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NOMENCLATURE

8 x 8 matrix relating coefficients to nodal degrees of freedom
Est/(l- Vs 8 vgs ,
Egt/ 1= g¥g,
B t%/ 12(1- v g%,

E 9t3/ 12(-¥ o )

Young’s modulus

Shear modulus

Gt

Gt3/12

Shell stiffness matrix

8 x 8 stiffness matrix relating coupling between m and n harmonics
8 x 8 matrix relating the coupling between harmonics m and n
harmonic numbers

generalized nodal forces

nodal displacements and rotations

cylindrical coordinate

ghell thickness

internal energy

displacements in meridional, circumferential and normal directions
distance normal to shell midsurface

coefficients in expansion for displacements

midsurface straing

circumferential angle

changes in curvature

Poisson’s ratio
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SECTION 1

INTRODUCTION

The matrix displacement method of structural analysis has been successfully applied to
the linear elastic analysis, (References 1 through 7) linear dynamic analysis, (References 8
and 9) plastic analysis (Reference 10), and the nonlinear static analysis (Reference 11) of
shells of revolution with constant thickness in the circumferential direction. Jones and Strome
(Reference 12) present a survey of the research in this area prior to 1965. The objective of
the present paper is to extend the matrix displacement method to the analysis of shelis of
revolution with variable stiffness properties in the circumferential direction. The primary
difference between this research and previously published results is that ail the Fourier
harmonics in the circumferential direction are now coupled. This yields an element stiffness
matrix of order 8N x 8N where N is the number of harmonics.

The research presented here uses the displacement function of Grafton and Strome
(Reference 3) and the curved element of Stricklin, Navaratna and Pian (Reference 6). The
displacement function does not explicitly include the rigid body motion of the element but, as
first pointed out in Reference 6, this is not necessary. Further, an eigenvalue analysis
(Reference 13) and experience (References 6, 7, and 11) with this curved element indicate
that rigid body motion is adequately represented. However, for other curved elements the
authors agree with the conclusion reached by Schmit, Bogner, and Fox (Reference 14) that
higher order displacement functions should be used. There is now an abundance of evidence
which shows that the higher order displacement functions are well worth the additional com-
putational effort required in obtaining the element stiffness matrix. They not only better
represent rigid body motion but, stated simply, converge much faster than the elements based
on lower order displacement functions. The method of Pian (Reference 15) may be used to
incorporate these concepts into the shell of revolution computer program without changing
the size of the element stiffness matrix. However, it is the authors’ opinion that they are not
needed for the shell of revolution.

Turner et al (Reference 16) were the first to include large deflections in the matrix
displacement method of structural analysis, In their formulation they proposed that the
nonlinear problem be solved as a sequence of linear problems with the element stiffness
matrix being reevaluated at each loading. A simular procedure has been used by many in-
vestigators since the publication of the original paper. Martin (Reference 17) presents a
discussion and numerous references on the subject,
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It has been pointed out by Marcal (Reference 18) that the use of an initial stress matrix
does not yield the correct nonlinear equations of equilibrium. This is due to the fact that in
the variation of the strain energy to obtain the equations of equilibrium a variation of the
initial stress should be included. In Reference 18 it is stated that this omission leads to a
considerable overestimation of the buckling loads.

Another approach to the solution of the nonlinear problem is given by Schmit, Bogner
and Fox (Reference 14). They solved the nonlinear problem by seeking the minimum of the
total potential energy, and as such, do not encounter the approximations inherent with the use
of the initial stress matrix, Still another approach is given by Oden, (Reference 19) but to
the authors’ knowledge it is not currently being used in the solution of nonlinear problems.

The approach used here for the formulation and solution of the nonlinear equations of
equilibrium is the same as presented in Reference 11. The equations are formulated by
applying Castigliano’s theorem to the expression for the strain energy in terms of the nodal
displacement. This formulation yields the correct nonlinear equations of equilibrium. The
resulting equations are solved using increments of loading combined with iteration at each
loading.

