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ABSTRACT

A method is described for obtaining generalized aserodynamic forces by
utilizing the NASA Kemel~Function Procedures. An evaluation of the gener~
alized serodynamic forces and the consequent flutter conditions is made for
the particular case of a uniform, cantilevered, 70° delta wing. The super-
sonic Kernel-FPunction Procedure was found to be inadequate for treating the
elastic modes on this low-agspect-ratio wing; the subsonic procedure, however,
appears to work setisfactorily.

The theoretical flutter predictions are conpar ed with the experimental
results of NASA Report T™™ X~53. The Kernel-function predicticns for quasi-
steady flow (k ~ O) appear to be superior to those for the complete unsteady

. WLt
case st 2% ). Based on this limited comparison, it appears that for this
¢
lowmaspect-ratioc wing the large transient effects predicted by linearized theory

in the tranconic regime may not actually exist.
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LIST OF SYMBOLS

Vibration and flubter frequency of wing

Velocity of wing; subscript, f, denotes velocity of
flutter

Ampiitude of motion of the ith vibration mode
Density of alrstream

Wing area

Time

Wing aspect ratio

Lift-eurve slope

Taper ratio of wing

Leading-edge sweep angle

Generalized aerodynamic force

Normalized generalized force

Normalized generalized force due to dh/dx
Normalized generalized force due to h
Normalized generalized force due to both h and dh/dx
Generalized mass

Ratio of generalized force to mass

Real and imeginary part of 51.1

Dowmwash of the Jjth vibration mode
Chordwise coordinates of wing (see Fig. 1)
Spanwise coordinates of wing
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LIST OF SYMBOLS 1contl

Root chord
Root semichord in aubsonic and supersonic flow respectively
Semispan of wing in subsonic and gupersonic flow respectively

Nondimensional chordwize coordinate, referenced to 1:'0 and 2b
in subsonic and supersonic flow respectively

Nondimensional spanwise coordinate, referenced to g and 2b in
subsonic and supersonlc flow respectively

Angular chordwise varisble (see Eq. 10}

Chordwise location as a fraction of the local chord
Branwise location as a fraction of the span
Reduced frequency = wcrlzv in subsonic flow
Pressure induced by the downwash of the jth vibration mode
Nondimensional 1ift functions used in Refs, 1 and 2
Welghting factors in lift distribution

Weighting factors in downwash distribution

Mach number

Dynanic pressure

1/, tan '\
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L. INTRODUCTION

In apite of extensive experimental and analytical e fforts, the various
aerodynamic effects on flutter stability In the transonic regime are not yet
well understood. Nor, until recently, has there been much hope of delineating
the significance of these effects. With the advent of the NASA Kernel-Functian
Procedures, progress in this direction now seems possible, Although the pro-
cedures are not applicable to the nonlinear transonic regime, they provide
nevertheless some of the first insight into wing=-loading distribution and wm-
steady effects al apeeds in the neighborhood of Mach 1.

By utilizing the Kernel-Function Procedure at frequencies very close to
zero, it is poseible to study first-order unsteady effects. By eliminating
the oh/dx contribution to the downwash when the reduced frequency is not zero,
it is possible to study quasi-steady effects. In this way, the effect of each
characteristic of the aerodynamics can be isolated and studied independently.
It will thus become poesible to know, for example, the relative importance of
the steady-state lift distribution and its subsequent wnsteady modifications.

Thias report is intended to provide a preliminary assessment of the NASA
Kemel~-Pumnction Procedures and the conseguent aerodynamic insight which they
provide. The first section of this report illustrates a method of obtaining
generalized aserodynsmic forces from the results of the Kemel-Function P roce-
dure. The rest of the report compares sample flutter calculations to experimen-
tal results, and an attempt 18 made to explain the discrepancies,

Manuscript relessed by the authors April 1962 for publicmtion gs an
ASD Technical Documentary Report.



II. DETERMINATION OF GENERALIZED AERODYRAMIC FORCES

The generalized force, ﬁia, i1s defined as the "merodynamie work” done by the
_dth mode Of thﬁ m on the !..th mae, 1-30,

WING
(For dsfinitions of h, £, 7, etc., see the LIST OF SYMBOLS.)

A nondimengional generalized force will be defined as follows:
2p,(E,7) a5 a9 (2)
- - B —_———
[T 2@ a2 8
WING
vhere the nornalization is accomplished by dividing by cL (pla)vas = wvhich 1s
' (6]

equivalent to the self-induced generalized force for a unit mode shape.

