of the cubic equation

The smallest of the three roots corresponds to a decrease in entropy
and is disregarded. The largest root is also disregarded since it
never appears in physical actuality.

Tor small deflections, the cubic solution becomes very sensitive to
numerical accuracy; that is, to the number of significant digits car-
ried. Since this is dependent on the particular machine emplo sed,
an alternate procedure is used.

When the flow deflection angle is equal to or less than 2.0 degrees,
the following equation is used instead of the above cubic relationships

(Reference 23):

2 ] v+ 1 5
sin @ = +
8 2 VYR

Once the shock angle is obtained the remaining flow properties may
be found from the relationships of Reference 22,

{(y+1) MZ sin2 6
density = ll’2 = p 5 5 5
(y -1) M~ sin 95-!-2
l:Z?Mzsinzes—()’-l)] ('}’-I)M2 s'm2 95+ 2:’
temperature = Tp = T . ) >
(Y+1)" M~ sin 6,
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pressure 4(M? sin? g -1)
coefficient C s

(Y+1) Mm%

where

{ )

conditions behind the shock

Oblique shock detachment conditions are reached when no solution
may be found to the above cubic relationships. Under these conditions
the program uses the Newtonian + Prandtl-Meyer method for continued
calculations.

Tangent-Wedge and Delta Wing Newtonian Empirical Method

The tangent wedge Newtonian empirical method and the tangent-cone
method used in the Delta Wing empirical method are based on the
ermpirical relationships below.

For wedge flow

sin §
N 8 - W
10 Py (I -¢)cos (6, -5_)
where
p -
i ==l L s
2 -
(v - 1) M
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For cone flow {thin shock layer assumption)

sin o
. = c
81n(9S = n
(1 -E') cos (9s - 6C)
In the limit as M—~ o, €= ¢ = Y1 and cos (8_ - &) = 1
’ lim Y+ 1 8
Therefore
wedge cone
. _ Y +1 . . o2+ 1) .
smes = 5= sin 6W sin 95 I A sin 6C

These limiting expressions for 6@ may now be compared with the
data of TR-1135 (Reference 22) at Y = 7/5 using the following
similarity parameters. The exact equations contain three vari-
ables — 8g, &, and ¢. Noting that for Y = constant, ¢ = In{Mpg)
only, the preceding equations may be rewritten in the following
form:

wedge cone
M sin & M sin &
M = & M = <
1 - ¢ 8 -
ns { } cos { < 6W) ns a - %) cos (35 i 66)

The parameter (8 - §) is approximately constant and independent of
M except near the shock detachment condition. The equations es-
sentially contain only two variables, M and M sin 8. These are
used as coordinates to plot the data fornvgedge flow shown in Figure
42. A similar plot could be obtained for cone flow. From the figure
it is seen that the data are nearly normalized with the use of these
coordinates.

For rapid calculations we need relationships for Mns as a function of
M sin & that satisfy the following requirements:

L. The effect of shock detachment is neglected
2. At M sind =0, M__=1
ns
3. The solution asymptotically approaches the M == line
d Mns
4, Have the correct slope, mat Msind =0
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These conditions lead to equations of the following form

_El’v_ M!
2
- !
wedge M, = KyM' + e
y+1
Ky = “3

1

cone M KC M+ e"KCM1

ns
where

M?

K

M sin §
2(y + 1)/ (v + 3)

1l

These expressions are compared with the data of TR-1135 in Figures
43 and 44. The cone data are also shown in Figure 45 with the same
scales as in Figure 42.

The pressure coefficient may now be obtained by the following relation-
ships for a wedge and cone respectively.

_{_4 2 2
Cp '(y+l)(Mns' /M
(Y- 1M 2+2
Cp = 2 sin2‘8 I - nsz
4{Y + 1)M
ns

Experimental results have shown the pressure on the centerline of a
delta wing to be in agreement with two-dimensional theory at small
values of the similarity parameter {M'< 3.0) and the conical flow theory
at higher values. The previous expressions derived for wedge and cone
flows have been combined to give these features. The resulting
relationships are given below. K

— W 1

(Kc ) )M

M KCM'-I-e

ns

For ¥ =17/5 M -0.49 M sin &

ns 1.09 Msin & + e

H

The similarity parameter relationship for pressure is

2o, = (e - )

The shock angle and pressure coefficient calculated from the above
equations are compared with the experimental results (Reference 24 )
in Figures 46 and 47, respectively.
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Figure 44. Conical Flow Shock Angle Empirical Correlation
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Figure 45. Conical Flow Shock Angle Empirical Correlation
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M sin G5 ~ Mg

Figure 46, Delta Wing Centerline Shock Angle Correlation
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Tangent Cone

An approximate solution for predicting the surface flow condit.ions on a
cone in supersonic flow has been devised applicable to the ent.lre Mach
number - cone angle regime for an attached bow-wave. Detailed com-
parison with exact results show improved accuracy over currently
available approximations. This is a new cone method and should not be
confused with the empirical tangent cone method just discussed on the
previous pages and which was used in the old Mark III program.

Basis for this new method is the combining of two approximate techniques,
one yielding accurate results in the low supersonic range and the other

in the high supersonic range, by the use of transition functions defined

in terms of the appropriate similarity variables to provide uniformly
valid solutions over the entire speed range. Specifically, second~order
slender-body theory (Reference 25) is used for small values of the
unified similarity parameter and the approximate solution of Hammitt

and Murthy (Reference 26) for large values.

The surface pressure and conical shock-wave angle are determined
which, together with the assumption of an ideal gas with constant ratio
of specific heats, are sufficient to calculate all the surface flow vari-
ables. It should also be mentioned that the present solution does not
require multiple integration of the differential equations across the flow
field, but is obtained by direct algebraic solution providing results
rapidly.

The quantities of direct importance to the Supersonic-Hypersonic
Arbitrary-Body Aerodynamic Computer Program are the surface pressure
coefficient and Mach number. The calculated pressure coefficients have
been compared to exact results and, for Mach numbers greater than 2, the
maximum error is less than 1 percent and in the hypersonic speed
range the average error is of the order of 0.25%. The accuracy of the pre-
dicted surface Mach numbers is extremely good (the order of 0.30 percent
maximum error) throughout the speed range, except as bow-wave detach-
ment is reached. For the present purposes, the extreme conditions
correspond to surface Mach number equal to 1.0 and a comparison with
exact results showed good agreement.

For reference, the present method has been compared with Schwartz's
formula for pressure coefficient (Reference 27). The percent relative
error in C, is given in Table 1 using Schwartz's formula and in
Table 2 using the Douglas method (the tabulated values have been
rounded to the nearest integer percent). For completeness, the rela-
tive error in surface Mach number and cone shock angle using the
Douglas method are shown in Tables 3 and 4, respectively (the Schwartz
formula is only for Cp). The exact values (subscript ex) were obtained
from Reference 20.
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Table 1

Percent Relative Error in Cp (Schwartz)

C - C
100 x [__g‘?._"_.__!i]
Cp
exX

Cone |_ Mach Number

Anglel 1571 2 14 |6 |10 20
5 0 0 0 0 0
10 2 1 0 0 1 0
15 3 1 4] 1 i 1
25 8 3 1 1 ¢ 0
35 - 6 2 1 0 4
40 - - 3 1 0 7

L
Table 2

Percent Relative Error in Cp {(Douglas)

e -C
100 x l——-—-——pex p}

Pex

Cone Mach Number

Angle |1 5T > 4 {6 [10] 20
5 0] 0o 0]-1 0
10 0 | -1 |-1 0] o
15 -3 ] 0 |-1 o ol o
20 | -6 ol ool o] o
25 -4 | -2 0 0 0 0
30 -l-2{ o0}t o) ol o
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Table 3

Percent Relative Error in Surface Mach Number

M- M

1060 x ——-——I\T;c-—*
Cone |Freestream Mach Number
Angle | 1.5] 2 4 6 | 10 | 20
5 0 0 0 0 0 0
10 0 0 0 0 0 0
15 1 0 0 0 0 0
20 2 0 0 0 0 0
25 1 1 0 0 0 0
30 - 1 0 0 0 0

Table 4

Percent Relative Error In Shock Angle

s - 0s
100 x S
6 Sex
Freestream Mach Number
Cone
Angle 2 4 10 20
5 2 -3 -3 -1
10 -1 -3 -1 0
20 -2 -1 0 0
30 -1 -1 0 0
40 - 0 0 0
50 - -1 0 0
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Inclined Cone

A method for predicting the pressure distributions on circular cones at
angle-of-attack has been put together based on the British work of
Reference 28. For convenience, this will be referred to as the CP#792
method. The cited reference presents the development of this method
in ample detail and only the essential features will be described herein,
along with several modifications that have been made. The original
method was compared with experimental results for ten different cases
and have been rerun using the Douglas version. In addition, Jones'
pressure formula (Reference 29) has been compared with these cases.
Both methods are in good agreement with the data,

Method of CP #792

Briefly, the CP #792 method is an ingenious extension of simple impact
theory:

_ . cinl
Cp—K sin® &

where K is a suitable impact coefficient and 8 is the impact angle. The
Impact angle for a cone is easily expressed in terms of the cone angle
0, angle of attack @, and circumferential angle ¢ (measured from most
windward generator):

sin 8 = sinf cos o + cos @ sin a cos ¢

Substituting this into the C, equation, the pressure coefficient may be
expressed as the sum of three terms:

where
CPA = K sin®f cosla
CPN = K cos?f sina cos? &
Cpx = K(25inf cos @ sin@cosa cos ¢)

These three terms lend themselves to the following physical interpreta -
tion. Cp, is that part of the total which can be regarded as being

generated by the axial flow component, My, cos a. Cpqy is that part of
the total which can be considered as being generated by the normal or
transverse flow component, Mg, sin @, Finally, Cpy is a cross-product
term which can be regarded as arising from the interaction between the
axial and normal flow components.
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The authors of CP #792 make the assumption that the three components
can at all times be treated independently of each other and then proceed
to develope coefficients KA, KN and Ky suitable for each flow. This
is the crux of the whole method. The Mark IV application retains only
the Kx term and calculates the axial and normal components directly.

Axial Component CPA

At o= 0, CPA - K sin?@ which is simply the pressure coefficient for a
cone (Cpc) at Mp = Mg, cos @, Since the total Cp is based on free-

stream dynamic pressure, the cone value must be adjusted by the
g-ratio:

2
CPA = Cpc qA/qOO = Cpc COS8 o

Where Cpc = f(Mp) and is obtained by use of the previously discussed
tangent cone method.

Normal Component Cppy

The development of Cp 18 analogous to Cp, - Namely, when the flow
is all normal (o = 900)12111e pressure coefficient on the windward gener-
ator is simply the stagnation value CPS at My = M, sin a . The

circumferential variation is simply taken as cosZ ¢ upto ¢ = 90° and
zero thereafter.

