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ABSTRACT

A vibration analysls of very complex dilstributed systems
by exact methods 1s usuwally impracticable, and numerical methods
using the large computers now avallable are indicated., The use
of numerical methods 1s roughly equivalent to using & lumped
system, but in problems of acoustlical fatigue the relatively
high frequencies involved may require & rather large number of
masses.

The purpose of the presentation is a discusslion of the
appropriate number of masses {or subdivisions of the structure)
necessary to obtain a sufficient approximation of the struc-
tural response. The matter wlll be considered for longitudinal
and bending vibrations (including shear effects) of linear
elastic and viscoelastic members.

I. INTRODUCTION

The forced vibrations of a beam or plate of simple geome-
try, Figure 1, can be determined from the differential equations
of the continuous system without difficulty, even 1f the mate~-
rial exhibits linear viscoelastic behavior., On the other hand,
1f the geometry 1s complicated due to many irregular spaced
supports and/or variation in mass, Figure 2, a lumped mass
approach or eguivalent numerical methods may be advantageous
because the treatment of the continuous system becomes too un-
wieldy.

To be able to replace a continuous system by a lumped one,
it is necessary to have criteria to decide how flne a mesh of
masses must be selected., This depends not solely on the system
but also on the ran%e of frequencles of interest, as may be seen
from Figures 3 and 4. Figure 3 shows a simple beam under an
osclllating load of low frequency (below the first natural fre-
quency) when the response has no nodes. At high frequencies,
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on the other hand, Figure 4, many nodes will occur. In the case

of Figure 3, a replacement of the beam by as few a5 3 masses might

give reasonable results, but many more are requlred for the case
of high frequency, Figure 4.

One can conclude, therefore, that the number of lumped
masses required is frequency dependent, and that the high fre-
quencies of interest in acoustic fatigue problems may require a
large number of mass points, much larger than those required in
flutter analysis in airceraft design.

To obtaln rational criteria, the case of longitudinal vi-
bration of elastic and viscoelastic bars 1s considered in detall
as anintroduction. The results are thereafter generallized for the
more interesting case of bendlng vibrations, allowing for shear
effects.

II., LONGITUDINAL VIBRATIONS OF BARS

Conslder the bar of unit area shown in Figure 5. The co~
ordinate x defines the original poslition of an element, the dis-
placement of which 1s u, Let the stress be ¢ (positive if ten-
sion), while the straln is* ¢ 8 u', and the equation of motion
off an element of thilckness dx becomes

f{i = gt Equation (1)

For a linear viscoelastic material the relation between
stress o and straln € will be of the form

L{e) = s{o) Equation (2)

where L and S are in general differential operators; for a Max-
well Body

Al

-5 O )
LeE$ e 5=Lo4

where T 1s the relaxation time and E an elastlc constant, while
for an elastic materdial

L=E and S =1 Equation (3a)

* Primes and dots Indicate differentiation with respect to the
coordinate x and time t, respectively.
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Taking a derivative of Equation (2} with respect to x
and noting € = u' gives

L{u") = 5(o')

Performing the operation 8 on Equation (1) results in
fS(ﬁ) =z S(ot)

and therefore
?S(u) = L(u") Equation (4)

which is the general differential equation for vibrations and
wave propagation. Boundary conditions for u can easily be
found for any partlcular problem.

Conslder now cases of harmonic vibrations such that the
displacement u(x,t) may be written

int

u{x,t) = U(x) e Equation (5)

The operators {Eq. 3) for the Maxwell Body become

L = ELA and 8= i+ = Equation (6)

and the differentlal equation (4) may be written
a0 + U" = 0 Equation (7)
where )
2 . E 2.0 - ,
¢t = and a‘ = —;7—(1 .nx)Equation (8)

The general solutlon of Equation (7) is

i

U= Cl e ax + 02 efia'x

Equation (9)

such that the time dependent displacement u becomes

in a
(¢ - I{-x)

Equation (10)

The two terms represent the famaliar waves progressing in the
direction of the positive and negatlve x~axis, respectively.

in
us=0C; e (t+ 5% X) + Cp e
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It 1s noted that 1n a viscoelastic material a 1s complex and the
waves decay, while for the elastlic case a is real and no decay
oCCUrsS.,

Having found the sclution for the case of a continuous bar,
we can proceed and replace it by a lumped system, Flgure 6, and
compare the solutions. Instead of obtalning the equations of
motlon of the physical system shown in Figure 6, we can use a

urely formal approach and replace each derivative in Equation
?7) by the appropriate finite difference expression:

sl "%y Dt 7 2 U en

h he

Eq. (11)

where h l1a the interval. Instead of the differential equation
(7), we obtain thus the finlte difference equation

Upeqa -[2 - a2p?] U + Uy = © Equation (12)

where & 18 defined by Equation (8). The theory of solution of
such equations 1s well established.* Equation (12) has constant
coefficients and 1ts solution may be written in the form of
trigonometric functions

U, = Sin B8 k Equation (13)

To express the functions Uy of k by U(x), let
Bk B ahk = &x Equation (13a)

because hk = x, Figure 6.

