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ABSTRACT

This report presents results of a study on elastic-airframe dynamics that
are important from the standpoint of flight control system design. Approximate
transfer functions are given in literal terms for three classes of wvehicles.
These are of such a form that the important poles and zeros are related directly
to simple functions of sercdynamic, elastic, and inertial properties., The aero-
elastic correcticns required to account for the flexibility influences of all
modes not included in the equations of motion are discussed, and a rigorousg
method for applying these corrections is presented.
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LIST OF SYMBOLS

B3 Constant coefficient

843 L%ft at the 1/4 chord of the ith aero@ nanic surface due to unit vertieal
displacement of the 3/4 chord of the ™ surface (1b/ft)

[a] Metrix of ajj's

Ay Root locus gain of w/& transfer function (ft/sece)

Ay Root locus gain of 6/5 transfer function (rad/sec?)

A Root locus gain of £./5 transfer function (ft/sec?)

bij Constant coefficient

bij Lift at the 1/4 chord of the ith aerodynamic surface due to unit rigid
rotation of the chord of the Jth surface (1b)

(1] Matrix of byj's

B Polynomial coefficient

c Iocal chord (ft)

Cege Center of gravity

c.p. Center of pressure

cps Cycles per sec

Cij Moment on the ith aerodynsmic surface due to unit vertical displacement
of the 3/4 chord of the jth surface (ft-1b)

Eﬂ Matrix of cij's

C Polynomial coefficient

¢ Centerline

Cij Flex%%ﬁlity influence coeffi?ient g?ving the physical digplacement at
the i point caused by a unit physical force (i.e., a force or a
moment) at the & point (ft/1b)

Cr,, Lift coefficient per unit a {per rad)

Cmé Pitching moment coefficient per unit éc/EUO

db Decibels (20 log;y amplitude ratio)

dij Mement on the ith aercdynamic surface due to unit rigid rotation of the

chord of the j™ surface (ft-1b)
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[a] Matrix of dij's

D Polynomial coefficient

D Demping energy of system {ft-1b/sec)

E Polynomial coefficient

EI Stiffness (Young's modulus times section moment of inertia)(lb-ft?)

thr Generglized force in qth mode per unit deflection in rth generalized
coordinate (1b/ft)

Fhér Generalized force in qth mode per unit velocity in r™B generalized
coordinate {1b/ft/sec)

Fy Generalized force in rth mode (1b)

P Generalized force in the first mode, Zm (1b)

b2 Generalized force in the second mode, MIy (ft-1b)

{F} Column matrix of modal forces

[Fg] Modal forces per unit deflections in {E} (and unit velocities in {é}, ete.)

h Rigid-body displacement (positive down) (ft)

Iy Total pitch inertia of the system (slug i)

Io Pitch inertia of mass two (example in Appendix A) (slug £t°)

(1] The identity matrix

kij Btiffness influence coefficient giving the set of generalized forces, Qi,
required to make g, = 1 and g4 = 0 for i # r (1b/ft)

[x] Matrix of stiffness influence coefficients

K; Stiffness influence coefficient of the ith mode (lb/ft)

Bﬂ Stiffness matrix in model coordinates

1 Length (ft)

1nk Distance ?rom the airfra@e center of gravity to the k chord of the nth
aserodynamic surface, positive aft (ft)

L 7 force (positive down) (1b)

L T - U (ft-1b)

m Total mass of the system (slugs)
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QUn

{a}
{an}
rad

Physical mass at the ith point (slugs)

Matrix of masses

Aerodynamic moment (ft-1b)

Rotational acceleration (rad/sece)

Pitching acceleration per unit pitching velocity (1/sec)

Pitching acceleration per unit w (sec/ft)

Generalized mass of rPh normal mode (slugs)

Rotational acceleration per unit deflection of kth mode (Eééé%&ﬁg)
Rotational acceleration per unit veloecity of ktR mode (réd/ft—sec)
Mean asero@ynamic chord

Matrix of generalized modal masses

Numerator of w/® transfer function

Numerator of 6/8 transfer function

Numerator of gr/a transfer function

Polynomial in s

Dynemic pressure (1b/ft2)

Physical displacement (which may be either a translation or a rotation)
at the ith point (ft)

Column matrix of g;'s

Physical force (i.e., a force or a moment) applied at the ith point (1b)
Physical serodynamic force st the ith point (1b)

Physical elastic force at the ith point (1b)

Physical aerodynamic foree input caused by a movement of control
gsurfaces {1b)

Column matrix of physieal forces
Column matrix of Q;,'s
Radians

Phnysical serodynamic force at point i caused by a unit movement of
point j {1b/ft)
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Pclynomiels in s

Aerodynamic matrix with elements Ry j

Laplace transform variable (1/sec)

Second(s)

Wing area (ft%)

Time (sec)

Kinetic energy of system (ft-1b)

1/Tx 1s the position of the zero associated with k (1/sec)
Potential energy of system (ft-1b)

Forward velocity of the vehicle (ft/sec)

Rigid-body velocity measured normal to instantaneous body reference
line (ft/sec)

Transformation matrix whereby h is transformed to w and all other modsl
coordinates remain unchanged

Variable

[ 57 B

Variable

Vertical deflection of elastic vehicle at point i (ft)
Vertical displacement of i®h mass (ft)

Ms2 + K]

Vertical acceleration, along the Z axis (ft/sec®)

Vertical acceleration per unit pitching velocity (ft/sec)
Vertical acceleration per unit w (l/sec)

Vertical scceleration per unit deflection in kth mode (1/sec?)

Vertical acceleration per unit velocity in kB mode (1/sec)

Angle of attack, w/U, (rad)

Variables
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3} Control surface deflection frad)

313 Kronecker delta (Bij =0, i # j; Byj=1,1= J)

A Denotes finite increment in gquantity

A Transfer function dencminator

£ Damping ratio

gke Damping ratio of the kth coupled elastic mode

tr Effective structural damping ratic of the rth mode

6 Rigid-body rotation (rad)

85 Rotation of elastic fuselage at point i (rad)

£ Generalized coordinate or displacement of the r'? mode (ft)
51 Time rate of change of the generalized coordinate of the first mode, w (ft/sec)
§2 Generalized coordinate of the second mode, & (rmd)

P Air density (slugs/ft2)

b, . Translation of ith point in rtb normal mode (£t)

Pir Normalized translation of ith point in rth mode

mir Normalized rotation of surface at ith point in rth normal mode
¢ Normalized shape of the rth normasl mode

Eﬂ Modal matrix, formed with @.'s as columns

w Frequency (rad/sec)

Wy Frequency of the kth coupled elastic mode (rad/sec)

Wy Eigenvalue of the rth normal mode (rad/sec)

= Approximately equal to

= Is defined as

<< Much less than

>> Much greater than

2: Summation

(.) Dot over quantity denotes time derivative
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[ ] Matrix

[ J Diagonal matrix

L J Row matrix

{ } Column matrix

I: ]T Transpose

[ ]-1 Inverse

( )' Prime denctes differentiation with respect to fuselage station
Bubscripts

a Aerodynamic force

8 Acceleration deflections

f Associated with modes of nonzero frequency which are of interest
g Grounded coordinates

ke Associated with kth elastic mode

m Movable coordinates

o] Associated with modes of zero frequency

rot Rotation

sp Short period

trans Translaticn

Wk k'R root of w transfer function numerator

By kM poot of & transfer function numerator

E .k kth poot of €, transfer function numerator

o o] Associated with modes of nonzerc freguency which are not of interest
1/4 Designates the c.p. (ordinarily at 1/4 chord)

3/4 Three-quarter point of chord
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SECTION I

INTRCDUCTION

A. CENERAL

The high-speed capabilities of modern airplanes depend on (among other things)
the use of extremely low thickness ratics for lifting surfaces and on very high
fineness ratioe for bodies. Coupled with desired paylosd and range capabilities,
which impose natural restrictions on weight, this dependence leads to fairly
flexible structures and relatively low frequencies for the structural oscillatory
modes. For certain flight conditions, these modes tend toc couple with the rigid-
body, short-period motions; in some cases, this tendency 1s greatly exaggerated
by the action of the autopilot. The danger of such autopilot-flexible airframe
coupling generally increases as the structure is lightened to reflect reduced
stiffness requirements. In such cases, the incipient airframe-autcpilot instebil-
ity must be checked by analyses which may require, in addition to the normal
rigid-body modes, consideration of

1. as meny as the first three or four coupled normal ("free-free")

modes, which, in general, comprise fuselage, wing, and tail
deflections

2. structural demping effects, ususlly included as an egquivalent
viscous damping

3. contributions of the structural modes to the sensor cutput

4. control system nonlinearities and more detailed treatment of
control system dynamics than necessary for rigid situations

5. nonstationary aerodynamic effects.

Regardless of ite complexity, the closed-loop system must be stable for each
of the flight regimes to be encountered. Additionally, it must accept the
requlred guidance inputs, and must cope with undesired inputs, such as atmospheric
turbulence and noise generated by the airframe-autopilot system itself, and must
hot exceed structural or other limits. Preferably, this is to be accomplished

with a simple control system.

Manuscript released by the authors April 1962 for publication as an ASD
Technical Documentary Report

ASD-TDR-62-27¢ 1



Ad hoc solutions to the problem posed above have been obtained by increasingly
complex multidegree-of-freedom analyses which involve the use of large computer
facilities. Buch analyses provide 1ittle insight into the physics of the problem;
consequently, interpretation of the results to obtain more than a yes-no answer
and an extensicn of the findings to slightly modified situations is difficult.
Furthermore, there is little carry-over from system to system, so that, for
example, the number and types of basic degrees of freedom required to yield the
critical situation for a new design camnot resdily be assessed a priori. The
design process suffers accordingly. Not cnly ig an undesirably long time required
to select (and perhaps later modify)} the pertinent degrees of freedom, and to set
up and run the problem, but alsc modifications required to cure discovered problem
areas are difficult to explain to a design group affected or to management. For
these reasons, it is desirasble to cobtain simple literal approximations to the
girframe transfer function factors. OSuch approximations relating the important
poles and zeros directly tce simple functions of aerodynamic, elastic, and inertial

properties can previde an invaluable design guide.

This report presents the results of & 1-year study devoted to the analytical
gpproximation of flexible airframe transfer functions. In this study, three
classes of vehicles were represented by typical configurations, and the infliuence
of elastic modes on the longitudinal transfer functions was examined (the three
configurations were also subjected to a parallel study, Ref. 1, which yielded
the baslc information, i.e., mode shapes, etc., used in this study). Each of
the configurations is shown to possess transfer function factors which can be
simply approximated by a few major fterms when interest is confined to only the
first two elastic modes. (The results of Ref. 1 show that additional higher-
frequency modes do not appreciably affect the two-elastic-mode transfer functicn

in the frequency range that is important for flight control analysis.)

The first configuration studied {Configuration 2) is a missile-like vehicle
with canard control, capable of supersonic speeds at low altitudes. Configura-
tion % is a swept-wing, high-aspect-ratio arrangement, while Configuration 4 is
a supersonic delta-wing wvehicle. All three configurations are described in

detail in Appendix C.



B. OUTLINk OF THE REPORT

The repert is divided into five sections followed by four appendices. Most
of the analytical work is presented in Sections II through IV, while the numeri-

cal dats are included in the appendices.

Section II presents a derivation of the eguations which are used to form the
transfer functions. The static aercelastic effect of the truncated high-frequency
modes on the aerodynamic inputs is discussed and the method of inclusion is shown.

The derivation of the matrix required in this method is presented in Appendix A.

The transfer function factored forms are presented in Section IIT, along with
the approximation formulas for the three configurations studied. All of these

approximations were derived by one of the methods presented in Appendix B.

