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HYDROELASTIC OF AXISYMMETRIC SYSTEMS BY A FINITE ELEMENT METHOD

R. J. Guyan,* B. H. Ujihara* and P. W. Welch*

North American Rockwell Corporation

The irrotational motion of incompressible fluids may be completely
described by proper specification of velocities at and normal to the
fluid boundaries. This statement, expressed in integral form, is known
as the Neumann problem. A finite element solution of this integral
equation is obtained for flow within axisymmetric bodies following the
method of Smith and Pierce. This solution resulis in a description of
the fluid mass properties consistent with that of the elastic container
boundary, The combination of these fluid and container properties by
the direct stiffness method leads to a straightforward formulation of the
eigenproblem describing hydroelastic motion of liquid propellants in
a shell container. Shell description is in terms of the conical frustum
element by Grafton and Strome. Free surface effects are found to be
accountable by idealizing the surface as concentric annular elements
restrained by a concentrated axial stiffness. Isentropic ullage
pressure/volume relationship is used to describe the influence of
ullage volume changes on the natural vibration., Condition of liquid
volume constancy imposed by incompressibility is incorporated as a
generalized constraint condition in the manner described by Greene,
Computer results show fair agreement with data in the literature,
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NOMENCLATURE

A velocity influence coefficients

B velocity potential influence coefficients

c flexibility matrix

D dynamical matrix

El{k}, K{k} complete elliptic integrals of the first and second kind
F generalized forces

I identity matrix

K container stiffness matrix

Kp ullage pressure stiffness matrix

Ks liquid free surface stiffness matrix

M mass matrix

S banded integrating matrix

T kinetic energy

Avy total liquid volume change

AV, volumetric changes

Vo static ullage volume

X matrix of coefficients relating velocities in the x-direction to

the source strengths

Y matrix of coefficients relating velocities in the y-direction to the
source strengths

g gravitational acceleration

K modulus of elliptic integrals

P pressure at a point

Po static ullage pressure

r distance between two points p and q, r(p,q)
s coordinate measuring arc length
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Subscripts

u,w, 3,1,n0
ct

cqg

S

NOMENCLATURE (CONT)

container nodal circle tangential and normal displacements
container nodal circle axial and radial displacements
generalized displacements

normal displacements

eigenvectors

liquid free surface displacements

normal velocities

cartesian coordinates

velocity potential

body force

angle between axis of revolution (x) and local tangent line
container nodal circle rotation

gas constant

source strengths

liquid density

coordinates of particular points

refer to displacements defined above
refer to container nodal circles in contact with liquid
refer to container nedal circles in contact with ullage gas

refer to liquid free surface elements

Matrix Notation

(]
{}

square or rectangular matrices

column matrix

Matrix Superscript

T

transpose of a matrix
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SECTION 1

INTRODUCTION

Applicability of finite element methods to solution of problems in continuum mechanics
is rapidly being expleoited. For example, Zienkiewicz and Cheung (Reference 1) in their
recently published hook discuss several such applications in the analysis of heat conduction,
fluid flow, and the vibration of submerged structures, The paper presented here is concerned

with the hydroelasticity of liquid propellant contained in an axisymmetric elastic shell,

For those associated with aerospace structural dynamics, this particular phenomenon
of longitudinal slosh coupled with elastic deformations of the container wall is mostly familiar
for its important role in the notorious Pogo problem. Because of the importance of this
hydroelastic problem, numerous approaches to its solution have been taken during the past
few years. The majority of these appear to have been based upon classical techniques, but
a few have employed finite element methods.

Of these, two have come to the attention of the authors, The first is that presented by
Palmer and Asher (Reference 2). In that approach the displacement method was employed
for the overall structural analysis, but the fluid effects were described in terms of series
expansion of the velocity potential. Their results for the fundamental structural mode of a
model cylinder-bulkhead configuration agreed reasonably well with their test data. In a4 more
recent formulation, Tong (Reference 3) described the fluid mass in terms of the velocity
potentials of finite toroidal elements. This mass system was then combined with the struc-
tural system employing the displacement method. Actual numerical results employing this
formulation, however, were not obtained. It may be added that this method of describing the
fluid mass is conceptually consistent with the finite element technique, The approach de~
scribed by Zienkiewicz and Cheung (Reference 1) also discretizes the fluid region into finite

