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ABSTRACT

This document discusses the fundamental classical theory govern-
ing the response of linear distributed elastic structures to deterministic
and to random excitation. A review is made of the basic dynamics
theory for discrete anddistributed systems when the excitation is deter-
ministic. This review is considerednecessary to easily understand the
subject material, Integral expressions are then derived for the mean
square value and correlation functions for the response of an arbitrary
linear elastic structure subjected to stationary random loading. These
derived results are then applied to illustrative structural problems. In
this way, the association between the parameters in the theoretical

expressions and the physical properties of structural systems is demon-
strated.

A principal objective is to explore the value and limitations of
using classical theory as a tool for predicting structural vibrations in
typical flight vehicles. The theoretical results for distributed structures
subjected to stationary random excitation are noted to yield complicated
analytical expressions even for uniform beams. The direct extension of
the shown theoretical results to include typical flight structures, although
technically accurate, is not considered practical. However, the deriva-
tion procedures and results of this report can be used as a basis for
forming statistical parametric techniques for approximating the response
behavior of distributed systems to random excitation. In the concluding
discussion, several existingtechniques reflecting compromises intheo-
retical rigor are discussed and subjectareas for future studyare noted.
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RESPONSE OF ELASTIC STRUCTURES
TO DETERMINISTIC AND RANDOM EXCITATION

INTRODUCTION

With the advent of jet and rocket powered vehicles, it became
necessary to consider statistical concepts in predicting the dynamic
response characteristics of elastic structures. This consideration is
required because the dynamic environment common to high speed jet
and rocket powered vehicles is, in general, not deterministic. Henc;a,
it must be characterized by probabilistic statements.

As with deterministic excitation, the typical structural response
problems are those associated with structural failure and electronic
equipment malfunction. Consequently, problems of structural failure
are concerned with peak stress levels, peak displacements and fatigue
damage. Problems common to equipment are concerned with maximum
excursion (bottoming), time duration above a specified vibration level,
and peak acceleration levels. Intimately related to these problems are
those of prescribing environmental test specifications for equipment
attached to the vehicle structure as well as for the structure, per se.
As contrasted with deterministic excitation, no equation can be written
which will define solutions to the above problems as explicit functions
of time or frequency. One only can estimate, within confidence limits,
the response behavior.

A cursory glance at the literature reveals no lack of empirical
and/or theoretical documentation pertinent to random excitation and
structural response. However, without command of the basic theory
of structural response to random excitation, this cataloged information
remains but a collection of loosely related data, and its usefulness is

severely limited. Basic theory, therefore, can serve to establish an



organized perspective of the engineering literature which, in turn, promotes
an understanding of the technical concepts contained in the literature.

This report is intended to clarify and illustrate the fundamental
classical theory for problems considering the response of distributed elastic
structures to random excitation. As such, attention is given to basic
properties of random processes and linear, time-invariant, elastic
structures. For completeness, this document begins with a summary of
the response properties for the single-degree-of-freedom system to
sinusocidal excitation and concludes with a treatment for the response of
digstributed elastic structures to stationary random excitation. For the
discussion of the theory, this report is subdivided into four principal
sections:

1. Response Characteristics of a Single-Degree~QOf-Freedom

System to Deterministic Excitation

2. Response Characteristics of Multi-Degree-Of-Freedom

Systems to Deterministic Excitation

3. Response Characteristics of a Single-Degree-Of-¥reedom

System to Random Excitation

4. Response of Continuous Elastic Structures to Random Excitation

Section ly considers sne of the simplest mechanical systems (the
mechanical oscillator) and a well-defined excitation (the sinusoid) to
develop basic definitions for the dynamics of mechanical systems. Section 2
treats the distributed elastic structure subjected to deterministic excitation
and uses the concepts of orthogonality, generalized coordinates, and modal
solutions. Section 3 considers basic random process properties such as
autocorrelation and covariance and provides the mean square response and
spectral density relations for the mechanical oscillator. Section 4 considers

the modal approach, Parseval's theorem, and Fourier transforms to derive



expressions describing the response properties of a distributed structure
subjected to stationary random excitation. FEquations are given for spatial
correlation functions, mean square response, and a '"weighted' generalized
force.

The first three sections, therefore, supply background information
so that the formulation of Section 4 can proceed with understanding. In
addition, the response equations in the various sections are used in selected
example problems so the reader can associate the parameters given in the
analytical expressions with the physical properties of the structural prob-
lems. In this way, an understanding of the theory is bolstered and the
computational difficulties of practically applying classical theory are shown.

Some of the material presented here may be found in one form or
another in other documents. This report, however, organizes the necessary

theory into a single document and

(1) presents a complete discussion of the basic theory
appropriate to the response of structures,

(2) clarifies this theory by examining illustrative example
problems,

(3) illustrates, with practical examples, the usefulness and
limitations of these theoretical techniques,

For example, the mean square response of an arbitrary distributed elastic
structure to stationary random excitation is given by an integral equation
derived in Section 4. To compute the mean square response, the require-
ment is but to interpret the physical properties of the problem and substi-
tute these values properly in the integral equation. Even for an uncomplicated
structure such as a simply supported beam, the example problems show that
the calculations for the mean square response are non-routine tasks. In
solving these example problems, several useful analytical techniques are

illustrated in evaluating some of the theoretical expressions:



(] the use of the delta function in treating point loadings

. treating distributed correlated loadings as sets of discrete
correlated point loadings. This is analogous to a lumped
parameter model for continuous correlated loading

] citing a procedure for calculating the effect of mass

loading on the response of a single dimension, continuous
elastic structure.

The concluding section {Section 5) summarizes in brief the theory
presented in this report for calculating the mean square response of a
distributed elastic structure subjected to stationary random excitation.
And, perhaps most important, discussion is given to other references
which also illustrate the difficulties and limitations of this theory in
practical application. Several procedures are mentioned which reflect
compromises in thecoretical rigor, and topic areas for future studies are

suggested.



1. RESPONSE CHARACTERISTICS OF A SINGLE DEGREE-OF
FREEDOM SYSTEM TO DETERMINISTIC EXCITATION

1.1 INTRODUCTORY REMARKS

Although the single degree-of-freedom system is not a complicated
mechanical model, many analytical tools and basic dynamice definitions are
easily illustrated by a study of such a system. This section reviews some
of the more significant dynamic response properties for the mechanical
oscillator and serves as a prelude for considering multi-degree-cof-freedom

systems.

1.2 EQUATIONS OF MOTION
The equations of motion for a single:degree-cof-freedom system (i.e.,
a mechanical oscillator) excited by a sinusocidal forcing function applied to

the mass is given by:

my + cy + ky = f(t) = F _sin « (1.
where
m = mass of the system (lb-sec.z/i:n.j
¢ = viscous damping coefficient (lb—sec.zlin. )
k = spring constant {lb. /in. )
y = displacement measured from static equilibrium for the
mechanical oscillator (in. )
y = time derivative of displacement or the velocity (in. /sec.)

-
-

= second time derivative of displacement or the
acceleration (in. /sec.®)

f(t) = sinusoidal forcing function or Fosin wt
w = excitation frequency of the forcing function (radians/sec.)

F = peak magnitude of the forcing function (lb.)

1}



In alternate form, Eq. (l. 1) can be written as

v v 2 B(It)
+2 + = = 1.2
y*tate ytwey = (1.2)
where.
w = k/m = natural frequency of the undamped oscillation
° © in radians per second

f = E—E = natural frequency of the undamped oscillation

" in cycles per second

¢ = c/cc = damping factor

. men = critical damping coefficient

The equation of motion for a mass excited, structurally damped single degree-

of-freedom system may be written as

mY¥ + k(l+igly = F e {1.3)

where

structural damping coefficient

complex operator of V-l

g

i

Note that structural damping is defined as proportional to the displacement and
in phase with the velocity;and may be interpreted as a complex spring, The
appropriateness of Eq. (1.3) as a realistic model for structural damping
still is the subject of much controversy in structural mechanics.

The complete solution to Eg. (1.2) for a lightly viscous damped

system may be written as _
_gw t F
n 2
= i - +
v Coe sin l1-¢ wnt ¢1

I F_sin(wt-¢)

QRCIN S

(1. 4)




The first term of Eq. (1. 4) represents the transient term yielded by the
complementary solution, whereas the second term of Eq. (1. 4} represents
the steady state term given by the particular seolution.

A solution to the homogeneous part of Eq. (1.3) is given as

. -ibt
y = ea.t[c elbt-f-C ot ]
1 2
where
wn 2 1/2
a = - = 1+g -1) (1.5}

Va2
b = an (V1 + g%+ 1y’
2

This solution is not a trivial mathematical task and, in general, is interpreted

for harmonic conditions with light damping near ®

1.3 DAMPING
As shown by Figure 1, the transient response for a lightly (viscous)

damped mechanical oscillator is a harmonic motion which decays in amplitude

- t
within the boundaries of the e Sop envelope.
¥y =1 -
1 gmnt
e
Yz -ft--"-r-——-———-
Figure 1. Transient Decay of a Viscous Damped Single Degree-of-

Freedom System



This damped harmonic oscillation is given by the transient form of Eq. (1.4)

and is noted to be

= = 1 - .
mdamped “a® “n & (1.6)
For structural damping, the damped harmonic oscillation is given by 'b’

term of Eq. (1.5) and is noted to be of the frequency

1
2 E

“structural damped -

By comparing Eqs. (1.6} and (1.7), it is noted that viscous damping tends to
decrease the undamped natural frequency whereas structural damping tends
to increase the undamped natural frequency.

From the definition of the logarithmic decrement, Figure 1l typically

is used to obtain a measure of damping as

§=1ln — = fwr (1. 8)

where & is the logarithmic decrement, 12 and y, are the two successive
peak amplitudes, and T is the period of the damped oscillation. In terms

of the damping factors, the logarithmic decrement appears as

5 = 2T - _2rg (1.9)

CViig eV g

For tmall values of damping, therefore, the equivalence between viscous

and structural damping becomes simply

2t = g (1. 10)



1.4 FREQUENCY RESPONSE FUNCTIONS

With increasing time, the transient contribution decays to zeroc and the
resulting motion of the mechanical oscillator is described by the steady state
response of Eq. {l.4). The steady state condition permits the definitions of
frequency response functions. These functions are complex quantities and
relate both the magnitude and phase of a steady state response {output) to
a steady state excitation (input). A complete listing of frequency response
functions for the mechanical oscillator is given in Reference 1, (Table 2,
p. 111}). One such function, called the magnification factor, represents
the magnitude by which the zero frequency deflection yo(input) must be
multiplied to determine the response amplitude y {output). The magnifica-

tion factor and associated phase angle are defined as

e - 32 -
1 w2 2 w 2
(w—) s
" n (1.11)
2t—
tan 4 = n

Equation (1. 11) may be sketched (see Reference 2 (p. 66)]for various values of
damping as shown in Figure 2. Although dependent on the amount of
damping, it is noted that the response is nearly in phase with the excitation
when w << W and lags the excitation by nearly 180° when w >>wn. The
phase change is .most drastic in the neighborhood of w = w - The phase
factor specified in Eq. (1.11) is for a mass excited single degree-of-freedom
system. This factor is identical to the phase factor for the ratio of the

relative motion to the base excitation for a base excited mechanical oscillator.




(o]

180 Phase Angle

90
Magnification
Factor o
0 T T T T T
0 1 2 3 4 5
w
SRR ———
w
hes
b
Yo
=¢
0 T T T I T
1,0 2.0 3.0 4. O 5.0
L .
w
n

Figure 2. Magnification Factor and Associated Phase Angle For
the Vibration of a Viscous Damped Mechanical Oscillator

Note, however, that the phase factor for the ratio of the mass motion to the

base excitation for a base excited mechanical oscillator is given by

. 2
4(2) ()
tan ¢ = L v (1.12)

)z 2
1 {2 )+ (a2t —“’—)
(wn ( ml’l

rather than by Eq. (l.11}. The phase angle at w= W for Eq. (1.12} is

equal to 900 only for extremely small values of {{{ <<.10) whereas the
phase angle for Eq. (1. 1l) equals 900 for all values of . Before indulging

in a usual laboratory practice of locating the natural frequency by observing

a 900 phase shift, attention must be given to a theoretical model and appropri-
ately instrument the test specimen in order to monitor the correct phase

relationships.

10



The peak amplitude of the magnification factor can be defined in terms

of the quality factor which is written as

Q:—l-z V km

2L c

(1.13)

This term is borrowed from electrical engineering and can be defined as the
ratio of the reactance to the resistance of an inductor. With resistance
proportional to damping,a large Q thus is indicative ef the quality or lack

of resistance in the inductor. For small values of damping (Q 2 10}, the
peak of the magnification factor occurs approximately at w = w and the
curve is approximately symmetrical for small variations in w about w= @
The amplitude falls off to approximately . 707 times the peak value at the
frequencies wn(li t). These frequency values are called the half power or

3 db points and the frequency difference between the half power points is
called the bandwidth of the system. Thus, in terms of the bandwidth (B } and

the natural frequency ,(f,)

“n fn
= = 2 1.14
Q Aw B ( )
r
where
- (1.15)
B = forsap ~ faosan
It is of interest to note the time duration for the response of a mechanical
oscillator to sinusoidal excitation to decay to l/e times its steady state
value. Using the definition of the logarithmic decrement [Eq. (1. 8)] ,
this decay time (At) is given as
at = = (1.16)
i
n

il



Equation (1.16) defines Q in terms of the number of cycles for the oscillator
to decay to 1/¢ times its steady state value. In terms of this decay time,
the hali-power bandwidth is given as

_ 1
Br", Yy (1.17}

Three important frequencies are noted to be defined for the single

degree-of-freedom system

k
(1) @ (1. 18}
2 = 1 2 1.1
(2) wy =@ -g (1. 19)
(3) = \/ 1= 2% (1. 20)
W, = ow .

Equation (1. 18) defines the undamped natural frequency. Equation (1. 19)
yields the damped natural frequency in terms of viscous damping and is
defined by the logarithmic decrement. Equation {l. 20) provides the frequency
for the peak response of the system. The peak response frequency is found
by differentiating the steady state part of Eq. (l.4) with respect to w and

setting the resulting expression equal to zero.

Various computational techniques are available to calculate the frequency
response functions for linear systems. All such techniques essentially solve
for the steady state solution to the differential equation describing the
mechanical system. One particularly useful procedure is illustrated on
pages 57, 63, and 65 of Reference 3,

It is of theoretical interest to consider the computation of the frequency
response function by using Laplace transforms and noting the response of the
system to a unit impulse. The Laplace transform and the corresponding inver-

sion integral of the function y(t) is defined as

12



o 0]

cf[y(t)] =I yit) e * at (1.21)
0
atioco
1 st
yi{t) = 3o b(s) e ds (1,22}
a-ico

In the above definitions, s is the complex number denoted as s = @ + ip.
For harmonic conditions, ¢ =0 and B = w. Under these conditions, the
Laplace transform reduces by definition to the Fourier transform. To use
Eq. {1.21) to compute a frequency response function, one takes the Laplace
transform of the original differential equation where the forcing function
[f(t)] is the unit impulse. One then substitutes s = i w in the transformed
equation and solves algebraically for the desired transfer function.

