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SECTION I

INTRODUCTION

The objective of this paper is to present a brief review of developments carried out at
the MIT Aeroelastic and Structures Research Laboratory over the past few years* for the
discrete-element elastic analysis of thin shells of revolution and of asymmetric shells
(i.e., shells with cutouts and/or circumferential variations of material properties and
thickness); some of the features of a typical problem are shown in Figure 1. Among the
configuration and material property features included in the shell-of-revolution analysis
are single layers, soft~bonded double layers, variable thickness, meridional curvature,
multiple branches, isotropic and orthotropic material, thermal stresses, and core stiffening.
Accordingly, the types of discrete elements developed include (a) meridionally-curved shell
element of revolution (SOR element), (b) element having a shell midsurface of revolution but
with other geometric and material parameters represented by circumferential Fourier
harmonics (HSOR element), (c) solid of revolution element with triangular and quadrilateral
cross sections (SOLOR elements), and (d) doubly~-curved quadrilateral shell elements
(QUASH); these discrete elements are depicted schematically in Figure 2. The salient features
of these developments will be described. Because of time and space limitations, an adequate
review of relevant similar developments by other researchers cannot be included in this
paper; only brief reference is made to typical work in this category.

Discrete-element analyses of shells of revolution have been carried out using the conical
frustum as the basic discrete element by Meyer and Harmon (Reference 1), Grafton and
Strome (Reference 2), Klein (Reference 3), Lu, Penzien, and Popov** (Reference 4), and
Percy, Pian, Klein, and Navaratna (Reference 5), among others. The procedures used in
References 1 and 4 to compute the discrete-element stiffness matrix encounter convergence
difficulties, especially where conical elements are mated with either cylindrical or flat-plate

*This research has been carried out (1) largely under sponsorship from the Air Force Space
and Missile Systems Organization under Contracts AF04(694)-857 and F04694-67-C-0039,
and (2) with support from the Engineering Sciences Laboratory, Picatinny Arsenal, Dover,
New Jersey under Contract DA-28-01 7-AMC-2158(A).

**These authors also used a spherical segment element of revolution for pole regions.
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elements. Grafton and Strome used energy methods to derive the stiffness matrix, but un-
fortunately incurred some inaccuracy in the method used to evaluate the energy integral.
This procedure was improved in References 3 and 5 where both axisymmetric and asymmetric

loading conditions were included.

The application of (the better of) these conical discrete elements to the analysis of
shells of revolution subjected to axisymmetric and/or asymmetric loading showed good
agreement (References 5 through 7) with independent analytical and/or numerical solutions,
even using relatively few discrete elements if the shell of revolution being analyzed did not
have meridional curvature. However, for meridionally-curved shells of revolution, Inany
conical discrete elements are generally required to produce an accurate solution (References 5
through 7). Since computer storage is limited and one seeks to minimize the computing time
{or cost), it is desirable to keep the number of degrees of freedom to a minimum for a
given desired solution accuracy, Thus, since it was expected that this improved efficiency
could be realized by using a meridionally~curved discrete element for the analysis of
meridionally-curved shells of revolution, the development of the stiffness and (and mass)

properties of such an element was undertaken.

The results obtained by using meridionally~curved discrete elements have been reported
by various authors (References 6 through 14). Although the discrete element descriptions
and properties are somewhat different in the three approaches reported (References 10, 11,
and 14, for example), the expected solution efficiency and accuracy by using meridionally-

curved vs conical elements has been demonstrated,

For a shell having a midsurface of revolution but with circumferentially-varying struc-
tural and material parameters, the use of Fourier series to represent those circumferential
variations has been employed by various investigators; for example, this type of represen-
tation has been reported in Reference 15 where finite-difference methods have been applied
to the analysis of such structures, This procedure has also been used in developing the
properties of the HSOR discrete element (Reference 16).

Among the analyses of bonded double-layer shells of revolution is the finite-difference
analysis of Reference 17. Some predictions from that analysis are compared in this paper

with the present discrete-element predictions (References 18 and 19).
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Since certain shells of revolution are core stiffened (for example, being partiaily filled
with structural foam), the use of ring elements of revolution of various cross sections to
analyze this core material is a natural choice. Such elements have been developed and used
by Wilson (Reference 20), Becker and Brisbane (Reference 21), Wilson and Jones (Refer-
ence 22), and Dunham and Nickell (Reference 23). The work being reported here in this
category (References 24 and 25) includes results for both axisymmetric and asymmetric

loading, and more comprehensive discrete-element behavior.

For analyzing asymmetric shells, quadrilateral and/or triangular curved discrete shell
elements are often appropriate, Among research reported on the development of curved shell
elements are that of Bogner, Fox, and Schmit {Reference 26) for a cylindrical-shell discrete
element, that of Utku (Reference 27) for a doubly-curved triangular element using shallow-
shell theory, and that of Cantin and Clough (Reference 28) for a c¢ylindrical shell element
which includes a proper accounting for rigid-body displacement effects. The developments
reported in the present paper apply to quadrilateral shell elements whose sides are the
circumferential and meridional lines of a shell of revolution; shell thickness variation and

orthotropic material behavior are included in the present formulation,

In the remainder of this paper, the generalformulation procedure employed is described.
Then, for linear-elastic behavior, the essential aspects of the formulations for the three
categories of discrete elements used for analyzing shells of revolution are given, and some
illustrative results are presented. Also for the linear elastic regime, the formulation of the
doubly-curved quadrilateral shell element is described. Then, the elastic-plastic static
analysis of axisymmetrically- and asymmetrically-loaded shells of revolution is out-
lined (Reference 29), and predictions are compared with experimental results for an

asymmetrically-loaded structure.
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SECTION II

FORMULATION PROCEDURE

The application of variational principles to formulate discrete-element analyses:
of complex structures is used widely and is recognized as a very powerful approach
(Reference 30), Numerous variational formulations have been devised; many of them are
reviewed and classified logically in Reference 31. For the small displacement formulations
which will be reviewed in this paper, the Principle of Stationary Total Potential Energy
(PSTPE) together with the concept of initial strain are employed to form the governing load-
deflection equations of equilibrium for analyzing (a)isothermal structures, (b)thermal stress
problems, and (c¢) elastic-plastic structural problems.* Within thig framework, the assumed-
displacement version of the stiffness method is employed. This formulation is reviewed
briefly in the following.

Consider the small-deflection static behavior of a structure which is represented by
n discrete -elements and which is subjected to body forces Bi and surface tractions Ti‘
Thermal strains and/or plastic strains are treated as known initial strains E‘i)j which cause
no stress. The total strains, thus, may be divided into two parts:

e )

€ + e, (n

€ 1]

where superscripts ‘‘e’’ and ‘‘0’’ represent (a) the elastic strain resulting from the change
[0}
ij
A A
prescribed, and that the variation of the strain energy density U is given by 8U = %3 de ;. .

in stress and (b) the initial strain, respectively. Note also that Se ij = Sefj gince €., is

But since
- E e
Ti T Fijke x4 (2)
it follows that
A e

*A similar formulation using Hamilton’s Principle (or Lagrange’s equations for discretized
systems) can be carried out for the dynamic response problem.,
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Hence,

1 _ 0 _L_ (4} 0
*Z Bijkl Sy %2 TEijk i kg T T Eijkg € €uy 4

v

A

Constant

Thus, for a structure consisting of n discrete elements, the total potential energy may be
written as,
A
1} o S [
Vl'l
or

ot L Sz Biaeis e e €% ep =8y u;)av

Vn

—f T, u; dS ]+ constant {6)
S

In Equation 6, the body force Bi’ the surface traction Ti' and the initial strain e?. are all
prescribed (or otherwise are known). By invoking appropriate displacement assumptions
{(Kirchhoff, for example), choosing appropriate assumed-displacement fields and associated
generalized displacements, and employing appropriate strain-displacement relations, one
can express the total strain ¢ i in terms of the generalized displacements q. Then by invoking

generalized displacement compatibility between adiacent discrete elements and applying the
PSTPE

where only displacement variations are permitted, the load-deflection equations of static
equilibrium are obtained and are found to be of the form:

Kq - F + F° (7)
where

K = usgual stiffness matrix for the complete assembled discretized structure

q = generalized displacements of the discretized structure

F = load vector of prescribed applied generalized nodal forces

F° = load vector of equivalent generalized nodal forces dueto the initial strains
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Applying this initial-strain approach to the small-defiection behavior of a nonuniformly-
heated, statically~loaded structure, one proceeds by treating the thermal strains

et 8 aar (8)
i) 1
as initial strains. Thus,

€ = €' = 5. aAT {9}

Then Equation 6 for the Tofal Pofential Energy of the system becomes

. L t
Tp * § [j;n( 7 Eijks€j vy T Eijasi iy T8 ”i)d"

-f T u dS] + constant (1o
S

Now, let it be assumed, for convenience of discussion, that there are no body forces acting
and that the externally-applied loads have been discretized into virtual-work-equivalent

generalized nodal loads Q... . Also for simplicity (and convenience, consider initially a

M
single isolated discrete element.

For that isolated discrete elemeni, one may choose an assumed displacement field,
invoke appropriate deformation assumptions (Kirchhoff, for example), and use the strain-
displacement relations to express the strain throughout the discrete element in terms of

the generalized nodal displacements q by

Gk_g :Aq (1

Similarly, the thermal (initial} strains throughout that discrete slement may be expressed by:

e
k.l

where H is a thermal strain distribution matrix and et represents the known thermal

He (12)

strains at a finite number of reference points in the element, In matrix form Equation 10
applied to this isolated discrete element becomes

. 1 qT ATEAqG - qT AT EH ¢
rpj;(zq q - q

I tT T t T
+?c H EHc)dv—q Qy (13)
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Applying the PSTPE by setting 81rp= 0, and since the 3; are independent and arbitrary,

one obtains:

kq - ¢,+T < (14)
where
k =f AT E A dv = usual stiffness matrix {15)
Vv
T:fATEHdv (16)
v
T € : thermol torce vector {17

This variational formulation can be carried through readily from Equation 10 to obtain
the following corresponding load-deflection egquation of static equilibrium for the complete
assembled discretized structure:

Kaq = F +F (18)

where K, Fn and F_ represent the assembled stiffness matrix, the assembled generalized

t
mechanical load vector, and the assembled thermal force vector for the complete assembled

discretized structure.