2 :
CpN = CPS cos” qN/qOO = CPS coszd) sin? o

where
CPS = f(MN)

Cross-Product Component CPX

This term is used in the original form

CPX = Ky * 2 sin@® cosf sina cosa cos ¢

A correlation curve for Ky was derived in CP #792 by consideration of
the results obtained from small incidence theory. This curve is appro-
imated in the Mark IV application as

Kx = 1.95 + 0.07 » cos (X)
where

T
2p sin @ cosé

and

B = VMO%’—I
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Jones'! Formula

An alternate method for obtaining C, on circular cones at angle-
of-attack has been presented by Jones (Reference 29). It is based on a

C C + AT 2! A (/@)
+ + a
P Pa=0 1 o2 M2
A-T A
| AT +-—-5—-2 + ._6? (a/8)2
Mo M2
where
T = (sin BO) (cos @)
and
A =

j= a, tal; cosd + ap; cos 2 ¢
The coefficients B and aij have been determined by a parametric
least squares fit,

Cpa:O is obtained using the tangent cone method {impact method No. 5),

Comparison with Experiment

Both the Douglas version of the CP #792 method and Jones' formula
have been compared with the ten experimental cases given in Reference
28. Four of these cases (two plots each) are included as representative
of the results obtained. On Figures 48 to 51, a and b each, com-
parison between predicted and experimental pressure coefficients are
given., FKach figure shows, for particular values of cone angle and
Mach number, pressure coefficient versus circumference angle for a
range of angles of attack, The predicted results of CP #792 are indi-
cated by full lines on the a-set of figures. Jones' results are given

by broken lines on the b-set of figures.

Both methods are in good agreement with the data, Jones' formula is
much better on the leeward side (e.g., Figure 49 (b)) and CP#792 is
better on the windward side, Jones' formula was derived for & <250
and relative incidence @/¢ < 1.0 and in the present comparisons
appears to extrapolate reasonably well for a/@ > 1.0, The CP #792
method was not intended to work on the leeward surface, but the
results are not all that bad,

139



CP #792 method

Experiment

<, Symbol | o

"
9
5
] © () ()
A < o 8
0.0f X A <
1 [ L [ ' g
0 30 60 90 120 150 180
¢ (deg)

(a) CP #792 Method

Figure 48. Comparison Between Measured and Predicted
Cone Pressure, M = 3,53, §=15°
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(a) CP #792 Method

Figure 49. Comparison Between Measured and Predicted
Cone Pressures; Moo = 3,63, 6= 20°
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Figure 50. Comparison Between Measured and Predicted

Cone Pressures; M., = 6.85, @ = 12.50
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Use as an Element Impact Method

As an element impact method, the cone angle, meridian angle, and
angle of attack are defined by the element normal and the velocity
vector as follows (see sketch).

N=N_T+Nyi+N, Kk

The cone semi-vertex angle, 8, is defined as the angle between the
surface and the x axis.

# = arcsin (N-_'f) = arcsin (Ng)

The meridian angle and angle of attack have to be defined relative to
the windward plane. The meridian angle location of the windward plane

18
Z

by, = arctan ('Vy/vz) i

bw z

The meridian angle of the element is
¢, = arctan (-N_/N,)

The meridian angle of the cone relative to the windward plane is then
()b = ¢e - d)W

The angle of attack of the cone in the windward plane is

& = arccos (-V,)

148



The Mark IV program uses Jones' Formula as the inclined cone method
for both impact and shadow flows. For the Second-Order Shock, Expan-
sion flow field and pressure option, either the CP #792 or Jones method
can be used by use of an input flag.

Van Dyke Unified Method

This force calculation method is based on the unified supersonic-hyper-
sonic small disturbance theory proposed by Van Dyke in Reference 30
as applied to basic hypersonic similarity results. The method is useful
for thin profile shapes and as the name implies extends down to the
supersonic speed region,

The similarity equations that form the basis of this method are derived
by manipulating the oblique shock relations for hypersonic flow. The
basic derivations are shown on pages 753 and 754 of Reference 31

The result obtained for a compression surface under the assumption of

a small deflection angle and large Mach number is (hypersonic similarity

equation).
2r7’+1 {7 +1 z 4
Cp = 9 [ 2t \/\ 2 )“L‘ﬁi]

where H is the hypersonic similarity parameter given by Mda. The
contribution by Van Dyke in Reference 30 suggests that this relationship
will also be valid in the realm of supersonic linear theory if the hyper-
sonic similarity parameter M§ is replaced by the unified supersonic-

hypersonic parameter ( vV M2 -1 )8. This latter parameter is used in
the calculations for this force option in the arbitrary body program.

A similar method may also be obtained for a surface in expansion flow
with no leading edge shock such as on the upper side of an airfoil. The
resulting equation is

H .
Y112 ) L

where again H is taken to be ( VM2 -1 & in the unified theory approach.
y app

Shock-Expansion Method

This force calculation method is based on classical shock-expansion
theory (see Reference 31). In this method the surface elements are
handled in a "strip-theory" manner. The characteristics of the first
element of each longitudinal strip of elements may be calculated by
oblique shock theory, by conical flow theory, the delta wing empirical
method or by a Prandtl-Meyer expansion. Downstream of this initial
element the forces are calculated by a Prandtl-Meyer expansion.
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By a proper selection of the element orientation the method may be
used for both wing-like shapes and for more complex body shapes.
In this latter case the method operates in a hypersonic shock-
expansion theory mode.

Free Molecular Flow Method

At very high altitudes conventional continuum flow theories fail and
one must begin to consider the general macroscopic mass, force, and
energy transfer problem at the body surface. This condition occurs
when the air is sufficiently rarefied so that the mean free path of
the molecules is much greater than a characteristic body dimension.
This condition is known as free molecular flow and the method of
analysis seclected for this program is described in Reference 32.
This method was also used in Reference 33. The equations used
were taken from these references and are presented below.

Pressure Coefficient

2 -1 £ /Ty | Lig sin 812
C —LZ-‘ —————..HSsmSJr?n\/:F—13 e(SsmB)
p S iy ﬁr (wo]

£, [ T '
- fn)(SZ sinZ § +%) +—§n.~ Trrizs sin 6} [1+erf (Ssin 8)]%

Shear Force Coefficient

(cos )i | (S sin )% + V7 S sin 8 [1+erf(S sin 8)] %

C¢ = —— |
Jir s
where
S = speedratio = vV ¥/2 M__
fy, = normal momentum accommeodation coefficient (=0.0
for Newtonian and = 1.0 for completely diffuse reflection)
8 = 1impact angle
Ty, = body temperature, °K
Too = freestream temperature, °K
2 % x2
erf = error function erf(x)= —— f e dx
A
fr = tangential momentum accommodation coefficient (=0.0
for Newtonian flow and 1.0 for completely diffuse

reflection)

The analysis to determine the direction of the shear force is discussed
in Section VII.
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The final components of the shear force in the vehicle axis system are
given by

SHEAR :(SHEARM$X)/STOTAL

SHEAR :(SHEAm(sY)/STOTAL

SHEAR., :(SHEAR)@Z)/STOTAL
where

SHEAR 1is the shear force as calculated by the free molecular flow
equations.

/ ) 2 2 2 1/2
STOTAL = (SX +SY +SZ )

In using the free molecular flow method the above analysis must be
carried out over the entire surface of the shape including the base,
shadow regions, etc. When the free molecular flow method is
selected, it is used for both impact and shadow regiom.

This method of determining the shear direction is also used for the
continuum viscous forces discussed in Section X. The plane formed
by the velocity vector and the surface normal is referred to as the
velocity plane, since both the incident and surface velocity are in this
plane, This definition is correct for two-dimensional flow, however,
it is only an approximation to the shear direction in the general
arbitrary-body case,

Hankey Flat-Surface Empirical Method

This method uses an empirical correlation for lower surface pressures
on blunted flat plates. The method, derived in Reference 34, approxi-
mates tangent-wedge at low impact angles and approaches Newtonian at
high impact angles. The pressure coefficient is given by

Cp: 1.95 sin%§ + 0.21 cos & sin §

Modified Dahlem-Buck

This is an extended form of the Dahlem -Buck method derived in Refer-
ennice 35. The original method uses an empirical relationship which
approximates tangent cone pressures at low impact angles and approaches
Newtonian values at the large impact angles. The original equations are

for & = 22.50 CpDB = [ ""—'—1%2 + 1.0 J sin28
sin (4 §)

for &> 22.59 2 sin% 8

CPDB
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1f, at small values of &, the bracketed term exceeds 5.0 it is set at 5.0

The original Dahlem~Buck method has been shown to yield good agree-
ment for highly swept shapes at large hypersonic Mach numbers.

The modified Dahlem -Buck method is an extension by its originators to
lower Mach numbers (see Reference 37). It was assumed that the
empirical pressure coefficient would be affected by a change in Mach
number in the same way as the pressure coefficient on the surface of a
right circular cone is affected by Mach number. Thus,

cpcone (M < 20)
CPeone (M = 20)

Compe = CpPpm °

where CPMDB is the modified Dahlem-Buck pressure coefficient.

The data of Reference 37 for cone half angles from 10 to 30 degrees was
analyzed and it was found that the quantity (Cpcone (M<20)/Cpcone(M=20))-l°O

could be graphed as a straight line on a logarithmic scale for the mentioned
cone angles. A curve fit allowed the cone pressure coefficient fraction to
be analytically defined such that,

Cpcone(M <20)
CPcone(M= 20)

where 0 is impact angle in degrees and

1.0 = as™

In(M_)) - 0.588 )
1.20 m
In(Mg) - 0.916
3,29 ”)

a = (6.0 - 0.3M_,) + sin(

-n = 1,15+ 0.5 sin(

Blast Wave Pressure Increments

This method uses conventional blast-wave parameters to calculate the
over-pressure due fo bluntness effects. Contributions determined
by this procedure must be added to the regular inviscid pressure forces
(tangent-wedge, tangent-cone, Newtonian, etc.) calculated over the
same vehicle geometry. The specific blast wave solutions used in the
Program were derived by Lukasiewicz in Reference 38:

Lo 2d)
G )l+j 3
B - aMZ ?(—D—m] +B
o ® y (X = X) i
where
Cp is the nose drag coefficient

d is the nose diameter or thickness

Xp 1is a coordinate reference point
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and the coefficients A, B are

Flow l j | A | B
Two-Dimensional 0 0.121 0.56
Axisymmetric 1 0.067 0.44

THE STORED PRESSURE OPTION

The Stored Pressure Option Cards are used when the vehicle component
forces are to be calculated using pressure data previously stored on the
flow field data unit 10, This option may be used in several ways. For
example, the forces on a particular component may be calculated using
experimental results which have been previously stored on unit 10 by
use of the Flow Field Data Hand-Load Option. More directly, forces
may be determined using the data generated by the Shock-Expansion
Flow Field Option and stored on unit 10.

In either case, pressure data is available at a limited number of dis-
crete locations on the component. The function of the Input Pressure
Option is to obtain the value of pressure at the centroid of each element.
This is accomplished by interpolation using the Surface Spline Method
and, as in the other applications of this method, proper normalization of
the coordinates is required to obtain meaningful results. The forces are
calculated by summing the contributions of all the elements that make up
the component, A detailed discussion of the Surface Spline and the
related normalization procedure can be found in Section IV,

When the Stored Pressure Option is used in connection with experimental
pressure data any incorrect or spurious data should be removed before-
hand. Data of this type, when the Surface Spline is used, can yield faulty
pressure interpolations. The resulting errors in the curve fit may not
be confined to the local region of the questionable data points. Another
important point to be considered when utilizing this option is that of em-
bedded shocks. Interpolation across strong shock boundaries by use of
the Surface Spline is not recommended. Each major flow field contained
on a surface should be split into primary and secondary (embedded flows).
Output from the Shock Expansion Flow Field Option is in the required
form. Any experimental data inputs must also be of the same form if
meaningful interpolations of surface data are to be obtained.
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SECTION IX

STREAMLINE CALCULATIONS

In steady flow, a streamline is a path or trajectory of a fluid particle.
The calculation of a streamline is then a trajectory problem and the
classical Runge-Kutta method may be used to solve the defining dif-
ferential equations. What is needed are definitions of the body and its
velocity field and in the present application to arbitrary bodies no
convenient analytical forms exist,

The approach taken in the Mark IV program is to use the Surface Spline

to define the body and the velocity field. This is the key to the whole
method and in effect provides the necessary analytical forms. The
Surface Spline is an "interpolation-in-the-large" scheme and should not
be applied indiscriminantly to an arbitrary body. Rather, it should be
used in separate applications to the various components and panels that
make up the vehicle. This is analogous with the basic philosophy of
using the best pressure method suitable to a particular panel, In addition,
meaningful results from the Surface Spline can only be obtained by using
appropriate coordinates with suitable normalization. These statements,
while distinctly restrictive in tone, are intended only to convey a realistic
perspective of the program capabilities.