By way of illustration, the laplace transform of Eq. (l. 1) appears

as

j[mg;+c§;+ ky]:f[f(t)] (1.23)

Assuming zero initial conditions [i. e., x{0} = 1.:(0) = 0] and defining f£(t)

as the unit impulse, Eq. (1.23) becomes

(msz+ cs + k)y(s} =1 {1, 24)
0

as a‘f[h(ﬂ]=f h(r) e dr = 1 (1.25)
~oo

Strictly speaking, the Laplace transform of the weighting function [h(-r)]
defines the transfer function of a linear system whereas the Fourier transform
of the weighting function defines the frequency response function of the linear
system. By requiring the Laplace operator [s]to be equal to iw, Eq. (1.25)
reduces to the Fourier transform of h(r). The righthand side of Eq. (1. 24)
can be written as a constant with the units of force per unit spring constant.
This constant is interpreted as the static deflection Vo Equating 5 = iw

in Eq. (l.24) and solving for the ratio of y to ields
g Yo ¥

13



y_ . ! (1. 26)

The denominator of Eq. {l.26) may be expressed in polar form as

2 2 .
1_(_9_) +i ikﬁ = (_. (C_“’) o e? (1. 27)
w

n

where c

mt——

-1 k
$ = tan ) (_&,_)z

L4V]
n

(1.28)

These results are noted to be equivalent to the expressions of Eq. (1.11},
A linear time-invariant system has the property that the response is the

it
real part of H{w) e'®" when the excitation is the real part {i.e., the cosine
term) of elmt. Assuming the forcing function f£{t} in Eq. (1.1) to be

F_cos wt, then f(t) can be denoted ag R[F 1wt] where R[ ]denotes the

e
0 0
real part of the quantity within the brackets. Using this notation, the steady

state solution to Eq. (1.1} can be written as

. l(wt -¢)
= R[Y(m} e“"t] = R (1.29)
2
-( ]+ 2]
n
where
Y{w = m = H{w} F0 (1. 30)
and

Z(w)

2\
2 .
me’ [1 -(——” [zg 2 ] . el (1. 31)

The quantity Z(w) , which is a force to displacement ratio, is called a

mechanical impedance of the system. This definition is noted to depart

14



from the classical force to velocity ratio as the definition of the mechanical

impedance. However, no ambiguity need arise because of this departure from

convention. The reciprocal of the mechanical impedance is called the frequency

response function H{w). The magnification factor of Eg. (1. 11) is readily

formed from Eq. (l.29) by multiplying both the numerator and denominator

by k, noting that FO/k =Yg then dividing both sides of the equation by ¥g -
Given that both the applied force and system response are real quantities,

an alternate expression for the steady state displacement response is

y(t) = %[Y(w) etet 4 Y*(w) e_iwt] (1.32)

where Y;"(w) denotes the complex conjugate of Y{w). If the excitation con-

tains j harmonic components, the steady state solution may be written as

w,t w,t ~iwt

i i
y(t) = R }J: Yj(w) e 1 |-= %?Yj(m)e I+ ?Y;:(m) e (1. 33)

1.5 FOURIER TRANSFORMS AND THE CONVOLUTION INTEGRAL
If the excitation contains many closely spaced harmonic components
approaching a continuous spectrum, the steady state solution may be expressed

using Fourier transforms as
(]
1 :
y{t) = 'z"?r'f Y() e " dw (1. 34)
-0
Alternatively, Eq. {1.34) may be given as

o
y(t) = 2—111_] Y*(w) e-i wt dow (1. 35)
-
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Y(w) is noted to be the Fourier transform of the displacement response and
the asterisk superscript denotes the conjugate of Y(w). In terms of the

properties of the mechanical system, Y(w) appears as

Y(w) = H(w) F(w (1. 36)
1

H{w) = -m')— (1. 37)
0

F(w =j e 9F £ty at (1. 38)
-0

The displacement in time can be obtained by performing the inverse of

Eq. (l.36) which appears as

vty = Y e = {1 - Fra] ! (L. 39)

where the negative one superscript denotes the inverse. Equation (1.39) is noted
to contain the product of two Fourier transform functions. An operational
property common to linear transforms is that the inverse of a product of

two transform functions yields the convolution integral. For Fourier

transforms, the operational property is symbolized as

t t
B F(m)]'be h(t-1) £{7) dr =f h(r) f(t-7) dr (1. 40)
0 0

where h(t) denotes the system response in T to a unit impulse and f{T)
denotes the forcing function acting on the system. Eq. (1. 40) thus

defines a transformation from a product in the frequency domain into a

convolution integral in the time deomain. Other discussions pertinent to
the derivation of the convolution integral are found in Reference 3, page 58

and Reference 4, page 17.
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In form of the Fourier inversion integral given in Eq. (1. 34), the

displacement response in time can be alternately written as

o0
y{t} = % f H(w) F{w) eimt dw (1. 41)
-00

It is instructive to interpret the response given by Eq. (1. 40) with that of
Eq. (1.41). The convolution integral, shown as Eq. (l.40}, represents the
response as a linear superposition in the time domain of free vibration
solutions. The Fourier transform solution, shown as Eq. (l.41), represents
the response as a linear superposition in the frequency domain of steady
state responses to simple harmonic excitations.

Although the Fourier transform and convolution integral differ in
analytical format, the solutions obtained by both procedures must be
identical. As shown in Reference 4, page 20, the two methods are related

mathematically as

[0 0]
hit) = Zl—f H{w) e'®" dw (1. 42)
T -Q0
(& o]
H(m)=f hit) e 1% at (1. 43)
~co

That is, the complex frequency response H{w} and the unit impulse response

h{t) are Fourier transform pairs.
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1.6 EXAMPLE PROBLEM

The example problem included here is intended to illustrate in detail
the application of classic vibration theory and transform theory in obtaining a

forced response solution for a mechanical oscillator.

Problem 1. 1. The forced displacement response of a mechanical oscillator

to a periodic exciting force consisting of three harmonic

components.

Three approaches are illustrated in obtaining the solution to this
problem: (1) classic assault on the differential equation, (2) the use of
Fourier transforms and (3} the use of Laplace transforms and the convolution
integral. The equation of motion for the mechanical oscillator is given by

Eq. (l.2) and appears as
VY4+2Lw v+ 2, = L £{t) (1. 44)
Y QYT eRY T m '

where

£(t) = fylsin wt + sin @t + sin w,t) : (1.45)

1
The coefficients of the oscillator are assumed to be constants. The sinusocidal
components of the forcing function are noted to be of the sarmme amplitude (fo)
and phase,but differing in frequency. For the resulting excitation to be

periodic, the frequency ratios (‘*2/“’1) and m3/ ml) need be rational numbers.

Classic Approach:
The steady state solution to Eq. (l. 44) is given in form by Eq. (1.27}

and may be expressed as

3
it
y(t} = Im Z ACK J (1. 46)
j=l
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In expanded form, Eq. (l.46) becomes

3
f sin (wjt - ¢j)
ylt) =" 2 Z w1272 w. 12 (1. 47)
TR
w w .
n n
W,
where 2y L

¢ = tan {1. 48)

w
-1 n
w {2
1 -(_J)
w
n

Fourier Transforms and the Convolution Integral:

Denoting the Fourier transform by capital letters, Eq. (l.44) appears

in transformed format as
( 2 +i2t + 2} Y(w.) L Flw) (1. 49)
o, W G, w W) = — w, .
J n) n J m. J

Solving Eq. (1. 49) for the transform of the displacement yields

¥

= 1. 50
Y(wj) 2 H(wj) F(wj) ( )
n
where
1
H(wj) = Y, & (1. 51)
1 -] 452t
[ (5]
n n
£
Flw) = — [6(w+ w.) - &(w- w.)] (1.52)
J 2i J ]

Fq. {1.51) is the frequency response function in bi] while the delta (8)
notation in Eq. (l.52) is the classic delta function, with i = V_l .
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The displacement response is obtained from Eq. (l.50) and is written

as

3 3
-1 1
yo = 2 ¥ M - >
. J

J

-1
ol

53)

where the negative superscript denotes the inverse transform, Considering

only the jthterm, Eq. (l.53)} can be written according to Eq. (l.46) as

t

yj(t) =f h(T) fj(t - 1) d7 (1.

0

54)

In terms of Laplace transforms, the response of the single degree-of-freedom

system to a unit impulse may be expressed as

mt) =L [n) (1.

where

I[hh’)]= 1 {1.

2 2
m(s + 2¢ © 8 + mn)

Equation {1.55) is evaluated by making use of the following transformation

Bt at
1 —_ e - e (1
(s-a} (s-B) - a-p '
where
a = —I;+i\/1—§2)wn (1,
B = -;-i\/l-;z)wn (.
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The Eqgs. of (1.57) symbolically define a transformation from the
complex domain (s) into the time domain {t). Substituting (1.58) and {1.59)

into (1. 57) yields

-fw t
mh(t) = 1 e ° {sin‘\h - t? wnt} (1.60)
w Vl - ;2

Equation (1. 60) agrees with the results given by Crandall and Mark

(Reference 3, page 64) who obtain the impulse response using an alternate

approach.
Substituting the jth term of Eq. (1.45) and (1. 60) into Eq. (1. 54)

yields

“tw T
f e o sinwj(t-'r) sin w. T dT (1.61)

y.(t) =

mw

where @y is the damped natural frequency and defined by Eq. (1.19).

Ignoring the transient terms after performing the integration of

Eq. (1.61) provides

f sin (w.t - ¢)
0
y.{t) = 5 S — (1.62)
J mow 22 2
n w, W,
1 - ( —-’—) H2g
1] )]

n n

where claj is the phase angle and defined by Eq. (1.48). The total displace-

ment therefore is formed by summing the j terms as

3
y(t) = z v.(t) (1.63)
=1 7
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l.aplace Transforms:

Assuming zero initial conditions (y = ¥ =0), Eq. (1.44) appears in

Laplace transform forrmat as
1
—Z] )
aZp[y(t)] = [ ] 5 (1. 64)

s 12 ws+ w
> m n

For the forcing function defined by Eq. (1. 45}, f(t) may be written as

3
Lw]e s & i
j= s + )

In terms of the inverse transform, the displacement response is expressed

as
-1
ye) =L yis)] (1.66)
where ¢ i “
_ 0 1 j
y(g) = — = . (1.67}
m j=1 s2 +2f ws +m2 SZ + w_a
n n J

The transformation from the s domain into the time domain is represented

symbolically as

1 N
(sz + kz)([s + a]z + [32)

sin( At+¢ )+ 1 e_at sin{pt + ¢z)
5 (1. 68)

7\
-\/4ah+(a +ﬁ 2)2
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where
-1 2o h

$¢. = tan (1. 69)
1 aZ + [32 _)LZ
-1 2
¢, = tan 5 ;ﬁ 5 (1.70)
e -f +x

Ignoring the transient motion, Eq. (l.68) reduces to the steady state response
as shown by Eq. {1.47), and Eq. (l.48).

Rather than use the complete transformation defined by Eq. (1. 68),
the steady state response can be obtained directly from Eq. (1.67) by using
Heaviside's expansion theorem and suppressing the transient roots. This

approach yields the displacement response as

3
fO sin «w.t
y(t) = ] (L.71)

2 w, \2 W,
me =l 1-‘-—.1-) +iz2g A4
(Dn w

In polar form, Eq. {1.71) compares identically with Eqs. (1.47) and (1. 48).
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2. RESPONSE CHARACTERISTICS OF CONTINUOQUS SYSTEMS
TO DETERMINISTIC EXCITATION
2.1 INTRODUCTORY REMARKS
Modal procedures are often applied in calculating the dynamic response

properties of confinuous elastic structures. Since the latter part of this
report assumes the reader is familiar with modal properties, it is appropriate
to review modal theory and to illustrate a use of this theory in solving several
beam problems. More detailed discussions of modal theory are available
from Reference 5 (Chapter 9), Reference 6, and Reference 7 (Chapter 7).

Consider an arbitrary physical system which is assumed to be a uniform
linear, lightly damped, continuous elastic structure excited by a forcing
function dependent upon space and time, From the physics of the problem,

the system may be defined as a partial differential equation of the form:

m{x)%(x, t) + c{x) y(x, t) + D{x) y{x, t) = f(x, t) (2. 1)
where
m{x}) denotes mass per unit length
ofx) denotes a viscous damping coefficient assumed
to vary as a function of x
D(x) denotes a spatial differential operator whose
properties are defined by the specific structure
X denotes the distance along the length of the structure
yix, t) denotes the lateral displacement of the structure

from its static equilibrium position

vix, t) denotes the lateral velocity of the structure defined
as the first time derivative of the displacement

[ 3]
¥ix, t) denotes the lateral acceleration of the structure defined
as the second time derivative of the displacement

f(x, t) denotes the forcing function acting on the structure
and is assurned to be expressable as the product of
the space (x) and time (t} variable,
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It is desired to solve for the steady-state displacement response of Eq. (2.1)
using modal theory.

While not detracting from the generality of this discussion, the
assumption of uniformity defines the coefficients of Eq. {(2.1) as constants
and thereby decreases the complexity of the mathematics in the example
problems. Structures with nonuniform properties can be represented as
partial differential equations with variable coefficients but it is, in general,
computationally more convenient to represent such systems by lumped
parameter models, When this is done, the integral equations associated
with the analysis of continuous elastic structures are replaced by summa-

tions, and matrix technigques can be applied to obtain approximate solutions,

2,2 SEPARATION OF VARIABLES

Classically, the solution to a partial differential equation similar in
form to Eq. (2.1} can often be obtained by the method of separation of
variables. While this method is not universally applicable, many of the
problems in structural dynamics can be solved by this approach. The pro-
cedure is to first assume a solution consisting of the functional products of
the space and time variables. Upon substitution, this assumed solution
reduces the original partial differential equation to two ordinary differential
equations, one in terms of the space variable and the other in terms of the
time variable. Solving the space variable equation subject to the boundary
conditions of the structure yields the resonant frequencies and associated
mode shapes for the structure. Solving the time variable equdtion subject to
the initial conditions of the structure provides a solution in terms of
generalized coordinates. These generalized coordinates are mathemnatical
definitions and may or may not have a convenient physical interpretation.