Alternatively, the effects of heating AT (in shells, for example) may be taken into account
in the discrete-element method by employing the well-known approach wherein equivalent
midsurface loads are used to represent AT effects (References 32 and 33). These equivalent
loads may be defined and determined by requiring that static equilibrium of an infinitesimal
segment r d& ds of the shell element be satisfied. However, employing these equivalent loads
in the assumed displacement version of the stiffness method will be somewhat inconsistent
(although often convenient) since in the assumed displacement method, equilibrium of the
discrete element as a whole is assured but local equilibrium in the interior of the discrete
element will not, in general, be satisfied. This inconsistency is avoided in the variational

formulation described above.

Finally, by writing the kinetic energy in terms of the generalized velocities while using
velocity distributions which are consistent with the assumed displacement distributions, one
may determine consistent generalized mass matrices for each discrete element. Although
this has been done for each discrete element in the cited References, no further mention ig

made of mags matrices in this paper because of space limitations,
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SECTION III

LINEAR ELASTIC ANALYSES

Consider a statically-loaded, heated or unheated, shell which is in equilibrium under
externally-applied loads. Let it be assumed that the structure has been appropriately dis-
cretized as depicted, for examﬁle, in Figure 3. Also, let it be assumed that all of the
externally-applied distributed and/or concentrated loads have been converted into virtual-
work equivalent generalized nodal loads such as indicated in Figure 4; this determination
will involve the assumed-displacement field (to be discussed) associated with each type of
discrete element used.* The essential remaining steps pertain to the development of the
stiffness, mass, and load matrices for each type of discrete element.

The determination of the stiffness and load matrices (identified in Equation 14 for in-
dividual discrete elements and in Equation 15 for the complete assembled discretized
structure) is routine with the initial-strain, variational formulation after having chosen, for
each type of discrete element employed:

(a) appropriate displacement assumptions,

(b) appropriate assumed-displacement fields and associated generalized displacements,

{c) appropriate strain-displacement relations, and

{(d) appropriate stress-strain laws.

Hence, the remainder of this section will be devoted to describing items (a), (b), and (c) for
each type of element** treated. The determination of (1) virtual-work-equivalent generalized

nodal loads and (2) consistent mass matrices is both straightforward and well known; hence,
discussion of these quantities is omitted in the following,

*For all elements of revolution, it is assumed that all applied loads, temperature fields,
displacements, strains, and stresses at any given axial station may be represented by
Fourier series in the circumferential coordinate & .

**It should be noted that each discrete element has its own notation; the notation used herein

from element to element is not always consistent, but is made clear from the context and
the pertinent illustrations,
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{(¢) Typical Meridionally-Curved Discrete Element

Figure 3. Discretization of the Structure
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STRESS-STRAIN RELATIONS

For conciseness, however, the stress-strain laws to which convenient reference can be

made for each type of element are now identified. Let the meridional direction (or coordinate)
and the circumferential direction along the midsurface of a shell of revolution be denoted hy
s and 8 , respectively. Considering the shell to be in a state of plane stress and to consist
of orthotropic material whose principal material axes (f,n) are aligned at an angle 3 with
respect to the s, § coordinates, the stress-strain law for this material may be expressed as:

where

and

and where

3

E

n

¢

Il

r 1 L (
% B, B B3 (Gs ] ¢, AT
1% r= %2 Bs | 1% P—1%:8T
Symm. B € 0
%56 | ! 33 | (sg) L )

- 4 ) . 2 2
B, =E, cos ,B-I-E22 sin” 3 +2sin°B cos°B (E,+2E)

B =Ep (1-2sin° B cos’B) + sin2fR cos®B (Ey+Ezp— 4E43)

.
Ba=sinB cosfB [E“ cos’ B ~E,,sin’8 - (coszﬁ—sinaﬁ)(E|z+2E33)J
B,y =E22cos4B+ E“sin4B+ 2sin 3 cos?B (E, +2E,, )

B, = —sinScos B [E22 cmszB-Ell sinzﬁ -(coszﬁ‘— sinZB}(Elz +2€ 33}]

) . 2 2 . 2 2
Byy= {1-4sin" S cos BIE, +sin“B cos B‘Eu"'Ezz-ZEnz )

CII : B|| QE + Blz a‘f)
sz= Blz a‘f + B22 a.,7
E
E=——£——'E =ﬁ.E_E_._'E =__E17_..'E =G
I 1= Y, ' 12 I-vg Yy P ez I—Vf a LI X

elastic modulus in the £ direction
elastic modulus in the 7 direction

-€
Poisson’s ratio in the f direction = -—

€
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—€
vy = Poisson’s ratio in the i direction = ——é-—
7 €7

GE,,? = shear modulus (in the & ,7) plane)

a‘f = coefficient of thermal expansion in the § direction

u.,; = coefficient of thermal expansion in the 7 direction

For the non-skew orthotropic case (i. e., for B = (), this stress-strain law reduces to

- E E o . Es(as‘l'l/gag)
S ! 12 5 I-vs vg
Eglag+vg ag)
c : E 0 €. =4 AT
- g > 22 i g I_Vs v ? (22}
chQ Symm. Eas 659 0]

where
E€ =E53E7?:E9iv€ =ys 1V1):VQ, Cl£=as a’.}=(!9 and GE'O =Gsa =6
Finally, for isotropic material where ES =E9 =E; a, =ag = a, and vg =v , Equation 22
reduces to the familiar form:

R vE o B () [ EQAT )
% I-y2 -y2 >s l—v
E Ea AT
\ - 0 Qen s =88 (23)
4 0-9 |-y 2 8 |-y
E
fop Symm. YT € 0
| %s8) | 20+ | %58, ,

for the plane-stress state.

These stress-strain relations largely suffice for the present discrete element formu-
lations pertaining to shells. For the solid of revolution elements, the more general three-
dimensional elastic orthotropic stress-strain relations which are used may be found in
Reference 25,

SINGLE-LAYER MERIDIONALLY-CURVED ELEMENT OF REVOLUTION
(REFERENCE 13)

Geometry

The geometry of a typical meridionally-curved, variable~thickness discrete element of
revolution (termed the SOR element) is shown in Figure 5; let this be termed the pth discrete
elemant which is bounded by nodes p and p+1l. At nodes p and p+1, the geometry is
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Figure 5, Geometry and Generalized Displacements for a Meridionally-Curved
Single-Layer Shell Element of Revolution
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characterized by radii rp and rp+1. respectively, and by meridional slopes ¢p and qbp 1’
respectively. It is assumed that the shell midsurface meridional slope may be described by

oy L 2
¢(s) = o +o0, s +a,s (24)
where s represents the meridional distance measured from node p, and the constants a2y,

and a, are to be determined by the following conditions:

¢ (s =5, = 0) =¢>p (25}
¢ (s :sp_H) :¢p+l (26)
Sp+1
[ sintgp - ) ds =0 (27)
where ¢L is defined by °

-t e+l 7]
‘# z mnl L : p (28)

L Inyl “%p

If (¢p- q’:sL) is small, Equation 27 may be replaced by

p+1
f (¢p-¢p ) ds =0 (29)
[o]

For convenience, let the meridional length sp+1 of the element be approximated by the

length £ of a circular arc passing throughnodes p and p+1 at the proper slopes; £ is given by

Ly,
A - Fp— (30)
2 sin (L‘z_&)
where L is the chord length which is given by
. ) Ve
L:[(rpﬂ—rp) +(zp+|—zp) ] (31
Setting 8541~ £ and applying Equation 24 to Equations 25, 26 and 29,
9 * pr (32}
-4, -2
a = S ~4p 2o (33)
! 2L
. 2% PiPpu OB (34)
a, = 7t
The midsurface radius r(s) may be expressed as
s
ris) = " +f singp ds {35}
[+]
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Also, for convenience, the shell thickness h(s) is assumed to vary linearly with s from node p

to node p + 1:

his) = hy = ——= (hp =hpy) (36)

STRAIN~-DISPLACEMENT RELATIONS

The shell is assumed to be thin and to obey the Kirchhoff assumptions that straight-line
normals to the midsurface before deformation (a) remain straight and normal to the mid~

surface and (b) retain their original lengths after deformation.

The engineering* components of the midsurface strains (subscript “g’") and curvature
changes are given by the following strain-displacement relations, for a thin shell of revolution
with a curved meridian, as derived from the general theory of Novozhilov {(Reference 34):

(eg ), g: - W gj’ (37)
(esg }0 = + (r g: - v sing +%ua-) (38)
(ee) z —';—( gé + u singh + wcos ¢) (39)
€ U gt

Ho - 5[ Loy b S vemy 5o bimb BT @

{y 3o - =G (G e 33 one]

where u, v, and w are the shell midsurface displacements.

*Note that the present ‘‘engineering’’ definition of ( € 9)0 is conventional (Reference 32),
but X0 is not, However, these quantities are defined such that the shear stress % at any
distance { from the midsurface may be expressed as gy * G [(esg Yo +§K53]
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It is convenient to represent the circumferential variation of the displacements at any
meridional station s by Fourier series as:

©

uis, 8= ds) + 3
j=1

. (o) d

vis, 8)=v"(s) + ¥

=1

( o
wis, 8) =w(s) + Z

u(“(s) cos j8 +
v(“(s)sin‘jg +

(s} cos j&

o .
Y w95 sinig
i

E
» A (s)cosjf
j=1

[
+ 3 w1 sin j@

j=l

(43)

The unbarred coefficients are referred to herein as the A-series and the barred (7) coeffi-
cients as the B-series part of this representation. Equations 43 can be applied to Equations 37
through 42, and strain components associated with each harmonic j can be found for both the

A-series and the B-geries parts.

When a pole occurs, r = 0, and a singularity is encountered in using Equations 37, 38, 39,
40, 41, and 42 to develop the element stiffness matrix. However, Greenbaum {Reference 56)
has shown that the proper strain-displacement relations at a pole depend upon the particular
Fourier harmonic of displacement involved; these relations may be applied when required,

For dome-ended shells of revolution, the A-series pole strain-displacement relations for

any harmonic (=0, 1, 2,...) are:

Gy auli}

] Z i) 99
$ o ds Js

Gr, o aufd
(s =1 "5

au(;)

(e

_ L)

—
M

¢ . av(')

90- " ds

9 ) 0
fsl " Tos (a:

u)

ds+_J ds

+ u(j) __tLﬂ )
Os

- 0
7{“) + aas (aaws

() (i)
’74/8l " af (%—*”

(i) _4';)

4

o2 Wi?