In practice the calculations are not nearly so restrictive, as several
modes of coordinate selection and normalization are automatically
available through input flags. The following paragraphs discuss the basic
equations and present results verifying the general approach taken in the
solution.

Mathematically, the streamline may be defined as follows:

dx _ dy _ dz _
dt*Vx’ dt"vy’ dt‘VZ

where V; is the surface velocity component in the i-direction. These
are normally calculated in the FORCE routine and assume a Newtonian
impact type of surface velocity (see the Surface Velocity Vector dis-
cussion on page 113). TUsing the definition of the total velocity, Vr=ds/dt,
the above equations may be re-written in terms of the particle path:

dx _ dy _ dz _
ds ~ Cx s dsth’ ds Ce

where C; is the direction cosine of the i-th velocity component.

The streamlines are calculated by specifying an increment in path, As,

and marching along using a fourth-order Runge-Kutta scheme to solve the
differential equations. At this stage, several options are available which
are more or less dependent on the form of both the body definition and the
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C; field. For example, all three coordinates could be solved for
independently. While a streamline will be found, there is no guarantee
that is will be on the surface. This problem has been experienced by
other investigators and may be avoided by solving the equations in
parametric form. That is, two of the streamline coordinates (x, y)
are found using Runge-Kutta and the third is obtained as a function of
these two from the surface definition: z = F(x, y). This is equivalent
to solving for the projection of the streamline path in the x,vy plane,

Figure 52. The choice of independent coordinates (x, y) is not
arbitrary, but must be suitable for the particular panel geometry being
considered, For example, the reference coordinates of the sketch

would not be appropriate for a body of revolution. The ocbvious
choice in this case would be cylindrical-polar coordinates (x, ¢, r).
This also satisfies the requirements on coordinates necessary to use
the Surface Spline and therefore, fits in very nicely.

In general, the coordinates used in obtaining the solution will not
correspond to the x, y, z reference and it is appropriate to express
the differential equations in a slightly more general form:

dx.

1— L)
ds ~ Ci

i=1,2,3

The Cj are now interpreted to mean the rate of change of i-th coordinate
along the path.

This distinction can be made clear by digressing for a moment and
explicitly considering the aforementioned cylindrical-polar coordinates.
The coordinates and components of the velocity vector are related as
follows (see sketch):

x = x Z
[ )
y = r sing
z = -r cos ¢
-y
Ve = Vi
. r

V. = VY sin ¢ -V, cos ¢ ) Vi v

‘ Z

= V i

V(,b . cos ¢ +VZ sin ¢ VY
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Panel and velocity
field at element
centroids

Projection of panel
in X-Y plane

Figure 52, Schematic of Streamline Geometry.
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Differentiating the coordinate equations, substituting into the streamline
equations and solving in terms of the new coordinates gives:

..% = E = C

ds VT 7 X

dd Vy cos¢d + V, sind Vo . 1

s " VT T =V r - ¢
gi_Vysinfi)-VZCOSCb:_Vi .

ds Vi Vip T

The C, and C, represent the direction cosines of the x and r velocity
components but the Cg is the direction cosine of the ¢ velocity component
multiplied by 1/r.

Similarly, any scaling required in normalizing the coordinates can be
incorporated in the definition of C;. For example, let the x coordinate
be scaled by length L:

- =
X, =1
then dx Vi
ds T T Vi
and simply define C, = L -Y—}E
x - L VT

The purpose of all this is to keep the form of the Runge-Kutta {i.e., the
streamline solution) independent of coordinate choice. The importance of
this statement cannot be over stressed. It allows the flexibility necessary
to define streamlines on an arbitrary body.

The Mark IV program streamline calculation procedure may be sum-
marized as follows:

First, the velocity field on the body is calculated (or
input) at descrete points., Next, the Surface Spline is
passed through these points to provide a numerical
definition of the body and velocity fiald. Then, the
streamline is calculated using a fourth-order Runge-
Kutta integration.

This procedure has been compared to an analytical solution to check its
accuracy and the results are shown in Figure 53. The body is a prolate
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Figure 53. Comparison of Calculated Surface Streamline Paths
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spheroid and the flow is incompressible, non-lifting at 30 degrees angle-
of-attack. Both the body and the velocity can be defined analytically. The
Mark IV calculations are shown for two AS increments and are in excellent
agreement with the analytical solution. The Mark IV calculations have been
made both forward (+ AS) and backwards (-AS) and trace the same stream-
line,

in addition, the calculations were done both in the three-variable (x,y, z)
form and in the two-variable parametric form. There is no perceptable
difference in the results of ¢ versus x given in Figure 53 , however,

the three-variable streamline did leave the surface as anticipated. For
the present case this deviation from the surface was very small. It should
be noted that all the various Mark IV calculations were made through input
flags.
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SECTION X

VISCOUS FORCE CALCULATION METHODS

The most difficult part in the analysis of an arbitrary shape is the calcu-
lation of viscous forces. A detailed knowledge of the local properties and
the flow history along surface streamlines is required. This combined
with the natural compilexity of the boundary-layer equations necessitates
considerable simplification of the problem before solutions can be obtained.
In the Mark III Hypersonic Arbitrary Body program an engineering approach
was used in calculating viscous forces that was simple yet retained the
essential characteristics of the boundary layer problem. No attempt was
made to calculate the detailed skin friction over the exact arbitrary shape
used for the inviscid pressures. Instead, for skin friction purposes the
vehicle was represented by a simplified geometry model composed of a
small number of flat surfaces on each of which the shear force was deter-
mined, : Co R

This approach was considered by the authors to be quite consistent with the
state of boundary layer theories. However, some users objected to this
simple approach because it required the loading of another geometry deck
in addition to the inviscid pressure geometry model. It is hot clear just
why there should be an objection to loading an additional 20 or 30 elements
after as many as 1500 to 2000 have been loaded for the inviscid pressures.

However, the simplified skin friction geometry model approach is still
recommended as being the most economical use of the machine resources.
The Mark III skin friction capabilities have, therefore, been retained in
the new Mark IV program, although they have been expanded slightly to
allow a larger number of elements to be analyzed on one pass into the skin
friction option. Also, the local properties on the skin friction elements
are now calculated in the inviscid portion of the program just as though
they were inviscid geometry elements,

However, in spite of the above comments it is recognized that some types
of viscous studies will require a more detailed analysis than is possible
with the simplified geometry model approach. To cover these situations
the Mark IV program also has a new alternate viscous analysis method
that works with the same geornetry as is used for the inviscid pressures,
In this method the viscous flow is calculated using an integral boundary
layer method. The computations are made along streamlines calculated
over the detailed inviscid pressure geometry model., Once the skin
friction is calculated along these streamlines it is fit with the surface
spline routines and the skin friction coefficient on each element of the
detailed geometry model determined by interpolation.

The integral boundary layer method does not calculate the surface wall
temperature. However, this information is required by the integral
method so it must be furnished as input data or it can be calculated by
calling the same temperature calculation routine used by the simplified
skin friction model option {0ld Mark III)., The temmperature calculation
routine itself calculates a skin friction coefficient value along with the wall
temperature based on the old Mark III methods (i.e., reference tempera-
ture, Spalding-Chi, etc.). If the user wishes, this skin friction coefficient
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can be used instead of that calculated by the integral boundary layer
method. Under this mode of operation everything is handled just as though
the integral method was being used (i.e., the use of streamlines on the
detailed geometry model, element skin friction from the surface spline
interpolation, etc.). The only difference is that after the temperature and
Mark III skin friction are calculated, no call is made to the integral pro-
gram, and instead, the computations proceed with the skin friction coeffi-
cients out of the temperature program.

The user should be cautioned that the methods used in the new viscous
“capabilities of the Mark IV program are still not what we would call a
"three-dimensional' boundary layer solution., Although computations are
made along streamlines, the integral boundary layer method used at the
present time is still basically a two-dimensional method (cross flow pres-
sure gradients are not accounted for). Later versions of the program may
include streamline divergence effects but the initially released program
does not. Also, in the first release of the Mark IV program there is no
capability for continuing a streamline calculation across one geometry
component and on to an adjacent component. Therefore, the new integral
boundary layer method should be restricted to relatively well behaved
parts of a vehicle shape.

The Integral Boundary Layer Method

The integral boundary layer method contained in the viscous part of the
Mark IV program is essentially the same program as presented by W. D.
McNally in NASA TN D-5681 (Reference 40). A major modification to
the McNally program was required to remove the assumption of isentropic
flow implicitly used throughout the boundary layer equations. Minor
modifications in the coding have also been made to improve efficiency and
to reduce storage requirements. This integral boundary layer program
is well documented in McNally's report so the development of the equations,
etc., will not be duplicated in this report. Any user of the integral method
in the Mark IV program should obtain a copy of NASA TN D-5681 as
supplementary documentation.

The integral boundary layer method uses Cohen and Reshotko's method for
the laminar boundary layer calculations {Reference 41), and Sasrman and
Cresci's method (Reference 42 ) for the turbulent boundary layer. The
Schlichting -Wrich-Granville method (Reference43+45)is used to predict the
transition point. The present Mark IV program does not calculate transi-
tional flow data between the wholly laminar and turbulent conditions.
However, some of the code in the skin friction data storage part of the
program provides facilities for inclusion of transitional data in future
program additions.

The application of the integral boundary layer method involves the use of
several other parts of the program. The process starts with the analysis
of the vehicle component in the inviscid pressure part of the program.
Subroutine FORCE calculates the local flow properties on each element.
These properties (direction cosines of the surface velocity vector, Mach
number, and local pressure and temperature ratios to freestream condi-
tions) are saved on the Unit 4 geometry data storage set right along with
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the component geometry data. It is then necessary to enter the flow-field
option and to have the surface property data copied onto the flow field stor-
age Unit 10 by the Surface Data Transfer option. This step is necessary so
that the data will be in the proper format for use by the surface spline
routines.

The streamline option is then called. It is, in general, not possible or
desirable to try to calculate streamlines down each row of geometry ele-
ments. Instead, streamlines are only calculated so as to properly cover
the inboard and outboard extremes of the component together with one or
more interior lines. The streamline surface trajectories together with the
associated interpolated local surface properties along them are stored
back on the flow field data Unit 10. Only after all of the above steps are
accomplished can we call the viscous part of the program.

In the viscous part of the program input parameters are used to retrieve
selected streamline data sets. The integral boundary layer method is
applied along each of these streamlines and the resulting skin friction
coefficients stored back on the flow field storage unit right with the stream-
line data.

We now have skin friction data along the streamline data points but not on
the actual geometry quadrilateral centroids where we need them for the
force integrations. To solve this problem the streamline skin friction data
are fit with the surface spline method and the skin friction coefficients
found at each of the element centroids by interpolation.