Section IV discusses the problem of sensor location for closed-loop coperation.
The effect of sensor location on a particular configuration is shown, and a method
for "optimum" placement is suggested. ("Optimum" here implies that the effect of
the elastic modes is minimized with respect to the rigid-vody pitch degree of

freedom. )

As noted, Appendix A presents a derivation of a proper method of accounting
for the elastic modes not included in the equations. This method was derived in
Ref. 1, and Appendix A parasllels that presentation. An example is included which

utilizes the method, and shows the exactness of the results obtained.

Appendix B presents the several methods that were used to derive the transfer
function approximation formulas of Section III. No one method could be found
which consistently produced the simplest approximations; hence, the approximations

were derived by the best of those in Appendix B for the case at hand.

A detailed description of the configurations studied is presented in Appendix C,

along with the normal mode shapes used.

The numerical equaticns of motion for each configuration are included in
Appendix D, as are the exact transfer functions that these equations yielded.
The equations and the transfer functions were calculated by a digital computer
according to the equations outlined in Section II. The transfer functions

obtained with the approximation formulas of Section III are also presented in



Appendix D as an indication of their accuracy. All of these data are presented
for a range of dynamic pressures for each conflguration with one and two elastic

modes included.



SECTION II

EQUATTONS OF MOTION

The equations will first be derived in terms of the physical coordinates of
the airframe, and will then be converted tc modal coordinates to allow a reduc-
tion in degrees of freedom and coupling terms by the use of orthogonal modes.
The high-frequency modes will then be eliminated and the egquations reduced to a
set involving a limited number of flexible modes. Detailed consideration of the
aerodynamic forces will then give the form of wvarious coefficients involved in

the final egquations of motion.
A. GENERAL EQUATIONS OF MOTION

The methods for the development of expressions for the inertial and elastic
forces on g flexible sirframe differ, depending on whether the inertial and
external loadings are considered to be distributed or concentrated. If they are
considered to be concentrated at a finite number of points, then the displacement
of sny point, g4, can be written

n
q = 2:1 Ci 59 (1)
j=

where a5 is the physical displacement (which may be either a translation
or a rotation) at the ith point

is the flexibility influence coefficient giving the physical
displacement at the ith point caused by a unit physical force
(i.e., a force or a moment) at the jth point

Qs is the physical force applied at the jth point

A force and a moment can be applied simultaneously at any given location merely
by making two of the n points of application coincident; e.g., the first and
second of the n points will be the same if Q is a force applied at some location,

and Q is & moment applied at the same location.

The physical elastic force at point i due to any arbitrary set of physical

displacements, qj, can be expressed as



n
%j = - 21 ks 39 (2)
J:

where kij is a stiffness influence coefficient. For any j (e.g., j = r), the
set of ky,.'s is equal to the set of forces, Q;, required to make g,. = 1 and

Qi = 0 for i # T,

If the distributed air loads over the alrframe are considered to act as a set
of concentrated forces, the sum of the elastic and aerodynsmic forces at the ith
mass may be equated to the inertial foree at that point, yielding (neglecting

structural damping)

2
where my is the physical mass at the ith point

Qai is the physical serodynamic force at the ith ppint

The aerodynamic force may be considered to he generated by the displacement of a

Tinite number of physical coordinates on the airframe.

n
@; = 25 Rijy (%)
J=1
where Rij is the physical serodynamic force at point i caused

by & unit movement of point }. Rj; will generally
be a polynomial in the differentiai operator {or
Laplace variable), s

Using matrix notation, it is possible to write Eq 2 and 4 as
- (] {a} (5)

[R] {a} (6)

{%}

and

{%}



Eguation ? now becomes

[msf]{a} = -[dia} + [R]H{d} (7

It is customary to combine the elastic and inertial forces bhecause these do not

vary with dynamic pressure:
[ms? + x]{a} - [Rl{d} (8)

If movement of the control surfaces, while introducing aercdynamic forces into
the system, does not introduce significant inertial or elastic force, it is
reasonable to separste control surface deflections from the rigid-body and elastic

deflections, and to write Eq 8 as

[ms® + K{a} = [R{a} + {au} (9)

where Qin is the physical aerodynamic force input caused by the move-
ment of control surfaces. Gust loads, nonuniform wind
conditions, ete., will create forces which can also be
included in the @, term

Equation G, when expanded, appears as follows:

2 cen - .
msTqy + Kyqdq + Kypap + *+ K109, Ripqy + Ripap * Ryplp * Cin,

2 . e
mpsTqp + Xp1Qq * KppGp * +ct + kopan = Rpjdp + Rppap + + Bopty  Qip,
- (10)

mysTan + Gy kpplp * vt Fkgpdy = Rypqp o+ Rpdp 4 tre + Byngy ¢ iny,
Equations 10, then, are the equations of motion (for perturbations from a
trimmed condition) for a flexibie airframe represented by n control points (see
Fig. 1). The degree of sccuracy employed in the construction of the [R] matrix,
and the number and location of discrete mass points chosen, will determine the
adequacy of these equations in representing the actual system. Because a grest

number of gq4's 1s generally required for an adequate representation of a



Figure 1. Flexible Airframe Represented by n Control Points

continuous airframe with a continuous leading, it is impractical to work directly

with Egq 10 to achieve simple approximate methods. As an equation-reducing

alternative, airframe motion is of'ten represented by a few normal modes; then,

each of the gy's consists of the superposition cf the motion of the modal coordi-

nates; i.e.,

Defining

Then,
Defining

Then,

where q

D .
i

Tl
4 = Z%@iij(t) (11)
J:
D, .
i
iy T & (12)
Hrer
I
Qg = J‘; O3 @55 Ty (8) (13)
£, = ®.. F.(t 14
3 13 op 5(t) (14)
n .
J:

is the physical displacement at the 1th point on the airframe

is the physical displacement of the ith point caused by a
unit generalized displacement of the jth normal mode

is the physicsl normalized displacement at the ith point
caused by a unit generalized deflection of the jth normal
mode. The collection of all the ¢;;'s for any given J
represents the mode shape for the j%h normgl mode.



is the generalized displacement or coordinate of the jth

¢ normal mode; i.e., £+ is a scale factor for the jth normal
mode, given by the normalized physical displacement {result-
ing from deflecticn of the jth normel mode, and no other) of
a preselected point on the airframe.
Thus, G = Py F Ppfa o Pty
do = Py T ol et Qpfy
(16)
Ay = by Ppofo ot Ppndy

This may be written in matrix form as

fa} = [o]{e} O

Henceforth, [@ﬂ will be referred to as the medal matrix. A typical graphical

presentation of Eq 16 is given in Fig. 2.

The n columns of [@], i.e., the mode shapes, are found by assuming simple

harmonic motion (s = jw) and substituting Eq 17 into Eq 9,

[ - mf]{o;} = {o} (18)

which can also be written

[ {pi} - [muﬂ{cpi} 0 (19)
[k]{‘Pi} - [m]wal{tpi}
}

[ ™" 0 o,

0 i (20)

U§{¢i} (21)

The form of Eg 21 mekes it clear that the ag 5 are eigenvelues of ﬁﬂ.q Dﬂ, and

the @;'s are the associated eigenvectors.

For any two linearly independent eigenvectors, it is possible to write

(Eqg 20)
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[ {es}
[ {w, }

1

wg[m.] {q’a} {22)
o [u] { o } (23)

"

When both sides of Eq 22 are transposed,

LTI (] = oBlof) ()
Therefore, oZ) () "oyt = aBLol) Bl My}
put [i] and [i] are eymmetric, vhereby
o8] [ o} = «Elof] fmd{op} (21)

Now, premultiplying both sides of Eq 23 by |¢Z),

Lo2) B {ot = oflodl b {moh (25)
A comparison of Eq 2% and 25 yields
£log] b ot = oflof) bl {op}
- (€ - @) sl bl{w} = o (26)
1¢ of and of are distinet, then
LoZ) [} fo,} = o (27)

Section 1.21 of Ref. 5 considers the case where ag and a% gre not distinct, and
shows that Eq 27 above still holds. Since the implication of Egq 27 is that all

off-disgonal terms are zero, then for orthogonal modes

"] = [ (28)

11



where ﬁﬂ must be diagonal. It can similarly be shown that

(@[] = [K] (29)

where [E] must be diagonal.

The significance of Eq 28 and 29 is that Eg 9, combined with Egq 17, can be
premultiplifed by [@]T to obtain

[0 [us? + ] [ale} = [d"[RI[l{e} + [6){ay,} (20)
where [@]T[mSE + k] [@] will be diagonal. Therefore, defining

[Ms2 + K]
K el

{Fin}

il

[6] " [ms? + 1] 4]
(2] T[R] (2] (31)
BﬂT{Qin}

m

allows Eq 30 to take the simple form

fus? + ] e} = [melde} + {rund (32)

where Dﬂ represents the generalized mass matrix in generalized
coordinates

Dﬂ represents the generalized stiffness matrix in generaiized
coordinates

{g} is a column of generalized coordinates {(which are orthogonal
coordinates when [Fg] = 0)

[Fg] represents, in generalized ccordinates, the externally
applied forces per unit deflections in {E} (and unit
velocities in g}, etc.)

The left side of Eg 32 represents the structural dynamice of the vehicle in

vacuum {neglecting structural damping), while the right side represents externally

applied forces. When expanded, the lef't side will appear as

12



/M.i(s2 + a$)§;\

ME(SE + (—Ug)gg

\M‘n(se + Cl)rel)g'n/

As is normal, £, and &2 will be used tc represent rigid-body translation and

rotation, respectively. Thus,

M; = m, the total physical mass of the system

My = Iy, the total physical pitch inertia of the system

E1 = h (positive down) (33)
s = o (positive nose up)

w = a = 0 {no structural stiffness in £, or En)

The appearance of h is not in keeping with the normsl aircraft stability and
control formulation of the egquations of motion. Therefore, it is desirable to
transform Eq 32 so that h is replaced by w. Such a transformation is represent-

able by the metrix ﬁﬂ, where ﬁﬂ is defined by

(1 ) r%\'
6 6
3 E

$PL w7y ()
£l El

k . \ )

For this case, the matrix [W] can be found rather easily by using the expression

15



relating w to h and 8 for the assumed unperturbed condition, Yy = 0.

w = Uy sin @ + h cos 6

Figure 3. Derivation of the ﬁﬂ Matrix

o= L 22 7

and the desired trensformation matrix is

Thus,

r i
-U
1 = 0 0 o
0 1 o 0 o
0 0 1 0 Q
0 0 0 0 ... 1

Using the transformation matrix defined by Eq 35, and for convenience defining

[e2 + ] (36)

[+]

Eq 32 becomes

It

f) et = [l ) {e} + {min} (57)

14



where £; is now w/8 rather than h. It can be shown that fY]l}ﬂ is not a diagonal
matrix. It is therefore desirable to redefine [Fg]fw] to include the off-diagenal
term from EYJ [W], thus giving a diagonal form- to [Y] [W] . This can be done by
writing out the Eﬂ Bﬂ matrix,

ms2 -U,ms ] 0 h
0 T.s2 ) .. 0
0 0 Mx( s2 + m%) 0

M = . (38)

0 0 0 e . - Mn(52 + “ﬁ) i

and redefining [FE]I}G so that it includes the -U,ms term that appears in Eg 38.
This will restore [Y] [W] to its original diagonal form.