A, RELATIONSHIP TO SUBSONIC XERNEL~FUNCTION LYF? DISTRYBUTION

The subsonie Kemel-Function Procedure (Ref, 1) expresses the
pressure in terms of a nondimensional 11ft function, L (E,7), os follows:

Qi’.@;ieﬂ i Hg,n) 3 9'- et (3)
(pl2)v %

This pressure amplitude per unit of modeshape 4, apJ(g,n), 18 in terms of the
pressure, Ap(g,'n:t)

ap,(e,n) = £
3 g"ﬂ (q’bo)ei(."
consequently
Ap, (2,0)
> §.’.‘& i "

The root chord of the wing 4s defined as 2b, end the maximy; epan as 24,
Kondimensional ecordinates are referenced to B, and g ag followss

2
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Consequently

- - ‘bo
Lo . Lan (5)

Substituting Equations (4) and (5) into (2) yields the generalized force in
terms of the lift function and the nondimemsional coordinates:

onp 1 8 : .
W I f;: by (8,m) Ly (g, nlasen ©

e
vhere A is the wing aspect ratlo, -(%)—, end g, and g, are the ledding- and

trailing-edge values of ¢.
B. RETATIONSHIP TO SUPERSONIC KERNEL-FUNCTION LIFT DISTRIBUTION

The supersonic Kemel-Fmction Procedure (Ref., 2) relates the
pressure to a 1ift function, L{g,n), as follows:

The root chord is defined ags 2b and the maximum spen as 4bs. Neo-
dimensional coordinates are defined ag

g=E/2d g =/
Consequently

- - 2

g . 2% 4oy ®



Substituting Bquations(7) and (8) inte (2) ylelds for the general-
ized force:

8 .8
Qg3 ® 2 I f Thg,(!an)fﬂa(:m)dﬁdﬂ (9)
8 GL 5 gL
(8 4

c. APPROXTMATE METHCD OF CALCULATING GENERALIZED FORCES

In both the subsonié¢ and supersonic Kermel-Function Procedures the
11t function, L(g,m), is expressed as a polynomial in both coordinates. The
procedures determine those coefficients of the assumed polynomial which best
satisfy the integral equastion for the downwash at a number of "control points" on
the ving, In order to eveluate the gemeralized force it is necessary to (1)
determine the lift function, L, by appropriate combination of the coefficients
with the terms in the polynomial, (2) multiply the result by the modeshape, h,
and (3) integrate the product, both chordwise and spanwise, over the wing.
Because some of the significant terms in L(g,n) are singular at the leading
edge, numerical integration is difficult unless special provisions are made.
Ag sn altermative it was decided to fit the modeshape, h, by & polynomial in
£ and n and to obtain closed-form integrals for the new I~h product. The
detalls of these calculations are presented dbelow,

1. Subsonic Procedure

The Kernel-Function Procedure utilizes an angular chordwise
variable, 9, which is related to g as followsg

+ -
= cos'l 275 x (10)
So - S
Consequently
)
LNe 0
8in8de 8 - £ B dg



and,
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The 11ft function is approximated by an expansicn in both the @ and q
coordinates:

-

b -
idfgm) = 1—)9- 1-n2[zagm ,n“ cot% +zz-2~g—n- 8 'n sin nej (11)
n nmnm

vhere the an.m are determined as a function of the downwash, w,, by the Kemel-
Ranction Procedure. Assuming symmetric spenwise modes and m:ltiplying by the
differential yields

— i :
ia(g,-q}ag = \[1-n® sin G{ZZagm fn(e)nam] ae (12)
vhere
f(e)’ cota, Sine, 'Esmae, %Biﬂ}@.u
By assuming that h 1 (€s1) con be approximeted by the polynomial

AR ZZh@g%"‘P | (13)

and substituting Equations (12) and (13) into (6), qu becomes a series of
basic integrals:

8 51T o[ o e oo
naPg

ﬁ

(14)

Ta
St & Sp-
[ — - 2I'cosoJ asan

For a wing with straight leading- and trailing-edges, a midchord sweep angle
of /\ , snd a teper ratio of )



—z—2ele ek (15)
E.T_;_g-ls.%—tan./\.n-m (26)
0

Substituting Equations (15) and (16) into (14) ylelds en explicit form
for Qi J:

%y = F%ZXZZ a'gn b:p J.:J‘i \IFJ:;E sind fn(g)na(m'*?)
La mnpq 0

[“ﬂ -{1- (20 n} cose“l ! asdn

Expanding [ - {1-(1-{ )n} coae]thice in binomial series results in the
following ;;et of Integrals:

YY}JFZZ ®am cip (-)° e |5]u% (2-3)°"% e Ph, 2(mep)+a-t, s

amnpqat tLs4q
- (17)

n, s fo [ \Jl“'n2 m %, (6) cos® sin o asan

These integrals are evaluated in Appendix A.