2 asa
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It may be noted that* at r = 0

(a) for j=0. wu=zvy = (as +u 35 ) =0 {50)
(b) for j=1. u+v=0 and w=0 {51
()for'>2'u=v=w=ﬂ=0 (52)
€ == ds

Similarly for the B-series part, corresponding pole strain-displacement relations may be
obtained from Equations 44 through 49 by replacing unbarred quantities by barred (M)

quantities and j by (-j). Again (e(;)e)o and K(g)e are defined in the sense of the footnote
following Equation 37,

The engineering strains at any c-location in the shell may be expressed in terms of the
midsurface strains and curvature changes by:

Gy () ()
e = te )+ ;{s (53)
g (j} ()
Gsa = (659 )0 + ;7{58 {54)
{(j) (i) ()
= + {55,
5 (ee )o g?{g

Generalized Displacements and the Assumed Displacement Fields

The generalized displacements q of the discrete element are defined to be the mid-
gurface meridional, circumferential, and normal (g-directiOn) displacements and the total

meridional rotation at each end or node (p and p +1) of the discrete element (Figure 5):

At s =0 At s:,@

a9, " u (o) U ph” uld)

U’ vio} q2‘p+|=v(.€) (56)
qa,p: w (o) qs,p+l:W{’e)

wet Grtath, eSS

*While Equations 50 through 52 are consistent with Greenbaum’s pole strain-displacement

relations, none of these is imposed in the SABOR 4 program of Reference 36 as a boundary
condition,

1359



AFFDL-TR-68-150

Since one may express u, v, and w by Fourier series (see Equation 43), and since the ¢'s
may he expressed similarly:

. [ <] -
6 - q‘l°’ + 5 qEJ) csi@ + ¥ 3V sinif
j=l iz
@ . -+ .
q2 z q{;ﬂ + z q(zj}sin jg + Z Ez(”cos j@
j=l =l (57)
«© R -] N
q - q§°) + Y q(al) cos j8 + Y ﬁ“;” sinj@
j:| J:l
. o N
q, ° q(:) + 3: q(j) cos j8 + z T‘:J) sin j@

—

it follows that Equation 56 also holds for each harmonic component for both the A~series and
the (barred) B-series,

The next step is to assume a reasonable meridional distribution of the midsurface (now

denoted by subscript ‘‘c’?) displacements Uy Vo and L (for each Fourier series component):

(i) () (]}s

ug, (s) = @, + a,

(i) ) (j) ()

Yy {s) = a, +a, s {58)
wé”(s) . a(._,,” + a(e” . +a(-f.) s & a(.BJ) $3

where o:“{, e e a(jg are constants to be determined. It should be noted that the displacement

field contains all of the lower order terms from a complete set of functions, Since these
displacements are shell-coordinate (s.Q,C. ) displacements, the assumed distribution does not
contain the rigid-body contributions necessary for equilibrium of finite-sized elements;
however, in the limit as the element size approaches zero, this requirement is fulfilled. As
will be seen later, this ‘‘displacement field”® deficiency has not resulted in inaccurate
solutions of the many problems to which the present formulation has been applied,
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By combining Equations 56, and 58, the a(])’s may be expressed in terms of the gener-
alized displacements q( ); in turn, u (]) (s), v (]) {s), and w(]) (8) may be expressed in terms
of the q(]). Next, applying these expressmns to the stram-dlsplacement relations enables
one to determine the strain throughout the discrete element in terms of the q(J)_ Finally, by

employing appropriate stress-strain laws, one may compute the strain energy U by:

— [ff o' € rdf das dt

QO ko) q {2 Q)T k(i) fi) 4 5
j=l i=

TR 3 (s9)

i |
2 2

whereby one can identify and determine the individual Fourier harmonic stiffness matrices:
zeroth harmonic k(o). A -series harmonics k'(j) for j=1., .0, and B-series k () for
j =1, . .m». Since axisymmetric geometric and material properties have been assumed, one
finds that the strain energy decomposes into separate harmonic contributions, It follows, that
the equations of equilibrium for this type of discrete element are completely uncoupled when
isotropic or nonskew orthotropic material is involved, When skew orthotropic material is
involved, harmonic coupling occurs but only betweenthe A-series and the B-series component
of a given harmonic j.

Alternate Formulation

An alternate formulation for a meridionally-curved shell discrete element of revolution
in which rigid-body displacements are taken into account properly is given by Speare in
Reference 25, The midsurface geometry and nomenclature used in that formulation are
shown in Figure 6; also shown are the generalized nodal displacements and nodal loads
referred to both local coordinates ¢ ,8,x and global coordinates z,8 ,r, The curved mid-

surface curve C _ is defined in the /,8,x coordinate system by:

T T R

05+06C+07£2+08§

13

X

{60}
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where [ is the nondimensional meridional length of the midsurface line of the discrete
element and the a; may be expressed (Reference 25) in terms of the locations, slopes, arc
length 8, and chord length 8, of the element by (see Figure 6):

a, = 0
6, = s, cos qbl
a, = 3s, —2s_  cos ¢ - s, cosqb2
a9, == 2s; + s, cosg, 8o cos¢h,
(61)
a, =0
ag = s, s:’n¢|
0, =—2s, sing, sgsin ¢,
%, * % sin ¢, +s, sincjg2

Along the directions V/, 8, and x, the midsurface displacements are ¥, ¥, and W, respec-
tively. Generalized displacements q, corresponding to U, v, and W are defined at each node;

in addition, the meridional rotation which is given by %;[cos ¢ -g—g— -sing aau ] is defined

as a fourth generalized displacement at each node. Hence, an assumed displacement field
which satisfies the rigid-body requirements may be expressed, for the jAth harmonic for
example, as:

{j) {j)
g'" +pB"t

;” + ,GS,”; (62)

: 0 G ()
B(l) +B”§+B.,” Cz +Ba’ §3

-] (]

~ (i}
u

';(l)

~(j)
™

HSOR ELEMENT (REFERENCE 16)

This discrete element has a meridionally-curved midsurface of revolution exactly like
that of the SOR element; however, the following quantities may vary circumferentially as well
as meridionally: the elastic modulus E, Poisson’s ratio v, thickness h, and shell material
mass density p, where the material is assumed to be isotropic but not homogeneous, in

general. In Reference 16, however, it is assumed for simplicity that h = h(8) and p=p(H)
for each individual discrete element,
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L

MERIDIONAL CURVE Cm
TOTAL ARC LENGTH 9,

[ - ELEMENT NODE NUMBER

(a) Geometry

Figure 6, Geometry, Nomenclature, and Generalized Displacements for the Alternate
Single~Layer Discrete Shell Element of Revolution
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Element Nodal Displacements and Nodal Forces

Z

Global Nodal Displacements and Nodal Forces

Figure 6 Concluded
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The characterizing matrices for the HSOR discrete elemeni may be determined in a
fashion parallel to that described for the SOR element; the same assumed displacement
fields, strain-displacement relations, etc., are employed, However, E and ¥, or convenient
combinations involving these quantities in the matrix which relates strain to stress are
expressed in terms of Fourier series in §. Thus, upon evaluating the strain energy U, it is
found that extensive harmonic coupling exists; thatis, the stiffness matrices are harmonically
coupled, Therefore, in analyzing such structures, one must solve a (large) system of coupled
equations rather than the (much smaller) harmonic-by-harmonic set which applies when
true shells of revolution are involved.

BONDED DOUBLE-LAYER ELEMENT OF REVOLUTION (REFERENCE 19)

Figure 7 illustrates the geometry and displacement nomenclature for a bonded double~
layer shell discrete element of revolution (termed BDL-SOR). As indicated in Figure 7, the
bond layer is such that the midsurfaces of the two shell layers displace independently in
the u and v directions but experience a common normal displacement w. Also, the total
meridional rotation 8 = dw/ds + Uih (9¢p/ 0 8) where Ush is the meridional displacement at the
midsurface of the bond layer; Uh in turn is expressible in terms of u and u g, where sub-
scripts u and 4 denote the upper and the lower layer, respectively. The bond undergoes
shearing but is assumed not to deform in the w-direction.

Six generalized displacements q ateachend (s =0 and s = .EP) are used to characterize
the behavior of each discrete element, as follows:

ql‘p = u, (s=0)

q2|p =y, (s:=0)

qa,p = up(s=0)

9%.p = vpls=0)

q = w (s=z0)

5,0 5

dw 9
qs'P i (as * Uop Js )s=0
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U orr T U (sl
2040 W (s=4p)
UG oy Z Y (s2dp)
Uptr -~ ¥2 18 =bp)
Yoo " (s=dp)
Te,p+1 (%+”ob %%)s:ﬁp (63)

where uob(s,Q) is given by

| o¢ hy =hz  Jw
uob(s'g)z K, uu(s,8)+Kf ul;(S,Q)"‘? 3s 2 ds (64)

In Equation 64 hu(s) and h I(S) are the thickness of the upper and the lower layer, respectively,
and the quantities Ku(s) and K 4(s) are given by

K, = —2'—[|+ (hu+-—7)-2—) zf]
(65)
g - F [ ()32

where 7 is the thickness of the bond layer. Hence, the total meridional rotation 3 is given by

) aé 5é Ow
Blsi=k, as v K2 as 2 tH ds

(€6)

where

Kw(s)=l+

op (h“_hg ) (67)

i

2 ds 2
For this shell-of-revolution discrete element, all displacements (as well as strains,

stresses, and applied loads) are considered to be represented by Fourier series, Hence, for

the jth harmonic of the A-series, for example, an appropriate assumed displacement field is
as follows:

u(u”(s) = a(” + a(”s

| 2
vfj“(s) s a;“ -+ a‘(‘”s
u}” (s) = atsj) + agj)s (68)

s = ol ol
_ (i (i {j) = (jy 3
{s) = o + as's + a,’s + a, s
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(a) Double-Layer Discrete Element

NODE p.;

NODE p

(b) Geometry

Figure 7. Geometry and Generalized Displacements for a Bonded Double-Layer
Meridionally-Curved Shell Element of Revolution
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(¢) In-Plane Displacements and Shell Coordinate
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(d) Tangential Displacements and Coordinates

Figure 7 Continued
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(e) In-Plane Nodal Generalized Displacements

(f) Tangential Nodal Generallzed Displacements

Figure 7 Concluded
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where the a(j)’s. may be determined interms of the jAth generalized displacement harmonics
from Equation 63. Accordingly, this assumed displacement field for the shell layers of the
discrete element is characterized completely by the 12 generalized displacements for each
separate Fourier harmonic, Also, it should be noted that the assumed displacement field for
the shell layers includes that for the bond layer since its u and v displacements are assumed
to vary linearly through its thickness and to match those of the shell layer at each interface,

The shell is assumed to be thin and to obey in each layer {except the bond layer) the
Kirchhoff assumptions that straight-line normals to the midsurface before the deformation
(a) remain straight and normal to the layer midsurface and (b) retain their original lengths,
after deformation,* With these assumptions and with appropriate strain-displacement relations
(Equations 37 through 42) for the midsurface strains and curvature changes, one may then,
with the aid of the assumed displacement field, determine the strain at any and all locations
in the shell layers of the discrete element. Finally, as shown in Reference 18, the tensor
components of the shear strains in the bond layer, € (b) and € (b) , may be expressed as:

s 6¢
{b) * * * Jdw
Zesg z BI u, + Bz vy + Bs 35
{69)
{b) * * %x OwW
ZGGC yl vy, *+ 72 vy + ys FY:
where
x _ L _ _hy cosg cos ¢
yl B n 2n r 2r
 __ 1 hy cos cosch
T2 T n 2mn r 2r
% . hy +hy hy —hy cos¢ I
73‘[ Z s jl - ] +
(70}
* ; ] hu a#)
Br = o+ [+ -],
* o4, RIS
B, : 7t [l + — ] 3

By - [M+l] [|+ g;‘b h”;hf ]

*While the shell-bond-shell combination is assumed to be thin, the thickness of the bond
layer may be much greater than the facing thicknesses as in typical sandwich construction,
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Treating the shell layer material as skew orthotropic and the bond layer as shear-
supporting isotropic material, the appropriate stress-sfrain relations may be applied fo-
gether with the above strain information to determine the strain energy for the complete
bonded double-layer discrete element (BDL-SOR). It may be readily shown that the resulting
stiffness matrices are coupled only between the A~geries and the B-series of a given harmonic
if the shell material is skew orthotropic, but are completely uncoupled if the shell material
is either nonskew orthotropic or isotropic.