The modal technique is a separation of variables approach in which

 the space function represents the normal modes of the mechanical system and
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the time function represents generalized coordinates. Symbolically, the

assumed modal solution to Eq. (2.1) may be written as

yix, t) = Z ‘bj(X) qj(t) (2.2)
J
where Z denotes the summation j=1,2,3... o
J
¢j( x) denotes the ith normal mode of the physical system
qj(t) denotes the jth generalized coordinate

Note that Eq. {2.2) defines a modal transformation between the generalized
coordinates and the physical coordinates of the structure. In matrix format,
this corresponds to premultiplying the generalized coordinate vector by the
modal transformation matrix to obtain the displacement vectors in the

coordinates of the structure.

Theoretically, a continuous elastic structure will have an infinite
number of normal modes and an infinite number of degrees~-of-freedom or
generalized coordinates. In calculating the displacement response, the
summation of Eq. (2.2) usually is truncated as it can be shown that the contri-
butions of the higher modes to the total displacement response are negligible.
For the response in terms of acceleration, however, the truncation rationale
is somewhat more subtle as contrasted to the approach used for the displace-
ment response.

Before considering a formal treatment of Eq. (2. 1), it is well to
review a most useful theoretical property associated with the mode shapes of
an elastic structure. This has to do with the orthogonality of the elastic
modes and suggests the analytical procedure to use in obtaining a solution

to Eq. (2. 1).
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2.3 ORTHOGONALITY CONDITIONS

The orthogonality property of mode shapes is of concern here and is
guaranteed by the rather well-known Sturm-Liouville conditions. Rigorously
stated from Ref, 7,p.233 , the Sturm-Liouville theorem appropriate to a

fourth-order differential equation {characteristic of beams and plates) is

GIVEN: the differential equation of the form

2 !
d [”(;"“’ O fa + 3 pt] 8020 = 0 (2.3)
dx
where: p{x), a{x), and r{x) are continuous functions over

the interval (a, b), and

() ==( )

iF: (1) hl, 7\2, 7\3 y... are the values of the parameter for
which there exist solutions of this differential equation
satisfying at both a and b boundary conditions of the

form
¢ lx) = d (rg" (<)
(2. 4)
¢, @'(x) = d,(x¢"(x))
(2) dil(x),¢2(x),¢3(x) ... are the solutions corresponding to

7\1, XZ’ 7\3,...

THEN: the set {ct?.] (x)} is orthogonal with respect to the weight

function p(x) over the interval (a, b}.

Note that the 'weight function' p(x) is an arbitrary function defined from the
form of Eq. (2.3) and may or may not have any relationship to the physical

weight of a system. For structural problems, p(x)} equals the mass per
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unit length of the structure m(x). Equation (2.4) defines the usual boundary
conditions for a beam where $(x) denotes displacement, ¢'(x) denotes the slope,
$''(x} is proportional to the bending moment, and ¢''*(x) is proportional to shear.

Rather than dwell upon the rigor of the S-L conditions, it suffices to
say that the orthogonality property of the normal modes and the resonant
frequencies corresponding to each mode are provided by the S-1. theorem.
Expressed in terms of structural modes, the orthogonality condition can be
expressed as

0 s J#k

]
Im(x] ¢j(x) o {x) dx = {2.5)
0 constant , j=k

Mathematically, Eq. (2.5) states the normal modes are orthogonal with respect
to the weighting function m{x). Less formally, Eq. (2.5) shows that the
integral over the length of the structure (with the integrand being the product
of any two mode shapes and the mass distribution) is equal to zero if the

mode shapes are different and is equal to a constant if the mode shapes are

the same. Since the scale of ¢j{x) ie arbitrary, the modal self terms (j=k)
usually are scaled such that Eq. {2.5) reduces to either the total mass of the
body or to unity. For the first condition, the mode shapes are said to be nor-
malized to the total mass of the body. For the second condition, the mode
shapes are said to be orthonormally scaled,

The solution to Eq. (2.3) yields the mode shapes for a given physical
system. In the literature, these mode shapes also are called characteristic
functions or eigenvectors. As will be seen in the example problems, the
computation of the mode shapes is associated with a frequency equation
(transcendental in form and functionally dependent upon \) which yields the
resonant frequencies for each mode of the physical system. This transcen-
dental equation sometimes is ¢alled the characteristic equation of the
solution. Therefore, the resonant frequencies which satisfy the characteristic

equation are called the characteristic values or eigenvalues.
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Physically, normal modes of a structure can be interpreted as the
free vibrations of the system in the absence of damping and all external
forces. Hence, if a body is distorted into one of its normal mode shapes
¢j(x}, then released, che body will vibrate for all time in the q)j(x) mode at
the modal frequency mj . This is equivalent to the response of a modal
spring-mass system in which the modal mass and modal stiffness are
dependent only upon the geometry, the mass, and the stiffness distributions
of the physical structure. Also, it is noted that the mnode shape and the
associated natural frequency are independent of amplitude.

As will be demonstrated in the beam modal solution, Eq. (2.5) provides
the analytical tactics for solving Eq. (2.1). In other words, Eq. (2.1) is
operated upon to make use of the orthogonality condition in writing simplified

equations for the distributed elastic system.

2.4 BEAM MODAL SOLUTION
In keeping with the separation of variables approach, Eg. (2.2) is sub-

stituted into Eqg. (2.1) to obtain

4
3¢ (x)
m(x) L ¢ Gi() + ofx) Lo a6+ BIY —dp— q(0) = flx,0)  (2.6)
J J j  ox J

From basic mechanical vibration theory, it may be shown that for an undamped

conservative elastic system at the jth natural frequency,

%6 (x)

2
m(x)wj ¢j(X)qj(t) = Bl ) qj(t) = D(X)qj(t) (2.7}

ox

Equation (2. 7) defines the jth undamped modal oscillator in the generalized

coordinates for a Bernoulli-Euler beam.
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By comparing Eq. (2.7) with the form of the response equation for a simple

spring-mass system, the jth modal mass and stiffness are noted to be
M, = m(x) ¢;(x)

4
3 ¢.(x)
K = EI
J I x

Equation (2. 7) is used to calculate the mode shapes for the elastic structure.
Assuming the beam to be of constant mass and flexibility, Eq. (2.7)

may be expressed in operator form as

4 4
(D - kj ) ¢j(x) =0 {2.9)
where )\j4 = -E%I wjz {2,10)

The solution te Eq. (2.9) yields the mode shape ¢j(x) and is given as

¢j(x) = C cos )ij + Dsi_nhjx + Ecoshhjx + Fsinh hjx {2.11)

Applying the boundary conditions of the beam structure yields the coefficients
for Eq. (2. 11) as well as the appropriate frequency equation expressed in
terms of )\j £. In concert with Eq. (2. 10), the solution to the frequency

equation gives the modal frequency (wi) associated with the jth mode

(c{aj [x] } of the beam.
Substituting Eq. (2.7) into Eq. (2.6) yields

m{x) 3. 6.(x)d.(t) + c(x) T d.(x)q.{t) +m{x)} ) w?¢.(x)q.(t) = i{x, t) (2.12)
j J J ] J J ] Jd J
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To make use of the orthogonality property of the modes, Eqg. (2. 12) is
multiplied by q;k(x) and integrated over the complete length of the beam.
Eq. {2.12) then appears as

1 J4
% { 4, (=) (rIm{x)dx (1) +)_:, L $,() ¢y (x)e(x)ax ()
(2.13})

2 2
W f $.(x)6_{(x)m(x)dxq,(t) = ). f b, (2)f(x, t) dx
3 J 0 J k 1 i 0‘]

In less pretentious form, Eq. (2. 13) may be expressed for the jth mode as

M, q.(t) + C, 4.(t) + K, q.{t) = F, 2.14)
JqJ( J c:lJ( J qJ ) J (
where
I\_'/I., denotes the generalized mass in the jth mode
) defined for the beam as
2
jdv.(x)dak(:c)m(x) dx (2.15)
o J
C denotes the generalized viscous damping in the

jth mode defined for the beam as

£
fo 6,(x) &y (x)c(x) ax (2.16)
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~l

denotes the generalized stiffness in the
jth mode defined as

2 —
w, M. {2.17)
J J

W, denotes the jth modal frequency expressed in
radians per second

el

denotes the generalized force in the jth mode
defined as

£

ftb.(x)f(x, tydx {2.18)
o 3

The generalized ma ss, generalized damping, generalized stiffness and
generalized force terms are definitions introduced to conveniently reference
the equations of a multi-mode system to the equation of a single degree-of-
freedom system. Assuming c (x)=2¢ me(x) reduces the generalized damping
[Eq (2. 16]1:0 a form so that the orthogonahty property can be used. As a

consequence, Eq. (2.14) may be written as

41 + 28w g + wjz aj) = (2.19)

_xl pﬂ

Equation (2. 19) represents an uncoupled second-order linear differential
equation in qj with constant coefficients; and the solution is readily found in
most introductory texts in differential equations. The utility of the damping
assumption is clear by using the orthogonality property; the computational
problem now is reduced to solving n independent second-order differential

equations in lieu of n coupled second-order differential equations.
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To conclude the general modal discussion, it is appropriate to review
the preceeding derivation. First of all, Eq. {2.2) represents the steady-
state displacement response to Eq. (2.1). This response consists of contri-
butions from an infinite number of me chanical oscillators (each oscillator
responding at its modal frequency) weighted by the rmode shapes of the dis-
tributed structure. These mode shapes are given by Eq, (2.11) and are
dependent upon the physical properties and the boundary conditions of the
structure. The magnitude of the contributions from the generalized coordi-
nates is given by the solution to Eq. (2.19) and is dependent upon the initial
conditions of the problem, the values for the generalized mass, modal
damping, and generalized force. As a matter of computational sequence,
the mode shapes and resonant frequencies are calculated first. As guaran-
teed by the Sturm-Liouville conditions, the mode shapes are orthogonal with
respect to the mass per unit length [m{x)] of the structure. Then, the
generalized mass and generalized force must be calculated to establish the
terms of Eg. (2.19). Equation (2.19), in turn, is solved to obtain explicit
expressions in the generalized coordinates qj(t) at each of the modal
frequencies. Having the expressions for the mode shapes and generalized
coordinates at each resonant frequency, the total response is obtained by

summing as specified by Eq. (2.2).
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2.5 EXAMPLE PROBLEMS

In the illustrative problems which follow, simple beam theory is

assumed and damping, in general, is ignored. The first assumption specifies

the spatial operator D{x) while the second assumption eases the numerical

effort. If desired, damping can be approximately accounted for by substituting

P
the complex modal frequency wj (1 + ig) for wz_ into the undamped solution.

The "i" coefficient of the structural damping term (g) refers to the imaginary

operator \) -1

Problem 2.1: The forced lateral response of a uniform cantilevered

beam sinusoidally excited at the base,

LAY

gin wt
ao n

> X |
) 1

Figure 3. Cantilever Beam Excited at the Base
with a Sinusoidal Forcing Function

AN AN

The physical system is depicted in Figure 3 and is defined analytically as

a%y(x, t) 0% yix, t) 2
EI _mc,_ + m A AL =mw a, sinwt=F _ sinwt (2.20)
4 2 0 0
a9x at
where

L2
E = Youngs modulus = 1b/in

I = cross-section area moment of inertia _ in4

about the bending axis
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2
m = beam rmass per unit length = lb-sec /in

ag = maximumm amplitude of the sinusoidal
excitation = in
w = frequency of the excitation = radian/sec
y = lateral displacement at the beam from
its static equilibrium position = in
x =  distance along the length of the beam = in
t = real time = sec

The physical properties of the beam (I and m} are assumed as constants.

It is desired to calculate the displacement response y(x,t) of the cantilevered
beam excited at the root by a sinusoidally varying displacermrent of amplitude
a Analytically, it is required to solve Eq. (2.20) for y(x,t) subject to the

boundary conditions for the cantilevered beam.

According to modal theory, the solution to Eq. (2.20) is

yix,t) = ) $.(x) q.{t) (2.21)
j J J

The jth mode shape is given by

mj(x) = C cos)\jx+Dsinljx+ Ecoshij+F sinh)xjx {(2.22)
where 4
4 mJd 2
x 7 = e—— 2.2
(0" = B o, (2.23)
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The jth generalized coordinate is given by the solution to

) F,
4.(0 + . q(t) ==L (2.24)
j i M
j
where
1
F, = f¢_(x) f(x,t) dx (2. 25)
2
'ﬁj = _];m ¢j(x) ¢, (%) dx (2.26)

Eq. (2.25) defines the generalized force (fj) and Eq. (2.26) defines the

generalized mass (ﬁj) .

Mode Shapes:
The mode shapes for the cantilevered mass are given by Eq. (2.22)

subject to the following boundary conditions

2
LB ICTL

Y(Ost) = 0
/ 5x \
x= 0\ /x = £ (2.27)
3
O yid, t) _
azé(j:t) - 0 EI ax3 = 0

Expression {2, 27) states the relative detlection [y(O, t)] and the slope
[By(O, t)/axJa.re both zero at the root of the beam;and at the free end, the

bending moment [EI azy'(.!,t)/a xz] and shear load [EI 83y(.!,t)/ax3J

are both equal to zero, Imposing the statements of (2.27) on Eq. {2.22)

yields
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$,(0) = 0=C+E (2.28)
j

9¢.(0) |

1 - 0=D+F (2.29)
ox

2

2 ¢ (&)

—d - 0=-Ccos\.2-Dsin\.d+Ecosh\. 2+ Fsinh\, £ (2.30)
8 x° j j ] 3
3

9 ¢.(4)

—L3— = 0=Csin)\j.i—Dcos)\jl+Esinhkj£+Fcosh)\j! (2.31)
aX

Substituting Eqs. (2.28) and (2. 29) into Eqgs. (2.30) and (2.31) gives

(cos\.2 + cosh i, 2) (sinX. 2+ sinhX. i) E 0
J J J ) = (2.32)
0

(-sinhjl + sinhhji) (cosx,1+cosh}\j.€) F
J

In demanding a nontrivial solution to Eq. (2.32), the determinant of the

2 x 2 matrix is set equal to zero and the resulting frequency equation is
cos lencos h )\j.! +1 =0 (2.33)

Eq. (2.33) is a transcendental equation in )\jl and the solutions (in concert
with Eq. [2. 23] ) vield the modal frequencies of the beam. These solutions
are obtained by solving directly for the arguments of the frequency equation
and aleo are found in standard vibration texts (see Reference 2, pg. 217, or

Reference 8). The solutions for the first six modes are given as
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i A 4

1 1.875
2 4,694
3 7,855

(2.34)

4 10.996
5 14.137
6 | 17.279

Substituting Eqs. (2.25) and {2. 29) into Eq. {2.22) allows the mode shape to

be written as
¢j(x) = K {(-cos )&jx+ cosh?xj x) + %(—sinij+ sinhkj x)} {2.35)
F/E is obtained from Eq. (2.32) and appears as

cos \. £ + cos h.h,f

_ j j
%= s X, L+ sinhX { | (2.36)

E
E

Arbitrarily setting E equal to one yields the mode shape for the uniform

cantilever beam as

Ax) = coshl.x-cosA.x-a.(sinh\ x-sink x 2.37
¢J( j i J( 3 j ) ( )

The modal frequencies corresponding to the mode shapes of (2. 37) are given

by Eq. (2. 23} where the hj.i values are specified by (2. 34).
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Generalized Coordinates:

The generalized coordinates are given by the solutions to Eq. (2.24).