Substituting for the Pnrs yields

RIIITIT oy o 2)8) a0

I‘a mrpast
r ‘2!:&!—22219&-11 (18)
(ﬂ(ﬂmg[ﬂ;ll—t T(s,n)
2




vhere T(s,n) is defined in Appendix A.
This expression caa be put partly into matrix form as follows:

"5‘“ ) ‘n | (19)

C"-IP

vhere I‘]qp 1s the sum of the diagonals of the following matrix operation

i (-)t r (2 m+2 +1-t) : - a-‘: ; q-~8 i s
I?’m " Aar 2[m+pa)ﬂ+h-t) (5] (1) 5] ¢ _ Ts,n)| | &

gf.a-

(20)
and s\n -
1 1/2 0 0
1/2 0 1/16 0
RO I EYPRREY - 0 1128 | <8< 4
| 38 0 1/32 o |

2. Supersonic Procedure

The 1ift function is approximated by the following expansion
in the g and 7 coordinates:

LEm) = Y)Y sy N 4 0

)f—,\j (522 & \(eg)PrP) ote.

vhere
Ln (EJT\) =

2 2 ’
\ (ag) -1 (sg @)



Ass grmetric spanwise modes and replacing hi(g,n) by the poiynomial

):.thp 4 yields for Qiﬁ

- LIIDR ], [ ntmntieine -

e TLIL s en

vhere .
K,(=0,1) = -E s2(mp) J': ]':' ;2(m+p)+q+n+1 ‘JT_%"(;"‘P) 2 a

g2(m+p) P(m*-p% )
= 2lm+p)rqm+2 V7 Clmpil)

1.1
%satmwl) ro fo £

end Ky (p 3 = 2(m+p)+a+n ge(mp) \E:@ av &

g2(m+prl) 1 I‘(mﬂ”%)
= 2(mp)+a+l  2(mipr1) V?I‘(nﬂz;l)

Consequently
b o pb g2(mp) Tlmepsd)
T Ge—— A A —— r 2
sy BCLGEZEZ m qp Frion) (o, m+p, q) (23)
2
1 g
where  £0,m,0) * Frodyes ) ST ¢ SEEICNETD
32
2(2(m+p ) +q+h) (mip+l)



Writing partly in watrix form ylelds
2
- .i«_zv 1
%3 oy, Lb% T (2%)

vhere I';P is the sum of the diagonals of the matrix operation

m\wa
P o|s2(mp) plmprare) |
wn V& plmrpel)
n\n

b 4

2 2
- 1 1 ls 8
[2(mp)+q+2 2(m+p)+q+3 2(2(m+plqr3) (vp+l) 2(2(mtp)+a+B) (m+p+1)]
L .

[agm } (25)

In order to evaluste Q 3 in Equations (19) and (24) it is necessary to obtain
agm s the coefficients of the lift-distribution polynomial, as a function of
the wing-dowvnwash distribution. The wing-downwash distribution is given as

(xy) on
‘-’d—:-i = 5l (1) + 1, (5y) (26)

vhere k is the reduced frequency., Calculating the downwash according to Equation
(26) and substituting into the Kemel-Runction Program ylelds the al . The
corresponding Qi 3 ere defined as:

= (k) = k) + ix
%, Qeﬁ a%( ) + 1K th(k) (27)



Expanding in powers of k ylelds

2
1%
Q.=Qq. +1ikQ: -|-(—71 + epa (28)
13 = %, %1.1 21 Qﬁn

where

%" %y,

» = Qb +
%" %y, Ny,

¢ = Qo + Qe ete,
%, %, %,

In order to evaluate the various generalized force contribu-
tions, 1t 1s necessary only to substitute the appropriate downwash contribution
of Equation (26) into the Kernel-Function Program and to utilize Equation (19)
or (24). The location and number of control points used for the evaluation of

a.gm and b;'P will be discussed in the following section.

IIT. EVALUATION OF FLUTTER CHARACTERISTICS FOR A UNIFORM T0° DELTA WING

In this section® Cantilevered 70° delta wing made of aluminum, heving a
root chord of 4 ft and a constant thickness of .128 in,, will be analyzed. The
vibration modes are given in Table ). These modes were taken from Ref. 3, in
which the wing has a root chord of ) ft and a thickness of .032 in., Conseguently,
while the modes are similar, the frequencies of Ref, 3 are four times those en-
countered here.

A. APPROXIMATIOR OF VIERATION MODES

Before any evaluation of the generalized force can be made, the
downwash distribution must be computed for each mode. If the wing is presumed
to oscillate at a frequency, w, the relation for the downhwash is

10



W dh

o

A=+ 1kn,
where k is the reduced frequency mcrlev and wcrN in subsonic and supersonic
flow, resnectlvely.

The generalized force resulting from dh d/ax is defined as

Q, » vhereas the term resulting from hj is defined as Q’h « Ths h,j com=
13 i

ponent of the downwash is directly obltalnable from tiie modeshape data

in Teble 1. ‘The dh J/ax compopent is obtained by numerically differentiating the
data in Table 1 with respeet to the nondimensional chordwilse coordinate. The
result is presented in Table 2 for the same chordwise and spanwise locations.
Each table gives 46 values of downwash contribution; the Kernel-Rmction Pro-
grams, however, allow for only asbout 16 downwash values or "econtrol points."
Since the major generalized force contributions normally come from the outboard
portions of the wing (inboard contributions are doubly small because both the
1ift and modeshape values are small), downwash values wlll be utilized for the
16 points corresponding to (x/e) = .25, .50, .75, 1.00; (¥y/z) = .3, .5 .T, .9
The coordinates (x/c) and {y/y) represent percentages of the local chord and
semispan respectively. The former corresponds to x in NASA's subsonic Kernel-
Function Program.