B. ELIMINATION OF THE HIGH-FREGUENCY MCDES

At this point the set of simultaneous relationships given by Eg 37 is capable
of yielding results which increase in "exactness" with the number of modes con-
sidered. 8Since engineering interest is inevitably confined to a limited band-
width, the importance of inecluding higher fregquency modes is measured by their
effects in this bandwidth. For example, if all elastic modes are considered to
lie outside the freguency region of concern and all are excluded from the equa-
tions, then the resulting solution yields only the conventional rigid-body
short-period motions. But at appreciable dynamic pressures this is a gross over-
slmplification, because the execluded structural modes give rise then to at least
an aeroelastic correction on the rigid-body stability derivatives. ©SBuch correc-
tions can be and usually are made by considering only the static deflection
properties of the structure. In this instance, the effects of all possible
elastic modes have been approximaied, for the fregquency region of interest, by
considering only static deflection characteristics. When the bandwidth of interest

includes & number of low-frequency structural modes, the guestion arises as to

15



the proper aercoelastic correctlon whereby to approximate the influence of the
neglected modes., Clearly, now the use of the "full" aercelastic correction will
be incorrect since the modes included in the egquations of motion must scmehow
alter the approximated contribution of all remaining modes. The proper treatment
of the neglected higher-frequency modes first studied in Ref. 1 will ncw be

outlined.

1f Eq 32 is partitioned into those coordinates which are of interest (denoted
§o+f’ where o+f stands for zero frequency + finite frequency), and into those of
higher frequency which ‘are not of direct interest (denoted as gaa); then the
latter can be eliminated from the equations. This is accomplished as follows:

Using Eq 31 and 36, Eg 32 is rewritten as

{e} = [P (e + [ {Qu} (59)

where the transformation from §1 = h to 51 = w/s has not yet been made. Then,

partitioning the matrices,

Y .ot O | (& ol £ ot
o+f] o+f o+f . o+f otf
--..:-c-- (LR ) = LR L [R][(I)O_l_f:@m] L + “cars {Qin} (lI-O)
ot [l ] | o) | R

and expanding the right slde

. [~ T
Yo+:t“Z 0 §o+f |:(I’o+f-J [R] * §o+f CI)g-:-f
..--:.c.. ‘s wa — ---a-EE---- ®O+f: CXD] * e + --l]c:‘- {Qin}
0 EYCD g[}O EDCD] [R] Em ¢03
(41)
B T . T
[q}o—!-f] [R] [¢0+f] :[{Do+f] [R] [(Dm] §O+f + ®g+f {Q f_
= @ & B % 0 ¢ E A SPE s RS e AN -9 ¢ 8 - 3 in

[0 ) ousd i [ 06 T ol | |20 b | 63,
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Equation 41 is equivalent to the two simultaneous matrix equations,

[Yo-i-f]{goﬁf'} = [®o+f]T[R] [®o+f]{§o+f} + [®o+f-|T[R] [(Dco] {gw} + [®o+f:| T{Qj_n} ()'1'2)
and
Fol{too} = [ooo) "F] Dol ftored + (0] '] oad {Eco} + (o) {asn}  (43)

Fquation 43 can be solved for {Eoo}: which can then be substituted into Eq 42.
This will result in eguations of motion for the modal coordinates of interest.

Thus, multiplying Eq 43 by [Yool 1 and solving for {goo}

{Eco} = [[I] - [Yoo] ! [%o] T[R:l [%o]] " [Yoo] - [q’oo] T[R] [‘Do+f] {§o+f}
[ O A R P 10 R0 R R TR
(L)
and using this result in Eq 42,
[Yo+f:| {§o+f } = [‘I)o-l-f]T[R] [‘Do+f]{§o+f }
o O T O[5 B 0 ) T T
+ Boned 0] (o3 1] - Beed Bd ") Bl B BT

+ Pooue]” foun} (:5)
Because

(@ + 6] - (@] m

n

B+ @E] - @7 [

I
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men  [[1] - Freod ™ (0] o] Coo] ™ [0
-1 -1
[ER R (]
ool " e "[[ - [ Bl ool "] 6)

]

Using this result, Eq 45 is modified to
Cordltoss} = (oors) "B [oorsl Eoush
S T O O O o B T O
+ BowH T Bt ] - (RBAG T BT {010}
- By}
o cotecting terms,
Brordl{tore} = [oosl”
e [0+ BBl ™[ - Do) el L] ]
x [ o oneh + {aual] (7)

To simplify this further, use the following identity:

IR a5 R R | I [ 2 o

- [@- @) - @] [ -]
e [[IJ 5]

[m B

]+ B[ - )

1]

U

18



whereby Eq 47 reduces to
(48)

Bordionct = sl "[[1] - [ ] Bocd " [0l (10 Dol ek + f6]
Now, define [4 = [[I] - [®] [2e5) [Ym]'] [@m]T]-1 (49)

Equation 48 then becomes

[Yo-!-f;l {§o+f} = [{Do+f] T["Lg [R] [¢’o+f] { E'o-l-:lf‘ } + [¢’o+f] T[A] {Qr_]_n} (50)

Equation 50 is seen to be very similar to Eq 39. However, in Eg 50, the
columns of modal coordinates contain only those coordinetes which are of interest;
therefore, this equation represents a fewer number of simultaneous differentisl
equations to be solved. (In essence, the last r equations have been used to
elimingte the last r variables from the set of n simultaneous equations.) Also,

a nevw term appears in Ig 50 which was not found in Eq 39; this term is the Dﬂ
matrix. It represents the modifiecations which must be made in the first n-r
equations to include the effects of the higher-frequency modes. The Dﬂ matrix
thus represents an serocelastic correction factor to the system. It will theoreti-
cally account exactly for all influences of the higher-frequenhey modes. However,
the exact calculation of Dg requires all the information contained in a complete
set of n equations and involves an unwieldy inversion of a matrix containing
terms in s and s (see Eq 49). At the frequencies of interest, w, which are
always much smaller than the higher mode eigenvalues, ayx, by definition, the

s and s° terme, relative to the stiffness term, are proportional to aﬁuﬁ and
(uyak)g, respectively; thus they can be neglected. Even then, ealculation of

Dﬂ from Eq 49 would require knowledge of the higher-frequency mode shapes.
Fortunately, however, by neglecting the s and 82 terms, thereby making Dﬂ a

quasi-static correction factor, it is possible {Ref. 1) to calculate the guantity

2] [rcod ;1:0 [90] T o= [%oc] (51)

from a knowledge of only the static deflection characteristics of the system.
The details of this calculation are given in Appendix A.
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C. AERODYNAMIC FORCES

So far, no mention has been made of methods whereby the Eﬁ], Dﬂ, and Dﬂ
matrices may be calculated. Although the latter twc are not necessarily simple
to form, they will not be discussed because of extensive treatments in the
literature (e.g., Ref. 3% and 4). The same might be said for the aerodynamic
matrix, ﬁﬂ, except for a significant major difference. While the Dﬂ and Dﬂ
matrices may be derived in many ways, the results (for a given physical situation)
will alweys be the same; this is not true of the Dﬂ matrix, which depends

inherently on the assumptions made as to the origin of serodynamic forces.

For purposes of the present study, a very complete formulation of Eﬁ] is
deemed unnecessary, because 1t can only affect certairn of the numbers appearing
in the equaticns of motion. ©Since these numbers are required to be only repre-
sentative of the configurations involved, the aerodynamic matrix will be reduced
to a very simple form. That 1s, almost all secondary aerodynamic and elastic
effects {e.g., wing-body interference, unsteady aerodynsmics, chordwise bending)
will be neglected; and the air forces and moments will be represented by average
derivatives associated with each lifting surface, or suitable portions thereof.
Accordingly, the center of pressure (c.p.)} for 1lift is assumed to be at a fixed
fraction of the MAC for the surface or portion thereof (0.5 for Configurations 2
and 4 and 0.25 for Configuration 3); no downwash effects are considered on
Configurations 2 and 4; the only (pure) moment is considered to result from

pitching velocity; and the angle of attack for a section is defined by

h
[ = g + _3& (52)
Uo
where 2] is the rigid chord rotation

hz/y is the vertical displacement of the 3/k chord

The selection of h5/4 to define the section angle of attack is in accordance with
theoretical aerodynamics Ewhere, as a boundafry condition, the Plow velocities

over the upper and lower surfaces of an airfoil are matched at the trailing edge

(Ret. 6)].

To relate all this a little more specifically to Eﬂ, refer to Bg 6 where

the q's are ordered as

20



{a} = {%/4} (53)

8

and the Q's are ordered as

Z-force at c.p.
{al = { } (54)

moment

Note that the moment does not require specification of a point of application

because the chord is assumed rigid. Now, partitioning the Dﬂ matrix,

a . b
I:R] = ..-..E-.... (55)
c : d

where, in general,

a;: 1is the Z-force (negative 1ift) at the c.p. of the ith
aerodynamic surface due to unit vertical displacement of
the 3/4 chord of the jth surface

b;: 1is the Z-force {negative 1lift) at the c.p. of the ith
gerodynamic surface due to unit rigid rotation of the
chord of the jth surface

cjj 1s the moment on the ith gerodynamic surface due to unit
vertical displacement of the 3/4 chord of the jtB surface
dij is the moment on the ith aerodynamic surface due to unit

rigid rotation of the chord of the jth surface

The literal expressions for the partitions of Dﬂ are found from the general 1lift
and moment equations. The Z-force at the c.p. (which Tor convenience is desig-

nated by the subscript "1/4") of section 1 is given by (excluding downwash)

My

1

2
o5 (s01,). & pUZ
-5 SC]‘_Q i 'U—o h5_ e (SCL:L):_LQ]-_ (56)
I
The moment on section 1 1s (excluding downwash)

2
pUs c2 B
—2 (s == ) = B
2 ( 2 Cme)i Uy A (57)

1l

My
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Therefore it is possible to write

[L;IJ ETHC 0 {bﬂ 0 o7 fo3,
4, 0 8, o}o bop 0 hg_a

|

|

|

|

|
Ly o 0 - . . B | © o - . . bkl |B
<——l‘—m—> = |- ———— +-————— <—-’~%—m—$ (58)
M, 0o 0 0 |4y © of e
Mo 0 0 o:o dop 0

.

|

-

|

C

|
\MnJ I R & | €

where the terms in the square matrix are those comprising [R] and are given by

Pln) o
8y =~ F PPleh U5 O
oU5
bij = "é‘"(s%)i*"ij (59)
Cij = O
po s 5
auy = 25 Cme)i g 21



where aij is the Kronecker & (8 =1 for 1 = J; & = 0 for i £ Jj), and the other

symbols are standard aerodynamic symbol

The physical coordinates on the right side of Eg 58 can be written

M

Therefore Eq S4% becomes

and utilizing a compatible partitioning of Dﬂq% Egq 31 can be expressed as

Il

{¥al

aw

[Qf/u

Therefore,

or in the terms desired here,

(%] - EE/&E Q'f]

where Eﬁﬂ is the matrix of mode deflections of the k-chord pointe

[@ﬂ is the matrix of mode slopes of the rigid aerodynamic chords,
il.e., @p = (d/dx)p,, which is constant along a rigid chord

Expanding Eq 64 for the zero downwash ¢

Fd = [0 ) () [oy] + [0y ,01" (6] [0] + [217(e) [7]

8.

??Z? {E}
¢|
E b @5/]4_
d ¢!

e}

Z-force at c.p.}

@'T] {
moment

fra} = [, 1 o]

a E b
c - 4a
a b
e . d

ase ylelds

23

3k
i {e}

O3/

®'I

(60)

(61)

(62)

(63)

(64)

(65)



The ijth element of the [ﬁh] is found by adding the ijth elements from each of
the three ccmponents.

[=] [¢5/1+] iy -q(SCI—u)i U_b;) q)iz)/hj (66)

T ~ g
LYSROICTANERD LN SRR (1)
Ble],, = -alser,), o (68)
[0, 1 B 07D, - -X q(SCLa)k % /41% (69)
(], - q(S % Cmé)i -US—O P 5 (70)
70D, - e S tng), 1 Wty (1)

Thus,

(72)

2
ol ( se Cms') Vo .
Péij = T2 :é: (tsclq]nth/ui$n5/hj T\ n¢ni¢nj s+ UO(SCL;)n¢n]/4i¢nJ

where the summation is over the n aercdynamic surfaces.