The research presented here was developed concurrently with that presented in Ref-

erence 11. However, to prevent duplicationonly the material which differs from that presented
in Reference 11 is presented in the following Sections,
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SECTION II
FORMULATION

The shell of revolution is idealized as an assemblage of curved elements ccannected at
their nodal circles or nodes. The element curvature in the meridional direction is deseribed
by the slope between the axis of revolutionand a tangent to the shell element in the meridional
direction. The slope is represented by a second order polynomial function of the meridional
distance along the element, The assumed shell element is required to have the same slopes
at the nodes as the actual shell and the length of the element, along the meridian, is obtained
by assuming an arc of a circle passing through the element nodes at the specified slopes,

The displacements of the shell element are represented by three components in the
normal, meridional, and circumferential directions. These displacement components are
expressed by polynomials in the meridional direction, s and a Fourier series in the circum-
ferential angle, ] s with both cosine and sine terms being retained. For the displacement
Component in the normal direction a third order polynomial in the meridional distance is
used and linear expressions are used for the meridional and circumferential components.
These displacements are

IA . . .
w = i=zo (a: +a'zs +a; s2 +a;s3) cosif

B,
+ 2l +ays +ayi 8 +aisd)sing
i=0

(1)

By B i

v o= Y la, +a, s)cosif + ¥ @, +a.'s)sinif
i=Q iz0
o EL I

v - (@, +a_s)sinif + 3 (a, +a, s)cosif
iz0 i=Q

where
w,uand v = the displacement in the normal, meridional, and circumferential

directions respectively.
8 = meridional distance along the element
8 = circumferential angle

@.,a = generalized displacement coefficients
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IA + 1 and IB + 1 are the number of A and B barmonics respectively.

For any A or B harmonic the 8 a coefficients are related to the nodal displacements
and rotations by the expression

a-=- Agq (2)

where the generalized degrees of freedom for the element correspond to the radial, circum=-
ferential, and axial displacements and a rotation at each node., The matrix A is given in
Reference 11.

The strain-displacements are those given by Novozhilov (Reference 20) with the assump-
tion that only those nonlinearities due to moderate rotations about the shell coordinate axes
are important.

A I Az
ES —es +-é_el?:
€ '/e\ “__1_/'}2' (3}
2] g 2

€ =’é -l--'—/é /é
s@ " SS@ T 2 T3 Te3

. . A A A . A A . N
The expressions for the strains ey g and €0 and rotations €197 a3 are also given in
Reference 11.

The internal energy expression is given in Ambartsumian (Reference 21} and is valid for
orthotropic shells

L 2 2
U= 5 ff(cles +Czeg -HZVSQC'eSeB
2 2 2
+6, €, D, Xs*D2Xg {4}
2
+ 219D XXg + szse)rdsde

Substituting the expressions for the midsurface strains, the internal energy may be separated
into two parts

U:UL+UNL (5)
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where UL is the usual expression for the mternal energy based on linear theory and U
contains all the dependence of U on e13 and e 93°

Using the expression for UL the element stiffness matrix may be evaluated as described
in the next Section III, Assembling the element stiffness matrices the equations of equilibrium
may be written as

U
Kq : g— 2Ym (6}
a2q
where K = shell stiffness matrix
Q = generalized forces, which are here assumed to be those based

on linear theory.

au
-—;:—L = additional generalized forces due to nonlinearities,

The column matrix q is arranged with all the degrees of freedom together at each node.
Since at each node the number of degrees of freedom is equal to four times the number of
harmonics the total number of equations represented by Equation 6 is considerable. For
example, the maximum permissible case of 17 harmonics and 51 nodes yields 3468 equations.
The stiffness matrix K does, however, have a narrow band width and may be effectively
solved for prescribed values of the right side by Choleski’s method (Reference 223,

The solution of the nonlinear equations of equilibrium given by Equation 6 is obtained by
increasing the loads in increments, combined with iteration at each value of the loading. For
the first load the initial solution is obtained by solving the linear equations with the contri-
bution due to nonlinearities being zero. For loads other than the first the initial guess is
obtained by extrapolating from previous solutions. The treatment of the nonlinear terms is the
same as given in Reference 11,

STIFFNESS MATRIX
The element stiffness matrix is evaluated in two steps. First the internal energy based

on linear theory, UL' is evaluated in terms of the generalized coefficients, @ » and then
transformed to a quadratic form in terms of the nodal displacements through Equation 2.
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Substituting the assumed displacement functions (Equation 1) into the strain energy
expression based on linear theory, U;, the strain energy for the element may be written as