The modeshapes and derivatives in Tables 1 and 2 can be utilized
directly in NASA's supersonic program. For the subsonic program, however, the
derivative

(3n/3%) 2 {1— (m)] M/ (29)

Ref. 1~

is used ag an input.

The input cocordinates in supersonic flow are referenced te the wing
apex as follows:



v =ely/2) (30)
and

X= [1-(315)] (x/c) + (yl2) (31)

In subsonic flow, the coordinstes {x/c) and (y/p) are used
dimctly.

After the corresponding B‘gm terms have been evaluated it is
necessary to epproximate the modeshape h, (e,m) vy a least-squares polynomial
before Equations (19) end (24) can be used, Specifically, this involves finde
ing & surface, 1'1i =Zz bcilp gqnep, for which the sum of the squared differences

Pag
between the modeshape values and the surface are & minimm, The coordinates

gand 1 are defined in terms of (x/c) and (y/2) as follows:
1. Subsonic Flow

g=2 [1'(7/1.)] (x/c) + 2(y/g)-1; n = (y/3)
2, Supersonic Flow
g = [1'(2!/3)] (xfe) + (y/1); n = s(y/e)

Assuming both q and p range from O to 3, the least-squares solution

i
for bqp is . B‘Q’p ) _:: N
9P ’ ’
1
o 1F(s+q, r+p) {o,6e,0}
where v t v
B - 8 < -
6, (6,7} | = Lgt° | [hi(gt"”t)i “terj




»
s1q TV . e E ¥

F(s+q, r+p) J = gtﬂq nte(l‘ﬂ’)

The subscript, t, refers to the 46 coordinate locetions and mode-
shape values given in Table 1. The ahbove operations involve considerable re~
organization of metrix slements; consequently the procedure has been programed
on the IBM 7090. The b;'_p corresponding to the subsonic coordinates are pre-
gented in Table > for the first three vibration modes of the wing. The corres-
ponding supersonic b;'p can be obtained from the subsonic matrix by using pre-

and post=-miltiplying trensformation matrices as follows:

-— - -

- i r1=-1 1 17
| o 2-4 6 1/s2
bi | = 4 bi k
Puper. 0 9o - 12 Pgub. /s 6
o 0 0o 8 1L 1/e" |

B, EVALUATTON OF GENERALIZED FORCES

The downwash corresponding to the modes in Table 1 has been inserted
into both the subsonic and supersonic Kernel-Funection Procedures. In the
former case, &ll results satisfy the necessary reversibility conditions to
within 10% (e.g., the generalized forces, thd' in forward flow are equal to

those in reverse flow, with the modes interchanged). Moreover, the stability
derivatives for translating and pitching modes agree well with those of other
formulations. The supersonic Kerstel Fumction, however, did not meet with

such success. In fact it was not even possible to obtain a reassonable value
of CLQ with the control points selected. By choosing control-point locations
primarily on the inboard porticn of the wing, am accurate estimate of CL can

a
be obtained; however, this selection of control points fails completely to

13



reflect the rapid downwash variations on the cuter portlcn of the wing. This
conclusion wes confirmed by a letter to Aerojet-General from NASA, who agreed
that the supersonic Kernel Functicn was not yet in & form to handle the mode-
shapes analyzed here. Accordingly, all remaining caleulations will be per-
formed for subsonic speeds only.

l. 81-8t An i

In order to assess the importance of transients, generalized
forces and flutter conditions will be computed for quasi-steedy, first-order
wmesteady, end general unsteady flow conditions.

For gquasi-steady flow, the reel part of the generalized force
is obtained from the agm correeponding to the downwash, Bhalbx, when the reduced
frequency parameter, k, is zero. The imaginary part of the generalized force
is obtained from the agm corresponding to the downwash, kh 5 divided by the
reduced frequency kX, 1n the limit as k approaches zero. All of the a.gm are
given in Appendix B for Mach number 0. The resulting generalized force matrices
ayre defined es Qai and Q.hi respectively. The former corresponds to steady-

state effects, the latter to quasi-steady effects,

In flutter analyses, whenever the generslized forces are en-
countered they are divided by corresponding generslized messes., Accordingly,
from now on the ratio of the generalized forces to generalized masses will be
given. For the wing analyzed here, the mass density is a constant and the
generalized masses (normalized by the total wing mass) are nothing more than
the h,-h, products Integrated over the wing. The results. of the double

id
numerical integration for the three modes of Table 1 are given below:

n ]= [hi] [m/m] {ha] = |.0000 1430 - .0321l (32)