SOLID-OF -REVOLUTION ELEMENTS (REFERENCES 24 AND 2))

For analyzing the solid core regions of core-stiifened shells, solid elements of revolution
(SOLOR}) having triangular or quadrilateral cross sections, asdepicted in Figure 8, have been
developed. Af each corner (node) of the so-called ‘‘core interior element’ which has a
iriangular cross section (SOLOR-INT), three generalized displacements are chosen to char-
acterize the behavior of this discrete element; these three displacements are 4, v, and W
in the element coordinate directions ¥, 8, and x, respectively, as indicated in Figure 9a or u,

v, and w in global coordinate directions x, &, and r, respectively, as indicated in Figure 9b.

For those solid core regions which are in contact with a shell, the nodes of the solid
element which bound the side which interfaces with the shell have ascribed to them a
meridional~rotational degree of freedom in addition to the aforementioned three degrees of
freedom at each node, in order to be compatible with the interfacing shell element; discrete
elements of this character are termed ‘‘core interface’ or compatible core elements. The
generalized displacements and nodal loads of a compatible core element with a triangular
cross section (termed SOLOR-CT) are indicated in Figures 9c¢ and 9d, and those for a
compatible core element of quadrilateral cross section (termed SOLOR-CQ) are indicated

in Figure 10,

For all of these elements it is assumed that the core material is homogeneous and
orthotropic with two of its principal axes lying in the r, z plane, With respect to the so-called
“‘element coordinates’’ Y, 8, x of Figures 8, 9, and 10, the stress-strain relation may be
expressed as

["W %x %68 °yx °y8 o) < LE] [‘Ew “xx 86 Syx YO x8 J (71

where the tilde (™) denotes that such gquantities are referred to the element coordinates,
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h = [ (z,-2 ) *sin(tan(4))

(a) Triangular Ring Element

Figure 8, Geometries of Solid of Revolution Elements
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Figure 8 Concluded
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(a) Element Nodal Displacements and Forces
for the Core Interface Element
r s.Q{.
+ u s
I 1,07
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¥~ DIRECTION INTO PLANE
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(b) Global Nodal Displacements and Forces
for the Core Interface Element

Figure 8. Nodal Displacements and Nodal Loads for Triangular Solid Elements of Revolution
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(c) Element Nodal Displacements and Forces
for the Core Interior Element
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— Z
(d) Global Nodal Displacements and Forces
for the Ccore Interior Element

Figure 9 Concluded
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(a) Element Nodal Displacements and Nodal Forces

\r

¥- DIRECTION INTO PLANE

(b) Global Nodal Displacements and Nodal Forces

Figure 10. Nodal Displacements and Nodal Loads for the Quadrilateral Solid Element of
Revolution (SOLOR-CQ)
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For zll of these elements the strain-displacement relations, in terms of the element
coordinate system, are as follows (in engineering strain notation):

s v
vy vy
~ oW
€yx ° dx
~ v W | OV
90 " sin ¢ +—ri- cos¢+7 dé 721
~ _ou dW
yx T ox oy
~ 9V | v v
e‘}"e—dl}; +'_09 —Tsm¢
v | dw vV

0 T3 TT 3§ v s
where U, V, and W are the displacements along the element-coordinate directions ¥, &, and x,
respectively, as indicated in Figures ¢ and 10,

The SOLOR-INT Element

For the interior core triangular solid element of revolution, the jAth harmonic of an
appropriate assumed displacement field is:

3.(})

B + BNy + B %) cosi
';(j) . (Bi” +B;”¢’ +Béj)x) sinjf (73)

.;‘,(J) - B:J)_'_BLJ) v +Bi”x ) cos 8

Similar expressions apply for the zeroth and for the B-series Fourier harmonic displacements,
With respect to the element coordinates Y, 8, x, one may define nine generalized displace~
ments §Y for this element as the values of ut), %, and W at the three corners of the
SOLOR~INT element; hence, the 3’s are replaced by their equivalents in terms of the"q(j}’s.
Also, it is useful to define three generalized displacements @ at each corner of the triangular
cross section with respect to the global coordinate sysiem z, g, r. Quantities referred to the
element coordinate syétem may be converted to refer to the global coordinate system by
applying first or second order geometric transformations, as appropriate.
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With this information one can express the strainenergy in terms of the global generalized
displacements q in order to determine the associated stiffness matrix for each harmonic, It
should be noted that complete harmonic uncoupling of the stiffness matrix occurs since two
of the principal planes of the orthotropic material were assumed to be in the r,z plane, For
more general skew orthotropicity, coupling occurs but only between the A- and the B~ series
component of the same Fourier harmonic j,

The SOLAR-CT Element

For the interface (or compatible} triangular solid of revolution element, the meridional
rotation, a%‘ﬁ/aqx at each of the corners which bound the ‘“‘interfacing side®’ is added as a
degree of freedom. Therefore, an appropriate assumed displacement field may be obtained
from Equation 73 by adding two terms to % as follows:

~ i) G}
+

(i) B
" =( Py Bﬁl b4 +ngx +B|L [Ob "’”‘2'*'(“_")4’2"_ “’3]

(i

+B" [abxs + {(a—-b) 1}1:2—\{;2:]) cos j&@ {74}

The appropriate 3(]) and ?(J) for this element are the same as given by Equation 73,

The SOLOR-CQ Element (Reference 25)

As indicated in Figure 8b, this interfacing or compatible golid element of revolution has
a gquadrilateral cross section, one side of which is curved to match geometrically with a
mating shell element. It is convenient to refer to the following coordinate systems in this
discussion: (1) the global coordinates z, §, r, (2) the element coordinates qf,Q, X, and
{(3) the nondimensional curvilinear quadrilateral coordinates £, 77 in addition to €. The
coordinates &, n are defined in terms of the element coordinates Y, x by:

¥ =b, by & +bym +by En + (E+NE-D (nH) b+ by &)

(75)
x =b,+bg £ +bym +b, £n + ({HHE-D {9+ (b, +b, &)
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where
b, =¢"—[2cI + ¥, +q;z']
b, = [2c, -y o+ ]
by =¢';_[2C’| - ¥, _‘pz]
b, -!T[ZCI t ¥, _\"2]
b, =—=[ 20, + 30, |
T Te (76)
b, =4 |2, +x +x, |
bg =—4|—[2(‘,2 - ox, +ox, ]
b9=-—lz-—[262 - X, - Xy ]
blo.-_—l}--[ZC2 +xI - X, ]
b, =Il_6[2°7 + 3a, ]
b|2=% Og
and where
Cf%[az + a; + a, ]
Cz=-2L-[c|s + a9, + ag -
yoslz -z, ) cos 8 + (v, -1 ) sinf

X, =—(zi —zq) sin@ +(ri —r4)co59

The constants a,...8ag8Te given by Equation 61,

An appropriate jAth harmonic assumed displacement field 4, ¥, and W (see Figure 10) for
the SOLOR-CQ element is given by

Vo= (B +B,& +Bym +B,&n ) cosif
Vo= (B, *B,€ tBym +B,En ) sinib (78)

[ By +Bg& +B,m +ByEn + (LEHN €1 (n+1) (Byn+Bef|cosif
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and the meridional rotation y along the shell-core interface can be defined as

2 dw v .
—_— cos — —=—— sin (79)
sO ( df ¢ af ¢’) L?:I

It is seen that the U and ¥ displacements along the curved side of the core element (i, e.,
along 1 = 1) are linear in f , and the W displacement is cubic in & . These are in agreement
with the interpolation functions given by Equation 62 for the ‘‘alternate’’ shell element of

revolution; hence, displacement compatibility along the interelement boundary is satisfied.