elements,

In the finite element method presented here, a still different approach is utilized for
the derivation of the fluid mass matrix. Basically it utilizes a technique first developed by
Smith and Pierce (Reference 4) more than ten years ago for the calculation of steady potential
flow about axisymmetric bodies of arbitrary shape. In this approach a discretization of the
fluid region itself is not necessary., Only the boundary already described in the structural

idealization is required. In this context, it must be noted that the quiescent liquid free surface
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structural boundary. Aesthetically, the fact that finite elements are employed only for the
boundary of the fluid region does depart from the basic philosophy underlying the finite element
technique. However, the comparative advantages and disadvantages of this method of gen-
erating the fluid mass matrix remain to be established.

SECTION II
PROBLEM DEFINITION AND MODEL DESCRIPTION

The problem considered is the calculation of the axisymmetric vibration behavior of the
elastic container-liquid system shown in Figure 1. The container is represented by conical
frustum elements with circular plates providing closure at each end. Similar frusta idealize
the container support. An inviscid, incompressible liquid partially fills the container while a
massless pressurant gas ig enclosed in the remaining volume, The liquid free surface is
comprised of concentric annular rings which may be regarded as structural elements re-
strained in the normal direction by concentrated springs. In addition the mean free surface
displacement is governed by the condition of constancy in total volume.

While container nodal circles initially possess axial, radial and rotational degrees of
freedom, only normal displacements at circles in contact with liquid are finally retained,
Axial displacements of the free surface elements complete the degrees of freedom included
in the model. Mass of the container is neglected in comparison with the liquid mass.

The condition of zere normal flow across the fluid boundary is satisfied by a system of
finite source elements whose geometric properties are coincident with those employed for the

matching structural elements.

All displacements are small within the restriction of linear dynamical systems and

motion is simple harmonic,
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CIRCULAR CONICAL
PLATE FRUSTUM
ELEMENT ELEMENT
ANNULAR
FREE LIQUID
SURFACE EREE
ELEMENT SURFACE
EXTERNAL
SUPPORT
STRUCTURE

Figure 1. Elastic Container-Liquid Model
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SECTION III

FORMULATION OF THE EIGENVALUE PROBLEM

The basic equations of the hydroelastic problem are introduced here, and the free
vibration eigenproblem formulated, Full development of the matrices involved is included
in the following sections.

Normal displacements of the elastic container and liquid free surface are expressed in
terms of the applied pressure forces by the flexibility equations

([ {7
Hydrodynamic influence coefficients relating normal velocities at modal circles to source
element strengths along the boundary can be written in matrix form ag

{vo}:[A] {a-} (2)

The velocity potential at nodal circles can be similarly expressed,

(a}-[sl{<}

The pressure equation for this problem is

(2} {28 (a}-L{ve v} (4)
{1 represents the body force. In a time constant gravitational potential the body force asso-
ciated with the mean fluid depth must also be time independent, For the eigenproblem formu-
lation, then, the body force associated with the mean fluid depth may safely be removed from
the pressure equation. The remaining effect of gravitational inertia forces on the free surface
oscillation is treated in a later sectionas a structural parameter., Neglecting squared velocity

terms, and integrating to obtain total pressure forces, the pressure equation becomes

0P
Fl-=p[s]{%} (5)
{ P ot
where [S] is a banded integrating matrix. The first three matrix equations, together with
the linearized Bernoulli equation, are sufficient to formulate the sigenproblem for a hydro-
elastic system.
For simple harmonic motions, normal displacements are written

{un } = {"o} sin wt (6)
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Normal velocities are then given by

{dd‘:n}= {vn } : {“o}w cos wt

Eliminating source strengths between Equations 2 and 3 results in

(@} [o][a] {s}umo

Differentiating this equation and introducing Equations 1 and 5 gives

30} (ot e - [ e s
GICICIOR A

in standard eigenproblem form.,

or

The dynamical matrix is

with eigenvalues
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SECTION IV

DERIVATION OF THE STIFFNESS MATRIX

Generation of the system stiffness matrix is by the direct stiffness method. Container
stiffness, stiffness of the liquid free surface, the effects of ullage pressure, and liquid in-
compressibility are included as integral parts of the derivation. The condition of liquid

incompressibility also applies to the system mass matrix,
ELASTIC CONTAINER

The elastic properties of the container are described by the conical frustum stiffness
matrix due to Grafton and Sirome (Reference 5). Displacementis parallel and perpendicular
to the axis of revolution and rotation are included at each nodal circle. Circular plate elements
are used to close out the container on the axis of revolution. The plate stiffness equation is
given in Appendix 1. After assembly of the container element stifiness matrices, force free
degrees of freedom of the external structureare eliminated (see Appendix IIT} and boundary

conditions applied. The stiffness equations are then expressed as

F u
{,“_"‘ﬁ_“_f_ ] [Kc] {--E‘:'@_c_f_} (13)