For the cantilever beam, the generalized mass is given as

0, j#k

£
M, = m j; by(0) &, () dx =

mi, jtk

In form, Eq. (2.38) conforms to the orthogonality conditions defined by

Eq. (2.5).

The generalized force (Fj) appears as

£ ¥}
@,
F, :f ¢, (x)f(x, t)dx =f ¢ (x}F_ sinwtdx=2F — sinwt
J ] J 0 0 X\,
0 0 i
where 5
fix, t) = FO sin wt = mw ao sin wt
For the jth mode, therefore, Eg. (2.24) resolves into
2a @
va 2 0 27 _.
ft)+w qfty=—w sin wt
% i 4 1 ¥
J
The steady state solution to (2.41) is written as
5 fel
qj(t) = 23.0 ilel T sinwt
J J Y
W,
J

Displacement Response:
The derived displacement response is formed by substituting

Eqs. {(2.37) and (2. 42) into Eq. (2.21)} and appears as
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(2. 41)
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v, t) = Z ¢,66) gt

J
co
2 1 : a,
- LI . J .
= Zao o 5 7 ¢j(x) sinwt (2. 43)
j=1,2,3,... v 1-(—°°-] J
@,
J
aj is defined by Eq. (2. 36); )\j! is given by Eq. (2.23); and ¢j(x) is
specified by Eq. (2. 37),
Damping:

It is noted that damping is introduced into the solution by the formulation
of the differential equation in the generalized coordinate [qj (t)]. This
differential equation is given by Eq. (2. 19) and appears as

5 F,
G.(t) + 26w, §.(t) + w g (t) = i 2, 44
q_] QJ 3 q,]( ) qj HJ { )
The steady state solution to Eq. (2. 44) is given as
. - F.ix)
qlt) = —5—7— . —ﬁ— sin ot (2. 45)
w, - w tidlww b}
J J ]
where
FJ, = fj(x) sin ot (2. 46)
-~
The absolute magnitude of thie displacement in the generalized coordinate
may be written as
F (x)
1
J (2. 47)
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T_*_“_(x) is the spatial function of the generalized force and is resolved for the

cantilevered beam as (see Eq. (2.39)),

“
— 2. 48
N (2. 48)

- 2
=2
Fj(x} mw ag

The steady state solution in the generalized coordinates with no damping

may be expressed as

F,(x)
qj(t) = J sin wt (2. 49)

Equation {2. 49} evaluated for the base excited cantilevered beam is given
2
by Eq. (2.42). Accounting for structural damping by substituting u?] (1+ig)
2
for wj in Eq. (2.49) yields

1 F, (x)

|q. - . — (2. 50)
Jl le'_?'(1+ig}—m2‘ M

o -
Iqjl 2 wl2lz, 217
w, l -}— +g J j
J wj

Noting the definition that 2{ = g (see Eq. (1. 10)), Eqs. (2.47) and {2.51) are

or

{2.51)

seen to be identical at resonance. For frequency values other than at
resonance, Egq. {2.41) and Eq. (2.51) are noted to differ in magnitude for
the radical {-\/_) in the denominator. However, this difference is numerically
negligible for small values of damping.

The displacement response for the base excited cantilevered beam

including damping can be written as
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¢j(X) Fj(X)

ylx,t) = 2 ¢.{x) q.(t) = > J gin wt
J ! J w, -w +i20 ww M,
i=1,2,3,... 7 J) J

The absolute magnitude of the response may be written as

= F.(x)

E L ) -
2 w12 w\2 M.
i-l,2,3...mj{l-[w_j] +(2t"j ?o:) } )

In a form compatible with Eq. (2.43), Eg. (2.53) may be expressed as

| v}

[ L)

< ¢.(x)
|y(x)| = Zao % . ?Lj £
w z}
e 2 )
j=1,2,3.. ! [w] ({,
J J -
Problem 2. 2: The forced lateral response of a simply supported beam

excited by a uniform loading distributed over the length

of the beam

W sinw t

A Y

l v

Figure 4. Simply Supported Beam with Loading
Acting Over the Beam Length

The physical system is shown in Figure 4 and is represented analytically

as

2
J‘E’... +m 2 (’;; ) . Wsinot
Bx ot

42

(2.52)

(2.53)

(2. 54)

{2.55)



The dimensions of the symbols used in Eq. (2.55) are the same as those for
the cantilevered beam with W being the magnitude of the loading per unit
length.

The solution in modal theory for the problem is outlined by Egs. (2.21}
through (2. 26).

Mode Shapes:
The mode shapes for the simply supported beam are given by Eq. {(2.22)

subject to the following boundary conditions

x{0,t) = 0 y(2,t) =0
x=0< \ =1 (2. 56)

2 2 x=
Er >L L ©on=0 EI L—g’t) =o/
o ox

2
Equation (2. 56) states that the deflection (y) and the moment (EI 8_%) at
8x

the ends of the beam are zero. Imposing the conditions of Eq. (2.56) on

Eq. (2.22) yields

¢j (0) = 0 = C+E (2.57)
2
8 4. (0)
—él——: 0 = -c+ E (2.58)
ox
d)j(.!) = 0 =Ccos kjf +Dsin hj.ﬁ + Ecosh }\j.€*+F sinh)\jl (2. 59)
2
8 .(4)
—d - 0 =-Ccos\f-Dsinx £+ Ecosh)\ £+ Fsinh\ £ (2.60)
x> ] J J ]

Equations (2.57) and (2. 58) yield C= E = 0. Adding Equations (2. 59) and
{2. 60) provide
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2F sinh Ajﬁ =0 (2.61)
Since sin h )\jl is zero only at £ = 0, the value of F (a constant coefficient)

satisfying Eq. (2.61) is F = 0.
Subtracting Eq. (2.59) from Eq. (2.60) yields

2D sin )\t = 0 (2. 62)

Since D = 0 would yield a trivial solution for cbj(x], the solution to Eq. (2.62)

must satisfy
sin kjl =0 (2. 63)

Eq. (2.63) is the frequency equation for the simply supported uniform beam

and the solutions are given as
AN d=jgm, j=1,2,3e9ee (2. 64)

Statement (2, 64) together with Eq. (2.23) define the modal frequencies where

the mode shapes are given by
b,6) = sin ) x = sin l} x (2. 65)
Generalized Coordinates:

The expression for the generalized coordinate (qj [t]) is given by

Eq. (2.49) and appears as

, F.
q.{t) = — (2. 66)
J M
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For the uniform simply supported beam, the generalized mass is

£ z 0 ; j#k
ﬁ.:mfd).(x) (x) dx =mfsink.x- gin A x dx= 2.67
= m) o6 4y 6o | sin, A (2. 67)
ml 5 j= k
2
Likewise, the generalized force is
£ yi
f‘—. =_[¢,(x) fix,t)dx = Wf 8in AX sinwt dx (2. 68)
J 0 J 0 J
Carrying out the integration of Eq. (2.68) yields
F_] :i—w sin wt j=1,3,5a80e (2.69)
j

Substituting Egs. (2.67) and (2.69) into Eq. (2. 66) provides

4w 1 1 ]
qj(t) = 1 5 5 sin ot (2.70)

System Response:
Using Eqs. (2,65) and (2. 70),the desired displacement response for the

uniform simply supported beam may be written as
o

4W 1 i
= I — . i i . ].
ylx, t) E ¢J-(X)qj(t) X 7 5 sin )\J.x sin wt  (2.71)
) j=1,3,5... 1 ¢ 7¢

Using Egs. (2. 23) and (2. 64), the displacement response given by Eq. (2.71)}

may be restated as
0

1w 24

yoe,t) = Ao breis
EI'n'5 .5 1 [
j=1,3,5... 1 @

sin Jlf’f- sin wt (2.72)
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From an inspection of Figure 4 the loading is seen to be symmetric about
the midspan of the beam and, consequently, can excite only odd numbered
elastic modes. The formal solutions substantiate this statement as the
system response is noted to depend only on the odd numbered modes.

By inspection of Eq. (2.71) and (2. 72), the following terms can be
defined as a dynamic modal magnification factor for the simply supported
beam

4w 1 1 4w i 4 1
(DMF)j = : = . (2.73)

¥ 2 2 5
)tj W - W EI(j m) wj-w

As expected for the beam without damping, Eq. (2.73) is unbounded {(—» )
at resonance {(w = mj). Finite response values will be obtained at resonance,

however, if damping is included in the solution.

Problem 2, 3: The forced lateral response of a simply supported

beam excited by a uniform loading distributed over a

partial length of the beam

‘/_/ f(x! t)

Figure 5, Simply Supported Elastic Beam
Subjected to a Partially Distributed
Uniform Loading

This problem is intended to illustrate the calculation of the generalized
force for a partially distributed uniform loading. Ignoring damping, the

partial differential equation defining this problem is given as
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4
d Y(X: t) n
4
ox

EI my(x, t) = f(x,t) (2.74)

where

fix,t) = W sin wt {2.75)

W is a constant for this problem with the dimensions of force per unit length
and defined over the(b-a) length of the beam. The beam is assumed to have
uniform physical properties and is noted to have simply supported boundary
conditions. As with Problem 2.2, the displacement response in modal theory

is outlined by Eqs. (2.21} through (2. 26).

Mode Shapes:
The mode shapes for the simply supported beam are calculated in

Problem 2.2 and are expressed here as

d)j(x) =-\/_2- sin )..jx =-\[2— sin J;—x (2. 76)

The resonant frequencies associated with the elastic modes of Eq. (2.76)

are given by

4
4 md 2
2 = 2.7
(hj ) TR (2.77)
where
)\j.ﬂ = jmw s j=1,2,3%s (2.78)

Equation (2. 78) is obtained from the solution to the frequency equation (see
Eqg. (2.63)) for this beam. It is noted that the amplitude of the mode shapes
is assumed equal to V 2 instead of unity as in Eq. {2.65) This is done to

resolve the generalized mass to the mass of the beam.
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Generalized Coordinates:
Asg with Problem 2. 2, the jth generalized coordinate for the undamped

beam is given as

1 I;‘“‘j
q.(t) = = (2. 79)
J w.z - mz Mj
J
The generalized mass is
£ 0 , jtk
M, =2m/{ sin A X sin )\kx dx = (2. 80)
J 0 J
mi, j=k

Similarly, the generalized force is

b
Fj = WVZ-[ sin )ij sinw t dx (2. 81}
a

Carrying out the integration of (2. 81} yields

_ V2 w A, A
Fj = — sin {b+a) E‘L * sin(b-a} —2']— sinwt (2. 82)
j

In alternate faem,Eq. (2. 82) may be stated as

= 2 !
F oo 222 W

j jm

[sin(b+a) -ZLE: * sin(b-a) ’]2—1; sin wt {2.83)

Substituting Eqgs. (2. 80) and (2. 82) into (2. 79) yields the jth generalized

coordinate as

1 2V w
9t = 37 g
w j

A, A,
[sin(b+a) "EL * sin(b-a) —?:1—] sin wt (2. 84)
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Displacement Response:

The displacement response, therefore, can be written as

oo
U
AW Bin \.X X, L
yix, t) = Zd:.(x)q,(t) = — — ) lsin (b+a}—i . sin(b-a)—J— 8in wt

) J m 2 2 2 2

j i=1,2,3... hj(oaj -w)
(2. 85)

Problem 2. 4: The forced lateral response of a simply supported

beam excited by a point loading

This problem is essentially the same as Problem 2.3 except that the
beam loading is a concentrated force of magnitude (P} acting on the simply
supported beam at position a. The mode shapes are given by Eq. (2.76)

ard the generalized force is found by taking the limit {(b—»a) of Eq. (2. 82) and
is expressed as

V2

W X, X,
lim — [sin (b+a)—2ll - 8in (b-a)—-g-]

F, =
J b—=a j
(2. 86)
A
= ﬁ W £ (b-a)=L + sin ) a]
X, 2 j
J
Hence,
_F-j =Vz W(b-a} sin hja =Y2 P sin ).ja (2. 87)

where W(b-a) denotes the total load (P) acting on the beam between positions

a and b.

The steady state displacement response appears as

o0
y(x, t) = %} g L > sin ?\ja sin hjx sin wt (2.88)
2
i=1, 2,3, ... @ 1-{i]
j @,



Using Eq. (2.77), the displacement response can be expressed as
2pL’ 1 1 jra jTx
yix, ) = — T sin —— sin l}-— sinwt {2.89)
Elw i

In both Eq. (2.88) and Eq. (2.89), the summations vary incrementally as
1,2,3,...

, 0. These equations imply that, in general, all modes contribute
to the total response. If the load (P) were placed at the center of the beam

(a = £/2), the displacement response reduces to

Q0

yvix, t) = 2P£4 L L sin > 'T;X gin wt (2.90)

o 4 2
T 5-1,3,5,... ) 1-[3—]
. W

As with Problem 2.3, the response consists of contributions only from the

symmetrical modes (j = 1,3,5,...) of the structure.

Problem 2. 5:

The forced lateral response of a simply supported beam

excited by a point loading moving over the length of the

beam with a constant velocity v.

This problem is depicted by the sketch of Figure 6.

P

1.

- 44
a —

Figure 6. Simply Supported Elastic Beam with a Point
Loading Moving Over the Length of the Beam
with Velocity v
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The solution to this problem rests with evaluating the generalized force
as the mode shapes are given by Eq. (2.76}. The spatial part of the generalized

force for a point loading at position 'a' is given by Eq. (2.87) as

'
‘fj(x) - f 6,0 1(x) dx = V2 peinlf (2.91)
0

For this problem

a=vt (2.92)
80
sin ii@-: sin B, ¢ (2.93)
where juv
B, = 3 (2.94)

The solution for the jth generalized coordinate is given by Eq. {2.79) and

appears here as

-\f p ,
q'j == 2 i sin ﬁJt {2.95)

(e 0]
yix, t) = 2, ¢ (x)q (t) = Z, L > -E—T- sinJ"!Esin B.t  (2.96)
n m J
i J i=l3,5, ... B,
w, I-J‘L
] j

In alternate form, Egq. (2. 96) may be written as

Q0
3 z .
2r2 | 3 . JUTX .
yix, t) =EI 3 L - 5 sin ——  sin ﬁJt (2.97)
T o ] N
.]"'1’2’3"" 1 - )
)
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Problem 2, 6é: Simply supported ¢lastic beam with a point loading at

position 'a' and decaying exponentially in time.