[ ”.O’Tl&l .0000 .0103]
¢0103 - .0521 121.15_

14



If' the modes are to be orthogmal, the off-diagonal elements
should be zero. It 1s apparent, hovevey, vhen the third mode is involved, that
the numerical integratfon of the modeghape products over the 4b control points
is somevhat inaccuratee Murthesmore 1f k6 eontrol points are insufficient to
accurately evaluate the generalized masses they will be even less sufficient to
evaluate the gegeralized aerodynamia forees. In spite of the inaccuracies,
calculations will be made, henceforth, for all three modes; third mode effects,
however, wlll be regarded as qualitative in nature,

The retios of generalized forces to messes are defined as

[Ezm] - [ﬁ }'1 {Qn] (33)

Off-diagonel elements of the m matrix will be ignored in all

follows:

ealculations.

These matrices have been computed by using the NASA Kernel-
Function Procedure and Equations (19) and (24). Both the real and imaginary

parts, §, and §, sare presented in Appendix € for Mach numbers O, .5, .7,
1
.8, end .9.

2. First-Order Unste sis

Here, in addition to the quasi-steady teyms, the first-order

unsteady ternm, 5& s 1s also included. While no change results in the real
1)
part of the Qi 3 metriz, the imaginary part is now the sum of the quasi-steady

and first-order unateady terms - that is, Qé Q‘h Qu Consequently the

necessary a'nm are obtained for the downwash ah Jlax + ikh : :I.n the limit as k

approeches Zero,
B General Unste Flow is

. Here the reduced frequency of interest is substituted directly
into the NASA Kernel-Function Procedure. Both the real and the imeginary

15



part of the generalized force correspond to the downwash ahjlax + 1khJ. The
imaginary part, however, is divided by the reduced frequency as before. Con-
sequently these values will reduce to the first-order unsteady ones &s k
approaches zero.

c. EVALUATION OF FLUTTER CONDITIONS

In performing the flutter anelysis, only the first two wing vibra-
tion modes will be considered. The accuracy of higher-order modeshape caleula-
tions is dubious; furthermore thelr effect is of second oxder for the type of
wing analyzed here. In addition, the effect of structural damping 1s ignored.

The flutter determinant yields the following two equations (this
result will be derived in an ASD report to be published early in 1962):

(f_f. S [_;_ ...(lﬂ 3
@, 5 ) B,

e o s, »

I+
F"'__—__-IA

' 2 ~ 2
) iy [ | b (10,
Wy 1, "o, | Te2 (% In 22
e d +& & (35)
(%12 Iy * %Ry "12)
where y,0, 80d w, are the vibration and flutter frequencies, ﬁR and Q,

1) i)
are the real and imaginary parta of the generalized force-~mass ratlos, and j

is a flutter dynamic-pressure parameter defined as



X = 2
ln0 c:' "’2

where 9 is the dymamic pressure at flutter, B is the wing sarea, By its mass,
and c., its root chord.

The following values will be used in the calculstion

oy = 18.7 cps
wy = 43,2 cps
S=2.98q ft
c = b4 £t
T
my = .161 slugs

Except for & factor of 4 in the model size and frequencies, these correspond
to the values encountered in Ref, 3.

The simultaneous solution of Bquations (34) end (35) for ) is given
on page 18, followed by the corresponding solution for the frequency.

17
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1.  Quasi-Steady Analysis
For quasi-steady flow Q, ——— Q and 15, — kq
QRiJ %3 Tis *ny

Consequently, the real and imaginary part of the Qi 3 matrix in Equations (36)
and (37) can be replaced by ﬁu and 5‘h respectively. These values are
k) 1)

given in Appendix III, When substituted into Equations (36) and (37), the
following flutter dynamic pressures and freguencies are obtained for various

Mach numbersa: Mach Number
0 0.5 0.7 0.8 0.9
Dynamic pressure (psi) 560 550 545  sk5 570
Frequency {cps) 238 238 237 235 232

The dynamic preseures and frequencies are plotted as a fune~
tion of Mach number in Figures 2 and 3 respectively. Results are compared
with the experimental data of Ref. 3. Also shown in the figures are theoretical
values obtained from piston theory, modified piston theory (adjwted for the

correct Cp }» the first-order unsteady Kernel Function, and the general unsteady
o)
Kernel Function.

2. Firgt-Order Unsgte is
As in the quasi-steady analysis QR - ﬁa ; however,
i} 1)

&. /k now becomes Q2 = ﬁh + Q@+ . The first order term in k now includes,
e (0]

1j b Iy} i 1) 5

in addition to the quasi-steady term due to h, an wnsteady term dve to <= .