FuwBeq YuwfBeg

Displacements u, W, B3 at all nodes in contact with both liquid and ullage gas are retained at
this point the forces {F} are total forces at a nodal circle which retains symmetry in the
stiffness matrix,

LIQUID FREE SURFACE STIFFNESS ELEMENTS

In a uniform gravitational field the potential energy agsociated with liquid free surface
displacements may be translated into an equivalent surface element stiffness. If a fluid
element of cross-sectional area A is displaced a distance h above the mean free surface its
potential energy is pghA. The stiffness or spring constant of the element is then pgA. Since
these fluid elements are free to move independently of one another, the stiffness matrix of the
liquid free surface is diagonal with stiffnesses proportional to element areas, Combining the

container and free surface stiffness equations gives

FuwBel YuwBel
Fuchq = [ K, +K ] YuwfBecq (14)
FS uS
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ULLAGE PRESSURE EFFECTS

Under time varying hydrodynamic pressures the elastic container will undergo small but
finite volumetric changes. As a result, a nearly full tank containing ullage gas can experience
significant percentage changes in ullage volume and hence ullage pressure, Such pressure
variations can be treated by stiffness coefficients. Ullage pressure and ullage volume may
be related by linearizing the pressure-volume relationship ahout the mean ullage volume V o
Assuming an isentropic gas law the equation is

Ap = yI(P, /V)AV = BAV (15)

For each nodal circle displacement there is a corresponding volume change which can be
derived as follows. Volume changes are first calculated for element displacements and are
then combined appropriately at the nodes as are element stiffnesses to give a resultant nodal
displacement volume change. A list of the formulas is given in Appendix II. To derive a so
called pressure stiffness matrix for the ullage gas, it is convenient to think in terms of the
Physical significance of stiffness coefficients, that is, force required for a unit displacement
and corresponding restraining forces, If AVi is the volume change for nodal displacement
u, = 1, the pressure change throughout the ullage is Api = BAVi. The equivalent concentrated
nodal force for degree of freedom uj is shown by Archer (Reference 6) to be given by

Fl :_{Api ¢; ds (16)

where ¢>j is the shape function for nodal displacement uj = 1, But the L C,’D]. dS is precisely
AV].. Therefore coefficients of the pressure stiffness matrix are given by BAVi AVJ. where
volume increases are positive,

The pressure matrix is full, that is, each degree of freedom on the ullage gas boundary
couples with all others since the uniform pressure change is felt everywhere throughout the
ullage volume. Liquid free surface displacements couple with container displacements at
nodes in contact with the ullage. Combining the pressure stiffness matrix with [K c +Ks] we
have

.( FUWBCﬂ uw B¢/
g el T TuwBed
FowBeq : [xc+xs+|<p] YowBeg (17)
Fg Ug
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Since the final stiffness matrix will contain only those displacement coordinates required
to describe liquid motion, a series of force-free degree of freedom eliminations and a
coordinate transformation are next performed. These steps are summarized below and the
degrees of freedom remaining at the end of each step indicated, See also Appendix III,

1, Eliminate 3 degrees of freedom

2, Eliminate u, w degrees of freedom at nodes in contact with the ullage gas,

3. Transform u and w displacements to displacements tangent and normal to the con-
tainer surface,

y tne £
{-3,
4, Eliminate t degrees of freedom
Unct

The stiffness matrix at this point, denoted by [K] » contains only displacements normal to
the container in liquid contact and the free surface displacements.