However, to accomplish the spline surface fit and interpolation it is neces-
sary that the data be well behaved. That is, laminar, transitional, turbu-
lent, and separated flows must be prepared and interpolated as separate

sets of data. The bookkeeping (pointers, counters, etc.) necessary to provide
this is automatically accomplished within the main integral boundary laver
routine. Because of these features, the integral boundary layer method is
able to analyze a component that has mixed boundary layer types, i.e.,
laminar and turbulent flows. The simplified skin friction model using the

old Mark III methods is not capable of this,

However, there are certain things in the Mark IIl skin friction option that
are not available in the integral boundary layer method. For example, the
Mark Iil skin friction includes viscous induced pressure effects on the skin
friction coefficient and the integral program does not,

Mark T7ISkin Friction Option

In the Mark III skin friction option of the Mark IV program an engineering
approach has been selected that retains the essential characteristics of
the hypersonic boundary-layer problem. No attempt is made to calculate
the detailed skin friction distribution on the exact arbitrary shape, but
rather, the vehicle is represented by a number of flat surfaces on each of
which the shear force is determined.

162



The surface streamlines are assumed in the velocity plane and the flow
history is approximated by the inclusion of an initial surface. The shear
force is determined for both laminar and turbulent flow and may be
summed over the vehicle for either type.

Reference temperature and reference enthalpy methods are available
for both laminar and turbulent flows and, in addition, the Spalding-

Chi method with either temperature or enthalpy ratios may be selected
for turbulent calculations. The surface temperature may be either
input or the radiation equilibrium value determined. The effect of
planform shape, leading edge viscous-interaction, and the viscous forces
on blunt bodies are also considered.

Skin Friction Geometry Model

For the skin friction calculations a geometrically complex vehicle is
divided into a number of plane surfaces in a manner which adequately
approximates the true shape. Leading-edge surfaces and local curva-
tures are omitted. Regions of relatively large curvatures can be
represented by using a greater number of plane surfaces. The degree
to which this is done will depend upon the complexity of the actual
shape and experience of the designer. The geometry data for the
skin-friction geometry model is prepared in the same way as the sur-
face element data used for the inviscid pressure calculations and
retain their relative location to each other and to the flight path. This
skin friction modeling technique is best described by viewing, for
example, a typical high L/D vehicle shown in Figure 54, The upper
half presents the skin-friction representation of the vehicle which is
to be contrasted with the detailed inviscid geometry given in the lower
half of the figure. As used in the Supersonic-Hypersonic Arbitrary-Body
Program, the skin friction surfaces are referred to as an approximate
representation of the vehicle. This is in contrast to the inviscid
geometry which for all practical purposes exactly represents the vehicle.

From the input element data, the surface normal, area, and area

centroid coordinates are calculated. In addition, maximum chord length,

taper ratio, and true area are input for each surface. The latter may
be different from the calculated areas since curvatures have been
neglected. The initial surface, specified by its maximum chord length

and taper ratio, is assumed to be in the plane of the skin-friction sur-
face and, therefore, the flow history is only approximated. The
element planform effect on the average skin friction is included, how-
ever, and is discussed separately for laminar and turbulent flows in
later sections. The shear force on each surface is assumed to act
through its centroid in a direction on the surface parallel to plane
containing the surface normal and the free-stream velocity vector, as
described in Section VII,
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a) Representation for Viscous Calculations

b) Representation for Inviscid Calculations

Figure 54, Geometry Modeling for a Typical High I./D Vehicle
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Local Flow Conditions

The required local properties (pressure, temperature, density, and
velocity) for use in calculating the viscous flows for both the integral
boundary layer method and the Mark III method are calculated within
the inviscid pressure part of the program. That is, the geometry
over which the viscous flow is to be calculated must first be analyzed
just as though it were regular inviscid geometry data. A flag in the
pressure part of the program controls the storage of the required
local property data so that it will be available for the viscous options.

The skin-friction surfaces and local properties, thus, have been defined
in a way that reduces the problem of calculating the viscous forces on

a complex shape to one of solving for the skin friction on a number of
constant-property flat plates,

Incompressible Flow

The basic philosophy behind both the Spalding-Chi and the reference
condition methods is the same. Namely, that the suitably transformed
skin-friction coefficient is given by the constant-property or incom-
pressible formulas based on a Reynolds number also suitably trans-
formed. To emphasize the point, this may be stated another way: The
compressible skin-friction is given by the incompressible form with
appropriate correction factors to account for compressibility effects,
That is,

Cfa = cfi/FC
Cfi = f(in) » Rx, = FRX Rx
where
Cs = skin friction coefficient
Rx = Reynolds number
( )i = indicates incompressible
{) = indicates compressible

The incompressible formulas used in the Hypersonic Arbitrary-Body
Program are given in Table 5 and the compressibility factors, F,_
and FpRry are discussed below.
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Skin Friction Coefficient, f{Rxj)
Flow Source
Local Averape
Laminar 0.664/y Rx; 1. 328/ vV Rx; |Blasius
Turbulent 0. 088 (log Rx; - 2.3686) 0. 088 Sivells
(Rx; > Rypgin) 3 & Payne
! m [log Rx; -1.5] [log Rx; -1.5]2 [{Ref. 65)
RMin 2540 6570
Table 5. Incompressible Skin-Friction Coefficient Formulas

The Sivells and Payne formulas have singularities occurring at low Reynolds

numbers.

However, both occur below the point at which the turbulent values

cross the respective Blasius laminar curves. Thus, the turbulent incom-

pressible skin-friction coefficients for Reynolds numbers equal to or less

than Rpgip are given by the corresponding

Compressible Flow

laminar values,.

Reference Temperature and Reference Enthalpy Method

FC = Pa/p
m e 1
Frx = (Bg/07) 7
where # 1is the density, u the viscosity, and the superscript "™ means

evaluated at the reference temperature, T*, or reference enthalpy, H;

T B TW TAW

T - (A1) T, (A2) T, ! (1-Al-AZ)
i H H

u* W AW

;- (A1) ﬁé— + (A2) 0, + {1-Al-A2)

The value of the coefficients used are due to Monaghan {Reference 46) for

Prandtl number equal to 3. 71;
Al = 0,5825
A2 = 0,1875
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The subscript "W'" indicates the wall value and subscript "AW" refers to
adiabatic wall conditions given by

Taw  Haw - (1-1) M2
Ty Hy 2 ’
where
Y = ratio of specific heats
M = Mach number
1/n
r = recovery factor = (P.)
n = 2 for laminar flow
n = 3 for turbulent flow
P. = Prandtl number (= 0. 71)

Spalding-Chi Method (Reference 38):

Fe

where
A

_ 2
A/{ARSIN(ACB) + ARSIN (A+B) }
C
Haow )
H; -
Hy

-1

Hy
[ A+B)* + 4A]1/2

Hy ptq
Fe T, » 9=0.772, p=0.702

Surface Equilibrium Temperature

In the Arbitrary-Body Program the surface equilibrium temperature is de-
fined as the temperature satisfying the steady-state heat balance between
the boundary-layer convection to the surface and the surface radiation to

space.

radiation heating:

convective heating: QC(T.) = Cy

(Haw - Hwy)
QR(T,) = Rg Tr*

where Ch ig the heat transfer coefficient
and Ry = €¢¢, €= emissivity (= 0. 8)
¢ = Stefan-Boltzman constant
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The surface equilibrium temperature is defined when QC({(T.) = QR(TR)
for T, = Tr. The solution is obtained by a simple linear intercept tech-
nique illustrated in the sketch and explained briefly as follows.

ILinear relations are assumed for both heating rates

QC = AC + (BC)T

QR

AR + (BR)T
The four coefficients are initialized as follows.

1. Assume TGl = TRl = 100 °R
2, Calculate QClI and QRI1

3, Let QR2 = QCIl and calculate

1/4

_ [ QR2

TRZ2 = ('_R?)
4. If TRZ > TC2 = Tpw, then set

TRZ2 = TCZ2 and calculate new QR2

QR
QC1 =QR2

i

HEATING | \ l
RATE | .. |
| -
AN
| o
| {
| 1_ TR2  1C2=T,,
TC1=TR1 t (1C 2 =1R2),
TC1=TR1),

TEMPERATURE —— =



The coefficients may now be readily determined and the result of the linear
solution of the heat balance equation is simply

T = (AC - AR)/(BR - BC)

The convective and radiation heating rates are then calculated at this tem-
perature and checked for convergence:

|1 - Qcl/QRil < EPST, where EPST = 5.0E-4

If the criteria is not satisfied the cycle is repeated with TCl = TRl = T,
QR2 = QCl, and TC2 = TR2., The present technique, while lacking sophis-
tication, 1s accurate and quite rapid, Normally, two or three cycles are
required for ideal gas solutions and one additional cycle for real gas cases.

Real Gas Effects

It is felt that some comments are in order with regard to the overall pro-
cedure, Specifically, what is the correctness or justification in using real
gas reference enthalpy viscous solutions when the local inviscid flow has
been determined only for a calorically perfect or ideal gas? To answer
this question, an extensive comparison of laminar boundary-layer methods
was undertaken in support of an earlier study and the details are reported
in Reference 47. Briefly, the skin friction was determined for the flight
conditions of the matrix given in Table 6, corresponding to the surface
equilibrium temperatures (emissivity = 0.8) at the one-foot station of a flat
plate.

Altitude Velocity (1000 fps)

(1000 Ft) gl 12 [16 | 20| 24| 28
100 XX XX o
150 T B
200 R i e B
250 T T

Table 6. Flight Matrix for Skin Friction Calculations
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Angle-of-attack variation from 0° to 40° in 10° increments and five bound-
ary-layer calculations were made at each condition. The latter correspond
to the combination of three boundary-layer solutions and two shock wave
solutions for local properties as shown in Table 7.

P -
Boundary Layer Local Properties
Solution Real Ideal
Exact 1 -
Reference ) 3
Enthalpy
Refe rence
4 5
Temperature

Table 7. Boundary Layer Calculations

Also, additional calculations were made at the flight cond1t10n of 20,000 {ps,
200, 000 feet altitude, and wall temperature equal to 2000 °R.

Methods 1, 2, and 5 are self-consistent with respect to the assump-
tions made and are regarded as normal calculation modes, Methods 3

and 4 are inconsistent in the assumptions made between the inviscid and
viscous solutions and are termed mixed calculation modes. The free-stream
properties were specified by the 1962 U, S. Standard Atmosphere and
Sutherland's viscosity formula. The oblique shock-wave sclutions are
accurate to 5-significant digits in the inverse density ratio. For the real
gas solution, the thermodynamic properties for equilibrium dissociating

and ionizing air were obtained by the method in Reference 48, The assumed
ideal gas is calorically perfect with ratio of specific heats equal to 1. 40.

The real gas variation for the density-viscosity product in the viscous
solutions was obtained as a function of enthalpy and pressure using the
polynominal equations given in Reference 49, This product is based on
the most recent thermodynamic data of Hilsennath (Reference 50) and

the viscosity calculations of Hansen (Reference 51). The Prandtl number
was assumed equal to 0.71 for all the methods.
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Typical results of the comparison are shown in Figure 55. The exact
solutions were obtained using the Douglas General Laminar Compressible
Boundary-Layer Program as described in Reference 49. The reference
method calculations shown are based on the coefficient values of Monaghan.
These were selected since the skin friction calculated consistently gave
the best agreement with the exact results., Comparison of the three formu-
lations considered — Monaghan (Reference 46), Michel (Reference 52) and
Eckert (Reference 53) are shown in Table 8 for the same flight conditions
as Figure 55. Major conclusions of the comparison are:

1. With the exception of possibly zero angle-of-attack the reference
temperature method, using existing values for the coefficients Al
and A2, is inadequate for predicting skin friction for the complete
range of hypersonic flight conditions considered.