For situations involving downwash, ngj includes terms invelving off-diagonal
elements of a5 and bij (Eq 55). These added terms are shown in one version

the final equations of motion, Egq T3.
D. FINAL EQUATIONS OF MOTION

With 8ll the important elements now in hand, the final desired equaticns of
motion can be formulated. To achieve a form consistent with aeronautical
stability and control usage requires application of the |W| transformation

matrix (Eg 3% and 35), transferring all aerodynsmic terms, except inputs, to the
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left side, and nondimensionalizing by dividing each equaticn by the appropriate
inertial quantity. Note that the mode shapes are noermalized so that the general-
ized mass for each elastic mode is unity. Doing this for the case where only
two flexible modes are included, and where downwash from the first aerodynamic
surface affects the angle of attack of the fourth aerodynamic surface, results
in Eg T3, which utilizes the following identities:

1 rigid-body translation imparts egual translation

q)nk1 ]
to all aerodynamic surfaces

0 rigid-body translation imparts no rotation to
aerodynamic surfaces

P

rigid-body rotation imparts translation propor-
tional to the distance from the center of rotation
(1n, is the distance from the airframe center of
gravity to the k-chord of the nth aercdymsmic
surface, positive aft)

cp:ﬂke nk

1 4

P = 1 rigid-body rotation imparts equal rotation to all
aerodynamic surfaces

It should be noted that no aeroelastic covrection, Dﬂ, has yet been applied
to Eg 73 and that to do sc, in literal terms, would be & practical impossibility.
Equation 7% is thus mainly illustrative of the form assumed by the various coeffi-
cients, which in anh actual case would be modified by varying aercelastic correc-
tion factors. By assigning a symbol (i.e., a stability derivative) to each of
the terms (including the aercelastic correction), Fq 73 can be simplified and
extended to the genersl situation where an arbitrary number of flexible degrees

of freedom are included, as in Eq T4, the final set of equations of motion.
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SECTICH III

FLEXIBLE AIRFRAME APPROXIMATE TRANSFER FUNCTIONS

The forms for the longitudinal transfer functions of a rigld alrframe are
well understood, and a summary of these forms may be found in Ref. 2. The addi-
tion of flexible degrees of freedom to a system has generally been treated to a
lesser degree, but the forms for the transfer Tunctions are nonetheless also
well established. In general, the addition of each flexible mode will result
in the addition of & pair of lightly damped rocts to the numerator and denomi-
nator of each transfer function. Table I summarizes the forms expected for
situations where twe, one, or no elastic degrees of freedom are included in the

equations, and forward speed is assumed constant.

In the current study, each of the transfer function factcrs shown in Table T
was appreximated by a limited numher of terms involving directly the stability
derivatives appearing in the equations of motion (Eg 74). These direct relation-
ships allow the effects of parameter changes to be predicted with a reasonable

degree of confidence without actually recalculating the transfer function.
A. DISCUSSION CF METHODS OF DERIVATICN

Basically, the derivaticn of approximate transfer function factors involves
determining the terms which are important for each airframe configuration con-
gidered. This is done by substituting a typical set of numerical valueg for
speed, altitude, ete., into the equations, and then neglecting the small terms.
In doing this, it is assumed implicitly that moderate changes in the parameters
will not affect the segregation of small and large terms; that is, small terms
remgin small over a reasonable range of parameter variation. An exception to
this was found in Configuration 4, where control reversal was noted for dynamic

pressures cf 20 psi.

Appendix B contains detalled descriptions of the two methods which were used
to determine literal approximste factors for each of the configurations consid-
ered in the current study. Although the description of the first method con-
siders the case of factoring a transfer function denominstor, the technigue used

may be spplied to numerators as well.
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TABLE I

SUMMARY OF TRANSFER FUNCTION FACTORED FORMS

RIGID ATRFRAME FIRST ELASTIC MODE SECOND ELASTIC MODE

T
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e
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0
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A%SE +(2§a>§ 18+ wg]
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B. APPROXIMATE FACTORS

The spproximate factors for the denominator and numerators for each of the
three configurations are presented in Tables II through VII. Inspection of
these tables reveals that the transfer function factors for flexible girframes
contain the rigid airframe factors derived in Ref. 2 (with aercelastic correc-
tions) along with the elastic-mode factors. It is noted that the literal
factors for Configuraticons 2 and 3 are quite similar, and in some cases, are
actually identical. The results for Configuration 4, however, are quite

different.

Rather than including a list of valldity conditions for each set of factors,
it is suggested that the applicability of the approximations be determined by
finding the exact numerical factors for a nominal case, and comparing them with
the numbers cbtained by using the approximate formulas. The reason for suggest-
ing this approach is quite simple: the alternative of calculating the required
validity conditions (those in Appendix B are just the start) would be unreason-
ably lengthy and complicated. It is therefore imprsctical and unnecessary to
present a list of validity conditions. The justification for the method suggested
lies in the assumption that moderste changes in parameters from the nominal values
will not affect the segregation of large and small terms (except for Configura-

tion 4).
C. ADEQUACY OF ONE- AND TWO-ELASTIC-MODE REPRESENTATIONS

Regardless of the validity of the approximations, there is still & basic
question as to the number of modes required to adequately represent the system(s)
under study. This subject was investigated in Ref. 1 for the three cases treated

here and the rBsults of this investigztion are summarirzed below.

Configurations 2 and 3% were shown to be accurately represented with only one
or two flexible modes, the frequency response curve being accurate (as determined
by comparison with a five-elastic-mode case) up to the characteristic frequency
of the last flexible mcde included. However, Configuration 4 was shown to reguire
considerably more flexible modes for an accurate representation. In an effort to
obtain some usable data, Configuration 4 was investigated at several conditions
of reduced dynamic pressures lower than those studied in Ref. 1. These lower
pressures tend to minimize the dynamic effects of the higher-frequency modes, as

indicated by the small changes which occurred in the exact factors for the
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TABLE II
TRANSFER FUNCTICHN APPROXIMA(E FACTORS
CONFIGURATION 2

% MODES
UM F
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(2tw) ., = -Zy - Mg - 5 %
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TABLE III

TRANSFER FUNCTION APPROXIMATE FACTORS

CONFIGURATION 3

% MODES
Mg, T,
By 1 UM+ Mg - T
(CD5 ) F5§5) * UoMy
F UOM£5 + Z§3
g e org A5
A (5 - *,)
UM F
2 3 2y
0“12e (a)5 - F3§3) * (g% - F5§ ) + UM,
3
Fx \UME, + 2
BW( 3 Ei)
o)
Ay Zg
1 UoMs
Ty, Zg
F
I, 2 25
By (“% F5§5) M5 g
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N e " 3
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TABLE IV

TRANSFER FUNCTION APPROXIMATE FACTORS
CONFIGURATION 4
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TRANSFER FUNCTION APPROXIMATE FACTORS
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TABILE VII

TRANSFER FUNCTION APPROXIMATE FACTORS
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three- and four-mode transfer functions. The range of dynamic pressures for
which the one- or two-elastic-mode representation is valid (regardless of the
validity of the approximate factors) is thus strongly limited for this one con-
figuration. Care should be exercised if this type of configuration is to be

represented with only a few of its normal modes.
D. NUMERICAL COMPARTSONS OF EXACT AND APPROXIMATE FACTORS

The excellent agreement between the approximate and the exact factors of
Configurations 2 and 3 indicates that the approximation formulas for these
configurations can be expected to remain wvalid for extreme ranges in dynamic
pressure. However, the approximation formulas for Configuration 4 were not
valid when the dynamic pressure was extended teo 20 psi. Thus, those approxima-
tions should be used caubiously when conditions of high dynsmic pressures are

investigated.

ho



SECTION IV

SINGLE SENSOR CONTROL LOOP SYSTEMS

A. INTRCDUCTION

Control of the longitudinal axis in general implieg contrcl of the short
period. Accordingly, the closed-loop bandwidth, or equivalently the open-loop
crossover frequency, must be roughly equal to or greater than the short-period
freguency. When flexibility effects are present such crossovers can sometimes
lead to closed-loop instabilities because of structural "coupling" excited by
the autopilot. Such incipient instabilities can easily be investigated by

Bode analysis, and can in general be avoided.

Since the output quantity fed back to the controller senses all components
of motion, rigid-body as well as elastic (unless filtered), the nature of the
complete open-lcoop transfer function can often be drastically changed by a change
in sensor locaticn. Thus, whereas for a given sensor location it may be impossible
to cross over near the short-pericd fregquency without appreciable excitation of an

elastic mode, a slight shift in sensor location may permit reasonable closures.

Both the general formulation of the cutput quantity ae a function of sensor
location and the process of selecting a "proper" location are discussed below,

with specific reference to the use of vertical gyro feedback loops.
B. SENSOR OUTPUT

If the four-mode perturbation equations involve the vertical displacement, h,
the pitch angle, 8, and the first two elastic modes, §5 and £€), then the air-
frame transfer functions are h/3, 6/8, £3/5, and £)/5. The rigid-body degrees
of freedom are h and 6, while 53 and ), represent the first two elastic degrees

of freedom.

The deflection at any point i along the fuselage reference line will be
¥i = ®;4h T 0,58 + ¢15§5 + @8 (75)

The slope, or pitch angle measured, for example, by a vertical gyro at any
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point i is found by differentiation:

o (Y
1 = (d.x)l
4oy 4 4930 d9; 3 d9;),
= dx h + d_x 6 -+ d__x §5 + dx gl{_
= 9iqh * Opf + 9ty + B8, (76)
But for the rigid-body modes, ¢£1 = 0
; (77)
Pip = 1
Thus, 6 = 0+ 9iaks Y (78)

Because the sensor will detect the total physical motion, the transfer function

which must be considered is

63
K3

55§y
*OisE t Py 5 (79)

o Rau)

Following the transfer function factored forms given in Table I,

o _ No
5 A
N
5 . 5
5 =~ A (80)
gy, Ny
N
8 N Ne , N
Therefore, ?$ = :f + ®£5 "Z? + Q5 —g% (81)

For convenience, this can be written in a slightly different form:
Os Ne N, |N
= = 1+q>!—5+®! Bl
S i3 Ng ik Hg| A (82)
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The sensed motion is thus the mean centerline motion (6) modified by the
bracketed factor of Eq 82. The mean centerline transfer function is, itself,
different from the rigid-body transfer function obtained when the elastic modes
are neglected. The difference is apparent from the following equations (cf.
Table I).