INCOMPRESSIBLE LIQUID CONSTRAINT

Unc/
Due to fluid incompressibility not all of the degrees of freedom {--G-s "} are independent,

With each displacement u there is a volumetric change Avu. The total liquid volume change
AV g may then be expressed in matrix form by

T Unc g
avy = {av} {—u;--} (t8)
Note that AVy depends on all degrees of freedom u, w, B, ug. Transformations required to
obtain AV,  are given in Appendix III. Since AVy =0 for liquid incompressibility, it is
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convenient to introduce AVjp as a generalized coordinate and use the technique of gen-
eralized constraints proposed by Greene (Reference 7), Replacing the free surface displace-

ment at the container centerline by AV, , the coordinate transformation is written

Mncs_ I | 0 E'EQ.\

- B I

_PS__._ z L u, (19}
A'V.g ) {AVU}

where ug is ug diminished by the centerline free surface displacement. Denoting the inverse

of the square matrix above by B the required transformed stiffness matrix is

(&} o] (] [&] 20)

Since the generalized coordinate 4V is constrained to zero, the last row and column of K
are deleted and the final stiffness equations of the system become

[« ] {"%:ﬂ 21

——
I =
(=]
o0
s
i
H—I
"
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SECTION V

DERIVATION OF LIQUID MASS MATRIX

A finite element derivation of the fluid mass associated with its motion in an elastic
container is presented in this section. This derivation is limited to liquids starting from a
state of external and internal equilibrium. Under the assumptions that viscosity effects are
negligible and the flow is irrotational, the fluid motion can be described by a velocity
potential ¢ . This potential is fully determined by the geometric configuration of the liquid
mass, This potential is identified in that it must be harmonic with normal derivatives

assuming assigned values on the boundaries,

A solution for the velocity potential is sought which can treat general axisymmetric
systems which is geometrically compatible with the structural idealization of the container,
The method selected reduces to the solution of the Neumann Problem, or the Second Boundary
Value Problem, The solution of the Neumann Problem is constituted by a numerical solution
of Fredholm’s equation of the second kind. Welch (Reference 8) discusses in some detail the
Neumann Problem including assumptions, limitations and methodology usedto obtain numerical
solutions. Kellogg and Lamb (References 11 and 10) provide the theoretical basis for this
discussion while computational methods are discussed by Smith and Pierce (Reference 4)
and Pogorzelski (Reference 9),

The method discussed and presented is completely general in principle and can be
employed in three dimensional problems; however, only the axisymmetric system is discussed,

HYDRODYNAMIC INFLUENCE COEFFICIENTS

The hydrodynamic influence coefficienis relating source strengths (densities), normal
velocities, and the potential function over the boundary of a body of revolution are obtained
by the methods outlined in Reference 4, The method reduces to numerical solution Fredholm’s
equation of the second kind,

r

(—‘;‘;%’)p : t2m0(p)+ [ [ota) %-'—— ds. (22

The normal velocity at boundary point, p, is equal to the sum of the individual contributions
induced at p by the source distribution o over the surface S, The surface of revolution is

idealized into a system of conical frustums, The source density is assumed constant over
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any given element. The boundary conditions are evaluated at the midpoints of the elements,
The normal derivatives of 1/r are required and then the source distribution o(p) can be
solved in terms of the known boundary conditions. The infinitesimal element is a homogeneous
ring of which the potential and its derivatives are required, Let A be the linear density
(not a function of §) and a the radius of the ring. The potential at point p in the x-y plane
is given by

d0

]
24 a?%- 2ay cosf) /2

i
o =20)\f - (23)
P [+] {x +y

The normal and tangential derivatives of the potential are obtained in terms of the cartesian

velocity components (x and y directions) g—ib and %D » respectively.
o m
Pt 2o\ > 5 ;d & 3
X o (x“+y° +0° —2ay cos8)2

ah L {y—a cosf) 48
— - 20X {24)

3
9y o (x2+y%®+a% —2ay cosO) /2

Define a coordinate s as the direction along the profile of the body of revolution from the
point Xy Yo to the point Xy Yo where (x o yo} is the initial point defining the body (origin) and
(xn. yn) is the last point of the body. The x axis is considered the axis of revolution. Divide
the body into n conical frustums and define 85,9 Sg; t0 be the s coordinates of the end points
of the ith frustum (Figure 2), The cartesian coordinates of these points are

¢ gz’i-z"’?ai—z ) '(‘Szi’nzi )
with midpoint

(€

2i -1’ nzi-i)‘

Define the angle @, as the angle between the line tangent to the midpoint of the 1™ frustum
and the x axis, positive direction taken counterclockwise from the x axis, The expressions
for the normal and tangential velocities are:

3P ” .
( :-2mWo - sina, 3 X. o +tcosa 3 Y. o (25}
an /. _ [ i ij 9 i ij
2i-1 jet i=1
9P . o
(ds )zi-l zcos @ X X; 0y *+sina, ¥ LTS (26)

= j=1
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where

S2i My %, , € VELK) ds
X =‘4f e (27)
s . ¢, G
P #j 2l -2
2 2 2
Y 2]‘!‘zi ki (kekr+ ain ) eiam§) ECk)) d
Lo —_— : s {28
y Yai -1 € Ce )

i#]j %2j -2

. 2
€ = [(’zi-l +"?j’z Fixgi, =) ]

—€3

2i -1 i

o
"

2
2 (yzi-n_nj) + (x

E(k) and K(k) are complete elliptic integrals of the first and second kind, respectively.

P2j-2
P2i-2
P2i-1 / b
2i=1
n [ Poi
P2;
pamar e —
\ As 5 /
a 4
{ s
’
r 2
’
YN 5
¢
’
¢
5
/
¢
¢
; :
o S B - - é
x, & / I
P OFRUSTUM SINGULAR SUBELEMEINT

ORDINARY SUBELEMENT

Figure 2. Configuration and Nomenclature for the Cone-Frustums Including Singular
Subelement
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The case of the ii element must be given special treatment, that is, the influence of a
given element on itself. This particular element is divided into three parts by considering a
small distance € from the midpart of the element in each direction as defining the singular

portion of the element. The integration of Equations 27 and 28 are performed over the intervals
(szj-z' Spj -1 -¢) and (szi_| + €, S2j ).

For the singular subelement let 2s’ be the slant height of the element and then define a new

coordinate as S = s/y. (e i =8V, s’ = constant). Thenthe equations Xii and Yii become

s, ] STV 4 cin? 1Bygrs o
xii = 8 sin a, cos Q, —4—-+ E(Ln(—s—)+sm a, + IG)Si +
sZi-lei SZ'i'
—4f X, 85~ 4f X, ds (=) 29)
S5i-2 2§ -1+€;
S s
- H I i
Y, = | 2sin Q +2Ln(—8'-) Si —Elz(4+3Ln (——-E;—)
—2 sin® a; -2 sin“ai)s'f’ P
sZi-i—ei Spj
-2 | Y, ds - 2 [ v, ds Ci=i) (30)
%2i -2 S2i-1 V€

Equations 27 to 30 are substituted into Equation 25, which can then be written

{Vn}=[A] {0'} (31)

where v, are the normal velocities at the midpoints of the elements, A is a matrix of geomet-
rical coefficients relating the source densities o of the elements to the normal velocities.
o are the source densities to be determined to satisfy the imposed boundary conditions, This
Equation 31 is solved to obtain the o by a Gauss Jordan complete pivoting method.
N ‘ N
[A] :[+21r—sin a; Y )(ii + cos q z Yij ] (32)
1= izl
Once the source strengths have been determined, the potential & can be evaluated from

N Sai T
d8
o, =2 % o-if adsf - % (33)

i=l S,ip O (x% + ¥ +a% — 2ay cos8)
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This equation can be rewritten into the form similar to that for %rigand %?L

N sef nK(k) :
] ds i
o4 3 o [ — +&, (34)

izl !

S2i-2

<I>p1 is the contribution to the velocity potential from the singular subelement;

i _ ' i . '
® :o {aLn(a)s +&[1~ 25in? o —La(a (sin? a; +%—):|33+---} (35)
Equation 34 can then be rewritten into matrix form as

{d>}= [a] {cr} (36)

where matrix 8 is defined to be

ol [o & /™

=l 8,

ul K(k)ds

+ CIDi ] (37)
¢

FINITE ELEMENT EQUATIONS OF LIQUID MOTION

The pressure equation for incompressible, inviseid, irrotational flow under conservative
forces is 0

p | . -0 _ 9P _

7+t VP-vd-Q FYRRALE (38)
If there are no body forces and only small displacements are considered, the governing

bressure equation hecomes
p oP
_ e == (39)
P ot
This is the equation for pressure at any point on the fluid, To obtain the total force exerted
on any segment of the boundary the pressure is integrated over the surface.