(00 of  o1a ' 00 oOT o8 | ( )
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eight coefficients corresponding to the mth andnth B harmonic
respectively.

m
where a  'a

8§ x 8 matrix indicating the coupling between the mth and nth A
harmonics with a bar over m or n indicating a B harmonic.

r
il

The individual terms of the 8 x 8 L™ matrices are given by

2
mn UL

I‘ij - MmN
aai aaj

{81

Using Equation 8 all the elements of the 8 x 8 matrices representing coupling between
A-A, A-B, and B-B harmonics may be obtained from the expressions for the upper half of
one an matrix. An example of one of these 36 ferms is

mn mn '
2" o f@E® gs-ygC nf¢ds+o"§"mznfﬂ’s—ﬁ—ds

mn
L7
(9)

. 2 f .2
== sin ¢ COS mn sl
+4G"2‘"mf : qbr3¢> ds+2Gmnmf-¢——-r—$— ds

mn .
where C, = .{3 2 ¢ cosm® cosnf dB and T or T indicate that the cosine is replaced

2 2

by a sine function. This integral and theintegral for D and G are evaluated
by expanding t and t3 in a Fourier series in the circumferential direction
A maximum number of 49 Fourier coefficients is permitted in the expansion.

The other terms for the upper half of the 8 x 8 U™ matrix are given in Reference 23.
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The following rules yield the complete L matrix.

1. The terms below the diagonal are obtained by interchanging m and n in the expres-
sions for the terms ahove the diagonal, i.e. ijnin {m,n) = L‘it;m(n,m). As required, this yvields a
symmetrical matrix for m = n, This interchange does not apply to the C’s, D's or G's,

2, If the superscript m or n of L;;m has a bar over it, use a negative m or n in the
expressions for Lgm and change the unbarred m or n over the C’s, D’s and G’s to barred m
Oor n or vice-versa.

The components of the element stiffness matrix representing the coupling between any
barred or unbarred m and n harmonics are given by

T
Kooa ™ A (o)

where k™ ig an 8 by 8 matrix,
Once the element stiffness matrix is obtained, the structural stiffness matrix may be

assembled. The assemblage rules are the same as used for beam elements except the
element stiffness matrix is much larger,
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Figure 1. Scalloped Apollo Aft Heat Shield
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SECTION III

APPLICATIONS

The computer code has been in operation for quite some time and has been used to
analyze several different types of problems. The primary emphasis has been on the linear,
nonlinear, and stability analyses of the Apollo aft heat shield, which is shown in Figure 1,
The heat shield is of honeycomb construction with scalloped face sheets. The effects of
transverse shear deformations were not included in the analysis. A discussion of transverse
shear effects is given in a later section.

ASSESSMENT OF ACCURACY

The following studies have been conducted to demonstrate the accuracy of the method,

1. Comparison With Finite Difference Solution,

The linear analysis of the aft heat shield was conducted under a uniform pressure loading
covering a circle with a 40-inch radius and with the center of the circle at 15 degrees from
the apex, The results were compared with results using the method developed in Reference 24.
The results for the deflections and stress resultants are in reasonable agreement, However,
the shear resultants do not agree especially near the clamped base where the method of
Reference 24 yields a divergent solution.

2. Thickness Representation in Circumferential Direction.

To determine the number of Fourier harmonics needed for the representation of the
thickness, analyses were conducted on the aft heat shield using different numbers of terms
in the expansion, Due to symmetry, only cosine terms were used in the expansion. Results
were obtained with 3, 6, 9 and 25 Fourier harmonics. The results show less than a 10%
change in going from 3 to 9 harmonies and no change between 9 and 25. Since 49 harmonics
are permitted in the expansion for the thickness, it is concluded that drastic changes in the
thickness may be accurately represented,

3. Representation of Loads.

The number of harmonics needed in Equation 1 depends on the complexity of the loading.
Consequently, analyses were conducted using different numbers of Fourier's harmonics in
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the expressions for the displacements. For a circular pressure loading distributed over a
circle with a 20-inch radius centered at 15 degrees from the apex it was found that 6 and 9
harmonics yielded the same results. For another shell with concentrated forces at 90-degree
increments around the circumference it was found that going from 8 to 13 A harmonics gave
a 10% increase in the maximum stress resultant. It cannot be said that the golution has con-
verged but it is believed that additional harmonics will give little change. The maximum
number of 17 harmonics is considered adequate for most physical problems.