The latter effects are similar to those of C., 6 and CNB: in two-degrees-of freedom

flutter. &

I

Values of éé are also given in Appendix ¢ ; when substi-
i

- J
tuted together with Q, into Equations (36) and (37), the following results are
obtained at flutter. 19
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Mach Number
0. 0.5 0.7 0.8 0.9

Dynamic pressure (psi) 565 645 705 THO 55
Frequency {(cps) 238 228 219 212 199

These results are also presented in Figures 2 and 3.
3. General Unst Analysis
Here, the real end imaginary éi y QR and ﬁI , which are
iy i]
glven in Appendix ¢ for the reduced frequency (k = .6), can easily be sub-

stituted directly into Equations (36) and (37). These results are presented
belOW for k= 05, .6, and 0750

Mach Number
Reduced Frequency, X = .5 L. %5 07 208 0.9
Dynamic pressure (psi) 550 615 685 710 735
Frequency (cps) oh1 232 221 212 198
Reduced Frequency, k= .6
Dynamic pressure (psi) 515 610 675 705 720
Frequency (cps) 2y 232 202 212 198
Reduced Frequency, k = .75
Dynamic pressure (psi) 530 600 660 690 690
Frequency (cps) 2h2 232 223, 207 194

These results are used t¢ calculate the flutter conditions
for the flutter reduced frequency; these are alsc shown in Figures 2 and 3.
It is apparent from the figures that unsteady effects above the first order
have only a minor influence on the flutter conditions. There 1s a significant
difference, however, especially at the higher Mach numbers, between the first-
order wsteady results and the quasi-steady results. Most of this difference

20



iz a direct result of the radical differences in the 2,2 elements of the
generalized-force metrices. For the firgt-order unsteady case, 59 becomes
22

very large with a change in Mach number, whereas ah varies only slightly. The
22

effect of the large Ele is to increase the flutter speed. The experimental
22
dela, however, indicate that the quasi-steady flutter-speed predictiona are much

superlor to those of unsteady flow. It appears that the large transient effects
predicted by linearized theory in the transonic regime are not actually realized.
Compariscons with the experimental frequencies further support this thesis.

It should be remarked that the pilston-theory predictions shown
in Figures 2 and 3 produce only an apparent agreement with the data for sub-
sonic Mach numbers. For this particular wing, radically incorrect values of
the lift-curve slope and aerodynamic center compensate in such a way as to

approximate the actual flutter speed and freguency. When the proper CL is
o
used (this would be required for the simple modes of & pitch~roll coupling

analysis) highly erroneous flutter conditions are predicted.
v. CONCLUSIONS

A method has been described for utilizing the NASA Kernel-Fumction Pro-
cedures to determine generalized aercdynamic forces and the subsequent flutter
conditions, The subsonic procedure was found to work quite well; all resulis
satisfy the necessary reversibility conditions to within 10%; in addition the
stability derivatives for translating and pitching modes agree with those of
other formmletions. The supersonic procedure did not meet with such success,
For the wing and modeshapes encountered in this report, it was not even possible

to obtain a reascnable value of CL with the control points selecied. By
o
choosing control-point locations primerily on the inboard portion of the wing,

an accurate estimate of C., could be obtained; however, this selection of

1L
(o}
contrel points cannot reflect the rapid downwash variations on the cuter portion
of the wing. This conclusion was confirmed in a letter from NASA to Aerocjet-

General, which stated that the supersonic Kermel Function was not yet in & form

to handle the mcdeshapes encountered here.
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A flutter analysis was performed on a uniform, centilevered, 70° deita
wing using the NASA subsonic Kernel-Pupetion Procedure. Three sets of analyses
were performed for a range of subsonic Mach numbers. These included e quasi-
steady enalysis (all transients neglected), a first-order unsteady analysis
(includes transients up to the order of k), and a complete wnsteady analysis
corresponding to the reduced frequeney at flutter. The following conclusions
were reached:

1. The firet order approximation, which assumes that a power-series
expansion of the unsteady effects is valld, ylelds, for this wing, flutter con-
gitions in the high subscnic range which are very close to those of the complete
unsteady analysis,

2. The quasi-steady analysis differs significantly from the first-order
or general unsteady analysis at the higher subsonic Mach numbers. The primary
reason axises from the large & effects which are predicted by linearized theory.
The damping normelly resulfing from these & effects is not present in a quasi-
steady enalysis, and thus the latter will lead to lower flutter-speed predictions.