Since U, V, and W are expressed in terms of the dimensionless element coordinates
£, m and 8, the strains are given by the following strain-displacement relations:

> ] 0 ¢ + du  O7m

vt o ov t oy ov

~ 0w o oW Odnm

“xx T3¢ Fx T Tom ox

399 2 L:—sina +—v:- cos 8 +—Ir— % 01
- L 0F 08 oW aq . 9% 3¢ . 2w o

Px 8& odx dn Ox € d dn oY
- 07 96 oY om 1 4T W

+ —

WO T 3E oy T on oy Y7 ag T 7 o0

~ | 0w av a€ ov. on ¥V
8 v a8 * o0& ox * on Ox r cosd
Quadrilateral Shell Element (Reference 37)

Figure 11 depicts the geometry, coordinate system, and displacements as well as the
generalized displacements and associated generalized nodal loads which are employed to
describe this quadrilateral shell element, This single~layer shell element is a portion of a

shell of revolution, and its sides are lines of constant meridional location s and of constant §'

P

location, where § and & are dimensional meridional and circumferential coordinates,

respectively, For convenience, dimensionless coordinates s and & are employed and are
defined such that:

At =% , s =35 :—-10
Al §=8, , s =s8,:+ |0
Ll § (8l)
At 8= 6, , =g = - 10
At 8 =8, =8, = + 1.0

1380



AFFDL-TR-68-150

.n

§,0 ARE DIMENSIONAL
S,0 ARE DIMENSIONLESS
S ~ MERIDIONAL DIRECTION

© -~ CIRCUMFERENTIAL
DIRECTION

s e

—Z

-

(a) Geometry

Figure 11. Geometry and Generalized Displacements for a Doubly-Curved Quadrilateral
Shell Element
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The meridional slope q‘; (s) is represented by:

$ls} = o, +a s +a, ¢ (82)
where
| 7 *
6w T TP T3
0] :%(¢2_¢|) (83)
*
az :_3(¢2“¢p)
and

* -1 frz N
¢p * ton [ z ]
The shell thickness h(s, ) is represented by

h(s,8)=b,+b s +b,8 +b, sb (84)

where

bo z —I4[h(—l,‘|)+ AL =1y + n(, )+ 0 (=0L1)

{85)
I

b, = L [-n-i-n+n =D+ R0 - n(=1,1) ]
b, © 7 [—h(-—l,-l)—h (1,=1) +hli,0) + n(-|,|)]

by = —ji- [h(-l,—l) —h(l, =1 ) +h{I,t) —h (-l,n]

Along the shell-coordinate directions s, g, and [ , the shell displacements are u, v, and
w, respectively. The following 20-parameter assumed displacement field for the midsurface

displacements Uy Vo and w o is used for the formulation which is called QUASH A:

a, +a,s + a,8 + a, s

| =
o
n

as + ags + a8 + ag 36
(86)
2 2
wo = @y + Qs * a,8 + ap s + ags +oa,b

3 3
+ a._s +a168 + a

[ 320+ 35 8°-5°6° - 55 9]

i7
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—(Sz - 2s +82)1 ] [ {258 - 28 )I ]
N (258 -2s)g e (8%-20 +5%)y
a
'* (- s ~2s —-92)]]: '? (-2s0 -28 )1
| (-2s8 —2shy | (-8 -28 -1

(86)
A

—(sa 8%- s°6- 3s8° + 35°6 1
(s8° - $°8%°- 3s8° + 35°8 )1
(s°8°-5°0-350° + 3539)]11
| (s8°-5%8%-3s8° + 34° Oy |

+Qy,p

where subscripts I, II, IIl, and IV refer to regions so numbered on Figure 11. Note that this
assumed displacement field does not account properly for rigid body behavior; however,
this deficiency does not affect the convergence of the solution. *

The generalized displacements q chosen to characterize this discrete element are the
values of u, v, w, [aw/a 8 +u(a¢/as)] yand 1/r [aw/aa -v cosqb] at the four nodes (corners)
of the element. Thus, uo(s,a). vo(s,B). and w 0(s.B) as given by Equation 86 can be expressed
in terms of these 20 generalized displacements.

Then, one may obtain the strains at any location in the shell element by employing the
Kirchhoff displacement assumptions and the following general deep-shell-theory strain-
displacement relations for the midsurface strains and curvature changes:

o du W d¢
€5 T Te* 3 s* Js
| .
€g - TB;—S% + + sing + - cos (87)
.4 9dv v . I du
€9 ° * 3. , snngb + e 20 (Eng. Def.)

*A more efficient (but lengthy) formulation called QUASH B in which rigid-body behavior is
taken into account properly has been carriedout and is being evaluated; this model, however,
ie an incompatible one and an improved formulation using the HYBRID III approach of
Reference 31 is being developed,
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K - | ou ap  u ¢ 1w
-]

s*2 s s s¥2  3s? %2 Js?
7{ _ cos¢ dv [ 9% w _ using O _ sind Odw
A r2@* 98 r2g*2 3@g% rs™ ds rs® ds
2 (87)
2 3w 2singd Ow 2cos¢p dv
2 : - + +
7(59 rs* 8% 9s a8 r28% 28 rs™ Qs
2v sind cosp 2 d¢ du
rl rs* 8% ds 08
where
E ;'2 _‘;I
o 2 (88)
8* . 62 - 8!
2

Finally, with the use of appropriate stress-strain relations such as Equation 19, for
example, one may compute the strain energy in terms of the generalized displacements,
thereby determining the desired stiffness matrix [k] for the quadrilateral shell element
(QUASH).

ILLUSTRATIVE RESULTS

In this subsection, illustrative results obtained by applying most of the previously
discussed discrete elements to the analysis of statically loaded and/or heated structures
are presented. In most cases, the present discrete element results are compared with
independent analytical and/or numerical results.

Single~Layer Shells of Revolution

Shown in Figure 12 is a deep parabolic shell which has been analyzed, For the case of
gravity loading (i. e., load harmonic jA = 1) and for the pinned support condition at C, the
present discrete element predictions which are identified as case DP 5 are compared with
the asymptotic solution of Reference 38 for the normal displacement w and the meridional
stress resultant Ns in Figure 13.

1385



AFFDL-TR~68-150

SHELL GEOMETRY
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(a) Pinned (P): g, = q3 =0 . o
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NONZERO LOADING
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I' p ) -—Ph s'n¢p o
" at node p
P - -
3 p ph cos qbp
(2)  Uniform Pressure: p(3°) = + 1.0 psi
Run Discrete Element
I.D. No. Type No. Breakdown Loading B.C,
AB BC
DP 5 curved 50 30 20 Gravity P
DP 6 " 50 30 20 p§°’ PS
DP 14 " 95 * * pg’) PS

»
35 uniform elements over 0 < r € 5.25 and

60 uniform elements over 525 < r < 6.0

Figure 12. Deep Parabolic~Shell-Problem Data
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For the case of uniform zeroth harmonic pressure loading p(3°) = 1,0 psi on the deep
parabolic shell and the indicated pinned-sliding support condition, the present discrete~
element results (identified as cases DP 6 and DP 14 for 50 and 95 discrete elements, respec-
tively} are compared with results obtained (Reference 39) by the multisegment integration
technique of Reference 40: in Figure 14a for w, and in Figure 14b for the meridional moment
resultant MS.

The variable thickness ‘‘cylindrical storage tank’’ problem solved by Bushnell and
Hoff (Reference 41) is defined in Figure 15a. Compared with the predictions of Reference 41
are the present discrete element predictions for w in Figure 15b and for the outer surface
meridional stress o in Figure 15¢. The discrete-element results shown include the following
types of thickness variations over region AB: (1) linear, Case VTC 5, (2) parabolic, Case
VTC 7, and (3} uniform, Case VTC 6.

The final example in this category involves the branched heated shell shown in Figure 16a,
The discrete element predictions of Reference 13 are compared with those obtained indepen~
dently (Reference 19): in Figure 16b for w and in Figure 16c for Ms'

The present predictions which include axisymmetric and asymmetric mechanical loading,
thermal loading, various boundary conditions, variable thickness, and a branched shell
demonstrate both the accuracy and the versatility of the method and program of References 13
and 36.

Bonded Double-Layer Shells of Revolution

A cantilevered, bonded, double~layer cylinder subjected to zeroth harmonic axial tension
at the free end of its outer layer is depicted in Figure 17a, Shown also in Figure 17a are the
present discrete-element predictions and the exact solution for the radial displacement w
{Reference 18), Similarpredictions for the bond shear stress resultant as a function of distance
from the clamped end are shown in Figure 17b,

Cantilevered, bonded, double-layer cones of uniform and of varying thickness subjected to
uniform external pressure as indicated in Figure 18 have been analyzed. The normal de-
flection w predicted by the discrete element method of Reference 19 are also shown in
Figure 18, and a finite-difference solution for w {Reference 17) for the uniform thickness

case is shown for comparison,

1389



AFFDL-TR-68-150

m._

Axepunog Suiplis

~peuuld ® MM [[eYS otfoqeaed doad (0 = () pepeoT-2anssoad e 10F UolmIos
uotyeadau] Juswdas N ® M SUOHNIOS JUSTS[H~-0)2I081( Jo uosiredwo) ‘%1 2andi g

8 sA M (B)

0

b
=
ad
v

e
=)

8 B ® 3 8
¥ g
EGEQQ
®g
¢g
¢
Ve
v
Yoy

g

- .
o . LT
§ 4@ Ppeain) o5 o
H8V)°  d4iL SLNAWITI >
40 “oN -

HOILNTOS SNINTTA~ALAUOSTA
8 :°3°d nomn._ :DNIQVOT
TIEHS OI'JOHVYYd d3aq.

T
o

(NI) &0l X ™

1390



AFFDL-TR-68-150

v

panuyue) 1 oIndig

(6£ - 434)

NOTIVEDIINI INZWDAS-ILTAN —

stae 6 9

9 40 Pparmg o D
V3 Fal  TINoeET
40 ‘oN

NOILOIOS INFMTE-TIAUISIA
84 :'0°g ?ma “PNIQYOT
TIEHS J170QVHVd d433Q

¥

1

h
SW -

9

(N1/871-Ni) 2401 X

1391



AFFDL-TR-68-150

SHELL GEOMETRY

hO = 0.1 in. " w— - E
hy = 0.3 in. and n = 0
or hy = h, (see runs) (o) 1
¢ = (see runs) 3 a
d = 20 in. |
! — -4-h
MATERIAL PROPERTIES d 0
E = 107 psi
| ‘| D
v = 0.3
BOUNDARY CONDITIONS
Clomped [C) of Base: Point A I |
nhg
NONZERO LOADING
Y
LN A4 YL ad rd A
pa‘s’e) = p;o) (s) = Y{d-z) r Z 7T 77777 /ljl‘l_.h
Taper : Linear (L} or °
Yy = 0 Parabolic {P)
LOCATIONS
2
Point (in)
A C
B |
C 2
D 3
E d
Run Discrete Element Py a
§{.D. No. Type No. Distribution (in.) {in.) Looding B.C.
VTC 5 cyl. 88 * 03wt 10 B () ¢
VTC 6 " " » 0-| lo 0" "
Ve 7 " " * o.3(p)* 10 ¥ "

*60 uniform elements in 0 <z < 6 jn. and 28 uniform elemenis in 6 <z < 20in,

+ L) ond (P) denote, respectively, linear and parabolic thickness variation over region AB
(a) Problem Definition

Figure 15. Problem Definition and Solutions for a Variable-Thickness Cylindrical
Storage Tank
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SHELL GEOMETRY B CD EF
[ 1) | e
Main : R = 5.0in. r N
h = 0.0lin.
L = 10.0in.
a G
Branch (Flat Plate} hy A - - e N\t
R
MATERIAL PROPERTIES —-l~h,
h
E = 30 x 10® psi
v = 03 I\
' L il
a = 13 x 1078 (inzin °F) I-
BOUNDARY CONDITIONS LOCATIONS
c a T {in.}
lar:;‘:ed (C-) ) ) o A " 0
at Fiq = 9% 93° 94 * 8 60° -
¢ 90° 5
NONZERO LOADING 0 - 7.6179914
3 - 13.5
() ol = -100psi F - 15.0
G - 5.0
@) AT, L) = AT = ¢, + ¢ ¢
Main Shell
Where C:o = 10.5, C| = 210
AT = 0 on Branch
Run Discrete Eleament hb
1. D. No, Type No. Breakdown (Uniform ) {(in) Looding B.C,
- B AB BC CD DE EF GC
HSCB-3 Curved 34 6 5 5 5 8 5 0-%  arl® ¢