Compatibility between the structural motion and fluid motion ig achieved by equating
total forces at the boundary, This entails integrating the pressure equation for the fluid over
the individual elemental frusta that are employed in the idealization of the problem, The
pressure forces acting on the fluid boundaries can be written as

Fep [[22 45 (40)
{@} <[o] {o}+ [o] [a]" {w,} @n
S (o B ) (@2)

1181



AFFDL-TR-68~150

This expression is valid since the matrices B and A are geometrical constants, The force
equation can then be written in matrix form as

{7 o [s] [o] (] {u} (43)

where the matrix $§ is an integrating matrix for the respective fluid elements which match
the structural elements. $ is a banded matrix whose band width is dependent upon the degree

of sophistication one wishes to use for the integrating scheme, The mass matrix is identified

i - B[] o)

The mass matrix can also be identified from a kinetic energy expression. The kinetic
energy of the fluid in terms of the velocity potential is

T:%ffcp 3:?ds (45)

Substituting into Equation 45 the matrix expressions for & and g—?from Equations 31 and 41
and the equivalent numerical expression for integration, one obtains

g {3;?}?‘ [s] [d)] = Lp_‘["n}T [S] [B] [A]-I {Vn} (486)

The proof of symmetry of the analytical expression used in the matrix approximation of
the mass is given in Appendix IV. This proof is due to Professor Tong (Reference 12),

T =«
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SECTION VI

A NUMERICAL EXAMPLE

A computer program based on the problem formulation presented here was written for
the IBM 360/65 computer. This program is sized for a total of 80 elements over the shell
and free surface. It has demonstrated machine running times of about seven minutes for a
43-element system, including digital and graphical output of all system frequencies and mode
shapes,

To substantiate validity of this problem formulation, an example has been selected from
the literature, and compared with the finite element solution. The problem is that of a filled
hemispherical shell, simply supported at the equator. Tai and Uchiyama (Reference 13) in-
vestigated this configuration and obtained numerical results for the following geometric and
structural properties:

Radius = 200 inches
Shell thickness = 0.1 inch
Elastic Modulus = 107 psi

2
2,59 x 10”4 s sec”
in

Structural mass density

Poisson’s ratio = 0.3

~4 lbs sec2
Fluid density (LOX) 106 x10 © —=—

L[}

in

Natural frequencies obtained by the finite element program (neglecting wall mass) for the
43-element, 42-degrees-of-freedom system are shown as circular symbols along a logarithmic
scale in Figure 3, The four natural frequencies computed by Tai and Uchiyama are also
indicated in Figure 3, Their first mode is shown to be considerably below the lowest frequency
obtained by the finite element program. On the other hand, the remaining three frequencies
show reasonable agreement with those for the lowest structural modes obtained by the finite
element program, The connecting dashed lines indicate corresponding frequencies based upon
inspection of the number of nodal points in the mode shapes.

The large number of frequencies indicated below the first structural mode at 6,7 Hz are
all associated with modes having predominantly free surface rotion,
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The technique employed by Tai and Uchiyama for solution of the frequency determinant
consisted of a2 trial and correction searching process for the zeroes, This explains, at least
in part, why some of the frequencies below those for the structural modes appear to have been
missed,

In an effort to resolve the discrepancy at the fundamental free surface frequency, it was
noted that the frequency ratio between the fundamental free surface frequency and the first
structural frequency computed by the finite element program is 0.46 to 6,7 or about 1 to 15,
For such a spread, it may be concluded that structural participation is negligible for the first
free surface mode. This is further substantiated by the mode shape. Its response must essen-
tially be that for a rigid container. Hwang (Reference 14) analyzed this same configuration
except that he used a wall thickness of 0.3 inches. By the preceding argument this larger
thickness would not change the magnitude of fundamental free surface frequency from that
for 0.1 inch wall thickness, The value of 0.42 Hz which he obtained for thig frequency is
indicated in Figure 3, Hwang also calculated two higher slosh mode frequencies for the
hemispherical tank. Comparison with these frequencies is indicated in Figure 3.