2. The real gas, reference enthalpy method using Monaghan's formu-
lation adequately predicts the laminar skin friction over the complete
flight range considered. The results, however, are consistently
about 3 to 5 percent lower than the exact calculations.

3. The mixed calculation mode, ideal gas inviscid — real gas reference
enthalpy is in substantial agreement with the real gas reference en-
thalpy calculation up to 30° angle-of-attack.

Reference Angle of Attack in Degrees
Enthalpy
Due to 0 5 10 15 20 25 30 35 45 50

Monaghan | 0.247|0.623|1.056|1.445|1.753[1.969}2.096{2.121 | 1.853]1.590

Michel 3.249(0.628]1.06211,44711.747(1.553(2.067|2.075} 1.788[ 1,529

Eckert 0.24310.613[1.038|1,418 ]11.717]1.92612.042|2,058]1.788 |1.534

4

Table 8 . Comparison of Reference Methods. Values of C; x 102,
{Altitude = 200, 000 Ft., Velocity = 20,000 fps, Tw=20000R)

On the basis of the results of this study, the mixed-mode ideal gas inviscid-
real gas reference enthalpy calculation has been included in the Hypersonic
Arbitrary-Body Program. The real gas fluid properties of air are determined
by the procedures described in detail in Reference 50. Three different formulas
are used to specify the viscosity. At very low temperatures such as might be
experienced in a high speed wind tunnel the viscosity is found from the
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SYMBOL SOLUTION

REAL GAS, EXACT

— e —— REAL GAS. REF. ENTHALPY*

_____ IDEAL GAS, REF. TEMPERATURE*
F IDEAL GAS, REF. ENTHALPY*
[} REAL GAS, REF. TEMPERATURE*

*MONAGHAN'S REFERENCE
AT Pr =071

024

G20 //—‘ il \

{/ \

012 7 :
.008 //

/
.004 //

0 10 20 30 40 50
ANGLE OF ATTACK ~ DEG

Figure 55. Laminar Skin-~Friction Coefficient Comparison
(Altitude = 200,000 Ft., Velocity = 20,000 fps., Ty = 2000°R)
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Bromley-Wilke results (Reference 54). In the Arbitrary-Body Program these
are approximated by the following linear relationship;

For T = 225°R

L= 0.80383436 T x 10”7 Ll?__fﬁ%:
t

At higher temperatures and for an ideal gas the Sutherland viscosity
formula is used (Reference 25);

For T > 2250R

3/2
= T -8 1b sec
b= 2270 gqggg x 10 =

For real gas and temperatures greater than about 6000°R Hansen's
viscosity values are used (Reference 51).

Viscous - Inviscid Interaction

Under conditions of low Reynolds number and high Mach number, the
mutual interaction of the boundary layer and the inviscid flow field can
have a large effect on both the laminar skin friction and surface pressure,
Boundary-layer displacement effects in hypersonic flow over flat plates
have been studied at length (e. g., Reference 55) and the present approach
is limited to consideration of these methods. Basically, a pressure is
induced from the relatively large outward streamline deflection caused by
the thick hypersonic boundary layer. The classical approach is to con-
sider an effective body, made up of the actual body plus the boundary-layer
displacement thickness, in an iterative solution with the inviscid flow.

This in itself is an approximation and, in addition, the simplifying assump-
tions of hypersonic viscous similarity are usually employed. This pro-
cedure has been adopted for use in the Arbitrary-Body Program and a brief
background and development of the final equations follow.

Bertram and Blackstock (Reference 56) presented some simple procedures
for estimating the boundary layer induced effects on pressure and skin
friction. These involved the use of hypersonic-similarity-boundary-layer
theory solutions in an iterative technique with the hypersonic small-disturb-
ance tangent-wedge pressure equation. The analysis showed good correlation
with experimental data for surfaces at nearly zero degrees incidence to

the free-stream. White (Reference 57) extended the theory of Bertram and
Blackstock to include the effect of angle of attack and presented a direct
method for solving the problem without requiring iterations. White used
hypersonic small disturbance expressions for both compression and ex-
pansion flows and introduced a new interaction parameter to correlate the
wall temperature effect. Recently, Bertram (Reference 58) has presented
more elaborate solutions for the problem employing the techniques of White.
Implicit to all these solutions is the assumption of a calorically perfect gas
and a Prandtl number of unity.
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White's solution has been used in the present analysis because of the rela-
tive simplicity in its application. His numerical results showed the local
pressure to be nearly a linear function of the iteraction parameter, ) ;

P= P,(1+ B)
where
B = m L
P, ?
and 1/2
A= G M:n3 ( C )
1+2; \RX

The quantity G is a simple function of wall temperature and specific heat,
C is the Chapman-Rubesin viscosity coefficient, and j is the Mangler
transformation parameter: two-dimensional flow, j=0; axially-symmetric
flow, j=1.

In the above equations, P is the local pressure to free-stream pressure
ratio, and the subscript '"o'" refers tc the inviscid value obtained from the
hypersonic small-disturbance relations.

Bertram's (Reference 56) correlation for local skin friction coefficient is

1/2
C = 0.664 K (g_g)

where K; 1is a pressure gradient and wall temperature correction factor.
The shear on the surface is

TW :fqﬁcf dA

In the present analysis, the approach taken is to determine the effect or
factor due to viscous-interaction using White's method and then to modify
the previous result without interaction accordingly, This viscous-inter-
action factor, Kyjy, is obtained by carrying out the integration of the pre-
ceding equation and is defined as follows;

(TW')VI v1+ Bcrl +1
Ky = —F = 1+ Be, + Bcr log,i ———
W Ber
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where Bg, is based on the root-chord and K; has been assumed equal to
one, This expression is for a plate with taper ratio one, but the integration
could have been done for an arbitrary value (e. g., Reference 59). In the
present application the planform effects are included in the shear force
without interaction, Ty. This application results in a slightly lower factor
but has the advantage of permitting a step-by-step build up and comparison
of the overall viscous forces. The magnitude of the skin-friction correction
factor using the above techniques is shown in Figure 56,

The induced pressure on a surface is determined as an increment in pres-
sure coefficient.

The average pressure increment, B Py, is found by summing the local
pressure distribution over the surface.

— 1
P-F, = l—f(P-PO)dA
Substituting the expression for local pressure and integrating gives

P-P, = 2micy

The AC_ due to induced pressure is determined for the skin-friction geo-
metry representation of the vehicle shape and effects due to the planform
shape and due to the initial surface are discussed in the next section.

The basic hypersonic small-disturbance relations for calculating pressure
are:

For compression flow (K = 0)

2
P = 1+v(lﬂ)K2+ 'rK’H(% K) §
K=0)

4
For expansion flow (-2/(vy-1)=

1/2
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Figure 56. Effect of Viscous Interaction on Skin Friction Coefficient
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where Ky = M_ sind (§ is the surface impact angle) and K4, & boundary-
layer growth parameter, is taken equal to 1, 0.

White (Reference 57) observed that the pressure equation (either compres-
sion or expansion) and the expression for K constituted a first-order
nonlinear differential equation in P{)\)} and obtained numerical solutions
directly without iteration. The results are shown in Table 9 from which
White also observed that the pressure could be approximated by the linear
relationship

p=PO+rn)\

where P, and the slope parameter, m, are just functions of Ky. Fo is
given by the hypersonic similarity relations as a function of Ky and, in
the Arbitrary-Body Program, m is approximated to the data of Table 9
by the following analytical curves:

For -2/(v-1)= Ko< -3.0,

m = 1,424 + 0.215 K,

For Ky 2 -3.0,

m = 19156 + 0.41727K_ - 0.0419101 K>

- 0,010427 KO3 + ()‘,002143811{04 - 0.000103217 K05

For K, z 10.0,

1/2
m=[2Y/(7+1)]

Similarity Parameter K,
A
-3 -2 -1 0 +1 +2 5 +10
0.0 | 0.002 | 0.028 | 0.210| 1.000 | 3.473| 8.734 ! 44.14 | 170.2
0.5 | 0.173 | 0.339 | 0.748| 1.835 | 4.555| 9.930 | 45.41 171.4
1.0 | 0.428 | 0.736 | 1.379| 2.777 | 5.722| 11.18 46.70 | 172.7
1.5 ] 0.738 | 1.192 | 2.059| 3.740 | 6.914| 12.47 48.01 174.0
2.0 11,092 | 1.695 | 2.770 | 4.709 | 8.108| 13.76 49.33 | 175.3
2.5 | 1,485 | 2,234 | 3.506| 5.679 ! 9.294| 15,07 50.66 | 176.6
3.0 1 1.908 | 2.801 | 4.260, 6.651 [10,47 | 16.37 51.99 | 177.9
3.5 | 2.359 | 3.392 |5.029 | 7.622 |[11.64 | 17.67 53.34 | 179.3
4.0 | 2.833 | 4,004 |5.810| 8.593 |12.80 | 18.96 54,70 | 180.6
4.5 3,328 | 4.632 | 6.601 | 9.505 |13.95 | 20.25 56.06 | 181.9
5.0 | 3.840 5.275 | 7.400| 10.54 |[15,09 | 21,52 57.42 | 183.2

Table 9. Numerical Solutions for Pressure Ratio P (¥ = 1.4)
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Planform Effects

The previous sections have dealt with the determination of the local skin-
friction coefficient or the average skin-friction coefficient per unit span.

In this section, the determination of the viscous force contribution of a
surface element having a planform shape of the type shown in the sketch
below is considered. In the derivations that follow it is implicitly assumed
that the root and tip chords are parallel to the oncoming flow,

Y

g

FLOW Cr
DIRECTION

The product of local skin-friction coefficient (Cg;) and dynamic pressure
(qé) is integrated over the surface area (A) to obtain the shear force:

TW = fq6 Cf6 dA

(The symbol T is customarily used to define shear stress, however in
the present text it is used consistently as a force. This is done to avoid
the unnecessary use of area ratios in the defining equations and at the same
time retain the significant connotation associated with the symbol.)

The shear force on each surface is then written as a coefficient with re-
spect to the free-stream dynamic pressure (qm) and a specified reference
area (S}, T
C _ W
Fo T T . s
[es]
7 IS

and summed over all surfaces to obtain the vehicle characteristics due to
viscous forces.
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Laminar Shear Force

The local properties are constant on each surface and the above expression
becomes

Nli—l

‘ b c -
TW = qa (Cfa)cr Cr f { f (X)
o] o]

where the surface has root chord Cys Span b, and (Cy )c is evaluated at
the root chord. The local chord length may be expressed s

dx} dy

c=cyp [1-(-TR)9]

where TR is the taper ratio (= c¢/cy.) and n is the normalized span
dimension (= y/b). Substituting this expression and completing the inte-
gration gives the shear force on the surface as

4[ 1+ TR + VTR :l

T = q., A(Cp.) - .
Wk Foler 3 (1 + TR} + J/TR)

where (CFé )C is the local, length-averaged skin-friction coefficient

r
evaluated at the root-chord.