(a) Problem Definition

Figure 16. Problem Definition and Discrete Element Solutions for a Thermally-Loaded
{j = 0) Hemisphere-Cylinder Branched Shell
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DISTANCE FROM CLAMPED END, s (IN)
} 2 3 4 5 6 7 8 9 10

0.0
P I | R
o)
2
o
o
k.
3 o DISCRETE ELEMENT
L o0k SOLUTION (REF. 18)
uE.: ' EXACT SOLUTION (REF., 18)
W _ [ w Q
_J ib R =5 IN
Q -30 - wl :
g : " L =10 IN
tu=Q.I0IN
-J u
a — 35— _
2 _ - -1 t; =0.10 IN
& _aol- R 7 =0.01IN

Eu=E; = 107PSI
G = 0385x104PSI

ib
-4 5 t— in

(a) w vs s

Figure 17, Shell Deflection and Bond Shear Stress Resultant Distribution for a Bonded
Double~-Layer Cantilevered Cylinder with a Uniform Axial Tension Applied
in the Outer Layer at the Free End
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3.2 T T T T
S a1 LB/IN.
2.8 -
t L o
agEcl;’! {LB/IN /
- v : o _]
24, oo ‘ l
"z'-‘ (o]
S
@ o  DISCRETE ELEMENT
: 20 - SOLUTION (REF. 18) _
o EXACT SOLUTION (REF. 18)
- = 7
= | Ecy =107 PSI
g 1.6 — UCYL=0'3 —
? BOND THICKNESS:0.0I IN.
o =
Ggonp ™ O- 385 x 10%PSI
D12 —
tad
o
-
[43] (o]
%
<0.8 - —
T
w
[ea]
=
Q
D04 /o —
o]
o o
‘N7 I
4
04 1 | | 1

0 2 4 6 8 10
DISTANCE FROM CLAMPED END,s ({iN)

{b) Bond Shear Stress Resultant vs s

Figure 17 Concluded
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A Double-layer cylinder which is clamped at one end and is pinned-fixed at the midplane
of both the upper layer and the lower layer at the other end is subjected to a zeroth barmonic
meridional moment Ms of 1.0 1b/in, at its pinned-fixed end is shown in Figure 19a. The in-
fluence of various values of bond shear stiffness G on the radial displacements w of this shell
is shown in Figure 19b. The dotted curve represents the w-deflection of a single-layer iso-
tropic cylinder of h = 0.1 in., E = 10 psi, and ¥ = (.3 (Case C4 of Figure 19a). It is seen that
as the bond shear stiffness approaches the stiffness of the shell layers, the normal displace-
ment w approaches that of the single~layer shell. The discrepancy observed when Gh is
increased to equal G of the shell material is due to the additional degree of freedom pro-
vided by the bond layer, compared with the ‘‘equivalent’’ single-layer shell.

Specimen with Circumferentially-Varying Elastic Modulus

This asymmetric structure consists of an annular flat pPlate of uniform thickness
(h = 0.05 in.), with an inner radius of 5 in. and an outer radius of 7 in. is subjected to a
uniform lateral pressure load of 3 psi (i, e,, p(o) = - 3 psi) as depicted in Figure 20a, The
inner boundary is free and the ocuter boundary is clamped, If is postulated that the elastic
modulus E of the plate is E(s,8) = E(6) = E +E. cos where E0 =156 x 106 psi and

1
E1=10 X 106 psi, and v = 0.3333 everywhere.

This structure has been analyzed by using HSOR elements (Reference 16) and by using
triangular flat plate elements (References 42 and 43); the respective discrete element break-
downs are shown in Figures 20b and 20c,

Since this structure is asymmetric, the structural stiffness matrix is harmonically
coupled. Hence, there will be various deformation harmonic contributions to the displacements
although only zeroth harmonic loading is involved. Shown in Figure 20d are the lateral dis-
placements w at the inner boundary as a function of &, It is seen that one must include
stiffness harmonic 0, 1A, 2A, 3A, and 4A to obtain a reasonably convergent solution for thig

case.

An independent discrete-element solution of this problem reported in Reference 42 was
obtained by using the triangular flat~plate elements of Reference 43, By taking advantage of
Symmetry, 36-element and 144-element solutions were obtained. The w-displacement
predicted at the inner boundary by the 144-element solution is compared in Figure 20e with
the converged solution of Figure 20d, Good agreement is observed,
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SHELL GEOMETRY

R = 5.0 in.
L = 2.50in.

LOCATIONS

Point
A

Z.in.
1)
0.25

0.50
2.50

B
c
"]

DISCRETE ELEMENT BREAKDOWN

M( o)

1.0 lb/in.

7; LL#O

Region ﬂ

AB 5

BC 10

cD 40
CASE hy L Y €y
(in) (in) (in.) (psi)
0.0475 0.0475  0.0005 07
ca 0.10 0 0 10’
{a) Problem Definition

Figure 19,

n
v, E! VL
{psi)
0.3 0’ 0.3
0.3 0 0

of an End-Moment-Loaded Bonded Double-Layer Cantilever Cylinder
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YOUNG'S MODULUS = E=E,+E, cos®
L E,= 15X 10°psi
- - E. =10 X 10%psi
k/e ! , THICKNESS = h =005 in.
/ p=3 pet

| POISSON'S RATIO = v = 0.333
|

o T70"—sl= 5.0"+

(a) Geometry and Structural Properties

——

(b) Harmonlic Shell of Revolution (e¢) Triangular Flat Plate Element
Element Breakdown (5 elements) Breakdown (36 elements)

Figure 20, Problem Definition and Discrete Element Deflection Solutions for a Laterally-
Loaded Annular Flat Plate with a Circumferential Variation of its Elastic Modulus
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In addition to the above case, a cantilevered cylinder with thickness h{s,8)= hO) = h +hy
cos §, and loaded at its free end by a zeroth harmonic radial ring load, but with all other
properties being uniform, has been analyzed using HSOR elements (Reference 16). For this
case it was found that stiffness harmonics 0, 1A, 2A, and 3A were needed to provide a con-
verged solution,

Analysis of Core~Stiffened Shells and Solids of Revolution

Several examples of core~stiffened shells of revolution and solids of revolution subjected
to axisymmetric and/or asymmetric loading have been analyzed (References 24 and 25),
and some typical results are described in the foltowing,

An infinitely long, core-stiffened cylindrical shell whose properties are defined in
Figure 21 is subjected to a uniform external pressure of 100 psi (i. e, p( ) = - 100 psi);
the pressure in the hollow interior whose radius r, is 3.0 in. is zero, The dlscrete element
breakdown indicated in Figure 21 was employed: th1s includes one shell element, one interface
core element, and 23 interior core elements. The Plane strain condition was imposed by
restricting all nodal displacements in the z~direction to be zero, The predicted radial dis-
Placement and normal stress in the radial direction for the core material {Reference 25)
are shown in Figure 21 as a function of the radial location, and are compared with the
exact solution of Reference 24,

An infinitely long cylindrical shell whichis filled completely with core-stiffening material
and is subjected to second harmonic pressure loading: p( = + 100 cos 28 psi was analyzed,
The discretized structure consists of one shell element, one core-interface element, and
29 core-interior elements, as indicated in Figure 22a, Again, the plane strain condition was
invoked by requiring the axial displacements at all nodes to be zero. The discrete element
and the exact predictions of Reference 25 for the radial and the circumferential displacement
distributions are shown in Figure 22a; the associated radial, circumferential, and shearing
stress distributions are given in Figure 22b.

Finally, an example of the improvement which one may realize by using an appropriate
combination of compatible core-interface elements (SOLOR~CT), interior core elements
(SOLOR~-INT), and shell elements (SOR), rather than simply SOLOR~INT and SOR elements,
is shown in Figure 23a; an infinitely-long foam-filled cylindrical shell is subjected to a
zeroth harmonic ring load at station z = 0. One discretization (about z = 0) used is shown in
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Concentroted bRing Lood
]

A _
“Tf Solid Core
\

+@®

Shell

N\ \ens

Young's Moduius of Shell Eg
Shear Modulus of Core Ge

Poisson's Ratio of Shell A

Poisson's Ratio of Core %

{(a) Infinite Core-Stiffened Cylinder Subjected to
Concentrated Ring Loading

Figure 23. Infinite Foam-Filled Cylinder Subjected to Zeroth Harmonic Ring Loading
atz=0
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7

“  t=.025"
”
T T
\ 20 SHELL ELEMENTS
%.5 20 CORE INTERFACE
1.0 ELEMENTS
195 CORE INTERIOR
8.5 ELEMENTS
8.0 21 SHELL NODES
N 110 INTERIOR NODES
1.8
1.0
6.0
~ g
R=10"
q.0
2.0
' — Z

(b) Discrete-Element Mesh

Figure 23 Continued
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REF 44
ek =  EXACT SOLUTION

o COMPATIBLE INTERFACE ELEMENT
SOLUTION

o INCOMPATIBLE INTERFACE ELEMENT
SOLUTION

{c)} Radial Stress Along Shell-Core Interfoce

Figure 23 Concluded

Figure 23b to consist of 20 shell elements, 20 core-interface elements, and 195 core-interior
elements; in a second case, the same basic breakdown was used but all core elements were
of the core interior type., Shown in Figure 23c are these two discrete element solutions and
the exact solution of Yao(Reference 44) for the radial stress at the shell-core interface as
a function of axial location z/R. It is seen that the ‘‘compatible interface element’’ solution

is superior to the ‘‘incompatible interface element’’ solution,
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SECTION IV

ELASTIC-PLASTIC ANALYSIS OF
PLANE-STRESS PROBLEMS

Two general methods have been developed for the elastic-plastic analysis of continua,
These are known as (1) the initial strain method and (2) the tangent modulus method, For the
case of small deflections, the initial strain method results in a set of load~-deflection equations
of equilibrium in which the elastic stiffness matrix is employed throughout the elastic-plastic
load-deflection range of interest, and plasticity effects are taken into account through the use
of clearly~-defined ‘‘effective plastic loading’. The tangent modulus method, on the other hand,
is based upon the linearity of the incremental laws of plasticity, and a piecewise linear
solution procedure is involved; the loading is applied in increments and at each load level a
new set of coefficients is determined for the equilibrium equations. References 28, and 45
through 53 provide representative documentation of the development of these approaches.
References 51 and 52 discuss some studies of the relative merits of these two methods, In
the present discussion, however, attention is restricted to the initial strain approach.