Gossard (Reference 15) solved the free vibration problem for the same configuration with
one notable exception, His model assumed a rigid ring at the equatorial support whose mass
was taken to be equal to that of the fluid. The system was otherwise unsupported. The two
structural frequencies determined by Gossard for his model are shown in Figure 3. As might
be expected, these frequencies are higher than those for the corresponding modes computed

by the finite element program.*

The finite element program computed all the mode shapes for the sample problem, For
the assumed structural and fluid properties a rather distinct separation occurred between the

free gurface and structural modes,

*Mr. Gossard, in his investigation, did study the frequencies for a hemisphere with the
equatorial ring completely restrained from motion along the axis. The lowest frequency he
obtained, however, was higher than the corresponding fundamental with the ring unrestrained,
This is contrary to the trend exhibited by a simple double mass-spring system, For this
simple system the frequency is known to decrease when one mass is fixed (or made infi-
nitely heavy). One of the authors questioned Mr. Gossard on this point, and he stated that the
point was well taken, He felt that his fixed equator result required further substantiation,
His solution for the unsupported case was considered correct on the basis of its correlation
with independent data as shown in his report,
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Figures 4, 5 and 6 show the first three modes of the hemispherical shell, which are seen
to be sloshing modes. Figure 7 shows the first 21 characteristic free surface wave shapes in
order of increasing natural frequency. Only the wave shape along the radius is shown since
the motion is axisymmetric. With the maximum wave amplitude normalized to unity, the
maximum wall displacements for these modes are on the order of 10"4 or less, Therefore
the wall participation is essentially negligible, and these modes are characterized as free
surface modes. From the standpoint of linearized dynamics their existence is primarily of
academic interest, since they would presumably be difficult to excite, Nevertheless, the
progressive manner with which the higher frequency characteristics gradually make them-
selves evident with increasing frequency is interesting. The most noticeable of these frequency
dependent features are (a) the steady increase in number of nodal points from mode 1 to
mode 14, (b) the appearance of a localized, highly oscillatory wave shape at the center in
mode 13, which appears to move steadily outward with increasing frequency, leaving a rela-
tively calm surface towards the center, Figures 8,9, and 10 show the succeeding mode shapes
corresponding to the 22nd, 23rd, and 24th ascending frequencies. These are the first pre~
dominantly structural modes, Here also, as well as in all the remaining modes, the localized,
highly oscillatory wave shape now located near the periphery continues to persist. No new
features appear in the 25th and subsequent mode shapes except that nodal points along the wall
steadily increase in number with increasing frequency, Obvious limitation to the numerical
accuracy is indicated when the nodal points become so numerous that only one or two elements
appear between nodal points of the deformation pattern, This deficiency became apparent at
approximately the 34th mode. In the computer solution, the last three frequencies of the
42-degrees-of-freedom system were complex, indicating complete degeneration of numerical
accuracy.

Upon viewing the entire set of mode shapes in order of increasing frequency, it is ap-
parent that higher frequency fluctuations in the free surface, compatible with the structural
modes, can have only limited representation due to the finite number of elements, This
computer program has not yet undergone extensive usage, and limitations such as this have
yet to be optimally resolved.

Versatility of this eigenproblem formulation is not fully demonstrated by a single numer-
ical example, Suffice it to note that the characteristic generality of finite element techniques
has essentially been preserved. The reasonable comparisons obtained with independently
obtained data substantiate validity of the basic formulation.
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SECTION VII

CONCLUSIONS

A method for hydroelastic analysis of axisymmetric systems by a finite element method
has been demonstrated. Essentially, existing numerical analysis techniques have been adapted
and combined to meet the requirements for solutionof this hydroelastic system eigenproblem,
In addition, the representation of the fluid free surface as a consistently defined structural
boundary has been proposed., Ullage pressure effects and liquid incompressibility have been

included in the stiffness formulation. Reasonable agreement with existing data has sub-
stantiated validity of the approach,
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APPENDIX I
CIRCULAR PLATE STIFFNESS EQUATIONS
A three-degrees-of-freedom circular plate element is used at the container centerline to

match the adjoining conical element displacements. The generalized forces are force per
unit length multiplied by 2 ma.

u u
A° A"
l !
L)
2
Bt | N *
T a
h
I
¢
Circular Plate Element
[ F ] e 0 o ] 7
U, ( vz
2Eh
F z 0
w2 -y w2 47
mEh
F 0
B, 6(1-v) Be
- - b - L —d
The center displacement is given by
a
u, —le+2— Bz {48)