Given the mode shapes of Eq. (2.76), this solution also rests with
evaluating the expression for the generalized force. The generalized force
is written as

at jma

J}
F. =f $.(x) f(x, t) dx = V2 pe™® sini™ (2.98)
b4l I

The eoscillator equation in the generalized coordinates is given by Eq. (2. 24)

and may be written as

'clj +w_.2q. ='V-2 Pe“at sin‘]-?— (2.99)
J J

The jth generalized coordinate is the solution to Eq. (2.99) and appears as

- jTa
q =—————-—l V2 Pe at sinﬂr—- (2.100)
j 2 2 J]
w, +o
J
The displacement response hecomes
(o o]
3 -at
2pP? i j.
y(x, t) =2 ¢ (x)q (1) = — 14 - = > sinL:a sin J‘;x
L Ay v Y
_J 3 by Jy e w.
J
{(2.101)

As contrasted with the other displacement solutions for the simply supported
beam, this response is noted to decay exponentially in time as opposed to
varying sinusoidally in time. The denominator j4 [1 + (a/w ,}2] of the
amplitude factor is noted to be finite as o is defined as a po‘;iti\ze number

for the physical conditions of this problem. Hence, for the classic conditions
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of resonance (& = mj), the displacement response is bounded even though
structural damping is ignored. It is concluded, therefore, that the structure

cannot be excited into resonance by the given exponential loading.

Problem 2. 7: The forced lateral response of a simply supported beam

excited by a uniformly distributed loading applied (in

time) as a step function

" W
| 4 1 %
>{ime

X
l Physical System Time History of the
¥ Applied Loading

Figure 7. Simply Supported Elastic Beam with a Uniform
Loading Applied as a Step Function

The physical system is a vniform elastic beam with sirmply supported
boundary conditions. The loading of magnitude W pounds per unit length is
uniformly distributed over the length of the beam and is applied in time as a
step function. The beam is assumed to be initially at rest prior to the applica-
tion of the loading. It is desired to calculate the displacement response.

Using modal theory, the solution may be written as

v, t) = 2 $() q,(8) (2.102)
j

Imposing the boundary conditions on Eq. (2.11), yields the mode shapes

¢j(x) of the frequency equation as [see problem 2, 2.]

¢j(x) sin Ay X (2.103)

1

sinx.d = jm 5 j=1,2,3,... (2.104)
i
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The modal frequency corresponding to the jth mode shape is

4 mdf 2

1) = — @ 2.105)
(Xj ) El h] (

The jthgeneralized coordinate corresponding to the jth mode shape is given

by Eq. (2.24) and appears as
2 F_]
q.(t) + . q.(t) = =— (2.106)
qJ() i qJ() W

This is noted as a linear differential equation for an undamped oscillator

with the generalized mass given as

ﬁj - anlé;-— (2.107)

and the generalized force defined as

4
F.= Wj' sin X\ xdx - f(t) = —Z—m—rf(t) s j=13,3,5,... (2.108)
J 0 J A,

J
Due to the uniform spatial distribution of the loading, the even numbered
modes cannot be excited and hence cannot contribute to the displacement

response of the system,

Substituting Eqs. {2.107) and (2,108) into Eq. (2.106) yields

(1] 2 4W 1 .
. qj(t) + coj qj(t) = _n_1 —kJ—I' f(t) (2.109)

f(t} is defined as a step function and it becomes convenient to solve

Eq. (2.109) using Laplace transforms. Given the initial conditions

y(x, 0) = y(x, 0) = 0 (2.110)
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Equation (2.109) appears in transformed form as

4W 1 1
‘z(q'[t]) "m NI T2 2 (2.111)
J j s(s +t.uj)

Taking the inverse of Eq. (2.111) yields

4w 1 [ ]
- . - t (2.112)
qj(t) S’ 5 1 - cos wj
j w,
J
Substituting Eqs. (2.108) and {2.112) into Eq. (2.102) gives the displacement

response as

@
sin A\ ,x
4w E j 1 [ ]
=z — . - t 2.113
yv(x, t) ~ W mz 1 - cos wj { )
§=1,3,5,... ] j
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3., RESPONSE CHARACTERISTICS OF A SINGLE DEGREE:-QF -
FREEDOM SYSTEM TO RANDOM EXCITATION
3.1 DESCRIPTICN OF RANDOM EXCITATION

The response of any linear mechanical system to random excitation
cannot be defined explicitly as a function to time; i. e., no equation for the
response time history can be written as is possible for a deterministic forcing
function. The response characteristics must he defined in terms of the
statistical properties of a random process. The stochastic properties of a
Gaussian process are described completely by the first two statistical
moments. Moreover, any realizable linear operation on a Gaussian random
process yields another Gaussian random process. For random processes’
other than Gaussian, more than the first two statistical mornents are required
to define the stochastic properties; and, lincar operations usually change
the random process. In contrast to a Gaussian process, the mathematics
for non-Gaussian processes are generally much more complicated and
complex.

For many practical problems, the random loadings acting on a structure
can be described as a Gaussian process. If the structure is a linear time-
invariant mechanical system, then the resulting response also is a Gaussaian
random process. It is helpful, therefore, to review those basic statistical
quantities that characterize the structural response of linear, time invariant

mechanical systems to Gaussian random excitation,

3.1.1 Random Process Properties

A simple observed time history record of any random physical
phenomenon constitutes only one possible outcome from an infinitely large
number of time history records which might have occurred. This collection
of all possible records {called the ensemble) which might have occured forms
a random process which can be used to describe the random phenomenon of
interest. A random process is illustrated in Figure 8. For example, each
time history in Figure 8 could represent the acceleration or stress time

history measured at a distinct point on a flight vehicle structure.
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4 p vV V

Figure 8 Schematic Representation of a Random Process

The collection of records would then represent the time histories measured
at that same point for separate flights performed under identical conditions,
The statistical properties of the random process are computed by
averaging over the ensemble at any instant of time, or by averaging over
time on individual sample records. If the statistical properties found by
averaging over the ensemble are invariant with respect to translations in
time, then the random process is said to be stationary. If the random

process is stationary and the ensembled averaged properties are numerically



equal to the properties found by time averaging each individual record,

then the random process is said to be ergodic. Ergodicity, therefore,
allows one to use the time averaged properties of an individual record

to describe the properties of the entire random process. More extensive
discussions of these concepts are available from Reference 5, Section 6. In
all discussions to follow, it will be assumed that the random processes

of interest are stationary and ergodic so that all properties of the

random processes can be described in terms of time averages of individual

sample records.

3.1.2 Probability Density Functions

Consider a sample record x(t) from a stationary random process.
The probahbility that x(t) will take on a value in a narrow interval between

x and x+Ax is given by
Prob [x < x(t) < x+/_\x] a2 p{x) Ax (3.1)

where p(x) is called the first-order probability density function for

x(t). More precisely,

p(x) = lim Prob[x < x{t) € x+Ax]_ (3.2)
Ax -0 Ax

The first-order probability density function for a stationary random
process defines the probability of a sample record taking on values

within any defined range. That is,

b

Prob [a, < x < b] = f p{x) dx (3.3)
a

In other words, the area under the probability density plot between two

values a and b defines the probability that x(t} will take on a value in
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that range at any instant of time. Clearly, the entire area under the

probability density plot must equal unity since the probability of any

value occurring is.a certainty. That is,

Q0

Prob [-oo <x < co] = f p(x) dx = 1 {3.4)
-0

2
Note that the mean value p, the mean square value ¥, and the variance
2
¢ of a random process are related to the probability density function

as follows.

o

" =j x pix) dx (3.5)
-—w .
w

\IIZ = f xz p{x) dx ' (3.6)
-co
o0

rrz = [ (x-g:()a p(x) dx = ‘Ifz - p.z {3.7)
-0

However, for stationary ergodic random processes, these quantities may

actually be computed by time averaging a single sample record as

follows,
T
L =X = lim le x(t) dt {3.8)
T—o0 0
— T
# =% = 1im le x2(t) dt (3.9)
T—=0 0
T
2
crz = {x-p) = lim le[x(t)- p.] dt (3.10)
T=»00 0
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The positive square root of the mean square value, given by ¥ or

x , defines the root mean square (rms) value for the random process.
The first-order probability density function for a random process

may theoretically be of many different forms. However, because of the
practical implications of the central limit theorem in statistics, a
speéific probability density function called the normal (Gaussian) proba-
bility density function is usually assumed for random physical phenomenon
such as the pressure fluctuations created by jet exhaust gas mixing and
aerodynamic boundary layer noise. The normal density function is defined

in Eq. {3, 11)and illustrated in Figure 9.

1 2 2
p{x) = ——— exp [-(x-p.) /2¢ ] (3.11)
ey 2w
p{x)
T h T T ¥ x
-3¢ -20, ‘¢ r 20 3o

Figure9 Normal Probability Density Function
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The integral of Eq. (3.11) from the lower limit to some upper value

of x, say a, is commonly called the distribution function or cumulative

distribution function for =x(t). The normal distribution function is defined

in Eq. (3.12) and illustrated in Figure 10,

a
1 2 2
p{x) Prob| x < a =—-—-——j exp |-(x-p) /20 | dx (3.12)
e xe] o [ o ocen®er’]
t
1.0
0.5
0 = X
T

Figure 10 Normal Probability Distribution Function

As stated earlier, but repeated here for emphasis, an
important property of stationary random processes with normal

first-order probability density functions {(Gaussian random processes) is

as follows. All linear operations on a Gaussian random process produce

another Gaussian random process. This is not necessarily true for

random processes other than Gaussian. Hence, if the excitation to a linear

structure is stationary and Gaussian, the response of the structure will

alsc be stationary and Gaussian,
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The probability density functions discussed thus far are first-order
probability density functions. That is, the density functions define the
instantaneous probability characteristics of a single stationary random
process. Given two stationary random processes with sample records
x(t) and y{t), a second-order probability density function which yields the
joint instantaneous probability characteristics for the two processes can

be defined as

P < < : < < vt
p{x, y) = lim lim rob x < x(t) < xtAx ; y < y(t) < y+ay]
Ax—30 Ay—0 Ax Ay

The same general relationship given by Eqs. (3.3} and (3.4) still applies,

except two variables must now be considered jointly. That is,

' b d
Prob[a £x<b;c<gy < d] --ffp(xy) dx dy (3.13)
a¥c

©
Prob[-oogxgoo;-oo gygoo]=f f p{xy) dx dy = 1 (3.14)
- Y-

For the special case where the two random processes are

atatistically independent, the following important relationship is true.

plxy} = p(x) p(y) (3.15)

The extension of the concept of joint probability density functions to more
than two variables may be accomplished in a similar manner.
The assumption of statistical independence greatly simplifies

probabilistic analyses and allows for a linear superposition principle for
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random variables, For example, suppose x(t) is a stationary function

of time defined as

x(t) = xl(t) + xz{t) + x3(t) e {3.16)

2
Then the time or temporal average of x can be shown to equal

2 T2 T2 T2
x -x1+x2+x3+... {(3.17}

as the values of all of the cross terms (xlx2 s X ) equal

1¥30 XpXg 0
zero. Similar statements can be made for the output response spectrum

of a linear system excited by independent random excitations.

3.1.3 Anutocorrelation and Autocovariance

Consider a sample record x{t) from a stationary random process.
The dependence of the value of x{t) at some future time based upon an
observed value T seconds before is given by the autocorrelation defined

as
T

R{T) = E[x(t) x(t+'r)] = lim fx(t) x(t+7) dt {3.18)
T-p»00 0

The autocovariance function is given by

1 T
p{t) = E (x(t) -p}&:(ﬂ-ﬂ-} = lim f [x(t) -p,] [x(t+-r) - p.] dt  (3.19)
T-—»w® 7“0

The covariance is an average of the product of the deviation from
the means at two instants of time. When p =0, the autocovariance is
identical to the autocorrelation function. A normalized form of the co-
variance [obtained by dividing the covariance by the variance crz defines

a function which is bounded by the values of -1 and +1. A necessary but
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not sufficient condition for x{t) and =x(t+-T) to be statistically independent
is that the correlation function must equal zero. For Gaussian random
processes, being uncorrelated is also a sufficient condition for being
statistically independent. All other values are referred to as being

eithér positively or negatively correlated. Note that when T=0, R{0) is

the mean square value of x{t) and p{0) is the variance of x{(t). That is,

—

R(0) = x° (3.20)

p(0) = (x-p)° (3.21)

3.1.4 Spectral Density Functions

Fora sarﬁple record x(t) from a stationary random process, the
frequency composition of x(t) may be conveniently described by the Fourier
transform of the autocorrelation function. In terms of transform pairs, the
relationships between the power spectral density function S(f) and the

autocorrelation function R{T)} is written as

0
S(f):f R(7)e T aq

-0

o (3.22)
R(-r):j s(f) e 2T g¢

-0

In terms of circular frequencies w, the transform pairs may be expressed as

[0 0]
S(“’=lef R(7) e " ar
-00

- (3.23)

R(-r):[ S(0)e®T

=00
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S(f) has the units of mean square value per cps whereas S5S(w) has the units

of mean square value per radian per second. Note that the power spectral
density function is a non-negative real-valued function which is defined for
both positive and negative frequencies. A physically realizable power spectral

density function defined for only non-negative frequencies is given by

2 5{f) for £ > 0

G(f) = (3.24)
0 for f< 0 '
2 S{w) for © > 0

Glw) = (3.25)
0 for w< 0

The mean square value for a sample record x{t} ie related to the power

spectral density function as

[v o)

—_— oo 0 a0
xz = f S{f} df = j’ S{w) dw = f G(f) df = f Glw) dw (3.26)
0 0

=00 -

From Eq. (3.26), the following relationships are obtained

S(f) = 2w S(w) (3.27)

G(f) = 4w S{w) {3.28)
The 27 term of Eq. (3.27) is formed simply by a change in the frequency
units. The 47 term of Eq. (3. 28) consists of 2r due to the change in

frequency units and a factor of 2 due to a consideration of positive

frequencies only (see Eqgs. (3.24) and (3.25)).
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Adapted to a physically realizable spectral deneity function, the

transform definitions given by Eq. (3. 22) yield

[#a)
R(0)z ¥ = x° =f G{f) df (3.29)
0
[0 0]
G(0) =f R({T) dv (3.30)
-0

For a record x(t} from a stationary and ergodic random process,
Eq. (3.29) defines the mean square value as the magnitude of the auto-
correlation function at 7= 0 [R(O)],' and is formed by integrating the
spectral density function over the complete frequency range. Equation(3.30)
states that the magnitude of the spectral density function at zero frequency
(i. e., the mean value of the signal) is given by integrating the autocorrela-
tion function over its complete range.