FORMULATION (REFERENCE 28)

A typical shell of revolution problem is depicted in Figure 24, For convenience, let it be
assumed that the externally-applied loads have a given meridional and circumferential
distribution; one seeks to determine the elastic-plastic small-deflection response of this
structure as a function of a characteristic amplitude of the applied loading.

The scope of this discussion and the assumptions involved may be summarized concisely
as follows:

1. Shell Geometry

a, Thin Single Layer
b. Meridionally Curved or Conical
c. Variable Thickness

d. Branched
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2., Material Properties
a, Elastic-Isotropic
b. Plastic
¢, Strain Hardening
d., Room Temperature
3. Loading is Mechanical (Axisymmetric and Asymmetric)
a. Distributed
b. Circumferential Line
c. No body forces are included
4, Assumptions

a. Displacemenis are small and obey the Kirchhoff assumption that normals to the

undeformed midsurface are inextensible and remain normal to the deformed midsurface

b. Shell is in a state of plane stress (O‘S, 09 , and og.g are present)

In the interest of clarity of presentation, lei it be assumed that the loaded structure to
be analyzed consists of a (small) single discrete element of revolution. Further, the externally-
applied loading has already been discretized into virtual-work-equivalent generalized nodal
applied loads {Q}. Although this elastic-plastic analysis will be described for a single discrete
element, the proper analysis procedure for the complete structure consisting of n discrete
elements should be clear from the earlier shell~of~revolution discussion of the treatment of

the complete assembled discretized structure,

For the loaded single discrete element, one may apply the initial strain concept to the

p

Principle of Stationary Total Potential Energy, where the plastic strains € are treated as

initial strains €. For this problem, Equation 5 hecomes
A 1)
7y = [ Uav - dT @ (89)
%

where the first term represents the internal potential energy (strain energy) of the system
and the second represents the potential energy of the applied discretized equivalent nodal
loads. As noted earlier, in the initial strain approach the stresses depend only upon the

: e s
elastic components, € , of strain:

o : Ee€ {90}
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where the E matrix is that which is appropriate for the type of material and stress state
involved. Since the total strain € consists of the sum of the elastic and the plastic component
of gtrain, one may write

€: ¢ tef (91)

or
€: e —¢f (92)
It follows that the strain energy density U may be expressed as
G S ol €€ (93)
2
or
A T ;
U=_|2_(€T_‘9)E(¢_cp) (94)

Hence, Equation 89 for the total potential energy of the system may be restated as follows by
using Equation 94:
4
IR
A

where the initial strains (herein represented by the plastic strains) are regarded as somehow
being known; hence, in applying the PSTPE: 81rp= 0, only the displacements q , not the plastic
strains, are subject to variation.

h 2
& vz'—(eT—t")E (€ —€®)raBaf s - a7 @ (95)

The next step in this formulation process is to express the total strain € at any and all
locations in the discrete element in terms of the generalized nodal displacements q which are
given by Equation 57. This may be dene by introducing an appropriate assumed-displacement
field for u, v, and w, by applying appropriate strain~displacement relations {Equations 37
through 42), and by applying the Kirchhoff deformation agsumptions. Also, Fourier decom-~
position of the generalized displacements, as represented in Equation 58, (as well as all
strains and all loads) may be carried out., Hence, the Fourier components of the total strain
may be expressed as:

‘(o)= A(o) (L,s) q(o)

c‘”: Am(g,s) q(j) {98)
) = Y
<. Amtg,s y ath
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By applying Equation 96 to Equation 95 and evaluating the g -integration from 0 to 27,
complete harmonic uncoupling results. Next, form 81rp and set Bvrp = 0 in accordance with

the PSTPE. Since the 5a(? . .. 8q0 . . 38W are independent and arbitray, the terms

which multiply each must be equal to zero. The result is the following set of load-deflection
static equilibrium equations:

.(o) q(o) . o(c)) + QLO)

{

. q (j}

RIREPIR ”+op for j=1,2, - A- series (97)

-{j) ={j} ={j)} ={])
kl q] z 0] +0pJ for j=1,2,--- . B - series

Note that since these equations are linear, they may be written in incremental form:

t(°) Aq(o) X AQ(O)'{-AQ:,O)
k“)Aq(” . Ao(j)+ AQ;” (98)
() L) —ij} —{j)
K Aq " AOI + AQ;J

These are the basic equations which are employed in calculating the load-deflection behavior
of this structure. The & ’s are the usualharmonic stiffness matrices for the discrete element:

Z hn T
{0) 4 {o) (o)
ksar [ [F AT E AT ris) of ds
[¢] "h/Z

() YA ()T ()
W arf f A E Al s af as (99)
o _h,

. £ v T )
— 2 —_ —
CRLR ] 2 &Y rie or e
0 _h/z
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The AQ ’s are increments of the externally-applied loads, and the A Op’s may be regarded
as the additional equivalent loads which produce the part of Aq brought about by the Ae p .
Explicitly, these AQp terms are:

Y T (0)
(o) 2 o
AQy =21rff A E A’ r(s) af ds
0 -h/z
(i) 4% )T pth)
AQy’ =T ff A E Ag ris} df ds {100}
o “h
A
n .
_ £ T _
AG, =7 [ [TRD & AT® i(s) AL as

These ‘‘incremental plastic loads?® canbe castinto a more convenient form by recognizing
that the matrix A(j) (£,8) which relates the total strain at any location in the discrete element
to the nodal displacement q(j) may be written as the product of two matrices: A L which is
a function of { and is harmonic independent, and As(j) which does not involve [ but depends
upon s and the Fourier harmonic j, Hence,

(0 i) (il
AN TR o
i1 i)
= Ag As q {1o1)
3xe  6x8 8x!
Hence, for example,
h X
(j) A U {j)
AQ, - TT[ fh/ A(;, AC E Ae”  r(s) df ds (1o2)
T

Now, at some reference or control station (or stations) as depicted, for example, in
Figure 25, form the following subquantity of Equation 102 by integrating wrt { from -h/2 to
+ h/2:

h
{(j) /2 T {j)
AN, f A, E Ae® dL (103)
e h g
._/2
6 X 6Xx3 Ixd 3xt
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(a) Example Meridional Variations in Loading

(b) Typical Mid-Element Locations (x) where Strains
and Plastic Stress Resultants are Computed

Figure 25, Meridional Loading Variation and Representative Plastic Stress Resultant
Computation Points
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To simplify the analysis somewhat, assume that AN G) (s) varies with the s-location in the
discrete element such that

(j) (i (i

ANg (s) = 6 (5] AN, (104)
C
86X 1| 6X6 6%l
Similarly, let
AN(:){s} - 6% AN(O) (105)
C
_ —{j —{i)
An“’ s) = g1 (g AN‘ {106)

C
where these G(s) matrices are appropriately-selected distribution matrices. For example, if
/_\Np were assumed to be invariant with s, the 6 matrices would become the unit diagonal
matrix, Various assumptions for G(s) may be made, and consistent control stations selected,

Applying Equation 104 to Equation 102, Aop(j) may be rewritten as

(i) ' j (i} . .
sa)’ - (v_j; Ai” ¢! (s) r(s) ds) Anpi = o'l AN;‘J:) (107)

Similarly one may write

(o} {0} (o)

AQD = p ANDC (108)

=) () —(j)
j AR

Aop p Pe (109)

Clearly, for use in Equation 98, one can find AQ (©) AQ (G » and AQ ) immediately

if one knows /_\.Np (o)’ AN @ . and AN (”. These quantltles, in turn, can be computed by

evaluating ¢ Pe Fo
h/z
T P
z € d
A Npc j; A C E A L (110)
“h

at many 8-locations of the control station(s), and by harmonically analyzing the resuits at
each of these axial control stations. However, one notes from Eciuatlon 110 that the in-
cremental plastm strain Aec (£,6) must be known to permit this evaluation. A means by
which the A€ (C 8) may be determined is described in the following two subsections which
deal with plasticity and the solution process.
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Equations 98, 107, and 108 may be regarded as the principal (initial) set of “formulation
equations’” which is required for solving the posed problem. Further considerations and
equations are needed, however,

PLASTICITY CONSIDERATIONS

Of the pumerous ways of accounting for elastic-plastic behavior, strain hardening,
unloading, reversed loading, reloading, etc., one of the most convenient schemes involves
the use of a mechanical sublayer model (References 54 to 57). This model has heen employed
extensively in finite-difference elastic-plastic dynamic response studies (References 58
and 59).

With this model the material is represented as consisting of equally-strained sublayers
(or subareas) of elastic, perfectly plastic material, with each sublayer having the same
elastic modulus as the basic material being represented but each having appropriately
different yield limits. For illustration, the stress-strain properties of a strain hardening
material as depicted in Figure 26 is approximated in a piecewise linear manner by the
coordinates,(0,0), (crl, € 1),(0' s ez).(o' '€ 3). and (0-4, € 4} This representation in turn is described
by a 4-sublayer model whose perfectly-plastic yield limits are %01 = Eel. Tog = Ee 9
Tgg3 = Ee 3 and Tp4 = Ee 4 It is seen that the stress-strain behavior of the ith sublayer is
given by:

<

Ee for € < ¢
o = { i
SB, a for € > ¢

At any given value of strain, the stress & on the piecewise-linear representation of the actual

stress-strain curve is given in terms of the M sublayer stresses 93p by
i

M
T = 2 o-SBi A, {12)

where the A

found by writing Equation 81 for each line-segment junction and solving the resulting set of

0i &re appropriately-chosen weighting factors, These weighting factors may be
equations.
Illustrative strain and stress distributions through the thickness h of the shell are shown

in Figure 27. For the numerical evaluation of stress resultants, for example, it may he

convenient to employ the idealized N-layer representation shown in the bottom sketch of
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Figure 26. Idealization of Stress-Strain Characteristics
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Figure 27, Stress and Strain Distribution Across Shell Thickness
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Figure 27; the stress of each of these layers in turn can be described by the use of M sub-
layers. Thus, in terms of the sublayer stresses, the stress resultants become

N M N M
N, = .2 Z o 1 M5=.Z gi2 % 1 (n3)

where a is the normal stress in the meridional direction s for the jth sublayer of the ith
i

layer and tj is the thickness of the jth sublayer, where the tj’s have been normalized such that

for any layer i of the N layers

The other siress resultants are given by similar expressions in terms of the sublayer
stresses. The sublayer strains of any given layer are equal to the strains of that layer,