3,  For the 70° delta wing analyzed in this report, the quasi-steady
analysis gives the best correlation with experimental flutter results.
Apparently the actual transients may not be 50 large as those predicted by
linear theory. Consequently, the use of an indicial function or power~series
representation of the aerodynamics seems quite reasonable for this type of
wing planform. Furthermore analytical or, better, experimental steady and
quasi-steady aercdynamics seem to provide a significant portiom of the actual
serodynamic effects on flutter stablility.
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AFPENDIX A

EVALUATION OF THE INTEGRALS Pors

The following set of integrals was encountered in the formulation of
the generalized force:

lex 2 r C]
Pn“_foj.o \Jl-n 1" £ (8) cos®@ sin 6 46 an

» (@ Iei
n() 2

_MLopn 2 r 8
Pre ofa \,111 w cos®® (1 + cos 8)ad dn

Consequently
2

% f_‘_(_rjgi-_lf.?) r{s/2+1/2) vhen § i even
Vxr (xf2+2) Nx pls/241)
Fors =
2 L(rfo+1/2) ois/2+3) vwhen s is odd
\x r{r/2+2) \Ft- r{s/2+1+1)

For n > 1, £ (e) = L ginn 8 = b cos{n-1)8-cos(n+1)8

221’1 2&1 2sing
P = 4 [l [“ \];_2_ ® {cos(n-l)e-cos(n-a-l)e} dedn
nrs © 2l |y g T

ek



Cos®® can be expanded in series as follows:

¢2s°9 = ET:'T (cos 80 + geos(s-2)8 + ( 32) cos(s-4)6 ....)

Consequently, Pﬁrs 1s zero except when n = s+l, s-~l, s-3, ete.

2 '
When n = s+, B, = 2:+s+1 L&IM ’
2 \x pr(x/2+2)

nx? r{xr/2+1 .’2).

nrs 22!1+3+1 \rﬁ— r(x/2+2)

Whenn = 8-1, P

P - ns:\'.2 r{ f2+1!2) .
nrs 2&14—34—2 \E.I‘(r /2+2)

5
B
2]

= 5_3’

For a given r the matrix for Pnrs can be written as follows:

AL —
b 1/2 0 0
r+l 1/2 0 116 0
Pye = %E 1‘( g 7{s,n)
r{z/2+2) 1/2 1/8 0 1/128
13/8 0 1/32 o
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Quasi-Steady Case {k — 0)

J — ey »
Real part of & (w = ahdlax, k= 0):

.00123
-.01962

.2007L

.00960
-.12993
11640

.57116

19687
-.21401
-1.71909
39440

APPENDIX §
VAIUES OF LIFI DISTRIPUTION WEIGHTING FACTORS FOR SUBSONIC FLow (M= 0)

M= 0 (cL = 1.T94)

02706
-.05382
- .96989

~1.36891

0.06602
- 36206
1.44379
~5.35124

=-. 92707
2.87112
3. TH036
=10.25557

a

nm

a
nm

mode 1

mode 2

. 22806
325k
2.80800
3.01800

- 018883

1.39147
-6.kok12
22.15495

1.08853
~L.63879
28, 52781
19.38552

20683

- . Jool8
-1.95752
-1, 94458

.15710
-.95197
5.15996

-20.387k3

=.11232
1.64k6g
-2k, 58241
=T.51705



Imaginary Part of a.gm:

&m mode 1
-.00070 .00k17 -.01252
- . 00027 -.01250 02727
.007h1 -. 03437 .O4T06
00912 -.02131 ~.01069
a’nm mode 2
-,00145 02257 -.05576
.00107 -.04792 .11339
.0275% -.08816 < 20063
00646 - 24977 .91857
a'nm mode 3
~.00303 .00100 -.00139
L0007k -.00L53 -.00259
,01849 -.01815 ~-.00298
-.14939 .10584 .00908

First Order Unsteady Cage (k ~= 0)

Real part of a.gm (same as quasi-steady case).

J A4
Imeginary part of & m’

& rode 1
- 00077 .00k93 - 01366
- .00066 ~-.01764 .0398%
. 0109k -.04011 06394
.01045 - 00906 - . 06692

L01lhg
.01639
.03042

T

03622
107315
16219
. 75926

00415
00032
05440
10722

00767
-,02178
-.02128

07707



-,00118
-,00075

LOl5k3
-.00530

-,00628
.012681
.03029
+30396

02790
-.07292
-.11984
- 36459

05924
-.13010
-.73551
- .80068

Generel Unsteady Case (k= .6)

A value ofk = .6is selected merely as & representetive case. The actual

g  mode 2

nm

a
nm

mode 3

v 07282
17877
L2408

1, k564

-.15383

-36949
1.70590
-. 34388

+05166
-.21530
-.21028
-1.,21736

10329

- . 26883
-1.00830
1.08629

flutter reduced frequency varles coneliderably with Mach number.