Rigid Airframe

1

Ae s + —
o] ( Teg)
S - (83)

s[fsg + (2§m)sps + m§£|
Elastic Airframe (Two Elastic Modes)
[ 2 2 2 2

Ay (s + T_Ei;) [s + (2tw) 9]s + ‘DQJ [s + {(2tw) Qgs + wee]

g = (84)

5[52 + (2tw) spS mgp] [52 + (Egm)1es + wjze] [32 + (eﬁm)ees + wge]

The addition of two elastic modes has added two pairs of second-order roots to
the numerator and denominator of the mean centerline response, 6/6. This is in

gddition to the elastic lnputs which are added to 6/6 a8 shown in Egq T9.
C. CLOSED-LOOP CONSIDERATIONS

Assuming lead equalization of the gyro output (Tes + 1) and neglecting
actuator and sensor lags, the open-loop transfer function given by Eg 8% yields
a freguency response curve of the form shown in Fig. 4. The actual curve will
depend on the relative positions and degree of damping of each pair of complex
roots shown. Closing the loop in this case is gquite simple, reguiring only that
the zerc db line intersect the amplitude curve at a frequency in the neighbor-
hood of dgy and yet not intersect either of the higher-frequency "peaks." (Servo
lags, unimporiant at short period, will reduce the phase margin at higher frequen-
ecies.) Such a closure would be impossible if the 9/5 frequency response curve
were of the form shown in Fig. 5 where wne is assumed lower than we, (and is very
lightly damped). For this latter case, erossover near Wgp would result in
instability near wy,.
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Figure 4. Bode (jw) Amplitude for Typical 6/® with Lead Equalization

Figure 5. Bode (jm) Amplitude For 6/% with e < gy and wg, Near o,

Ly



If the 8/d response is favorable, as shown in Fig. 4, then the complete Gi/B
response can also be made favorable by minimizing the dynamics of the bracketed
term in Eq 82 (via the sensor location). If the 6/6 response 1s simiiar to that
shown in Fig. 5, however, then the sensor should be located so the dynamics of

the bracketed term reshape 91/8 to obtain a more desirable form.
D. OPTIMUM SENSOR LOCATION

Methods for locating the sensor to achieve desirable results for the two
postulated situations will now be described. In the first case the sum of
¢i5NE5/N9 and ¢54Ng+/N9 will be held approximately constant over the frequency
range of interest. Equation 82 shows that under these clrecumstances 61/5 will
be equal to 6/5 with a gain change. In the second case a sensor location will
be found which makes the combined dynasmics of the terms in the brackets of Eq 82
Jjust cancel the elastic modes found in the mean centerline transfer function,

6/5 (Eq 84).

The example chosen to demonstrate these methods is associated with the high
q condition (1197 psf) for Configuration 3. The transfer functions given in
Eq 82 can be cbtained from Appendix D and are repeated below. (Note that the 6/5
transfer function will produce a frequency response similar to that shown in

Fig. % and therefore is satisfactory.)

f:g (s + 1.53) [52 + 2(0.23){12.8)s + 165] [52 + 2(0.015)(26)s + 675]

|

N
A—5 = 8[52 + 2(0.22)(15.1)s + 228] EsE + 2(0.39)(77.2)s + 59871—)
&
Ne), (85)
I‘Ez: = 8[52 + 2(0.17)(5.16)s + 26.7] [52 + 2(0.23)(13.1)s + 172]
o = s[s? + 2(0.42) (h.59)s + 21.1] [s2 + 2(0.22) (12.9)s + 166]
X [52 + 2(0.081) (29.7)s + 881{‘
The process of locating the sensor to make the bracketed terms of Eq 82
independent of frequency is simplified by considering an alternate form.
21 e 95 N\
5 = ’|+cpi)+'ﬁ'6_ 1+mﬁ§—;-§ (86)
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From Eq 86, it is obvious that mathematical operations equivalent to closing two
loops will be performed, i.e., q§5NE5/mi4N§+ must be added to 1.0 and the result
must be multiplied by miuNgh/Ng and added to 1.0. The solid line in Fig. 6
shows the Bode (jw) plot for the amplitude of A§4N§5/A§5N§1+’ and Fig. T shows
the Bode (jw) plot for the amplitude of AQNEM/AQ+N9- When the gain for the
first closure (m{5A§5/¢§uA§u) is chosen, then the curve for 1 + ¢£5N§§/¢ihN§u
will resemble that shown by the dashed line in Fig. 6. This is easily seen by
noting that for any transfer funection, G,

1+G = G for G >> 1

1+G = 1 for G <<

The closed-locp curve {corresponding to closing the first loop), is therefore
closely approximated by mi5N§5/¢i4N§h when that quantity is much greater than
unity (zero db), and by the zero db line when mi5N§5/@ihNQ+ is much less than
unity. For regions where G = 1, the closed-loop can most conveniently be plotted

using conventional Nichols charts.

Simultaneous inspecticn of the dashed line of Fig. 6 and the plot in Fig. 7
shows that the two curves have a mirror image resemblance. This is a result
of a judicious closure of the first loop (i.e., properly locating the zero dh
line in Fig. €). Because these two curves represent quantities which are to be
multiplied (and thus their logarithmic, db, plots are to be added), the product
is seen to be relatively independent of frequency. The key poini here is that
the gain of the first closure, ¢£3A§3/q&4A§h’ was chosen to appropriately locate
the zero db line in Fig. 6. The corresponding appropriate sensor location can
now be determined from Fig. 8, which gives the value of $£5A§3/¢{4A§h as a func-
tion of fuselage station. Detalled numerical considerations show that the

sensor should be placed at station 656 in order to make the value of
N, LN
q)' EI'. 1 + E’ﬁ __Ej_
ik Ng quTLL Ngh

relatively independent of frequency. Closing the second loop is now trivial

because it corresponds to adding a constant to 1.0.
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It is noted that the mirror-image effect requires that a zero of NQ+/N9 and
a pole of NEB/NEh accur at the same frequency with the same damping. However,
this is always the case, because the zeros of the former are the poles of the
latter., This method will therefore always theoretically reduce ei/ae to approx-

imately 9/6e (when only two elastic modes are considered).

For the second situation postulated, i.e., a 8/8 frequency response as shown
in Fig. 5, the dynamics of the elastic modes can be used to better shape the
sensed pitch response. (Note that no such modification is required for the
example picked.) Again, there are two closures involved (see Eg 86), with the
location of the zeros for the second cleosure depending on the gain associated
with the first closure. In turn, the gain is strictly dependent on the sensor

location (mode shapes}.

If the zeros resulting from the two closures are %o be placed in close
proximity to the elastic roots in A (Eq 85) with a resulting cancellation, the
following considerations apply: The roots of the first closure will be the
zeros for the second closure; one pair of these will be lightly damped and close
to 13 rad/sec for any value of gain, as may be seen by inspecting Fig. 9. Since
the roots of Ng alsc include a pair near 13 rad/sec, the final zeros {which are
the roots of the second closure) will include a lightly damped pair at approxi-
mately 13 rad/sec (see Fig. 10). This is true because a pole and zero in close
proximity will always yield a root in that neighborhood for all values of gain
(provided the remaining poles and zeros are relatively far removed, as they are
in this case). Thus, for the example chosen the elastic poles of A at approxi-
mately 13 rad/sec will be cancelled for any sensor position selected. The
placement of the sensor can thus be made with the intention of producing a pair
of lightly damped zeros at approximately the location of the second elastic
poles of A, 29.7 rad/sec. The second closure has g pair of lightly damped poles
at approximately 26 rad/sec. The lcocus of the roots emanating from these poles
must depart in the direction indicated in Fig. 10 if the locus is to include the
desired location (29.7 rad/sec) for the zeros. The poles of the second closure
(being the Ng numerator) are not a function of sensor loecation; and of the four
zerces resulting from the Tirst closure, two are essentially independent of sensor
location (the two lightly damped roots at approximately 13 rad/sec). Thus the

problem is reduced to closing the first loop so that among the resulting rocts

49



— Positive gain
— —— Negative gain

20

/7

0

—=—80

7/
Ve

Figure 9. Locus of Rocts for First Closure,

il

A zero must be present in each m“
of these regions for proper

departure of the locus from the \J

the poles at 26 rad/sec

%

— 60

- 40

— 20

—-20
——-40

—~ - 60

Ay

Ae) N
5Ey

AU

-80 \-60 -40 -20 &

1l

AGNEL].

Figure 10. Pole Zero Configuration for Second Closure, T

50

¢, Vo

(

@3 LN
. 3 55)
P14l



{which will be zeros for the second closure} there will be a complex pair of
zeros Wwhich yield the proper second-closure departure from the first-closure
poles at 26 rad/sec. Figure 10 shows the required location of these zeros
(cross-hatched area). There are two possible ways of producing roots in the
cross-hatched area: the gain of the first closure, ¢i5A§3/¢ihA§4’ must be either
positive or an extremely large negative number. The root locus for the first
closure is shown in Fig. 9. If the gain is positive, it must be large enough
to yield roots grester than 29.7 rad/sec. With this information, a number of
positive gains are tried until the zeros resulting from the first closure fall
in the desired position for the second closure. For the example chosen, the
roots of the first closure need to be driven all the way tc the zeros. There-
fore, the sensor should be located at station 647 where the gain of the first

closure takes on its largest value.

It is unfortunate that, for the example chosen, both methods result in
placing the sensor at a fuselage station where the gain of the first closure,
¢£5A§5/¢£4A5h’ is changing quite rapidly. Any departure of the mode ehapes from
those expected may not result in the required gain and hence not achieve the
desired flat response or the reguired ¢ancellation of roots. The effects of
such perturbations on the system can easily be estimated by applying the Bode
techniques of Fig. 6 and 7. In any event, regardiess of the wvalidity of the
examples chosen to illustrate the two approaches, the basic considerations
involved are generally applicable to the closed-loop analysis and synthesis of
flight control systems for flexible airframes. It is especially pertinent to
note that a fairly complete set of transfer functions (including those of the
coupled elastic modes themselves) ie required for such analysis and synthesis

activities.
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SECTION V

RECOMMENDATTIONS FOR FUTURE INVESTIGATIONS

The study leading to the results presented in this report hes disclosed, or
nas investigated only partially, several potential areas of research, including
the following:

1. the problem of finding the guasi-static aeroelastic correction
for equations of motion which include a few elastic modes

2. the basic mechanics of mode interaction, and an understanding
of what parameters can best be expected o provide an indication
of the degree of coupling present

%. the possibility of representing the motion of an elastic air-
frame with a simplified set of eqguations of motion

k., if the transfTer function approximate factors are a function
of mode shape, what approximations can be made to adequately
approximate the required modes?

5. when and how can the approximetions developed In this study
best be utilized?

As indicated by fthe manipulations outlined and demonstrated in Appendix A,
any physical feeling for the meaning of Exai] is completely lcst in the maze
of relationships involved. This places the method in the category of being
completely unsuited for use in the practical calculation of approximste transfer
function factors. Nevertheless, the basic feeling exists that in one way or
another, E&m] must correspond tc "modified elastic properties." That is,
the number of elastic modes already included must give rise to a correction
of the bagic static deflection properties; and the corrected properties (the
"regidual stiffness") must in some way be connected with [Xod]- These con-
nections have to be formed, and a physically satisfying picture must be
drawn before the process of obtaining simplified approximations to the aero-
elastic corrections can proceesd.

The desirability of obtaining such approximate corrections cannot be over-
emphasized. This stems basically from the fact that if procedures akin to those

described in SBection II are required to establish proper azercelastic corrections,
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then much of the impact of approximate transfer functions is lost, because

1. the time and the machine methods required to compute [Xoo]
might just as well be used to compute exact transfer functions

2. the basic possible physicel insight which spproximate transfer
functions can potentially yield will not have been realized.
A second major consideration is the phenomencn of coupling. Better under-
standing of coupling is required, as evidenced by the results presented here
on Configuration 3. In that instance, the equations proved to be weakly coupled,
even though it was expected that strong coupling would be present. The reason
for this is now known: coupling of two modes is not necessarily indicated by

proximity of their frequencies. This is discussed in Ref. 8.

The equations of motion for flexible wvehicles, including two rigid-body and
an arbitrary number of flexible degrees of freedom, are given in their most

compact form by Eg Th.

The approximate transfer functions derived in this study are a direct in-
dication, for the caseg studied, of the relative importance of the various terms
in Rg 74. Unfortunately, as shown in Section III, all terms appear in one or
another of the various factors involved in the complete set of transfer functicns.
Accordingly, the specification of the validity conditions for which the approxims-
tions apply becomes exeedingly complicated. Because all the parasmeters remain
important (depending on the particular root involved)}, the most efficient way,
currently, of determining the applicability of the approximations is to compute
an "exact" check cage. If the approximations are valid as shown by this com-
parison, they can be applied to gain the desired insight into sources of dif-
ficulty, effects of changes, etc.