Substituting Equation (13) into (12) one obtains a condition

for B

a2h2

cos B = 1 - 5

and vecause of (13a)

a2h2

5 Equation (14)

cosmh=1-=-

* Jee Karman and 3lot, Math. Methods in Engineering, MeGraw Hill
Book Company
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If the lumped mass solution is a reasonable approximation
of the true continuous one, a found from Equation (1#) must
differ only little from the actual wave number a such that we
can ask for the error E defined by

2 = a(l + E)
Substitution in Equation (14) and expansion of the cosine

in a power series, permissible if E€{ 1 and ahd€ 1, glves the
first approximation for the error

2,.2
jolfa 4 9—2%%— Equation (15)

It is possivle to Interpret this result in a quite ele-
mentary manner., If the lumped mass system, Figure 7, is to
represent the displacement U, Equation (9), one may write

U= Cy elax 4 C, e ~lax = ¢ sin (ax +?) Eq. (16)

21
The period of the sine belng W it is obviously necessary
that the spaclng be much smaller than the perlod. Thus

2T
h &K - Equation {(17)

Computing h from Equation (15), stipulating E€€ 1 gives

h((__.‘/_z_i
Vel

which is equivalent to Equation (17).

If the damping is small, i.e.,NAT {{ 1, then a according
to Equation (8) may be spproximated by

a v -r_.':.: Equation (18)

and (17) becomes

h ¢ 3}{5 % Equation (19)

where f 1s the frequency and ¢ the phase velocity of the wave,
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III., BENDING VIBRATIONS

As the derivation of Equations (17) and (19) did not specify
wave propagation in bhars, one can expect that these two condi-
tions apply quite generally, l.e., for bending vibratlions. They
def'ine the mesh disftance h as function of elther the wave number
a@ or of the phase velocity ¢ and frequency f. To obtaln more
accurate information on the error E for the case of bending, the
cases with and wilithout shear effects were also studied. The
respective dlfferential equations for elastic bending are:

E r2 ylv 4 fy = 0O Equation (20)

where r -VI/A is the radius of gyration. If shear deformations
are lncluded, the differential equatlons are:

E rZ\f"+ k G(y! -\y) - ?r2ip= 0

%k G(y" -\lJ) - fy’ =0 Equation (21)

where k 1s a coefficlent depending on the cross section (for
rectangles k = 5/6),

Equations (20) and (21) apply also to viscoelastic mate-
rials provided E and G are consldered as appropriate complex
quantities.

The solution of (20) and (21) leads to characteristic
equations having four roots (wave numbers)

tag and 4y Equation (22)

from which the complete solution is constructed.*

Conslidering the lumped mass system, one can again obtain
the finlte difference equations and solve for the approximate
wave numbers a . One flnds that the latter are obtalned from
equations similar to (14),

cos Rh =1~ h2 a? Equation (23)
2 1,2

* In the elastic case @ » s 161-1.
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such that the error E 1s again glven by Eguation (15)

a2h2
24

E

Equation (15)

As the lasgest error 1ls of interest, the larger of the values
a% and af must be used in Equation (15).

To facllitate applications, Figure 8 gives a non-dimensional
plot of @¢ and “2 for shear beams of rectangular section k = 5/6
and also “for k =°0.1 (which would apply for an I=beam or sand-
wich panel). Figure 8 also glves the value of af if shear is
neglected, indicating that this is permissible only at very low
levels of the parameter rfl/cj.

IV. PERMISSIBLE ERROR E

We have obtalned an expression for the error E In the wave
numbers &, To declde the permissible magnitude of E 1t is
necessary to consider the effect of an error E on the error in
the displacements or stresses.

The geniﬁﬁl expression for any physical guantity is a sum
of terms C.e X, and if we specify that the error in each term
shall not be more than a certaln number per cent, 100 A, we can
compute E, In deing so, the length of the element L enters,
because 0% x4 L. Substituting &= ol + E) into each ex-
ponential term

lax , lax+ laEx _ . ia.x[l + IQ Equation {24)

If af x¢{ 1 the term el @ EX pay pe expanded, glving
A = iaEx

The largest value of the error A occurs for x = L, and its
absolute value 1is

max IAI = E\alL

such that

permissible E = AT Equation (25)
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where A 1s the desired maximum error.

If the overall length L of the structure is very large, the
permissible error E becomes very small and Equation (25) is very
severe, If the structure is long, and damping 1s present, the
condition (25) may be relaxed by requiring that the error at any
point shall be smaller than a stated percentage, 100A, of the
largest value of the term C el®*X anywhere. (The error will then
be less than 100A% where stresses are large, but may be larger
where they are small).

Selecting the direction of positive x such that el&X
decreases with increasing x, the largest value of |el®X] in the
range 04 x£1, occurs for x = 0, and 1s unity. Instead of Equa-
tion (24) we have then

eldx = ol&x . A Equation (26)

Substituting @ = a(1l + E) and expanding one finds

A = el®X (ig Bx) Equation (27)
The absolute value of A is [noting'a= R(a) + 1 IM(ui]

ja] ® e~x Im(a) g gx Equation (28)

and the maximum value of A} absolute occurs for x ® 1/Im{a)
if this value x {L. Thus

max }al = _E Jal_ Equation (29)

The permissible error E 18 therefore in terms of the prescribed
error A

E = Equation (30
|a| q (30)

Equation (30) i1s to be used only 1f it glves a larger value
than Equation (25).
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