A similar double-summation evaluation may be employed for the [ -integration required

to form /_\.Np of Equation 110,
¢

Suppose that load increments AQ have been applied successively and that at load in~
crement i the complete state of stress o (and strain) is known, Then, let AQi +1 be applied
and let it be assumed that the correct incremental strain Ae i+1 has been found. One seeks

for each sublayer to determine the resulting stress state ai+1 and the incremental plastic
strain A €P

i+1°

To accomplish this the Mises~Hencky yield condition for plane stress:

P - <:rs2 +082 -5 9 +30'528 --—o-o2 =0 (115)

is employed, where o, is the yield stress of that sublayer for uni-axial loading conditions,
This condition establishes a stress boundary such that all permissible stress states lie on or
within the envelope $ = 0. If the path between two successive stress states lies completely
within the envelope, only elastic strains occur. If all or a portion of that stress path lies
on the boundary, plastic strains are possible. The direction of the plastic strain vector is
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established by the plastic flow rule in accordance with the theory of the plastic potential
(Reference 60); this direction is normal to the yield surface and consequently the plastic

strains do not work. This flow rule can be expressed by:

od
de = -TO': = d)\(ZO’s Oé )
depa— dX —gg- = d)\(GO‘e) {18}
0'59 S
p o
d 7 dA = d\ (20 —o, )
EQ 60'9 g s

In incremental form, Equation 116 may be written as

[+ B —
Aes = )\(20’s 0‘9)

)
Aese = A (60‘58 } (N7
L\.ep : A (2opy—0 )

8 g s

where \ is a non-negative constant of proportionality which is to be found by satisfying the

yield condition itself, In matrix form the flow rule may be written as:

Aep ) 2 0 —1-] o )
S
PV 6 O \
S AESB = 0 T 58 (18)
P _
\_AEB { ] 1 0 2 ‘ Lcre )
or
p
He =\ H O {119)

d: of| o 3 o) o —o,® =0 (120)
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or
d:0"H, ¢ -’ :0 (121)
0

The assumed-to-be-known total incremental strain A€ i+1 can he written in terms of its
elastic and plastic components as:

(] p
A‘iH :A‘i+| +A¢i+l {122)

Since the siress increment AO'i+1 depends only upon the elastic strain increment, it can be

expressed as

Ao, = E, A€ (123)

i+l

or

p
Aea,, * B (A‘i+: -he ) (124}

Note that whereas Ae i1 is known, its elastic and plastic components are not known; these
are to be determined.

For an initial inquiry, let a trial stress increment (superscript ') be defined by

T
Ao, ., = E, A€, | (125)

Then the total trial stress is given by

T T

T T -i—Ac:ri_H (126)
Using this trial total stress, one may compute a trial value of ®, say cbi:l' by
& chT H, o -g2 (127)
i+1 7 iEl 2 i 0

Now if CPLI < 0, the stress state lies inside the yield boundary and only elastic behavior is
present. However, if® _ir+1 2 0 plasticity occurs and the increments of elastic strain and plastic

strain must be determined; in this case the correct stress state O‘i+ is one such that the

1
yield condition:

423 = o H o —-q =0 (rz1)
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must be satisfied, Furthermore, one can express this correct state of stress by

T4 =%t Ao,
-0, + E, (D, "A‘Fi’a-l)
cop +E A€ - E Ay
- 07 —E, A€ (128)

But since Equation 119 determines only the direction of the plastic strain increment, one can,

to a good approximation, write:

p T
= {29
Aey A H oy (129)
Thus, Equation 128 becomes
T
v, [T -2 E, AN (130)

Applying Equation 130 to the yield condition, Equation 121, and carrying out the indicated

multiplication results in the following quadratic equation for X :

AN 4+ BA +C =0 (131
where

T T

T
A:o  H E H E H o, (132)
B 20’ H E M oF (133)

BT S L B

Ty et g2 =47 (134)

C =9, M %+ % T FiH

It can be shown that the desired root is that given by

Z
-B—-./8" —4AC
) (135)
2A
Using Equation 135, one can compute the desired stress state from Equation 130 and the

plastic strain increment Aepi+1 from Equation 129,

The above process is carried out for all layers and sublayers at many 8-locations (NPT
of these locations) of each axial control station of the structure.
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TYPICAL SOLUTION PROCEDURE

At this point, consider the typical problem as depicted by Figure 24, The assembled
discretized structure is now to be used, The externally-applied loading has been harmonically
analyzed and converted to equivalent generalized nodal harmonic loads Q(O), Q(j), and
E(j); these have been appropriately summed for the assembled discretized structure to
form F(O), F(j), etc. The static loading is to be applied in increments, One seeks the

structural deformations after each increment of applied loading,
Solution Process

1. For the first (suitably small) increment of applied loading, one solves the following
load-deflection equilibrium equations for the complete assembled discretized structure:

kK agl) - afY (136)
for all A-series and B-series loading harmonics. From these now-known generalized dis-
Placements, one can compute the total (i.e., summed) strains and also the total stresses at all
layers, sublayers, and §-locations of a suitable number of axial stations, The stress state of
the first material property sublayer is compared with the Mises~-Hencky yield boundary for
both the inner and the outer surface at appropriate z and & locations. If yielding has not
occurred anywhere, load incrementing and problem solution can be continued (alternatively,
during the examination of the stress state for the first loading increment, one can readily
apply a test to see how muchlarger the applied loading must be in order that the most critical
stress state vector reach the Mises~Hencky yield surface, and loading up to that condition
can be applied). For discussion, let it be assumed that N increments of applied loading have
been employed to arrive just barely inside the yield surface for the most critical location.

2, For the first loading increment (N+1} in the plastic range, one proceeds as follows:

a. First, note that the governing equations which are of the form

(i) (i) {j) (1
K i j i

- + AF
U T AFLL A bt (137}
contain as unknowns hoth Aq(]) and AF {0 . Hence an iterative procedure is needed
N+1 P N+l

{0 enable the correct Aq (])N+1 to be determined,
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b. As a first approximation (a = 1) for finding A q{j)N+1, solve
(i) L fresl (i
K Ay, ° AFNH (138)

for all A-series and B-series harmonics., Then sum the results to find the total strains and
stresses at all control stations, 8-locations, and all ;i locations,

c. Then use the Mises~Hencky yield condition and flow rule to determine

e(]_:[ a:l.

A€, and  Ae
N-+1 N+

at all of these locations,

d. Next compute A Np at all & -locations of each control station and then harmon-
c

ically analyze these results to determine

{o,a =] (j)a=l
ANp , AN, , etc.

CN+1 N+t

at all control stations,

e, Next combine these equivalent plastic nodal loads to form

o=l a=l
(i
F(]) A

(02!
F A , and AF

A
PN+ ’ PN+

PN +1

These values constitute a first estimate of the equivalent plastic nodal loads for load in-
crement N+1,
4))
f. A second approximation ( g = 2) to the correct solution for Aq N+1 TRAY be
obtained by solving

(e

N+ N+ | Pt

(139)

for all A~-series and B-series harmonics,
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g. This process is repeatedly carried out to find:

(jye=2
AF,
N+ |

-){1:3
AF;]
N+1

etc.

until these equivalent plastic forces converge. For example, one might réquire that

I
B NPT a—l 7 %
v > (AF, —AFpa)N_H
all nodes i=t
z I\ET " <A (140)
(AF )
all nodes izl N+1

where ‘‘A’? is some suitable value like 0.1 perhaps.

3. One is now ready to proceed to the next loading increment N+2, This entire process
is repeated until:

a. the deflections become too large for this small-deflection analysis to be valid or
b, the final load of interest has been reached,
ILLUSTRATIVE RESULTS

In Reference 28 elastic-plastic load-deflection analyses of an axisymmetrically-loaded
spherical cap and of an asymmetrically-loaded flat circular plate are reported. In connection
with the former, the effects of (a) various discrete element breakdowns, (b) load increment
size, and (c) the use of various values of the convergence criterion,(A)are illustrated, It is
shown that good accuracy is achieved and substantially less computer time is required when
one uses comparatively large rather than small loading increments. Also, the deflections
predicted at a given‘ load level in the plastic range are not strongly affected by the value of A
employed; values of A as large as 0.2 provide reasonably good resulis, Because of space
and time considerations, only the asymmetrical~loading exampleis discussed in the following,
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A 6061-T6 aluminum alloy plate which is depicted schematically in Figure 28 has been
loaded asymmetrically in the laboratory as indicated also in Figure 28. Measurements were
made of the apex deflection, deflection profiles, and both upper-surface and lower-surface

meridional and circumferential strains.

Shown in Figure 29 is the discrete-element breakdown and model used to predict the
load-deflection behavior of this assymmetrically-loaded structure, Also shown in Figure 29

are the control stations and §-locations at which the Asp and theANp have been computed,
c
The asymmetric loading and its approximation by 9 Fourier series harmonics are indicated

in Figure 30. Two representative uniaxial stress-strain curves for 6061~T6 material were

taken into account and are shown in Figure 31,

Shown in Figures 32 through 40 are self-explanatory comparisons of measured vs pre-
dicted deflections and strains. For the purely elastic range (Figures 33 through 36) there is
good agreement between measurements and predictions; this is regarded as confirming that
the discrete-element modeling of the actual structure is reasonable. In the plastic range
(Figures 32, and 37 through 40) at a total load level P of 11,000 pounds, the experimental-
theoretical agreement while encouraging is not as good.

These predictions represent a first step and much remains to be done, Among items re-
quiring further study are:

a. a faster convergence procedure

b. the effects and effectiveness of using various plastic strain-distribution functions G(s);

in the present comparison, G(s) was taken to be the unit diagonal matrix,

c. means for automatically selecting load increment sizes AP to minimize computer

time and to achieve rapid convergence, and

d, the inclugion and effects of transverse shear deformation and stress.
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Figure 28, Geometry of Asymmetrically Loaded Test Specimen
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Summary

The development of single-layer and bonded double-layer shell elements of revolution,
solid elements of revolution, and a doubly-curved quadrilateral shell element has been
reviewed, and their application to the linear elastic static analysis of a variety of
axisymmetrically- and asymmetrically-loaded unheated and heated shells is presented.
Comparisons with independent solutions show that the present discrete element predictions
are reliable. An initial-strain formulation for the elastic-plastic small-deflection static
analysis of axisymmetrically- and asymmetrically-loaded shells of revolution has been
described, and the results of its application to an asymmetrically-loaded circular flat plate
are compared with experimental data. Suggestions for improving the accuracy of these

predictions are offered, Further details are given in the cited references.
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