1197



AFFDL-TR~68-150

APPENDIX II

STRUCTURAL ELEMENT VOLUME CHANGES

Container volume changes associated with the conical frustum element displacements
are easily calculated by use of a theorem of Pappus, Element digplacements are made one

at a time with all others restrained to zero. The deformed element and generating area for
W, is shown in the figure, An increase in volume is positive,

_ Y2

Xe
X
i |2
Avu' = 30 o ¢)] (, =r Ny, (49)
Ale : (k=% }w (50)
AVB‘ = {51)
I
Avuz : —1r[r| +lr-r ) ( +§Ecosz¢>)] {rg=r ) u, {52}
2 I
Avwz= ”[ru +(rz—rl)(?+%cosz¢)](xz-xl)wz (53}
c-X(2 3 —x 32
Avg - 5(5 nt3 'z)(“z B, o4
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Volume changes for the circular plate shown in Appendix I are

. 2
Avuz-t Ta v, (55)
wa®
Av, =

B, 2 B, (586)

The negative sign applies at the container bottom and the positive sign at the top.

For the free surface elements, the changes are simply
_ 2 2

Avu 'W“outer " Tinner )us (57)

S

1199



AFFDL-TR-68-150

APPENDIX III
COORDINATE TRANSFORMATIONS FOR VOLUME CHANGES

Since all modal displacements give rise to container volume change, the contribution of
each must be included at the stage in the calculations when the constant volume constraint is
imposed. As degrees of freedom are eliminated coordinate transformations are obtained as
follows.

F ) U
R R T
The {u,} are to be eliminated by setting {F1}= 0.

Then

CHIEEN LML CY (59!
and
(g . [Euli‘l_a_]{..z} (60)
gives the form of the transformation required,

For the eliminations and transformation indicated in the main text, the equations follow,

For the 3 elimination,

YywBc/ Yuwe /
g Us

[T 1] is constructed by an arrangement of the matrix relating S and u, w displacements and

an identity matrix which accounts for reordering of the displacements.

Eliminating u
uwcg

...u..‘.’ﬂcﬁ - __ugwgf_
Yuweg - T (62)

1200



AFFDL-TR-68-150

Transforming from u, w to t, n,

1
u 8 u
{_“_“’Ef . [ i ] { _ined (63)
u, r I ug

Elements of B are the direction cosines of the container surface tangent and normal.

Eliminating u ted

[1]

{f*_nc_f. RAREE! Sncd (64)

Ug

Combining these equations, we arrive at the overall transformation

YuwBcl 8 | )
o SR A B S AR

[r.] { _“:ff_} [7] '{_“::c{} (65)

Now construct a liquid volume change matrix{AV} by superposition of the element volume
changes given in Appendix II, Then

YuwBc Z

Avy - {AV}T , "uchg {686)

In terms of the displacements remaining when fluid Incompressibility is enforced

avp = {av)" [1] {—uuﬂ:—!-} - {av ] {—"";fsi} (67)
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APPENDIX 1V

SYMMETRY OF THE MASS MATRIX

The following proof of the symmetry of the analytical expression for the mass matrix

is due to Professor Tong, and is referenced in the main text.

f CD-—ds

@ (p} ff (q) ; ds(a)

od

)
5o (p)s 21rH(p)+ffH(q}an(p} r(p'q)ds(q)
H(g) is an unknown function (source density)

n is the normal direction
p.q are points on the surface

r(p,q) is distance between p and q.

Substituting into the expression for the kinetic energy, one obtains

i

H(‘” ds(q)][Z‘er(p) +[[ Wi an?p) r(lp,q}ds(q)]ds(R)
or

ve=£ ([ [fHie) Fp,a1 Hia) aste) Jastry

where

Flp,g )=

2T i 9 I
d
r(p,q)+ff r(p,ga) dnlp) rip,q} stel

One can show F(p,q) = F(q.p).

® (o ff M2l i

' r (p,q)

[fom 22w fff e, v o

80
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but

o (p)
[[[v¢, Vg, av = ¢, (p)—q:'—n ds (75)

This implies the following

ff [ff”l (p) F(p,a) Hy(q) ds (p): ds{q)
ﬂ [ff“z‘P)F(p,q)H. (q)ds(p)j ds(q)

[ [fH o) Fla.p) Hpta) astp) ] ds (@) (76)

Let
H, =3 (a), Hp = 8(b)

where 8(a) is the delta dirac function at point a

. Fla,b)=F (b, a).
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