Since the autocorrelation function and spectral density function are
related as transform pairs, both yield essentially identical information
but in somewhat different formats. By way of illustration, consider
Figure 11 which depicts sketches of the time history and the associated
spéctral density and autocorrelation functions for four distinct signals:
{1) direct current (d.c.), (2) sine wave, (3) narrow band random noise,
and (4) bandlimited white noise,

The spectral density of a discrete frequency component is denoted
as a Dirac delta function of infinite magnitude but whose area equals the
mean square value of the signal. Note the spectral densities in Figure 11
for the d.c, signal and the sine wave. A mean value component {(such as
the d. c. signal of magnitude A‘O) appears as a delta function at zero
frequency in the power spectrurn whereas, in the autocorrelation function,
the same component appears as a shift in the ordinate by an amount equal
to the square of the mean value. A sinusoidal component appears as a delta
function at the periodic frequency {TP) of the sine wave whereas, in the

autocorrelation function, the sinusoidal component appears as a nonconvergent
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cosine function with the same period as the sine wave. The autocorrelation
function for the sine wave at 7 equal to zero yields AZIZ which is the mean
square value of a sine wave with peak amplitude A.

The time history of narrow band random noise has the appearance of a

sinusoid at frequency f  with slowly varying random amplitude and random

0
phase. The dashed line bounds the amplitude of the signal and is defined as an

envelope function, The autocorrelation function appears as a cosine function
—ZTrfng T

with frequency “3 decaying in amplitude as e . This type of

response is typical of the output of a lightly damped mechanical oscillator

subjected to bandlimited white noise whose frequency band includes and is

wide compared to the resonant frequency of the mechanical system. For these

conditions, the autocorrelation function appears as

T SO -Lwn.r L
Ri{T) 3 3 © cos wd-r + —=—— gin md'r {3.31)
Lo -\/ L. g2

The mean square value, therefore, becomes [see Eq. (2.50) of Reference 3_] .

%0

R(O) = ¥ = [x(t)z]z % (3.32)

§w3

L

Note that the spectral density functions for the sine wave and narrow
band random noise are shown with zero mean values[i. e., G{0) = 0] . The
corresponding autocorrelation functions are observed to be anti-symmetric
with respect to the 7 axis and it is apparent that the integral over T equals
zero as required by Eg. (3.30). This integral equation, however, does not
demand that all autocorrelation functions for signals with zero mean value be
anti-symmetric about 7. Equation (3. 30) requires simply that the sum of the
areas of the autocorrelation functions above and below the T axis equals zero

for a signal with zero mean value. Should either the sine wave or narrow band
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random noise have 2 mean value, the autocorrelation functions would then be
anti-symmetric about an axis parallel to the T axis and intersecting R(T) ata
magnitude equal to the square of the mean value.

The spectral density of bandlimited white noise is noted as a constant of
magnitude G0 over the entire frequency band Bf. The autocorrelation function
is peaked near T =0 and decays rapidly to small values of R(T} with increasing
7. In terms of the center frequency of the bandwidth (fc), the bandwidth of the

noise (Bf),a.nd the magnitude of the spectral density (GO), the autocorrelation

function is

sin mB_ T
R(r) = B£ GO TBT;;— cos anc-r (3.33)
The mean square value appears as
f
\E = R{0) =J’0 Godf = Bf GO (3.34)

Thus, the autocorrelation function implies bandlimited white noise is corre-
lated only for small values of T and is a maximum where T = 0,

Should the time history be white noise, the spectral density is a constant
of magnitude G.0 extending over an infinite bandwidth. The autocorrelation
function is a Dirac delta function whose area equals \112 . The mean square
value for such a physically unrealizable process is infinite since the area
under the spectrum also is infinite. In comparison with the d.c. signal, the
spectral density of white noise appears equivalent in form to the d.c. auto-
correlation function whereas the autocorrelation function of white noise

appears equivalent in form to the d.c. spectral density.
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3.2 MEAN SQUARE RESPONSE AND SPECTRAL DENSITY RELATIONS FOR
STATIONARY RANDOM EXCITATION

Let the response (output) be denoted by y(t) and the excitation (input}
be denoted by x(t). The relationship between y(t) and x(t) is conveniently

given by the convolution integral as

(e}

y(t) =f x(t} hit - ) dr {3.35)

-an

Allowing capital letters to denote the Fourier transform (F. T.), the F. T. of

the response [y(t)]appears as

¥{w} = H{w) X(w) (3.36)
where

Y() = F [yir)] (3.37)

H{w) = F [h(r)] (3.38)

X(e) = ?r[x(t)] (3.39)

The mean square value of the response of a linear mechanical system

to stationary random excitation may be written as

T

21 2
y =7 f y (t) dt (3.40)
T
0
Equation (3. 40) denotes a time averaging of a single record from the random
process and is taken to be representative of the random process due to the
ergodicity assumption.
In alternate form, the mean square response can be expressed in terms

of the spectral density as (see Eq. (3.26))}

2. R(0) = f Sy(w) dew (3.41)
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In terms of the F. T. of the response, the response spectral density is
B
Sy(w) = E [Y(w) Y (m)]
Substituting Eq. (3. 36) into Eq. (3. 42) provides

s (e = [ 1" ] E[x x @] - lal?s_(w)

where -
H(WH (@ = |H]°

E [X(w)x*(w)]= 5 (o

Equation (3. 43) is the widely quoted equation stating the response spectral

(3.42)

(3.43)

(3. 44)

(3.45)

density equals the product of the square of the absolute value of the frequency

response function times the input spectral density.

Another quantity of interest is the cross-spectrum and is defined as

S () = E [Y(w)x'”(m)]
Substituting Eq. (3. 36) into Eq. (3. 46) yields
Syx(m) = H(w)Sx(w)

The cross-spectrum finds application in directly calculating frequency
response function and coherence functions [see Reference 1]
For the single degree-of-freedom system excited by a sinusoidal

forcing function, the mean square response may be written as

yz = E[Y(m) Y*(w)] = — =

2@z @ 2 |zl

F

2 2
0 1 0

7l

(3.46)

(3.47)

(3.48)



where Y(w) is given by Eq. (l.30). If the excitation contains more than one

harmonic component, the mean square response appears as

-Z % 1 %
y = ?E[YJ(O}) Yj (w)] = ?E Yj(w) Yj (w) (3.49)
where again FO
Yj(w) = Zj(m) (3.50)

If the excitation contains more closely spaced harmonic components, the

mean square response is given as

sin (w- )T

—Y(w)Y() (o )

dw def (3.51)

which reduces to

T2 1 %
y = m’[o Y(w ¥ () dw {3.52)

The time interval (T) is retained in this expression as the record length over
which the averaging takes place ({see Eqg. (3.40}),
Implicit in the equation for the mean square response given by Eq. (3.52)

is the following definition for transform pairs

Q0

Y{w) = f y (t) et 4t

-0
(3.53)
O

y{t) = —.%-1-1'- f Y{w) eiut dw

Note that the expression of Eq. {3.53) differ in the use of the /27 term from
the definitions given by Egs. (3.22) and (3.23).
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Comparing the terms of Eqgs. (3.41) and (3.52), the integrand of Eq. (3.52)

may be considered as the spectral density of the response and is written as

1 # ' ,
Sy(w) =TT Y{) Y {w) (3.53)

In terms of a physically realizable spectra, Eq. {3.54) appears as
G - Y Y* 3,55
SO = 5 YO Y (@ (3.55)

Similarly, the power spectral density function of the input excitation
[x(t)] is written as
= - F F* 3.56
S ()= g0 FlaF (w) (3.56)
M
where F(w) is the Fourier transform of the forcing function and F (w) is
the complex conjugate of F(w«). Substituting Eq. (3.36) into Eq. (3.54) provides

the relationship between the input and output spectral densities for a linear

time invariant system and is given by

I F(JF (o) _ _ 1
T 2wz |zl ?

s (o = |1l ?s_a (3.57)

X

S {w =
y
Hence, as also stated by Eq. (3.43), the output spectral density is equal to

the input spectral density multiplied by the square of the absclute magnitude

of the frequency response function.
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3.3 EXAMPLE PROBLEMS
These problems are abridged from Reference 1, Chapter 7, und are

inserted here to illustrate the application of the equations discussed in

Section 3.

Problem 3. l: The power spectrum and the rms amplitude for the dis-

placement response of a mass excited mechanical oscillator
to a periodic forcing function consisting of three harmonic

components,

The parametric values for the mechanical oscillator are assumed to be

m = 0, 025 lb—seczlinch

O
1

0.25 lb-sec/inch {3.58)

o
i

1000 ib/inch

The steady state forcing function consists of three harmonic components

with equal magnitudes and is expressed as

x{t) = 17(sin 301t 4+ sin 60wt + sin 90mt) (3.59)

Using the values of Eq. {3.58) with the definitions of Eq. {l.2) yields

i k

fn = Zﬁ' —"I—"n = 31.8 cps
c, =2 Vkm = 10 lb-sec/inch (3.60)
C
L= — = 0.025
C
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The magnitude of the appropriate frequency response function {i.e., the
ratio of the displacement to the exciting force) is given by the steady-

state solution of Eq. (1.4), and may be written as

,5': |Hy’,x(f)lzl Hy’, x(w)l = 12 {3.61)
K [1 o |f 0 1
i

n

Note that the only difference between the frequency response functions of
Eq. (3.61) and the magnification factor of Eq. (1.11) is the term 1/k.

This term normalizes the displacement/force frequency response function
to the displacement frequency response function as, by definition, Yo
equals the applied loading divided by the spring constant.

From Section 2.2 of Reference 1, the periodic input excitation x(t)

may be described by the discrete power spectrum

3

—

2
G_(9) = JZO sz = 144[a(f- 15) + 6(f - 30) + 6(f—45)] 1bs. “/cps. (3.62)

where the subscript of the power spectrum denotes the forcing function,
the {f) denotes a functional dependence on frequency, and the &'s denote
delta functions for the 15, 30, and 45 cps. frequencies.

Expressed in the terminology of realizable spectra, Eq. (3.57)

appears as

2
G (8 - |_HY’ x(f}l G, (1) (3.63)
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Hence, the displacement rdeponse power spectrum may be written as

144 [a(f- 15) + 6(f - 30) + 6(f-45)] .

G (f) = z > > 1ncheszlcps. (3.64)
Y 10 | —£-12]", | o.05¢
“131.8 31.8
Equation {3.58) appears in pictorial form as Figure 12.
0.01
AN
= 31.
fn 8 cps
G_(f)
y £ = 0.025
inchesZ/cps
0. 00024 0. 00015
AN
_ ; ] -
0 fo 20 30 40 50

Frequency - cps

Figure 12 Disérete Response Power Spectral Density Function for
the Displacement Response of a Mechanical Oscillator

to Periodic Force Excitation

The mean square value for the displacement response is given in

integral form by Eq. (3.41)., This equation is expressed in summation form as

3 -
2=144 Z 10
=1

s : 2+ 0.75; 1
31.8 31.8
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Problem 3. 2; The power spectrum and rms amplitude for the displace-

ment response of a specified mass excited mechanical

oscillator to bandlimited white noise.

The mechanical oscillator is assumed to be identical to that of
Problem 3.1. The exciting force is assumed to have a uniform spectral
2
density of magnitude 10 lIb /cps over the frequency range from 0 cps

>> f .
n

The displacement response spectral density is given by Eq. (3.63)

and appears as

G_(f) =2 : inches%/cps.  (3.66)

Vi 6 2
10 [1 _ f 2] + 0.05f 2
31.8 31.8

In graphical form, Eq. (3.66) appears as shown in Figure 13.

-2
10 4
= 31.8
G (f)
Y
2 = 0.025
inches /cps
10 T ! T T Y T 1
0 10 20 30 40 50 60 70 80

Frequency - cps
Figure 13 Displacement Response Spectral Density Function For a

Mass Fxcited Mechanical Oscillator. The excitation is
a bandlimited white noise.
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For a uniform power spectrum Gx' the mean square response is

given by Eq. (3.26) which reduces to

(e 0]

——

2
xf (1 +4L°)G
2=f Gy(f) df = —2 it X (3.67)
0 .

2
Note that Gx must have the dimensions of inches /cps. if Eq. {3.67) is

to yield the mean square displacement response. As stated for Problem

3.2, Gx is given in terms of lbs.zlcps. Since f = kx for this linear

system,

G (incheszlcps.) = -—-1-2— G (le.Z/cps.) (3.68)
x K x

Therefore, the rms amplitude for the displacement response becomes

= .
Yoms - \/ ¥~ = 0.10 inches {3.69)

Note that the integral of Eq. (3.67) represents the area under the displace-
ment response spectral density. Hence, the rms value for this problem also can
¢

be obtained by graphically integrating under the curve of Figure 13,

It is-seen that the response power spectrum has a sharp peak at a
frequency of about f= £n= 31.8 cps. The power spectral density of the
peak is about 400 times (26 db) greater than the power spectral density
of the excitation., The magnitude of this peak is a function only of the
damping ratio for the structure.

For the general case of an excitation with a uniform power spectrum,
the frequency and magnitude of the peak in the response power spectrum
is obtained by taking the first derivative of Eq. (3.63) with respect to
frequency, and setting the derivative equal to zero. The following result

is obtained.
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'—h
tt

2
. fn'\/l -2t for ¢ < u-_\/—-l;z-- (3.70)

G (£)= j"(fd) > for § < ———— (3.71)
VR atfn- 9 vz

The frequency fr where the peak occurs is the resonant frequency of the
structure. The expressions in Eqa. (3.70) and (3.71) apply only if the
damping ratio { is less than 1/'\/? because the response power spectrum
will not show a peak (the structure will not have a clearly defined resonant
frequency} if { is larger than 1/'\[_2- .

Referring to Eq. (3. 70}, note that the resonant frequency fr
approaches the undamped natural frequency fn as the damping ratio {
becomes small, For the case of a small damping ratio, say { < 0.1,

the frequency and magnitude of the responae power spectrum peak are

given as
frr.g fn (3.72)
Gx(fn)
G (fr) 5 (3.73)
Y at

For ¢ <<1 and Gx(f) = constant, the response power spectrum
falls to one-half its peak value when f;gfntli t}. Noting that fr a2 fn,
this gives a bandwidth for the resonance between half-power point

frequencies of

B a2 2Lf (3.74)
r r
In general, actual flight vehicle structures have relatively small

equivalent viscous damping coefficients. Typical damping ratios for

assembled structures range from { = 0.01 to {=0,05. Hence, the value
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of [ = 0,025 used in the numerical example is appropriate, and the
resulting sharp peak in the response power spectrum is generally typical

of actual flight vehicle vibration data. It should be emphasized that the
simple structure considered in the numerical example is a single degree-of-
freedom system with only one resonant frequency. Thus, only one peak
appears in the response power spectrum. For real structures with many
degrees-of-freedom and many different resonant frequencies, a number

of sharp peaks may appear in the response power spectrum,

Problem 3. 3: The power spectrum and the rms amplitude for the

displacement response of a mass excited mechanical
oscillator subjected to a forcing function consisting

of three harmonic components and bandlimited white noise.