An alternative approach to approximate factorization ig to write sets of

"gimplified equations of motion,"

each set applicable to restricted-frequency
regions (e.g., Ref. G}. The sets of simplified equations and the sets of
approximate factors are complementary ways of specifying the important contrib-
uting terms; both approaches will theoretically yileld similar results for the
approximate transfer functions. Accordingly, the simplified equations can be
used to specify, hopefully, more trectable valldity conditions, and further to
compute approximate transfer functions for other than control inputs (e.g.,

for gusts, as in Ref. §). For these reasons, the simplified equations are
highly desirsble adjuncts to the approximate transfer function factors.

53



The approximaste factors for the transfer functlons of a flexible airframe
are given in terms of such gquantities as airplane stability derivatives and
node deflections at various points on the airframe. A great many reports and
papers deal with the subject of approximating such parameters, and many of
those concerned with stability derivatives are directly applicable. The same
is not true of all methods of estimating mode deflections, most of which are
used only to establish an initial estimate for use in iterating to the exact
value. Because the iteration procedures rapidly converge, the initial estimates
need not be, and are not, very accurate. This is especially true of Galerkin's
iteration methed, and the method of Stodcla and Vianello, where the iteration is
continued until repeated iterations provide the same answer (Ref. 3). Other
methods, such as Rayleigh-Ritz, modified Rayleigh-Ritz, collocation, and colloca-
tion using station functions (Ref. 3), rely somewhat more heavily on the original
estimate if any accuracy is to be obtained. Thus, many techniques of varying
accuracy {directed at these latter methods) have been formulated to provide a
fairly reasonable estimate of the mode shape. Most of these, however, are
usually content with merely satisfying boundary conditions. The importance of
selecting or developing such approximations stems from the fact that fairly large
errors in mode shape may be tolerable for the purpose of computing approximate
transfer function factors. The effect of mode shape error on the accuracy of
the approximate transfer functions is easily determined in a given case by
finding the changes in the factors caused by variations in the values of the

mode deflections.

It is desirable to apply the approximate transfer function formulas (Ref. 5)
to some actual aircraft or missiles to demonstrate their application and utility
on & tangible basis. Probably the most significant and useful results can be
obtained for vehicles that are currently in the preliminary design stage. The
information necessary for the evaluation of the approximate factors is generally
most available at that time, and the resulting analysis would be useful to the
vehicle manufacturer, inasmuch as some insight would be provided on the dominant

factors affecting the aircraft modes.

Many of these problems may be resolved in the completion of Contract No,
AF 33(657)-8374 which has recently been awarded specifically for study in these

areas.
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APPENDIX A

AFROELASTIC COREECTIONS

A method has been derived in Ref. 1 wherein [Xoo] can be calculated. It was
not consldered necessary to repeat that derivation in this report, but a summary

of the method and an example of its use follow.

A. BUMMARY OF THE METHOD

To obtain the basic data required in these equations, the system is restrained
at two points, and is then subjected to a unit accelerstion field, first in trans-
lation and then in rotation. The resulting physical deflections are partiticned

in matrix form as

9 trans

{qa trans} = P (A-1)

() - 5T

where the subscripts a, g, and m denote acceleration deflections, grounded coordi-
nates, and movable coordinates, respectively. These deflections are used in the
caleulation of [ 'HD]’ where

o] = fews] - ARALEA

In Eq A-%, the columns of [@f] correspond to the finite-frequency mode shapes
(those of interest as mentioned earlier); EYﬁ] represents the diagonal [K + Mszg
matrix for the corresponding finite frequency stiffness and mass matrices; and

the elements of [Xr,.,] are found by caleulating partitions of [Xp4q ] as follows:
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Keio] = ........... (A-4)

:X(f"'OD )gg] =+ —(DDI'] [Mo] - [CDO]T[m] :{qa tranqua rot }] [MO] ! [q)or]T (A-5)

:X(f+oo )mg] =T :{qm trans }{%m rot}j [Mt:;r1 [CDOg]T
+ [¢)Om] [Mo] 3 [‘Do]T[m; [{q-a trans} {%a rot}] [Mo] i [‘DOg]T (2-6)
[Kieswran] = [Eorcome]” (a-1)

[X(fm )mm] ) [ZD] ) [%m] [q)"g]-1 [X(fm)gg] [‘I’Og]T—] [‘I’om]T
* o] o] " iteroran] * [Hirrorng] o] [fon]” -8

where [Zo] is the influence coefficient matrix of the system when restrained at
the two points dg3 and where [(Dom] and [‘Dog] are found by partitioning the zero-
frequency modal matrix into the elements corresponding to the restrained and

unrestrained coordinates,
[(DO] = fesss00s (A_g)
¢

Also, [Mo] is the zero-frequency modal mass matrix

[m] is the mass matrix of the physical system (defined previously)
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B. EXEMPLARY DEVELOPMENT

The three masses shown in Fig. A-1 are rigidly attached to a weightless beam
of length 21:

Y, Y Ys
} or }
m, N mg,I, My

Figure A-1. Mechanical Model

The rotational inertia of the first and third masses in Fig. A-1 is negligible,
and the rotational inertia of the second mass is Ip. All deflections are measured
inertially, end are positive as indicated. The angle ¢ is the inertiasl rotation
of masg two, and ig slso positive as shown. Mass two is in the center of the beam

which has a constant EI. The masses are assumed to be egual, m.

With this information, it will be peossible to write the system equations of

motion utilizing Lagrange's eguation:

2 (%-I;) - d;“r ¥ gi% - a (A-10)
where L = T-10T
T = +the kinetic energy of the system
U = +the potential energy of the system
D = +the dsmping energy of the system
Q, = the generalized force on the rth degree of freedom
9, = the rth degree of freedom

Following these definitions (an expression for the potential energy for the beams

is derived in Ref. 3),
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mol—

VWY

It is not necessary to consider

example; thus, Q. will be zero.

EI
ET
1,6 - 3% (¥, -
2 12 1
v EI
nyz + 3= (yz -
372733
. ET

Equations A-12 can be put into matrix form as indicsted in Section II:

where

[

Y2

12,1 o 1
+p s+ W5t g
2
(y-l"'ye"le)
2
(y5 - vp - 10)

(A-11)

any external forces for the purposes of this

Substituting in lLagrange's equation yields

-18) - 3

ET (
']3 y5"¥2

+ 18)

EI
18) + 3= (yx - ¥y - 18)
12 V30 T8

[l

18)

1g)

[ms? +k]{q} = {Q}

I
fa} - it
Y1
0

o O o B
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[ m1 1 ET
6E o 3B 5Bl
15 12 15
ET EI ET
o 6% 2 2
b - EI BT ET
- —_— —_— _ O
2 15 12 ? 13
EI EI ET
- —_— - —_— 0 _—
55 5 5 |

The modal matrix can now be found:

-2 0

= ©
B

[e] = Te (A1)

LT the degrees of freedom of interest were limited to, for example, the two rigid-

body modes and just one elastic mode, then, from Section IT,

1 o)
1
S I
] -1
b ] 1 -
1
Q
] = | | (a-15)
- ] -
[ o ]
ol
ol - |
L]




The [Y] matrix can also be calculated as described in Section II, and

s 0 0 0
I
0 (2111 + —2-)52 0 0
12
[t} - (4-16)
0 0 éms® + 5k EL 0
13
2,2 Io\2
0 0 0 (Qm + 4 mIl )52 + 61‘21(2111 + —g)
2 I5 1
Following Section II,
ES 0
= I
[YO] h 0 (2111 + —3)32
| 1
[Yf] = | 6ms2 + sk E—g] (A1T7)
_ m212\ o EIf 2 1 <19
[YOO] = (2m + 4 —-f—)s + 3 —1(1—2 + ;1-—2-)(2111 + 4 —-E-)]
From this information, [Xoo] can be calculated directly from Eq 47:
-1 T
x] = [cb ][Y;L [@] (b7)
[CD [0.0] 8 9] - oo
) 0 0 0
2.2
0 y BT o ol ol
2 18 Ip Io
12 2
[xoo] - 5 o (4-18)
:[2 0 2 - 1 -1
61EI(2m + —) 2
12
ml
O -2 -I-E- -1 1
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As described in Eg A-1 through A-Q, Eﬁn] can also be calculated without the
knowledge of [@w].

With the system restrained in translation, and rotation at the center of

gravity (mass two):

ml>
3ET
{q'm trans" = &5
3EL
mld
ZEL
q., rot = L
ey =
ZET
_ 3
3 ©
Z] =
[ o L
AEI
i (a-19)
—1 -1
[Pod = |, |
1 0
[ =
[%ce] )
¢ 3
3m 0
e - I
0 2m + —
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Eguation A-5 yields

[X(fﬂn )gg]

[X (f+ ) gg]

(ol bt

[ 2313
S7EL

- -
1
= 0
Zm
o 1
Ip
2m + —2
= l -
0 0
o 0
ml’ ol
I 3BL
m? 3
3EI  3EL
0
2211,

Iz
AT (2111 + —'2-)
1

el

ol

(A-20)

(A~21)



Equation A-6 yields

m’  mw |} 0
GicAi 3L || m
X = -
[ (f+a)h“4 mld  m3 0 1
T T T
2m + —2
L 1=
1
i - _—
= 0 1
+
1
1 0 - i 0
+ ——
R 12 |
e o ]
1
0 0 _—
= 0
S TEREER |
ZET ZET s
2m + --2-
5 3 1
ml-  mi”
| PRI 3EL
[ 13 mlg ]
7RI 12
§EI(2m + ——)
12
[x(f+co )mg] 3 Wl
27ET B Toi2

&b

=

Hl=

Iz

(a-22)

(A-23)



From Eq A-T,

s 12
STEL 27E1
[X(f+oo)gm] = ml, ml, {A-24)
I 2 - 2
5EI(2m + —g) 5E1(2m + —2-)
| 1 127
Equation A-8 yields
- -
3 3
1 21
T 0 R R Y- 0
X = -
[ (f+m)mm] 13 ome1
0 3y T 0 1 0 —
SET (Em + —2)
1
L. .
12 12
1 -1 1 0 e - =
1 0 1 STEL 27EL
X * I ml
m
o 1JL- 11 o 1 2 s - 2
s Ip
30T (2m + -5 3EI(2n + -~
1 1
13 mly
S7EL 2
1o
BEI(EHL + 1—-2—) 1 0 1 1
+ (A"25)
13 mlp o 1JdL-1 1
27RI 2
io
| =7

&5




[X(f+cn )mm]

510

2n1” + 2mll,

512

27EL

I
5EI(2m + —2)
1=,

enf15 + 2miI,

T 27EI

2

1o
3EL (2m + —)
12

13 20P12 + 2mlI,
T 27EI 2
I
3E1(2m + —5)
1
515 2m~1- + 2m112
27R1 >

Now [X(f+oo )] can be constructed from Eq A-21, A-23, A-2k, and A-26:

(1]

[ 513
STEL

T 2TEL

Before solving for [X

(A-26)

17 12 7
0 " B7EL " B7EL
21 nly mlp
I, i 12 2 Io 2
5E1(2m + = BEI(dm + IE) 5EI(2m . 15)
n 213 213
ml, 510 eml” + 2mll, 12 . 2m=12 + 2mlly (4-27)
L 27EL Io\2 27RL T2
2 2 2
Ifem + = 3EI(2n + ——) BEI(Em + "—)
2 ( 12 ' ( 12 12
nTp Rt 2af13 + 2nll, 515 2n®13 + 2mil,
STEL 2 2TEL 2
5EI(2m + = 5EI(2m + 15) 3EI( m + 15)
m] from Eq A-3, it will be necessary to find [Xf] from
P - [P [ (a-28)