In the Arbitrary-Body Program the shear force is expressed in terms of
an average chord length, €;

Tw = 9 A(CF,;)E
where 2
- 4 1+ TR+ vTR
Cr 3'

c =
(1+ TRY{1 + /TR)

Viscous-Interaction

As was explained in the previous section, the effect of planform on the
shear force is not determined directly for flows with viscous-interaction
but is included in the calculation of shear force without interaction. This
procedure results in a slightly lower force but has the advantage of per-
mitting a step-by-step build-up and comparison of the overall viscous
forces., There is, however, an additional effect on the induced pressure
due to planform shape which is accounted for.

The average pressure is obtained by integrating the local pressure over
the surface:
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?A=%deA=% f{fpdx}dy
8] @]
cb e/ ey '"1'2
- = f { f (P, + micy £ )dg}dn
O

where § = x/cr, the normalized streamwise coordinate,

Substituting the expressions for

and
c/fep=1-{1 - TR)y

the integration is easily completed. The result is

5 [ 1+ TR + VTR ]
Cy

(1+ TR)(1 + /TR)
where

B, =

T )\Cr

Sk

The average pressure increment for the surface is then

= _ 8
Py -Po=3 mi |_1+ TR+ VIR
(1 + TR)(1+/TR)

which for TR =1 reduces to the value previously given,

Turbulent Shear Force

Because of the nature of the assumed skin-friction formulas, a different
approach than used for laminar flow is taken to obtain the turbulent shear
force. The end result, however, is an approximate solution which is very
similar to the laminar result. The shear force equation is derived as
follows,
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Tw=quCfadA=q6 f;fcfadxzdy

asb f ¢ Cp, dn
o]

The variable of integration is transformed to the local chord-length Reynolds
number in two steps. First in terms of the chord length c,

Cr
CCF&
T. =
R I B
Ct

Next, the variable of integration is transformed to the incompressible

(PUc

Reynolds number, Rcj = Fry T), and normalized with respect to root-
]

chord values;
. 1
- - qabcr( Fa)cr f (RC) (CF)d(RC)
w (1 - TR) Reg); \CFc,/, \Rey/;

TR

c+b
N%ting that the surface area is A = 2r {1+ TR), and also that(ch ) =
Fc
(Ei) » the shear equation becomes t/s
i

E,
r

1

2 Rc Cr Rc
Tw = A(C _— f d
W T 9 ( Fy )Cr (l ] TRZ) (Rcr). (CFCI.)_ (Rcr)
1

TR i 1

With a simple power-law skin-friction formula this equation is easily

evaluated; .
C "N
(C_F]: ) = (Iifr) , where N is positive
T/ .
i i
and . - %
TW =4q A(CF ) (__._2__2. f Rc d/ Re .
] $°¢r\1- TR ir \Rcy Reo)
i
2L
2 1-TR™ N
= 4 A(CFa)cr (2_ i)( . TRZ )
N



For laminar flow N = 2 and it is easily verified that this expression is
identical to the one previously presented.

In general, the skin-friction coefficient is not given by a simple power-law
relationship and this is the reason for deriving the turbulent shear with the
Reynolds number as the independent variable,

The use of the Sivells and Payne formula in the shear equation introduces

a singlularity in the integrand and the function is nonintegrable. However,
this singularity occurs at a Reynolds number much below the laminar cutoff
and the shear equation may be integrated numerically. Several examples
for the numerically determined integrand are shown in Figure 57. The
upper-bound represented by laminar flow and a lower-bound represented by
constant skin-friction are also shown. The curves are smooth and the area
under each curve times the quantity 2/(l - TRZ) is the factor by which the
shear increases due to a tapered planform.

it may be observed from Figure 57, that even with a large variation of
Reynolds number on the planform (for example, Rc, = 107 to zero at the
tip), the major contribution to the integral is obtained over the first decade
{(Rc/Rcy = 1.0 to 0.1}, In the case of the upper-bound (laminar flow) and the
lower-bound (N = ©) this contribution is 97 and 99 percent, respectively,
This then, suggested the approximate approach of representing the Sivells
and Payne formula in the integrand over the entire Reynolds number range
by a local power-law fit obtained as the average over the first decade.

Thus, the shear on the surface is obtained from the power-law solution
with the exponent parameter, N, given as (for Sivells and Payne);

log Reyp - 2
0.8686

Alternately, as was done for laminar flow, the shear force may be expressed
in terms of an average chord, c;

T =
w = d; AlCE);

where

and
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Figure 57.

Planform Effect on Shear Force
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nitial Surface Correction to Shear Force

When an initial surface is specified, the shear force is determined for the
combined surface geometry, for the initial surface, and the difference
obtained as the value for the surface of interest., This in effect is dealing
with three surfaces which have the following characteristics (see sketch
below):

1. Imitial surface; Area A], maximum chord length L, taper ratio
TRy, and shear force Twy.

2. Surface of interest; Area Ay, maximum chord length 1.2, taper
ratio TRy, and shear force TWZ.

3. Combined surface; Area A3 = Aj + Ay, maximum chord length L3,
taper ratio TR3, and shear force Tws.

The shear force on surface 2 1is

TWZ = 'TW3 - TW].

H

ol LM (Cr Kyih .
K - == -
4y A2{Cry Kyils A, | TCr Kvilz
In the Arbitrary-Body Program this is compacted to the form
TWZ = g, Ay ICFG KVI)3 (1 - FF)

where FF has the mnemonic form factor or friction factor. Three possi-
bilities are considered in determining the friction factor: (1) both surfaces
laminar, (2) first surface laminar and second suriace turbulent, and (3)
both surfaces turbulent.

R

2
INITIAL SURFACE SURFACE OF INTEREST
AREA A, AREA A,

N
N
\
N
N
N
N
N
A
!
- |
I
I
I
I
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Initial Surface Correction to Induced Pressure
The average pressure on surface 2 is defined as follows:
F, F3-F  P3a;-PAa

Pz = — = =
A Az A

where F. is the force on surface i. The average pressures on the initial
surface and on the combined surface are given by

_ 8 1+ TRl + TRl ]
P, =P 1+ = B
1 e} 3
{1+ TRl)(l + \/TRl)_

_ 8
P3-P0 {1+§

B 1+ TR3+ \/T 3 T
’ [(1+ TR3)(1 +/TR3)| }

and the areas by

A1 = bLj(1+ TRy)/2
Ay = bLa(1+ TRy)/2
A3 = bLj(l + TR3)/2

Substituting these expressions into the above definition and after some
algebraic manipulation the result may be written as

1
B P = 8 A (b) | 1+TR3 + TR3 . L] 2, 1+TR1+ (—TR]_ H‘\/ﬁ__g
2 o 3 3 \ “\ 1

T
27 La+TR,)1+VTRy ¥ \1+ TR3+V TR3\ 1+ TR,

The length L5 is defined as the maximum chord length of the combined sur-
face, so as Lj=*=0 it is readily verified that the pressure reduces to the
same expression previously given for a single, tapered plate.

Viscous Force on Blunt Bodies

The earliest space capsules were designed with large spherical nose
caps and flew ballistically at zero degrees angle of attack, For such
vehicles, it was found that inviscid flow field calculations were ade-
quate to predict the splash point. The later generation capsules were
designed to fly at angle of attack to provide lift and it has been shownm
that viscous forces can have a significant effect on predicting the
splash point, The theoretical solution, then, must provide some means
for estimating the viscous effect.
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The procedure included in the Arbitrary-Body Program is that developed
by Goldberg of the General Electric Company (References 60 and 61),
This method is given in the form of relatively simple correlation formulas
in terms of the shock-layer Reynolds number and inverse density ratio.
The method is applicable to the low density conditions associated with high
altitude entry and is equally suited to real gas or ideal gas analysis.

The shear force in the stagnation region of a blunt-faced body is given as
Tw = Tw, Ky

where the shear without low density or viscous-interation effects is

Tw = 9uA 2 cos d
o 1-0.455 -
( 7 \/6-) /Reg
and 6 is the surface impact angle,
-1
€ is the inverse density ratio, = (P2/8,)

Re ig the shock Reynolds number

1

Py UpRp/ Uy

Rp is the body nose radius.

The viscous-interaction correction factor, Ky = T/ TWO, was obtained
from higher-order analysis of the boundary-layer flow (Reference 60 ).
The present authors have developed a correlation formula to represent
these solutions in the Arbitrary-Body Program. This factor, a compli-
cated function of both shock Reynolds number and density ratio, has been
approximated by a combination of exponential transition functions of the
type described by Grabau (Reference 62 ). These are

1
even transition: y = 1-exp KX -X,)
- - &g
. - 1
odd transition: y = I+ exp KX - X}
(9]

These functions are essentially the kernels for the Bose-Einstein and for
the Fermi-Dirac distribution functions, respectively, for the even and the
odd transitions. The notation of transition is used since these functions
represent the smooth transition from one asymptote to another; the even
case does not have a point of inflection and the odd transition has a point
of inflection.
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In the present application, a correlation formula for the viscous-inter-
action parameter has been obtained by a combination of an even and odd
transition function. The curve is considered to have three asymptotes
(see the sketch below); Y1, Fl, and F2. First an even transition is
determined for the curve between Fl and F2 and this is designated Y2.
Next, an odd transition is established between Y1 and Y2. The curves
are adjusted through the values specified for the exponential constants,
K, and the origin coordinates, X,. Details of this procedure are given
in Reference 62.

F1

\ Y2
{
\\'--__ /_F2

/—Y1

\

The correlation formulas developed for the present case are as follows.

Independent variable X = log (€3Res)

F1 = Al + Bl1(X)
Al = 0.667
Bl = 1.1111

F2 = 1.0

Yl = 0.0
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Y2 = Fl 4+ (1.0 - Fi)
1.0 - exp [EVK (X - XOEV)]

EVK = -1.80
XOEV = -0.3
1.0 + exp [ODK {X - X0OOD)]
ODK = -2.0
XO0D = AOD + BOD({log €)
AQOD = 1,0
BOD = 3.2907

Comparison of this correlation and the boundarv-layer solutions are
shown in Figure 58, The general shape of the curves is well repre-
sented by the correlation, although some accuracy is lost, particularily
at the peak of the €= 0.04 curve. It would be possible to tailor-fit
each of the ¢€-curves through further variation in Fl, the exponential
constants and origin coordinates. However, since only three solutions
were available, the determination of more accurate fits was not deemed
justified. Three additional €-curves are given on the figure to demon-
strate the behavior of the correlation formula.

An example of this technique is shown in Figure 59 were the predicted
values of lift coefficient for the Gemini space capsule are compared

with experimental results (Reference 63}, The modified Newtonian
calculation has been performed for the entire shape and the viscous
calculations (broken lines) made only for the blunt face. The present
comparison, due to the limited data used, may not completely justify

the method, but it does show the significance of the viscous contributions.

The blunt-body viscous calculations are not limited to entry capsules
but may be applied to any blunt portions of a vehicle (e.g., leading
edges). The method is primarily dependent on impact angle and, there-
fore, the detailed inviscid geometry is used. It is for this reason that
the method has been included as one of the inviscid force options. Zero
contribution is assumed for shadow flow,
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Figure 59. Gemini Lift Coefficient Comparison
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SECTION XI

AUXILIARY ROUTINES

The Auxiliary Routines option of the program is provided to house features

that are not directly related to one of the other major program components.

In the initial release of the Mark IV program it contains only the General
Cutting Plane option,

General Cutting Plane Option

The General Cutting Plane option may be used to determine the section
shape of an arbitrary body in any desired plane. This capability is some-
times useful in the geometry preparation stage of a problem. In this
application it can be used to help define the intersection line between
intersecting vehicle panels. The cutting plane is orientated so as to
represent one of the panels (or elements). Its intersection with the other
panel is then determined with the General Cutting Plane option. This
information can then be used to assist in preparation of the geometry data
to be input in the geometry part of the program.