The mechanical oscillator for this problem is assumed to be
the same as in Problems 3.1 and 3.2. Moreover, the excitation for this
problem is assumed to be those used in both Problems 3.1 and 3.2, Hence,

the displacement response power spectrum may be expressed as

2
GY(f) = I HY, x(f) I {Gx(f)sinusoids * Gx(f)White noise} (3.75)

where
2 1
|z _®]® - > (3.76)
Yo X 2 2
N 1_( £ ) , [o.05¢
31.8 31.8
2

G D, o= 144 [a(f- 15) + 8(f - 30) + 6(f - 45)]1ba. [cps. (3.77)

2
Gx(f)white noise 10 Ibs."/ cps. (3.78)
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In graphical form, the displacement response spectrum consists of the

superposition of Figures 12 and 13 and is shown as Figure 14.

L]
1l

31.8 cps

0. 025

[Tl
1l

Gy (f) 1077 -

2 .
inches /cps 0.00024

0. 00015
-4 ]

-6
10 Y -  Ee— - T
0 10 20 30 40 50 60 70

Frequency cps

Figure 14, Displacement Response Power Spectral Density for a Mass
Excited Mechanical Oscillator. The excitation consists of
three harmonic forces and bandlimited white noise.

Note that the periodic components of Figure 14 are denoted as delta functions
in the spectral density plot. The magnitudes of the periodic components are
mean square values and represent the area of each of the delta functions at
the specified frequencies,

Theoretically, one always can detect 2 harmonic component in noise
as the spectral density of a harmonic function is infinite at the harmonic

frequency and zero at all other frequencies. Hence, as
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mentioned in the discussion of Section 3, one way to detect a sinuscidal
component in noise is to compute a spectral density plot and observe the
peaks in the frequency spectrum,. Other practical methods are (1) to
calculate the autocorrelation function, or (2} to cross-correlate the output
with a signal from a reference oscillator. For a more detailed discussion
on this topic, the reader is directed to Section 2.1 of Reference 7.

The mean square response can be obtained by integrating to compute
the area under the curve of Figure 14. In an alternate manner, one can
add the mean square values for Problems 3.1 and 3.2 to calculate the
mean square magnitude for this problem. Adding the mean square values
yield

*ya =,020 inche.s2 {3.79)

Hence, the rms amplitude is

2
= = i 3.80
Yoms y . 447 inches { )
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4. RESPONSE OF CONTINUOUS ELASTIC STRUCTURES
TO RANDOM EXCITATION

In this section, attention is given to calculating the response of distributed,
linear elastic structures to stationary random excitation. Mathematically,
this task essentially reduces to examining the solution to partial differential
equations where the nonhomogeneous term must be described by stochastic
quantities. The structures treated here are assumed to be homogeneous and

uniform; thus, the coefficients of the partial differential equations are constants.

4,1 MODAL APPROACH AND FOURIER TRANSFORM APPLICATION
Consider any elastic structure whose normal modes are defined by daj(x)
and wj . The deflection at any point x can be expressed in terms of the

normal modes and generalized coordinates qj(t) as

yiot) =2 o) alt) (4. 1)
- J J
J
Damping is, in general, an unknown quantity; however, it is assumed
to be small and defined as viscous. In order not to introduce coupling between

modes, itg distribution over the structure is given as

Y,
f clx) 6. (x) &, (x) dx (4. 2)
0 J k

Assuming c(x) = 2{ «w, m{x), the equation of motion in generalized coordinates
J ]

for the jth mode is

2
" 2 4.0t) + = 4,3
qj(t) + Ej quj(t) o qj(t) (4. 3)

zu|__hﬂ

j
where M, is called the generalized mass (see Fq. (2.15}}) and Fj is called

the generalized force {see Eq. (2. 18)}).
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When f(x,t) is randem, Eq. {4. 3) must be solved in a statistical sense.
For this, the method of Fourier transforms (F. T. } the concept of power
spectral density, and correlation between quantities are the analytical tools

appropriate for use.

Letting the capital letters denote the F. T., Eq. (4. 3) may be written

as

!
(-mz +i2f, wwt {.0.2 Q. (w) = :l—f Fix, w) ¢.(x) dx (4. 4)
i3 0 j

M,
J

Solving explicitly for the F. T. of the generalized coordinate (q) yields

H_(w)
Q.(w) = TJ—ZI Fx, ¢ (x) dx (4. 5)
/ M.w “0 J
JJ
where
1
H(o) = > (4. 6)
1| 2] +i2g, 2
w, j ow,
J J
The absolute value of (4. 6) may be interpreted as a modal magnification
factor defined by Eq. (1. 11). Substituting Eq. (4.5) into the F. T, of
Eq. (4.1) yields
) H_(w)
Yoo = & ¢ k) =5 | Fix, )¢ (x) ax (4.7)
d J M wz 0 ]
3]

The displacement response can now be obtained by taking the inverse of

Eq. {4.7)
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4,2 CORRELATION CONSIDERATIONS AND MEAN SQUARE RESPONSE
The correlation between the response at peints x and x' can be expressed

as
T

yx) yx') = lim —Z-lT- yix,t) y(x',t) dt {4. 8)
T=p 0 -T

Parsgeval's theorem for integrals can be expressed as

o« 0 o0
f yz(t) dt = 2—1“_-[ lY(w)'Z dw = -51_11-',[ Y (w) Y*(w) dew (4. 9)
- o o0 T

where the integral is assumed finite (page 65, Reference 9). Applying

Parseval's theorem to Eq. (4.8) yields
o0
—— ] , 1
y{x) y{x') = —I Hm o= Y {x, 4 Y{x', ) do (4. 10)

2 o T—eomo

Substituting Eq. (4.7) into Eq. (4. 10) provides

® B H (o)
Y& y6) = 5 LT o o [ = - :
Jj -co Mij r.oj W
j’ lirn ——— F*(x, W F(x', ) 6. (x) $, (x') dx dx' do (4. 11)
T—rco 1

To interpret this equation, examine the applied force without con-
sideration of the structure and define the spatial correlation of the applied
forces at x and x' as

T

f(x) f{x') = lim % flx,t) £{x',t) dt (4. 12)
T—co -T
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Applying Farseval's theorem to Eq. (4. 12) yields

[os)
- 1 1 b
fix) f{x') = Ef lim T F (x,0) Fix', o) dw {4. 13)
~oo T-»o0
0

1
= EI Gf(x,x',w) dw
1o's)

where

1 #*
— : ]
Gf(x,x‘, w) = lim =T Fo(x, w) Flxlw (4. 14)
T+co

Equation (4. 14) defines a spatial correlation density for the applied forces
at frequency w. The quantity Gf(x,x’, w) can be estimated electronically by
multiplying the outputs obtained by simultaneously passing f{x,t) and i(x', t)
through identical narrow band filters whose central frequency varies slowly
over the desired frequency range. Substituting Eq. (4. 14) into Eq. (4.11)})

produces

14 (4. 15)

j;‘fo Gf(x,x', w} ¢j(x) ¢k{x') dx dx' dew

As a convenience for writing equations, define

ij(w) =

—

£ f
1
jf G {x,x',w) ¢ (x)d, (x') dx dx' (4. 16)
Yo 2 2 0“0 f k] k
I
Making use of the definition of (4. 16), Eq. (4. 13) may be rewritten as

Q0
R yE) = 7 LL 6 (x) ¢k(x')f Lol By (@) i (@) do (4.17)
j k -0
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Since the integrand in Eq. (4. 17) is an even function of w, the 1/2 may be
deleted and the lower limit of the integrand changed from -co to 0.
The mean square response at x is found by letting x' = x in Eq. (4. 17),

and may be written as

Qo
2 %
v (x) = )'3,‘ Zk ¢, x) <t>k(x)f0 Ly (e H, (@ H {e) do (4.18)

In terms of even and odd functions of j and k, Egq. (4.18) can be written as

a

YZ(X) = Z ¢-2(X)f H.(OJJZ L. (v do
RS i

. (4. 19)

+ %Zk ¢j(x) ¢k(x)j(; ij(r.u) Hj(co) H, () d

The first summation of Eq. (4. 19) is the arithmetic sum of independent
contributions from all of the normal modes whereas the second summation
(j # k) is the contribution to the total response due to coupling between the
motions of the various modes.

In terms of a physically realizable spectra, the mean square response

can be expressed as

Q0
YZ(X) =f G (x,d) dw (4. 20)
o ¥

where the response spectral density for the distributed systemn is

G b o = z?}i b1 0x) &) (=) Ly (o) B () H, (o) (4.21)
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4,3 DISCUSSION OF RESULTS

This discussion considers the use of structural modes, generalized
coordinates, and Fourier transforms to derive the correlation between the
response at points x and x' and to derive the mean square response of a
distributed structure to random excitation. These results are given as
Eqs. (4.17) and (4. 18). Both the response correlation and the mean square
response are seen to consist of the summation of the normal modes, the
frequency response functions and their conjugates, and a factor defined as
ij{w).

It is not unusual to express Eq. {4.17) and (4. 18} in terms of spectral

densities. For example, the correlation expression of (4. 15) may be stated as

Qo
yix) y(x') :I G (x,x',d dw (4. 22)
0 Yy
where H,*(w) Hk(OJ} .
G (x,x", ) = ZZ $.(x) b (x') J b (e} (4. 23}
y Tk )k MM, wlg’ S
J iR Y %k
and ! 1
fbjfk(@ :j;fo G’f(x,x‘, w} ¢j(X) ¢k(X') dx dx! (4. 24}

Equation (4. 23) defines a realizable cross-spectral density of the response
for a distributed elastic structure and relates the response spectral density

to the spectral density of the generalized force, In comparison with the

expressions for the input-cutput spectral density for a single degree-of-

freedom system (see Eq. (3.57)), Eq. (4.23) is similar in form but requires

a modal summation to account for the many modes of the distributed structure.
Equation (4. 24) defines a relationship between the spectral density of

the generalized force[\fjjfk(

loading [Gf(x,x', m)]. The external force spectral density, in turn, is the

w)] and the realizable cross spectra of the external

Fourier transform of the time average of the external forces at pousitions

x and x' (see Eq. (4.12}).
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The response cross-spectra is noted to vary (for j = k)as the reciprocal
of the fourth power of the modal frequencies. Hence, it may be expected that
the response at positions x and x' become less correlated with increasing
frequencies. It is apparent, however, that the magnitude of the correlation
also is dependent upon the mode shapes, the frequency response of the modes,
and the cross-spectra of the excitation. For complex structures such as
shells, for example, the mode shapes are not necessarily simple functions
so that the computations implied by Eq. {4.23) may be tedious indeed. For
realistic aircraft and missile structures, the mode shapes may be impossible
to measure accurately let alone express in functional form.

The power spectra of the generalized force can be written as

ij _ T, 2 4
Jile) = Gyl o 4 ,z—‘-u; Gole,x', o) 6.(x) &, (x') e ' | (4.25)
where Gf(x,x', )

Go(x,x', t) W {4. 26)
and

Gylxgo) = oo == F g, o) Flxgs o (4. 27)

Equation (4. 26) is a normalized correlation coefficient in a narrow band of
frequency w whereasEq, {4.27)isthe spectral density of the loading in a narrow

band at frequency wand spatial position x Go(x,x’, w) describes a coefficient

0
normalized by dividing by 2 mean square loading at an arbitrarily selected

reference position x This reference position (xo) usually is a point on

the structure of max?mum loading so that the coefficient defined by (4. 26)
has a maximum value of unity. The advantage of the form of Eg. (4.25)
is that the expression within the square brackets is nondimensional and has
values ranging from 0 to 1. It is a measure of the interaction between the
excitation force and mode shapes and has been termed ""joint acceptance"
by Powell in Reference 6.

In terms of the spectral density of the applied loading, the ij term
of Eq. (416) appears as
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S S/
ij(w) = ﬁ 1\_,1 57 jk(w) (4. 28)
(S
Thus, the ij(w) term may be considered as a weighted density function of

the generalized loading and provides a measure of the effectiveness of a
particular forcing field in exciting a given mode of vibration.
In terms of modal impedances, the cross-spectral density of the

response may be written as

£
()
G box, @ = LI 6.6a) &y (x) (429 )
Y i k zj () 2, ()
where Hk(‘*’)
Z (o) = ——— (4. 30)
I
k “k
B (o)
ZJ (w): "h_/i—w-é— (4.31)
3

Note that the modal impedance of Eq. (4.30) is similar in form to the
impedance defined for the mechanical oscillator in Eq. (1. 31), Comparing
these two equations shows the magnification factors to be identical and the
mass of the mechanical oscillator is equivalent to the generalized mass for
the particular mode.

The equations presented here theoretically allow one to compute the
correlation between the response at points x and x' and the mean square
response at any position x for any distributed elastic structure to staticnary
random excitation. Consider those quantities which are necessary for these
computations:

{1} External Loading

e power spectral density at some convenient reference

point (xo) defined as equal to Gf(xo , W)

e spatial correlation coefficient of the loading normalized as

shown in Eq, (4.26) and defined as Go(x, x', w)

20



or, alternatively,

e spatial correlation density at frequency w defined

as Gf(x, x', w}

{2) Mode shapes of the structure ¢j =} , ¢k(x')

(3) Mechanical impedance of the structure
e natural frequencies of the normal modes

# damping of the normal modes

It is not an easy task to either empirically measure or analytically compute
these quantities for realistic aircraft and missile structures. Moreover,

if all of these quantities could be accurately determined, the correlation and
mean square expressions shown in the text would not be computationally easy
to evaluate. Although the equations for the distributed structure may prove
impractical for realistic structures, it ig instructive to consider the appli-

cation of the theoretical expressions to simpler structural systems.
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4.4 EXAMPLE PROBLEMS

Problem 4.1: The mean square response at any point of a simply supported

uniform beam acted upon by two concentrated periodic loads.

P, (t) P, (t)

Figure 15, Simply Supported Uniform Beam Acted Upon by

Forces pl(t) and pz(t) located at Positions x) and X,

As shown in Figure 15, the periodic loads are defined as pl(t) and

pz(t)t and, are applied at positions X, and %, respectively. The mean

square response is given by Eq. (4. 18) and appears as

o) = Z;‘bj(x) o) [ L () H;‘(w) H (o) do (4. 32)
J 0

It is required but to evaluate Eq. (4. 32) for the simply supported beam and the

prescribed loading conditions of this problem.