8=0
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0 -2 -2
]_3 o) 0 0
[Xf] = 51 FI 2 0 ) 1 (A“29)
2 0 1 1
Subtracting Eq A-29 from Eq A-27,
[0 0 0 0 7
o 2m°1 mla _ nl
In 2 Io 2 I e
3EI (2m + —-2—) 3E1(2m + = 35T (2m + —5)
1 1 L
[x ] 1 nlp FEN 2mf13 + 2mllpy EE 2r?13 + 2mllp
«© In&  6EI Io\" 6ET T, 2
ZET (2m + —2) 3ET (Em + F) 3K (2m + F)
mlp 12 2n?13 + 2mli, 13 2m213 + 2mllp
o - 5 "t > €L " 5
Ip I Ip
3BT (em + —-2—) 5EI(2m + 5EI(2m * 2
R 1 1 iy
(A-30)
Algebraic manipulation yields
[ O 0 o o N
. 20”1 mlp ) nlp
1 1
nT, 15 13
[Xco] = {0 5 5 - 5 (A-21)
In 1o Is
SET (2m + —2-) 61ET (2m + ——) B1EL (Em + —-—)
1 12 12
nlp 12 3
> - . 1532 5 2
35T (om + —2 61FI (2m + —2 5
Y- 12 61ET (em + —5)
1
. -
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Equation A-31 reduces to

[ o

-—

(a-32)

The result obtained in Eq A-32 proves to be identical to the result obtain in

Eq A-18, glthough no use has been made of the fourth-mode shape.
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APPENDIX B

ANAINTTICAL METIHODS OF APPROXIMATE FACTORIZATION

A. CHARACTERISTIC POLYNOMIALS OF LIGHTLY COUPLED SYSTEMS

Approximate factors of a characteristic polynomial are found directly from
the matrix of coefficients in the equations of motion, rather than by expanding
the determinent of coefficients, and then factoring the resulting polynomisal.

The technique employed here involves determining those corrections that must be
applied to a crude first-approximation to the factors. This method is particu-
larly suitable to those cases where the diagonal elements of the determinant of
coefficients are the major contributors to the characteristic polynomisl. The
case to be considered here is that of a J-degree-of-freedom system having a deter-

minant of coefficients of the following form:

8 + aqq 812 b]3s + aq 3
Als) = 841 8 + a5, bozs + apz (B-1)
2
351 5.52 < + bBES + 8.53

where A(s) is the characteristic polynomial, and 84 3 and bij are

real constants
This could represent an airframe with two rigid-bedy degrees of freedom and one
elastic structural mode (as per Eq T4). A(s) can be expanded about the third

column, giving

A(s) = P(s) + Ri(s) + Ry(s) (B-2)
B+ ag 812
where P(s) = (52 + bzzs + a53)
859 8+ aop
5t agy a1p
R1(S) = '(b255 + 323)
8.51 5.52
&21 s + &22
and RE(S) = (b1 58 + 8.1 5}
831 azo
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P(s) can also be written

(s + ps + ye)(s2 +oas + x2)

P(s)

st h (ar p)sd+ (P 7R+ o (P + g+ 222 (B-3)

n

sLL + Bs5 + CSE + Dg +

where by direct comparison

B = a+ B
C o= x°+ y2 + af
Do~ P+ el -
E o= x%y°
and by comparison with Eq B-2,
K = B11820 = 81282
a = a1 t aoso (3—5)
v o= 833
B = b33

The complete A{s) is also of the form of Fq B-3, but with slightly modified fac-
tors and polynomial coefficients due to the added Ry(s) and Ry(s). Because the
modified polynomial coefficients are directly availeble from Eq B-2, it is perti-
nent to relate increments in the coefficients to increments in the factors. Then
the approximate factors of A(g) will be the factors of P(s) as modified by these
increments. Proceeding along these lines by taking differentials in Eq B-L4,

dB = da + dB

dC = dx° + dy° + adf + Pdw
o 2 (8-6)
dD = ady® + yoda + BAxS + x°ap

dE = xgdy2+y2d_x2

70



Because RI(S) + Ry(s) 1s of second degree, dB = 0, whereby

do = -dp (B-7)
Substituting Eq B-7 into Eg B-6,
ac = ax® + dy= + (a - B)dB (B-8)
dn = udy2 + deg + (%2 - ye)dB (B-9)
dE = x2dy” + yedx= (B-10)

Eliminating df by combining Bq B-8 and B-9 gives

6C - & - 4y’ _ ab - aly® - paxd (511)
O!.'ﬁ X_E_y'z
Solving Eg B-10 for dxe,
w2 = &= PR (B-12)
y2

% i 2
a - B - x2 _ ye (B'13)
Then, solving Eq B-13 for dya,
af - P - P)(GPAC - dB) + (o - B)(yPD - paR) (B-14)

(72 - )% + (a - B)(w? - prd)

By solving Eg B-10 for dye, and by substituting the result into Eg B-11, a similar

expression for dx® can be found:

(¥° - 2) (a8 - x7ac) + (a - B){adE - x°aD)
(2 - @)% + (a - B (ay® - Px2)

ax? (B~15)
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Expressing Eq B-14 and B-15 in terms of finite differentisls (rather than infin-

itesimal), and collecting terms,

e [y2 - 22+ e - B)]AE - [x2(y2 - xg)]AC - [x% - s)]m (516,
i (5% - B2+ (@ - p)ar? - pxd) ]

. ] _[yg -2+ plo - B)]QE + [yg(y2 - XE)]AC + [yg(oz - B)]AD (5.17)
= (y2_x2)2+(a,—5)(%’2'18x2) -

Consildering that Eq B-1 is representative of an airframe with one elastic
mode included in the equations of motion, A(e), in terms of the factored forms

of Table T, would be given by

ae) = [s8+ (ato)pe + ][5+ (2tahs + o] (-18)
where
(ugp = X2 + AX2

(2§w)sp = a+ Ao
w?e = -VE + /_\yE
(2§C0)1e = B+ 4B

Therefore, using Eq B-5, B-16, and B-17, the approximations to the chsracteristic

frequencies are given in terms of the matrix elements by
[a55 - aq78pp + B1p8gy + {81y + 322)(&11+a22—b33)]/_\.E

'[(f"naee - 81281) (833 - a8y + EL129&21)]‘30

‘[(511ﬂ22 - 312321)(511-P822—b55)]AD

Cop = 211822 - Bipfgy * 5
(833 - a11app + 810827)

+ (agq + agp - P33) [(311 * applazs - bas(agqapy - a0ty ]

(B-19)
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...E,55 - 8,118.22 + a1 28.21 + b55(&11 + 522 - baEZIAE

+[_8.33(&55 - 8..113..22 + 9.1 Q&E]HAC

+E55(a” + ag, - b53ﬂf_\.])

m?e = azzt (s~ oy7a0p + ron )2 (B-20)
12721
+{agy + apy - b55)[za11 + 8.22)&55 - b53(a11a22 - a12a21§]
AC = -331b15 - a52b25
AD = -agg83; - 8pzazp + azj(a)gbp3 - apgbys) + az5(aybiz - aqqbyz) (B-21)
AE = ayx(apiasy - appasy) - apz(agiazp - a1p8)

Equations B-19 and B-20 represent first-order corrected values for ihe squares of
the short-period and first elastic-mode frequencies when R, (s) and Ry(s) ere added
to P(s) to give A(s) (Bg B-2). However, because Eg B-19 and B-20 are very un-
wieldy, 1t is desirable to simplify the two corrections. Subject to a reascnable
set of validity conditions, some relatively simple relations can be found. Con-

gider the following:

Dividing Eq B-14 by Eg B-15 gives

&f _ = - ) (am - yPae) - (a - B)(paE - yPaD) (B-22)
e (¥ - 32M{(aE - x24C) + (a - B)(adE - x2dD)

Dividing numerator and dencminator by (y= - x°)(dE - ¥2dc),

- o - - y2aD)
o (52 (& e ) o
T (FR D)

This can be greatly simplified by making the following assumptions (which have

been observed to be true in many instances):

¥odC << dE
x24C << 4E
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Equation B-23% then becomes

L (k-7
EREIE = AT

The following assumptions have also proven %o be guite reasonable and will further

reduce the complexity of the approximation:

a - p 2 dD
Further, assume (-5——2-) (B -y @) << 1
¥y - X
and (—g;:—éé) 61 - %2 %%) <« 1
¥y - X
whereby dx2 . —dy2 (3-25)

Substituting Eq B-25 into Eg B-10 gives

S (B-26)
¥ - x
Thus,
2 . ABE
) = aqq&a - 81n8n1 + B-2
sp 11922 12921 a55 ~ 8 15_22 + a_’ 2&21 ( 7)
and, AR .
= g - -
aﬁe 55 8.55 - 8.118.22 4+ 8.128.2‘] (B 28)

Equations B-27 and B-28 are the desired simplifications of Eq B-19 and B-20.

The remaining task is to find corrections to the damping terms in Eg B-3.
Because the frequency corrections are now known, elther Eq B-8 or Zq B-9 can be
solved directly for the two damping corrections which (Eq B-7) are simply of
opposite sign. Because of the relative magnitudes of the guantities involved,
it is presumed that Eq B-9 will give a more accurate result than will Eq B-8;
accordingly,

2

) >
i = -dg = - Fody + pdx (B-29)

2 -

Transforming back into the variables of interest, and replacing differentials with

finite differences,
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2D - (2] + agp)ty” - byzed

(2] - - (enr ¢ ) - v (5-31)
2 = D - "
fw)e 33 833 - 811820 + a;s8p

vhere AD is given in Eq B-21 and Ax® and AWE are the correction terms in Eq B-19
and B-20 or in B-27 and B-28.

It is now desirable to have a simpler expression for the damping correction.
Using Eq B-25% in Eq B-29 gives
2
~dD - (o - Bldx

ip = -da = - (B-32)

Now Eq B-26 can be substituted into Eq B-32, giving

a-B
A
ap = -da = e (B-33)

¥y - X

Therefore, Eq B-30 and B-31 can be written

a + 7 - b
AD+(a 118. a.22+a55a )AE
. 5% 7 U1 22 12521
(2tw) 2 gqiq + Ban + (B- 34
&P e res 833 = 8118z + B1p8p )
and
a + a - b
e (355”‘ 8‘11222 + SL132"121) -
(2tw),, = bay - Py r— (B-35)

33 7 811820 T 81085

The feollowing is a summary of validity conditions which allow use of the
simple approximations given by Eg B-27, B-28, B-34, and B-35. If these validity
conditions are not satisfied, then Eg B-19, B-20, B-30, end B-31 must be used;

in this case only the first validity condition listed below is necessary.
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Validity Conditions

1. The correction terms are all small (on a percent basis).

(8.1 1 8.22 - 8,'] 28.21 )AC
JANK

aBAC
2 FANH

< 1 and <<

<< 1

5 a.].‘ +a.22--b55 . a @
B TR R e | A

and

8.4 + 8 -b
1 22 - "33 AD
a + g, - (a a. ~ a ) prt << 1
t35—aﬂagg+a”@m][11 22 11722 12721 mJ

The method described above is directly applicable to the case whers the
equations of motion include 3 degrees of freedom. If 4 degrees of freedom are
included, a similar technigue can be used, but must be applied bwicgj—once to
get approximate factors for the upper left 3 x 3 part of the b x 4 determinant,

and onece again to correct these Tactors.
B. APPROXIMATE FACTORS FOR HIGHLY COUPLED SYSTEMS

The fundamentals of this method can be summarized briefly as follows. First,
the exact factors (in numerical terms) must be known for a case where the param-
eters in the equations of motion take on typical values. Then, spproximate literal
facters (in terms of the polynomial coefficients) are found by solving the simulta-
neous equations which relate factors and polynomial coefficients; in this process,
mumerically small terms have had to be neglected. Then, because the polynomial
coefficients are defined in terms of the stability derivatives in the equations
of motion, the approximate factors can aleo be expressed in these terms. A more
detailed description of this method is hest presented in the form of a set of
instructions. Although s transfer function denominator is considered in the
following set of instructions, the method is also applicable for finding numerator
factors:

1. obtein exact transfer function factors in numerical terms for a typilcal

set of parameter values
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2. @assume the denominator of the transfer function factors as (e.g., for a

sixth-order dencminator)

€+ Bs? + Csl‘ + Ds” + Es2 + Fs + G = [52 + (ng)sps + mg-p]

x [32 + (2§m)1es + a$e]
x [52 + (28w) pes + age]

5. expand the factors in Step 2, and match coefficients of s, giving six

equations in six unknowns to solve

L4, throw awsy those terms in Step 3 that are very small (by knowing exact

nunbers )

5. solve simplified equetions (from Step L) for (2§m)SP, mgp, etc., in terms
of B, C, D, B, ¥, and G. This gives approximate frequency and damping

terms as functions of polynomial coefficients

6. expand the determinant of coefficients in the equations of motion in

literal terms

7. match coefficients of s from Step 6 with those in the polynomial on the
left side of the equation in Step 2

8. +throw away terms that are very small (by knowing exact numbers) in Step 7.
This gives approximate expressions for the polynomial coefficients in
terms of coefficients in the equations of motion

5. combine results of Steps 5 and 8 to get approximeate expressions for fre-

quency and damping terms as functions of coefficients in the equations of

motion.