Orientation of the Cutting Plane
Initially the cutting plane is assumed to be in the x-z plane with its position

specified by three mutually perpendicular orientation vectors: Ty, T2, “”]f'_3
coincident with i, j, k, respectively.

(LI YTy T Y YT o

LI T YT Y YT YT TYY TS
bl LI L 1]

LALLIIT LTI AL YT YY)
PEPIAAINNINUR IO NS
CABER ISR SINIRIRES
LI Y Y Y P Y YTY L)

AL S TTTI I ST P YT TYYY Y
WA AL LA TIITRIYYT YT Y T

L Y Y Y T YT 1
B e P AU BORNNNSERINRIIERR
SEROUSEBOIRINNNERNEREN
AL SEOROP RN NN RARERRNEN

r-h|

The orientation of the plane is given by three rotations in a yaw-pitch-roll
sequence (¢, 0, ¢) and by a final offset rotation 8. Angle ¢ is a rotation

about T3, angle @ is a rotation about T3, angle ¢ is a rotation about Ty,
and angle B is a rotation about T3. The orientation vectors are given by

T I
?z = [R] J_
T3 k
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where the rotation matrix is defined as
[R] = [B] [¢] [6] [¥]
[K] is given in complete form at the end of this section.

In most applications ¥ = 6 = 0 and

cos B sinfB cos¢ -sinf sin¢
[R] = -sin 8 cosfB cos¢p -cosfB sing
0 sin ¢ cos ¢

This whole business seems somewhat awkward, but has been selected with
the applications in mind. The cross-section areas needed for wave drag
calculations are determined by cutting planes having 8 = Mach angle. The
cutting planes are distributed along the body and taken over the necessary
viewing angles (¢).

Meridian sections for shock expansion calculations are determined with
B =0 and varying the roll angle ¢.

Intersection of Cutting Planes and Configuration Geormetry

It is expected that analyses will be required of complex configurations con-
sisting of a great many elements and therefore any geometry handling, such
as section cuts, must be done efficiently. The Douglas Arbitrary Wave
Drag Program is an example of this. Earlier programs select a cross
section plane and search the geometry for possible intersections. As the
geometry descriptions become more complex, it is apparent that large
amounts of time are simply wasted in searching., The Douglas Program,
however, sclects an element and determines any and all intersections
involving that element. The configuration elements are cycled and the
intersections collected according to cross-section — the same result as
earlier programs. The big difference is that each element is '"called"
only once.

The intersections are found by projecting the element into a plane normal
to the cutting plane. For cross section cuts a plane containing Ty, T, is
convenient, while for meridian cuts a plane containing T3, T3 is more
suitable. The procedure for meridian cuts is described below.

A plane is completely described by its normal vector and a point in the
plane. The sketches shown have implicitly assumed this point on the

x-axis and, in particular, at the coordinate origin for meridian cuts. An
offset for the plane location (%0, vo, zo) is easily accounted for and will so
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be assumed in the following discussion. For the definition established

the three vectors associated with the cutting plane are ( 8 = 0); ’

Ty

cos 8 cosyyT+cosb sin/ 7 - sin 6 b

=i
(N
I

= -(cos¢d sinyd + sin¢d sin § cos ¥)i+(cosP cosy -8ing sing sin )5
-sin¢® cosf k

T3 = -(sin¢ sinyY -cos¢ sing cos )i + (sin@ cos + cos® sind siny)j
+cos¢ cosf k

Once the plane axis (—T'l) is sel:‘_(_glt, _(iva.lues given), the projection plane
is fixed and for simplicity the T2, T3 plane at ¢ = 0 is used. The
coordinate axis of the projection plane, designated YP and ZP are

——

YP = (Tz)gb:o = -sin¢i + cos zp_j_

———

ZP = (T3)¢=0 = 8in6 cos¥ 1 + sing sin§ + cos 6Kk

The corner points of the quadrilateral are projected into the YP, ZP
plane. The radius vector to a corner point is

R(N) = X(N)T + Y(N)] + Z(N)k

and the projected components are

YP(N} = R(N) - YP = - X(N) sin ¥ + Y{(N) cos ¥

il

ZP(N) = R(N) » ZP = X(N)sin6 cos¥ + Y(N)sin8 sin¥ + Z(N)cos 0

ﬁ —
i 1 T

PK 3

=l
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The four corner points (N = 1,4) are projected into this plane and the
desired intersections are with the T3 vectors, which in this plane is

simply

_f‘3 = sin P YP + cos ¢K—Z_15
The subscript K is used to indicate a number of planes, say 1 to M.
The angular position of each corner point is determined
A(N) = tan™ ! (ZP(N)/YP(N))
and the ¢K are interrogated to find the condition
Pr < By <Py
each corner point is assigned a plane number equal to K:

MP(N) = K

The plane numbers of successive corner points are tested for possible
intersections and if indicated the intersections are found. The number
of intersections on the line segment between two points is given by
the difference in plane numbers:

NIN N4 = | MPa) - MPEAL) |

An example will help to demonstrate the procedure. First, an additional
simplification is presented, If the meridian planes are desired for equal
increments in A¢, the corner point plane number (MP) is given directly
by

1

MP(N) = [tan™ (ZP(N)/YP(N))] A ¢d

where integer arithmetic is assumed (i. e., the value of MP is truncated
to next lower integer). For the example then, consider equally spaced
meridian planes as shown in the sketch and calculate intersections with
element A.
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ZP A 2

P
YP
Corner Point{ Plane Number| Line |Number of Intersections
Number N MP{N) Segment MP(N) - MP(N+1)
1 2
1-2 1
2 3 2-3 2
3 5 3-4 0
4 5 4-1 3

The results are presented in the table and are easily verified from the
sketch. It should be noted that an element line coincident with a cutting
plane does not produce an intersection. Rather, this is recorded by the
""eross-member!'',

zp) Ty
Calculation of Intersection, Point I.

The equation of the cutting ZPl |——— e —

plane projection is

a) YP = tan ¢ - ZP \Q}

I

I

i

and the equation of pro- |
jected line segment is ’
1

by ZP=(ZPl -tap & +- YP1) + tan § - YP

—t-
YP1 YP

The solution for the intersection of two linear equations is easily found by
straightforward equalities {i.e., YPI; = YPI}, and ZPI, = ZPly). To avoid
certain singularities however, the resulting equations may be reworked

algebraically. Therefore, a geometric interpretation of the solution which
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accounts for the singularities is presented. The coordinates of the

intersection (YPI, ZPI) are given in terms of radius length of the
intersection, RI:

YPI = RI * sin ¢
ZPl = RI * cos ¢
7P
N
N
AN
% + _
e AN TR T3
' o
< /70
4 S
) /
"00 /// I
o 7 P1
& 2
b o
é

i YP
YP1

Observing the construction in the above sketch and noting that &= ¢ + §,
the radius length of the intersection is

RI = (ZP1 - cos 8 - YP1 . sin &§)/cos (¢ + §)

where 6 has the sign convention given by positive slope in YP, ZP
coordinates (i.e., sign of dZP/dYP). This may be clarified by rewriting
in terms of the point coordinates YP1, ZP1 and YP2, YP2. First expand

cos{® + 8)=cos ¢ cos 8 - sin ¢ sin § and then multiply through by the
length of the line segment

RI = ZP1 «(YP2 - YPI1) - YP2 (ZP2 - ZP1)
T cos - (YP2 - YP1) - sind - (ZP2 - ZP1)
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This equation is well behaved since the line segment and the cutting plane
cannot be coincident, The intersection in body coordinates is calculated
directly using the principle of proportional parts. The length ratio is
defined as

1/2

LR - | (XPL - YPI)® + (zPI - zp1)?
(YP2 - YP1)? + (zP2 - YP1)?

YPI - YPl _ ZPl - ZPl
YP2 - YP1 ~ ZP2 - ZPl

then

XI = X1 + (X2 - X1) * LR

H

YI Y1l + (Y2 - Y1) * LR

ZI = Z1 + (Z2 - Z1) * LR

1]

Since many elements are involved the question naturally arises as to
whether the same intersection is calculated twice. That is, in the
preceeding example, since line segment 4-1 has three intersections
would these same intersections be recalculated for the element B
which also contains this segment?

This duplication is avoided by selecting the line segments used for any
given element. The selection is based on the way the element points
are ordered. Briefly, recalling from Section III, elements are loaded
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by section according to rows and columns. Each element has a
number and a status flag and all this information is available. A
sample section of elements is illustrated below.

e ol o
3
| e o
®@ 06 06
2
_ O B0 &
@ 06| &
Row J =1 @ ete.
@ B &
I
Column I = 1] 2 3 o4
|

|
|
|
|
Status Flag 2

Corner Point Number ®

Element Number

A scheme to project the line segments is as follows:

I # 1 project lines 2-3 and 3-4
J = 1 also project line 4-1
I =1 also project line 1-2

With this scheme, duplication is limited to section boundaries.
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Rotation Matrix [R]

¢ rotation about T3

T

2
cosy siny 0
- ; [¥] = | -sint) cos¥ 0
0 0 1
!
i

cosf 0 -siné

sin® 0 cosé

Ty

¢ rotation about Tl
b, 08

1 0 0
- [¢] = 0 cos¢ -sing
0 sing cosd

T,

B rotation about T3

cosfB  sinf o0
[B] = -sinf  cosB 0
0 0 1
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The vectors -’-I‘-l, TZ' T3 are given by

T i

Tz = [R] ?

T, %
where [R] = [B] [¢] [9] [l/f]

[cosBcosBcosy-sinB(cosP sinP+singsinbcos Y]
[cosBcosh singb-f—sin[)’(cos(bcosz‘j) -sin@sin siny)]
-[cosBsinf +sinBsinPcos 6]

(

[R] = < ~[sinflcos fcos¥+cos B({cosP sin+sind sind cos )] >
[sinBcos sintP+cosBlcosPcosy-singd sind siny]

[sinBsinf -cosPsinPcos ]

\ -[sind siny-cosp sind cos ¢][sind cosif+cosd sinf sinyy][cospcos 6] /
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SECTION XII

COMPUTER GRAPHICS

The use of computer graphics has been a key feature of the Arbitrary-
Body Program since its inception. The first picture drawing routine
was prepared as early as 1965 (for the Mark II program). The first
on-line graphics program using the IBM 2250 was prepared in 1966,
The use and importance of graphics capabilities in checking out geo-
metry data has been adequately documented in a number of references
by users of the Mark III version of the program. The techniques used
in the old Mark III program and its supporting on-line graphics pro-
grams have been adapted and used by a number of organizations in the
development of their own graphics programs. Versions of the Mark III
Picture Drawing Program have been prepared for several different
types of hardcopy devices including the SC-4020, SD-4060, CALCOMP,
and the Gerber Plotter. Since most users of the new Mark IV program
already have picture drawing programs developed for the support of
the old Mark III program it has not been necessary to include a graphics
program within the new program on its initial release.

The use of interactive graphics, such as is possible with the IBM 2250
and the CDC 274 cathode ray tube equipment in combination with suit-
able hardcopy or camera equipment, is by far the most efficient type of
computer graphics operation. The term '"interactive graphics' implies
that the engineer has direct and real time control of the operation of a
graphics program (the selection and manipulation of input data, program
options, viewing angles, output data, etc.). However, the use of inter-
active graphics in an engineering application should be carefully
weighed against the cost of program development and the very high cost
of program operation.