Real part of agm:

.00125
-,01834
02356
20788

-00893
-.12981
1187k
62966

+19733
-.237h6
-1,T716k
. 29564k

.02488
-.04363

-.97595
-1.37260

- .06022
- 37300
1.38198
-5.48626

- 96379
2.97496
~3. 57096
-10.25408

g8
nm

e
nm

&
m

mode 1

mode 2

mode 3

-.22411

L1669
2.84633
3.00610

- 18595
1.k2785
-6.20658
22.21595

1.13792
-4, 78319
28.49689
20.01111

.2olko
~.39673
-1.98638
-1.9319%

«15191
~ 97T
5.11130

-20.36997

~.13k51
1.70721
~24.68612
-8.08395



| =Y

Imaginary pert of 8ot

am mede 1
02956 -, 08170
~,10570 23865
- 29394 58238
~.05232 -.40519
& m mode 2
.16509 -.43418
- U3557 1.067h2
-.TLT51 1.148607
-2,18586 8.65321
&m mode 3
36086 - . 92863
- .78606 2,22856
=4,39795 10.25147
-4, 78034 -2.05758
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APPENDIX C

RATIOS OF GENERALIZED AERODYNAMIC FORCES TO MASSES (Qij)

QUASI-STEADY CASE

A,

Real Part of 6,” = (éa )

M=0 (CL = 1.79k)

T3
-6k

07

1031
"nl“'O
.17

T3
- .6k
.08

1.964)

"12!35
2.11

11.4%6
2, bk

'3-97

M= 07 (CL = 1'912)

071"‘
-.65
009

a

7.78
-3,16
1.47

M= ,9 (cL = 2.043)

1]
M= .5 (c:L = 1.848)
)
7.62 -
'3019
1.k2
T3
-,57
.12

"!".28

Imaginary Part of Qijlk = (thj):

o4
7.% "]_1.10
"3021 2-%
1:37 -3'83
M= .8 (c =
LG
T4 7.9
"-66 -3.15
«10 1.52
B,
M=
1.77 2.76
I55 -12
3k -1.03
M= .8
1.39 2.06
=37 .67
19 35

1.33
-39
17

6.57
-1.91

-1.56

M = !5
1.85  3.57
.58 ".29
35 ~1.15
1.4k
'-3!4'
.20

e
8.08

'3-07
1.59

-13,07
1.82
-l b7

10.2%
~3.58
‘lo%

-11.9%
2,2
-4k

k.96
~1.05

«1.35



II. FIRST-ORDER UN CASE
A, al P r£q,.:
Re art o Q:LJ
This is the sams as for the quasi-steady case,

B. Imaginary Part of Eszk = @ ):

iJ
M= 0 M= .5 = .7
1.52 2.59 -1,31 1.55 2.60 -1,07 1,59 2,61 -.T3
-.51 S 2,67 -.48 1.00  =3,27 -4 1.39 -b,15
.21 .58 b3 .23 61 .55 27 .65 .80
M= .8 M= o9
1.63 2.63 -k 1.7 2.72 .03
-.h0 1.76 -5,04 -.32 2.53 -6.87
.30 .65 1.12 .36 .58 1.95
IIT.  GENERAL UNSTEADY CASE (k= .6)
A, Real Part of Qid=
M= 0 M= .5 M= .7
.65 7.34 10,48 .66 7.50 =10.86 .68 7.72 -11.%0
- .63 =3,23  2.17 -.65 -3,25 2,0% -.69 -3,27 - 1.81
.06 1-36 '3099 -07 l.ll'l "h'.l? .08 1. 51 -ll».,’-l-'j
M = -8 M = 09
-69 7.93 -nogj 073 B.Bh‘ ‘lznm
-. T3 =3.28 1.54 -.80 -3,10 L7
.90 1.63 4,76 .16 1.96 -5,39

n



1.50

21

B.
M=20
2.81

63
27

1.63

'059
2

Imaginary Part of qijlk :

'2-05
'202“‘

'h?

M= .8
2.9%0

1.73
66

1.5k
'lh?
-2k

-1028
-4.67
1.27

M= ., 5
2-8“' 'l-&
089 '2.81
.61 '60
.72
-.24
Ja

32

.50
'oh'j
.28

2.8k

2.73
34

M=.7

2.%
1.29

'-53
-6.68

3403

-1.59
"3-71
-87
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TABLE

COEFFICIENTS OF LEAST-SQUARES MODESHAFE APPROXIMATION

,01539
00431

-,00216
03949

- 06001
-.02361
10633
14116

.ol2ho
. 30378
-.33282
-.36186

Subscnic Coordinates

h, (g,n) =

01422

1.38883
1.95035
-1.56259

-3.33158
-3.24789
6.681498
2.88379

-13.53513
24 . 02Lho
36.75225

-51.98k92

3

%
)
’ i

3

Y gt

=0 g=0

b

b

b

qr

ap

mode 1

1.50484
-5.40598
2.76856
-.36290

mode 2

-2,09701
8.75556
7.88875

~19.12408

node 3

69.81547
-176.59983
40.53501
76.58353

25

-3.6T437
1kh,22918
-16.,40708
6.52124

22.31879
-64.86269

52.98765
'8-11"605

-122,22163
Wik, 16787
-b71,321k
143.28380



A. Subsonic Flow

———— O ———.?

pg———

i

B. Supersonic Flow

i "'YJ'ﬂ

2b

Pbs‘.l

x, &

Figure 1. Coordinates and Dimensions Used in Kernel-Function Procedures
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