4, Stability Analyses.

Since the solution of the nonlinear equations is obtained by an iterational procedure, the
possibility of a numerical instability exists for loads in the neighborhood of the buckling load.
To check the ability of the computer code to predict buckling pressures, application was made
to the analysis of shallow capsunder uniform loading and results compared with known values,
It was found that the iterational procedure consistently failed to converge for loads below the
actual buckling load, but above most experimental data, The procedure used here to determine
the buckling load is to plot the load-deflection curve and extrapolate to the buckling load. For
a structure such as the Apollo aft heat shield this gives a rather smooth curve a8 illustrated
in Figure 2, and, consequently the buckling load may be accurately determined.

It is interesting to note that if the omission of the rigid body modes in the displacement
functions were important, the buckling load would be overestimated, which is not the case.

RESULTS

During ‘‘splashdown” the aft heat shield of the Apollo spacecraft encounters rather high
bydrodynamic forces. The actual distribution consists of a high pressure near the edge of
the wetted area with decreasing values near the center. The wetted area is, of course, in-

creasing with time.

The idealization used here assumes the pressure to be a constant over a circular wetted
area and, more important, neglects dynamic forces. The results reported are for the cases
when the center of impact is at 10 degrees from the apex and the pressure loading has a
radius of 10, 20, or 40 inches.

For localized pressure loadings such as a wetted area with a 10=- or 20~ inch radius,
it was found that the effects of nonlinearities are quite small until the pressure approaches
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the buckling pressure, However, for a pressure loading over a large area, such as the 40-inch
radius, nonlinearities become important at rather low values of the pressure. This is illus-
trated in Figure 2 which presents a plot of the maximum displacement versus loading for a
wetted area with a 40-inch radius, Figures 3 and 4 present the displacement and meridional
strese in the upper face sheet for this case at a pressure of 80 psi. It is noted that linear
theory underestimates the maximum stresses by about 20%.

Table 1 presents the values of the buckling pressures for the three different loadings,
Also presented in this table are the results obtained by Gallagher et al (Reference 25) based
on using the in plane forces from a linear analysis in the stability analysis,

TABLE [

BUCKLING PRESSURES (PSI) FOR SCALLOPED HEAT SHIELD

Wetted
Area Radius 10 20 40

Present
Research
(Nonlinear) 1100 300 100

Gallagher
(Linear) 1179 396 210

A comparison of the results reveals that the stability analysis based on linear theory
agrees quite well with the nonlinear stability analysis in cases where nonlinearities are
unimportant for loads approaching the buckling loads (10~ and 20-in. radii). However, when
the nonlinearities are important for loads below the buckling load (40-inch radius) the linear
stability analysis yields unconservative results.
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SECTION 1V

TRANSVERSE SHEAR EFFECTS

As pointed out previously the effects of transverse shear deformations were neglected
in the computer code. The purpose of this section is to present a formulation which automat-
ically includes transverse shear deformations and to present results for a highly idealized
loading. The material presented in thig Section is taken from Reference 26,

It is assumed that the shell of revolution has constant thickness properties in the circum-
ferential direction and is loaded axisymmetrically. The displacement functions are written
for a laminate at a distance z from the midsurface of the shell,

2 3
Q, +azs +a35 + a, s

E
"

U= astags +la, +tag s)z

where the @ coefficients are related to two displacements and two rotations, 3—3, —g—:—. at each

node. With this formulation the rotations gsl may be eliminated from the element stiffness
matrix. However, most of a computer code was already available for the treatment of four

unknowns at each node so gg— was retained as a degree of freedom.

The element stiffness matrix is obtained by substituting into the strain energy expression,
given by three-dimensional elasticity theory in body of revolution coordinates, and integrating
over the length and around the circumference of the elements. The strain energy expression
depends on the displacements and their first derivatives only, This is the reason the degree
of freedom, %% » may be eliminated from the element stiffness matrix,

The analysis was conducted for a shallow honeycomb cap clamped at the base. A uniform
pressure of 10 psi was applied over acircle with a 15.3~inch radius centered at the apex. The
results for the axial displacement and the meridional stresses in the upper and lower face
are shown in Figures 5 and 6. Itis noted that no appreciable differences are obtained even for
very low values of the transverse shear modulus,
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