The use of computer graphics to checkout arbitrary-body geometry data
is well understood. However, the use of graphics in presenting flow
field data is a relatively new development. As was the case with the
geometry picture drawing in the beginning we should ask the question -
why? Why do we need flow field graphics? For the geometry problem
it was to check the input shape data. For the flow field data problem
computer graphics can be used to monitor intermediate program output
data. The objective here would be to show in a graphical form the
vehicle generated shock waves, embedded flow boundaries, and surface
streamlines.

A very simple scheme has been used in the latest version of the Douglas
IBM 2250 Graphics Program to allow the easy addition of flow field
plotting capability. The trick used is to convert the flow field informa -

tion into standard geometry data format (complete with status flags, etc.).

It is then possible to submit the flow field data to the picture drawing
program just as though it were geometry data, The addition of a dotted
line routine under the control of the program operator helps to separate
the flow field data from the actual geometry data.
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The series of pictures shown in Figures 60 through 62 illustrate the
operation of this program. Figure 60 shows the body generated flow
field and Figure 61 the wing field. A side view of the vehicle flow

field at 5° angle of attack is shown in Figure 62.

The flow field data necessary to construct these types of pictures are
generated in the flow field option of the Mark IV program and stored
on the flow field storage unit 10, The manner in which these data are
stored is described in Section II of Volume III. Users wishing to
modify their own graphics programs to produce flow field pictures
should study this section carefully.

The following discussion and derivations related to computer graphics
are presented in the interest of completeness and to aid new users of
the Arbitrary Body Program system. Some new suggested features
for existing graphics programs are also discussed.

Picture Drawing Methods

As explained in Section III, the geometric shape of a vehicle is defined
by input sets of points in three-dimensional space. A grouping of four
surface points is used to describe a surface element. An organization
of a large number of related elements forms a body panel and a number
of panels describe a vehicle component., Several components are
usually used to make up the complete vehicle. The equations required
to produce perspective drawings of the geometry data are derived in
the following paragraphs.
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Figure ©0. Body Generated Flow Field
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Figure 61. Wing Generated Flow Field.
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Each point on the surface is described by its coordinates in the body
reference coordinate system.

X
Y
Z

The body reference coordinate system is assumed to be a conventional
right-handed Cartesian system as illustrated below.

X

To create the perspective drawings illustrated in this report each
surface point on the body must be rotated to the desired viewing
angle and then transformed into a coordinate system in the plane

of the paper. With zero rotation angles the body coordinate system
is coincident with the fixed system in the plane of the paper.

Z
o
A
2 v yaw
& roll
h a e
X j \ ; Q
O 6 pitch

The rotations of the body and its coordinate system to give a desired
viewing angle are specified by a yaw-pitch-roll sequence ({, 6, ¢),
This rotation is given by the following relationship:

206



o
C o HEE |-
Z Z
L o
Where the rotation matrices are
- A cosy siny o
Y| = |- sind cosy o
-7 o o 1
-] cos® o -sin®
6| = o 1 o
o L sin® o cos8
o 1 e} o T
¢ = o cosd sind
T i 0 =-sind cosd

S I
where [E] = [cb] [e} M

Since each point on the surface is given by its coordinates in the

X, Y, Z system,its position in the fixed coordinate system (X y Y,
o

Z ) may be found by reversing the above process.,

X X
d -1
: [g] Y
o]
z z
[#]

If we carry out this operation we obtain

X cosfcosy -sinp cosd+sinbecosy sind siny sind+sinbcosy cosod X
o

Y |=|cosBsiny cos{y cosbdtsinfsiny sindé -cosy sine¢tsinbsiny cosd

Z -5inb cosBsind cosgcosd Zz
o
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XO =X{(cos@cosy) + Y(-sinfcospt+sinfcosysind) + Z{sinysind+sinfcosfcosd)
YO =X(cosBsiny) + Y(cosycosdtsinbsinysind) +Z(-cossinptsinfsinfcosd)
ZO =X(-sin6) + Y({cos0sind) + Z(cosBcosd)

We may now use these last two equations to transform a given point on
the body (X, Y, Z) with a specified set of rotation angles (!, ¢, 3) into
the plane of the paper (the YO, ZO system)}. With the available graphics

subroutines it now becomss a simple matter to plot these data and to
connect the related points with straight lines,

In the surface fit technique used in this program and described in
Reference 3 . each input element is replaced by a plane quadrilateral
surface element whose characteristics.are used for all subsequent
calculations, These characteristics include the area, centroid, and
the direction cosines of the surface unit normal. The surface unit
normals may be transformed through the required rotation angles
just as was done for the individual points. The resulting value of

the component of the unit normal in the Xo directicn {out of the plane

of the paper) may be found from the following equation.

nxo = nx(cose COSs 4J)+ny(- sinfcosd+sinBeo s¢sin¢)+nz(sin¢sin¢+ sinbBcosycosd)

where n_, ny, n_are the components of the surface unit normal in the

vehicle reference system.

If n_ is positive then the surface element is facing the viewer. If n,

o o}
is nepgative the element faces away from the plane of the paper. This
result is used in the program to provide the capability of deleting most
of those elements on a vehicle that normally could not be seen by a
viewer. The resulting picture is thus made more realistic and confusing
elements which are on the back side of the vehicle do not appear. No
criterion is provided, however, for the deletion of those elements that
face the viewer but are blocked by other body components. This may
be accomplished by a proper selection of viewing angle or by a physical
deletion of the offending section from the input data.
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The pictures generated by the above procedures are not true per-
spective pictures but represent the limiting condition where the
viewing ''eyeball" is positioned at infinity. That is, the picture does
not exhibit any foreshortening that exists when a three-dimensional
object is viewed close at hand. These types of pictures are cer-
tainly acceptable for the purpose for which they were intended - to check
out geometry data. However, for some applications it may be desirable
to have the computer produce true perspective pictures. The procedures
necessary to accomplish this are discussed below.

In past arbitrary-body picture drawing programs the picture has been
drawn in the Y-Z plane, with the X-axis projecting out of the picture
screen and, therefore, not affecting the resulting image. To obtain
a true perspective image it is necessary to know the position of the
imaginary eyeball (or camera lense) relative to the rotated position
of the shape. A viewing ray is assumed to exist between each point on
the shape and the eyeball. The true perspective image is then formed
by determining where these rays pass through a viewing plane placed
parallel to the Y~Z plane and between the shape and the eyeball. The
position of the viewing plane is not important as long as it is outside the
rotated shape. The closer the viewing plane is to the eyeball, the
smaller the perspective image. This process is illustrated below.

eye

= X
Xo Xypln Xeye

The resulting equations for the image position of a point are as follows,

Y - X

p

Yo 7 (Y - Youo) /(X - X o)) * (X o)

eye vpln

Z ES (X - X

ZO+ ((ZO - Zeye) / (Xo - Xeye)) vpln 0)
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A FORTRAN subroutine to accomplish the perspective conversion is
shown below. A sample picture produced by this process is shown in
Figure 63.

SUBROUTINE PERSPC
DIMENSION XO (4), YO(4)ZO(4)
COMMON /PER/XO, YO, ZO,XEYE, YEYE, ZEYE,XVPLN
C DO LOOP TO CONVERT FOUR ELEMENT CORNER POINTS
TO PERSPECTIVE
DO 10 1=1,4
CORR = (XVPLN-XO(I))/ (XO()-XEYE)
NOY(I) = YO@) + (YO(I)-YEYE) #* CORR
20%(I) = ZO(I) + {ZO(I)-ZEYE) * CORR
10 CONTINUE
RETURN
END

Past arbitrary-body graphics programs have drawn cach element
separately. That is, each element was drawn independently by the
graphics device. This meant that the common line between adjacent
elements was drawn twice. This did not present a problem on hard
copy devices such as the SD-4060 or CALCOMP. However, on some
machines such as the IBM 2250 it may not be possible to get all ele-
ments of a vehicle shape drawn on the screen at one time because of
machine vector storage limitations, However, a method has been
worked out to avoid this duplicate drawing of lines between adjacent
elements and some users may wish to modify their existing programs
accordingly. The procedure used is quite simple and involves the use
of information already available in the geometry analysis part of most
arbitrary-body programs. The basic method of identifying the points
of an element (and also of drawing the element in the graphics pro-
gram) involves a clockwise numbering of the points as shown below.

2 3

(]

1 4

A single panel containing several elements is described below. The
left figures shows the elements as they were originally drawn by the
program. The right figure illustrates the lines that are used in
drawing the same elements in the new version of the program,

—
1
L
Y
)
[
e
\
—
tl
[O%)
.
e
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\!

Figure 63. True Perspective with Arbitrary-~Body Picture
Drawing Program.
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Each vertical column of elements is identified by the parameter N. The
element number in a given column is identified by the parameter I. Both
of these parameters are available in the part of the program that
generates the quadrilaterals from the input data.

In the diagram at the right note that line 1-2 for each element is drawn
only when N=1, Line 23 is drawn for all values of N and I, as is line
3-4, Line 4-1 is drawn for I=1 only. It would be a simple matter to
store the N and I parameters in the bead along with the Y-Z values,
and to check these values in the DISPLAY routine to determine which
lines are to be drawn.

The above procedure will avoeid the duplication of line drawing within a
given section of a vehicle (until the next STATUS=2 is reached). Adjacent
vehicle sections will still have some duplication of lines at the section
edges. However, it is not worth the effort to try to develop a scheme to
avoid this.

Application of the above scheme of checking on the N and ] parameters
will also, at times, leave a line undrawn that we actually would like to
have in place. This occurs at the edges of pictures as is illustrated for
a single cross-section of elements in the diagram below.

In the above drawing the subscript r is used to indicate a reflected
element due to shape symmetry. Elements I, 2 and 1, through 5,
are not drawn because they do not face the viewer., Note that one side
of element 3 will not be drawn (using the N and I parameter checks
alone) since side 4-1 would normally be drawn if element 2 faced the
viewer. Side 4-1 of element 6, is not drawn for the same reason.
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The above situation can be corrected by introducing two new flags to
supplement the N-I parameter checks. These two flags (IN and INR in
our program) are used to indicate when the preceding element on that
same side of the vehicle was not drawn because it did not face the
viewer. Each time an input element is drawn the IN parameter is
set to zero. If it is not drawn because it does not face the viewer
(NXO.LE. 0.0) then it is set to 1. Elements on the reflected side of
the symmetry plane are handled in the same manner with the INR flag,
A third flag, IFLAG is used to indicate when we are on the input
element side (IFLLAG=0) and when we are on the reflected side
(IFLAG=1). The complete checking procedure for the above situations
is as follows.
Draw line 1-2 when

N=1 or

IFLAG = 0 and IN

IFILAG =1 and INR

Draw line 4-1 when
I=1 or
IFLAG=0 and IN =1 or
IFIAG=1 and INR =1

Draw lines 2-3 and 3-4 for all conditions

I
[
Q
L]

The preceding checking procedure will produce complete pictures with

a minimum amount of line duplication for most vehicle shapes. However,
there is still another situation that has not been handled by these checks.
This duplication is shown in the drawing below.

This situation has not been corrected as yet in the Douglas program.
The solution involves the addition of yet another set of flags similar in
concept to the IN and INR flags., Only this time, the flags will have

to be subscripted arrays. The procedure essentially involves a check
to see if the last element that had the same value if I was drawn or not,
For example, in the drawing above, if element 1 was not drawn then
side 1-2 of element 5 must be drawn. The same applies to elements
2-6, 3-7, and 4-8,
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