The applicability of this method is contingent on one being able to solve the equa-
tions in Step 5; these equations proved to be solvable in all caseg considered in

this study.
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APPENDIX C

DESCRIPTION OF CONFIGURATIONS

The data presented in this sppendix describe the vehicles and the flight
conditions which were investigated. No data are shown for Configuration 1

because the study of that vehicle was discontinued early in the project.

The information necessary for the calculation of the serodynamic matrices
may be found in Table C-I (the aerodynamic parameters), and Table C-VIII {the
flight conditions). Tables C-II, C-III, and C-IV present the mode shapes and
slopes for the three configurations, and Tables C-V, C-VI, and C-VII present the

[X(f+oo)] matrices. A profile view of each airfreme with the control surfaces
shown may be found in Fig. C-4 through C-8.
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First Elastic Mode
Wy = 8.94 rad/sec

Second Elastic Mode
Wy = 2l.45 rad/sec

FIGURE C-1i. ELASTIC MODES FOR CONFIGURATION 2
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TABLE C-IX

MODE SHAPLS AND FREQUENCILES
CONFIGURATION 2

MODE WWO- 1 2 3 H

FREQUENCY, cps 0 9] 1.421 3.k2

Mode De@lggﬁions

Canard 1.0 453 -0.0241 0. okEh

Wing 1.0 197 0.00%18 -0.0388

Mcde Slopes
Canard 0 1.0 0.000k32 0.000262

Wing 0 1.0 -0.000158 0.000185
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Firs! Elastic Mode
W3=7.53 radssec

Second Elastic Mode
Wy = 27.02 rad/sec

FIGURE C-2. ELASTIC MODES
FOR CONFIGURATION 3
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TABIE C-III

MODE SHAPLS AND FREQUENCIES
CONFIGURATTION 3

MODE KO. 1 2 3 %
FREQUENCY , cps 0 0 1.199 .3
Mode Deflections
Tail 1.0 573 -0.0592 0.130
1/4% Chord Strip I 1.0 -120 -0.00976 -0.0212
1/% Chord Strip II 1.0 bh.3 0.0455 -0.074¢
1/4 Chord Strip III 1.0 208 0.178 G.0283
Mode Slopes
Tail 0 1.0 ~0.0863x1077 0.707x10™°
Stream Slope -3 _ -3
Strip T 0 1.0 C.0197x10 0.204x10
Stream Slope -3 -3
0 . . .
Strip TT 1.0 0.159x10 0.168x10
Strean Slope 0 1.0 0.2562x107° 0.580%10" "

Strip ITL
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First Elastic Mode
cu3 =5.95 rad/sec

Second Elastic Mode
Wy = 7.74 rad/sec

FIGURE C-3. ELASTIC MODES FOR CONFIGURATION 4
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TABLE C-TV

MODE SHAPES AND FREQUENCIES
CONFIGURATTON 4

MODE NO. 1 2 3 i
FREQUENCY , cps 0 0 0.948 1.23]
Mcde Deflections

1/% Chord Strip T 1.0 -50.0 0.0122 -0.0258

1/4% Chord Strip IT 1.0 25.0 -0.00385 -0.0143

1/% Chord Strip IIX 1.0 100 -0.0410 0. 064k

3/4 Chord Strip I 1.0 150 0.0133 -0. 0477
3/4 Chord Strip II 1.0 175 0.0241 C.00212
3/4 Chord Strip IIT 1.0 200 0.0682 0.115
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TABLE C-VIIT

FLIGHT CONDITIONS

DYNAMIC FORWARD
PRESSURE, SPFFED, ALTITUDE,
CONFIGURATTON pst £t fsec MACI  NO. it
5,050 2,060 1.84 C
2
12,960 3,300 2.96 0
639 1,003 0.97 20,000
2
1,197 1,003 0.90 0
858 2,430 2,37 22,500
4 1,77 2,430 2.50 40, 000
4,250 2,h90 2.50 20,000
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Sta. Sta. Sts.

Sta.
0 250 G300 1200
] B0
ael 2
LN e ]
ol=
AE
[sFR I ]
N s I
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© |
| 6 t
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|
i ] ___G—___{. __._..._g_u
C.3. |
70 1
I in.l l

Note: Stations shewn in lnches
Area of canard (tetel fer Both sides) = 700G in.=
Area of wing (total for both sides) = 62,400 in.@

Figure C-4. Configuration 2
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(35% chora)
|
|
1100 v
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Dimensions and stations
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Span
Sta.
690

Figure C-5. Configuration 3
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I'ote: BStations in inches

Span
Sta.
115

Elastﬁ ~

|
1 Axis \\ﬂ
F—-Strip IT —
| ~ |
\q
[=— Strip III""
|
l
\\
s
S \\l T.F. C.p.
k___f? 0 Strip | Chord Area per Side | Span Sta.|Fus. Sta.
| . Lo, 2 ~ .
L Tail"‘l I | 180 in.| b.1hx10™ in. 115 Loz.5
II | 1%0 in.| 3.22x10% in.2 25 557.6
g ITT | 100 in.{ 2.30x10% in.2 575 132.6
Tail | 100 in.| 2.0 x10% in.2 c 1100.0

Figure C-6. Aerodynamic Stripe for Configurstion 3
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\ Strip | Chord side of C.P.
\ I | 00 in.{ 20,000 in.2 0
: \ 17 | 300 inq 30,000 in.d 100
\‘ III | 200 in.| 20,000 in.q 200
l Gomtre} 50 3n) 7,500 1.4 -
I Surface
|
L
I Ffote: Stations in inches
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\'\
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L50 \
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F.5— § 3/kc Strip TIT |
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oa @ 3k ]
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J
/
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Figure C-8. Aerodynamic Strips for Configuration %
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APPENDIX D

NUMERICAL EQUATIONS OF MOTION,
APPROXTIMATE FACTORS AND EXACT FACTORS

This appendix presents the majority of the numerieal data for the report.
The numerical equations of motion of the three vehicles are given in Fig. D-1,
D-2, and D-3, and include the static aercelastic correction for the modes not
included. Tables D-I, D-II, and D-TIT present the exact factors for the equa-
tiong and the values obtalned with the approximation formulas presented in
Secticon III.
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NUMERICAL VAIUES FOR EXACT AND APPROXIMATE TRANSFER FUNCTION FACTORS

TABLE D-I

CONFIGURATION 2

Transfer q = 3.0 psi q = 90.0 psi
Function 3 Modes 4 Modes 3 Modes I Modes
Factor Approx.| Exact | Approx. | Exact |Approx. | Exact Approx.| Exact
o 731 7.33 7.36 7.40 22,0 | 22.1 21.9 22.4
(2fw) oy 335 -338 +328 -336 319 373 .36 -309
R 735 | 135 | 3.5 | T3.5 6.7 | 61.6 | 62.1 61.5
(2tw); ¢ 07k .072 .07k .080 .200 .196 .20k 276
a5, - - | hak sk - - |me Wk
(.2ga>)2e - - « 303 .288 - - 835 790
1/11W1 437 -137 425 425 -264 264 202 ~201
m‘%] £3.0 83.0 83.0 8%.0 88.8 | 88.7 88.2 88.9
(Eﬁm)w-, .219 .219 .219 219 299 .299 . 302 .298
o, - - w2 | - N T
(2§m)W2 - - 532 531 - - 1.01 1.0%
1/Tg, .236 .2h2 .2%0 .2l 37T7) 361 377 . 381
m§1 83.1 85.2 | 83.0 | 83.1 88.8 | 88.7 | 88.2 | 89.0
(2tw) 61 .08k .08k .085 .085 10k .104 .107 104
mge - - 452 452 - - 437 436
(2¢w) 6, - - .207 .202 - - .4B2 466
m§51 5.77 5.85 5.8k 5,85 16.2 | 16.2 16.5 16.3
(2203)553 « 370 . 382 <373 . 386 233 501 20 558
ugz)g - - | bk o - - | wme b6
(2w)e o - - .086 .08k - - 405 .38
1/TgLﬂ - - -2.43 -2.39 - - ~3.99 -3.62
1/TgLLE - - 2.63 2.7 - - L.26 h.1g
wgl@ - - 87.6 86.5 - - 101 95.9
(eg.:u)glpra - - .0370 - - L0150
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TABLE D-II

NUMERICAL VALUES FOR EXACT AND APPROXIMATE TRANSFER FUNCTION FACTORS
CONFIGURATION 3

Transfer q = 4.43 psi q = 8.31 psi
Function 3 Modes L Modes 3 Modes L Modes
Factor Approx. Exact | Approx.| Exsct Approx.| Exact | Approx. Exact
o 13.05 | 12.78 | 12.6 | 13.2 | 21.2 | 19.6 | 21.0 | 21.1
(2§w)sp 2.43 2.38 2.46 2,42 3.61 Z,.84 .97 3.85
o 123 123 120 121 170 169 163 166
(2tw) 4, 3.58 3.62 3.6k 3.65 6.03 5.86 6.03 .00
5, - - 836 827 - - 508 88
(26w) o - - 2.77 2.86 - - k.56 k.82
1/ Ty, 88.7 89.0 91.5 90.8 78.2 78.3 85.2 83.5
%2;1 122 122 118 121 165 166 157 163
(2tw)y, 355 3.53 3.4 3.58 547 5.43 5.69 5.62
of, - - 699 688 - - | ey 66k
(ng)we - - .593 .588 - - 1.02 1.12
1/1‘91 520 910 924 918 1.53 1.51 1.54 1.53
m§1 122 122 118 121 165 165 157 163
(2tw) 4 3.5T7 3.55 3.47 3.60 5.60 5.54 5.69 5.73
cu%e - - 699 695 - - 684 673
(2t w) 6 - - <593 o6 - - 1.02 . 780
0%1 127|145 124 135 251 286 230 228
(2§®)§31 5.56 5.56 4.5k k.68 | 10.52 | 10.52 773 6.55
w§52 - - 1543 140k - - {6390 5987
(2;@)532 - - 7.64 7.20 - - 52.6 59.7
a{fm - - 19.5 18.9 - - 27.7 26.7
(egm)gm - - 1.25 1.10 - - 2.02 .78
wgue - - 124 120 - - 166 172
(2gm)g42 - - 1.25 1.10 - - 2.02 1.78
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