The mode shapes may be written as

¢j(x) :"-’_2- sin i%x— (4. 33)
¢, ) = V2 sin -k—F (4. 34)
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The product of the modal magnification factor and its conjugate appears in
expanded form, as

H = 1 : 1

(o) H (@) = 3 >
1 -(i) -i2f, = 1 -(—"’—) +izg = (4.35)

% 79 “ “%
The quantity ij is given by Eq. (4. 16) and appears as
£
1
= G ' 1 .

ij(w) == .2 (xx @) ¢j(x) ¢, (x) dx dx (4. 36)

ik Y % 4 Jo

By selecting the coefficient V2 for the mode shapes, the generalized

mass {see Eq. (2. 80)) reduces to the mass of the beam. Therefore,

j N mf = M (4. 37)

w = Jz 1r2' —E% (4.3'8)
J M
2 2_[E
A Y | (4. 39)
M

Itis required now to evaluate the spatial correlation density Gf(x,x’, w) so that

ij(m) can be expressed in expanded form. The loading on the beam can be

written in terms of delta functions as

fix, t) = pl(t) G(X-xl) + pz(t) 5(x—x2) (4. 40)
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Using the definition of Eq. (4. 13}, the spatial correlation density for the

loading resolves into

1 L
Gf(x,x',w) = lim 2 T F (x, w) F{x', )
Ts00
= lim 5= (P + P (o) 41
= lUm 5= 1 {w) 6(x-x1) 5 (o 6(x—x2) (4. 41)
T—0

. {Pl(w) S(x'-xl)+ Pz(w} B(X'—Xzﬁ

Substituting (4. 41) into (4. 37) vyields

1 A %
L ()= ———— |lim =— (P P ¢ P,o.
k() ﬁ'ﬁk‘“-z"i(z {:m ZnT (1 1 #5009, b )+ By P 0) @y bo)
;K]
(4. 42)

* %
t PP o.(5)0, (k) + PP 6, "‘z”’k("za}

Note the delta functions define the integrals of Eq. (4. 37) equal to zero except

where x = X, and x' = X, - Moreover, the correlation densities of the applied

forces may be written as

) 1 e _ . ; N
lim o T P1 P1 = autocorrelation density = Gf(xlfxl’ t0) (4. 43)
To»co
1 #
lim T Pl PZ = spatial cross-correlation density of the loading
Tpco . B
at points X and X, = Gf(xl,xz, w) {4, 44)
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Substituting Eq. (4.43 }and (4.44)into (4. 42) provides

= _l 2 2 %f(xl’xl’ m)¢j(xl)¢k(xl)+Gf(xl’x2’m)¢j(x])¢k(x2)

L. {w) —
MM, e

jk
(4.45)
# Gy ey, 8 (x,)0, (6 1+ Gyl %, w)¢j<x2)¢ktx2)}

In the form of Eq. (4.28), L, may be stated as

jk .
6 f
- o]
L = ] (w) : (4. 46)
jk j4k4 FB(EI)Z jk ke
where
1 = fé (4. 47)
— 2 2 T 44 8 2 o
Mij wJ o j k- m (EI)
and
i
() = Gyl 0 o) 050 W b)) + Gleyn o 8500 6, )
(4. 48)

# Gl @) 8,0c)) &, 6] + Gyloey ) o) 6, 6x,) &, ()

In terms of generalized spectral densities, Eq. (4. 48) appears as

i H f f f
qu(m} =zg<(x1,xl, w) +ﬂJk(xl,x2, w) +%7k(x2.’xl' w} + ﬂ((xz,xz, w) (4. 4¢

The first and last terms of (4. 49) describe generalized ordinary spectral
densities whereas the second and third terms describe generalized cross-

spectral densities.
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Case 1: Both loads are the same frequency (coo) and differ from one another

by the phase angle «. The loading conditions can be expressed as
pl(t) = p, sin wot; pz(t) =P, sin(wot - ) (4. 50)

According to the definition of Eq. (4. 12}, the value of the spatial correlation

functions for the external sinusoidal loadings can be calculated as

T
——————r . 1 . .
pl(t) pz(t) = lim ST PP, sin mot s1n(m0t - o) dt
Tes0
-T
(4.51)
B PlP
= ) COS @
and
2 pA
2 Py 2 P2
P, (t) = —— p, (t) = —— (4. 52)

Statement (4. 51} describes a spatial cross-correlation value for the loadings at
positions X and <, whereas (4.52) describes ordinary spatial correlation

values (a mean square value, in this case). The spectral densities corresponding
to these correlation functions are formed by taking the Fourier transforms of

the correlation functions. For a sinusoid at frequency (c.uo), Eqs. {4.51) and

(4. 52) can be expressed in terms of spectral densities as
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Gf(xl ) X5 obo) = 5 cos a 6(w - wo) (4.53)
2
Py

Gf(x1 X wo) == 6w - wo) (4.54)
2
P2

Gf(xz s Xy w_o) = 5 5w - wo) (4.55)

Making use of the expressions for the mode shapes (Egs. (4.33) and (4.34)),
the modal magnification factor (Eq. (4.35)), the weighted generalized force
term [ij{w)] and the spectral densities (Eqs. (4.53), (4.54), and (4.55)), the

frequency interval of Eq. (4.32) can be expressed as

o
* -_—
ij(c.o) HJ {w) H.k (o) do =
0

2 oo
2 Py I kmx) s q
> sin sin Hj {w) H.k(m) ﬁ(w—wo) w

2 2 J £
M e 0
P.P jmx kmx
1P2 . 1. 2 * ]
+ 5— cos e sin — sin — Hj {w) Hk {w) &{w wo) dw
0
(4.56)
PP jrx kmx
1 . 2 1 ¥ )
+ 5 cos ¢ sin —— sin —7 Hj {ea) H'k () 6{w mo)dw
0
2 ) .00
p2 jTx, k11'x2 *
+ 5 sin — sin -7 Hj(m) Hk(r.o) 6(w-wo) dw
0
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O

The integral j’ H_] (o) H
0
*
making use of the property of the delta function, is equal to Hj (coo) Hk(mo).

k(w} lw- mo) dw is common to every term and, by

Therefore, Eq.(4.56) becomes

o

j(; ij(m) HJ () H.k(o:-) dw =

B 2 . .
ZH. (w )H.k(mo) Py jux, k'n'xl PP, jmx ) kn’x2
2 7 2 3 Sin — sin 7 + 3 cos o | sin 5 sin 7
M w, u.\k
J {4.57)
jT= knxl pz2 j'rrxz k*nxz
+ sin 7 sin 7 + > sin 7 sin 7

As in Eq. {4.32), the mean square response at any point x is obtained by
multiplying Eq. (4.57) by dpj(x)cbk(x) and summing over all j and k. In

alternate form, Eq. (4.32) can be rewritten as

v (x) = ZZ 2, (4.58)

where

26,6 6, 00) [HS (o ][] (o) gmx ks
. N z o
wj Nk

PP, AT kmg o gmg kg
5 Cosalsin sin ——— + sin sin (4.59)
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When j = k, the mean square terms appear as

2 2 2 .
26 )| By 5 i
= - i + i
an Mz w‘% 2 81n 7 plpz COos a‘(Sln
J

jm::1 jmx
7 Bin 2

2 .
P, 2 1™,
Z Si1t "'T—

1
2 2
c‘)O bJo
1-(—~)j + 128, —
w, J w
J i

Since ajk = akj , the sum of the odd terms ajk+ akj equals

{factor} {Hj(mo)Hk(wo) + Hj(wO)H:::(wo)} =
{factor} 2 Real[H;c(wO)][ Hk(wo)]

From Eg. {4.61), the factor term of Eq. (4.62) is

w0000 [ p) gm km
fac:tor} —=— 8in —— 3i

+

where

IHJ( “’o}’z

2 2 Z 7 ST
Mzwmk

and the real part of the product of the modal magnification factor and its

conjugate is
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mOZ. woz m
] = {—— -] — ___.
o 1 +4§§k

Real[Hj*( wo):l[Hk( mo)] - i (4.64)
2 w |2 | :
o] [ ¢] 0
1 -(w— + ZC,J :1: 1 - (w— + Z{,

J

w
Q

€

Expanded to include the first four modes, Eq. (4.58) yields the mean square

response of x as

4 4
¥ (X) z Z 3 tla,ta,, telatay ) tag (e fay tag )t

j=1 k=1
(4.65)

The first four terms of the mean square response {both j and k ranging

from 1 to 2) appear as

. 2 mx 2 2
dsin” 7 He)|” p) ™ ™
2 sin . +p 122 cosa [sin —— 7 sin =y~

a -
£
11 MZ w4
1
2 . (4.66)
+p2' sin2 --I—-Z
2
where
2 1
LRCRIE 3 5 (4.67)
w \2 w
l - (_._9) + |2 g’l _°
“y “y
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2
4 sin—%x—sin

11XReall[HI‘k( mo}][HZ( wo)] {plz . ™, . 211':»{1
Z sln

2127%1 7 z 2 2 7 8nTy
M w o«
(4.68)
2mx 2wx 2 2
+ plpz c in El_ in 2 + sin '”xz sin 1) + Pz sin ﬂxz i Trxz
5 osa |si 7 st in — 7 5 7 sin 7
where
w 2 w ooe
1 - - — 1+ 4 _— —
1 1 “2 1% “ 9
Real[H (o )] H, (o )] crJ > (4.69)
o) “o z (mo)2 “o :
— +2g, — 1 -2} | #eg, =2
w 1 wl uz (-2 wz
2mx 2 2
4 ——
L. sin 1 IHZ(w)I p1 2 wal X Zﬂxl wa?_
22 MZ 0’24 5 §in —[’"’ PIPZ cos algin 2 sin 7
(4.70)
2 2
L2 2 T
5~ sin 7
where
Y
2' 0 2 2 (4-71)
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By considering the expressions of Egs. (4.59) and (4.61), it is seen that the

parameters affecting the mean square response are

. the excitation frequency (c.oo)
® the modal frequencies of the structure (mj . “'1()

» the magnitude of the modal damping (gj ) gk)

° the mass of the beam (M)

» the magnitudes of the external loading (pl s pz)

. the value of the phase angle of the applied loading («)
. the position of the applied loads (xl ) XZ)

. the location of the measured response (x)

Although these parameters can be readily listed, their relative effects on the
mean square response are not immediately obvious from the form of the
response equations. However, by inspecting these equations in more detail,
useful judgments can be formed.

Consider for example, the maximum magnitude of the mean square
response in a single mode. From Eq. (4.66), the mean square response is

formed from the effects of four quantities:

(1) a coefficient varing inversely as the product of the square of the
mass of the structure and the fourth power of the modal frequency;
‘1. e,
: 4
54 (4.72)
M w
1
(2) a sine squared term whose argument contains the spatial position
of the response; i. e.,

smz-Ej2 (4.73)

This expression has a maximum of unity when x is located at

the midpoint of the beam.
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{3) a modal magnification factor whose maximum value is found when

the excitation frequency coincides with the modal frequency of the

structure; i. e.,

2 1
IHI(wO)I =—— =25 (4.74)
(2¢8)
The numerical value of {4.74) is for § = .1 which is a damping

typical of practical structures.

(4) a generalized loading expression containing the magnitude of the
applied forces, the phase angle between the loads, a sine function

whose arguments contain the spatial position of the external loads.

This expression is written as

2 2
P, 2 113;1 P mX 11'x2 pz 2 1TXZ
— ¢ sin ———4+ 2 — cos o {s5in — sin —|+| — ] s5in  ——
2 £ p1 J4 I} pl £

(4.75)

For Eq. {4.75) to be a maximum, x, and x, must be defined at the midspan

of the beam (xl =%, = £/2) and the loads must be in phase { @ = 0). Then,

Eq. (4.75) reduces to

P P p 2
1 2 2 1
— 1 42 '1')—1 + -E-;-; =3 [Pl + pz] (4.76)

Equation (4.76) shows a conservative estimate of the magnitude of this loading
is one-half of the square of the sum of the applied loads. Should the loads be

phasedinquadrature {a = 900), the loading magnitude reduces to the sum of the

mean square values of the applied loads; i. e.,

A
P %
1 2
= t 3 (4.77)
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Hence, the phase angle governs the loading expression in the ratio
P 2
i
: By
EEEE— (4.78)
P
14+ -2
Py

This ratio ranges from 1 when PZ/pl =0 to 0.5 when pz./p1 =1. Beyond
pzlpl =1, Eq. {4.78) increases and asymptotically approaches unity for very
large values of p‘?'/p1 . This behavior points out that the phase angle can
vary the magnitude of the mean square response in a single mode hy a factor
of twa. Taking into account the preceding statements, an approximate
value for the maximum mean square response in a single mode is

.~ 50 2
1= "3 gz (P *p) (4.79)

expression of Eq. (4.70) with the a . expression

Compare now the ass 11
of Eq. (4.66). The loading expression corresponding to Eq. (4.75) does not
change. The position of maximum response, however, is at the quarter-
span of the beam instead of the midspan as with ay;- This occurs as the
argument of the sine squared term containing the spatial position of the

response is 2wx/{ instead of wx/f. The maximum value of the magnification

factor occurs when w = W and may be written as
2
2 | %2 2
PN = s
Making use of Eqs. (4. 80) and {4.70), the a
2
3y, = - a
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mean square displacement

response reduces to

22
I (4.81)



Thus, compared to the fundamental mode contribution (a the mean square

11)’
displacement response contributions for all of the even terms (j=k) vary in
the ratio of the frequency squared.

If the structure is at resonance (w0= ml), the j=1, k=2 cross term

(see Eq. (4.69)) reduces to

Real [Hl*(wo)] [ Hz(wo)] - — (4.82)

w
O

1 -1—=

2

w
Q

25

1+

34

Assuming the modal damping is very small, Eq. (4.82) approaches zero.
Hence, all odd terms containing a resonant frequency as a subscript are zero.
This implies that, for small values of modal damping, no cross coupling exists
between the resonant frequency and any of the modal frequencies,

If the external loads are positioned at %y and X, equal to £/j where
j is a given integer, all the terms of Eq. (4.61) containing the particular j
value as a subscript equal zero. These conditions simply state that the jth
mode of the structure cannot be excited if the external loads are applied at the
nodes of that mode. Should the loads be of equal magnitude and positioned
symmetrically about the midspan of the beam, the loading expressions of
Eqg. (4.61) reduces to

2

P 2
2 51n

T

)4

{1 + cos «) (4.83)

Thus, as implied by Eq. {4.79), the phase angle can vary the mean square

response by a factor of two.
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Case 2: Conditions of Case 1 with a damped cosine spatial correlation.

The spatial part of the correlation function may be expressed as

eHYg cos -Z—EE {4.84)

where

£ = X, - X = spatial separation
A = wave length of the damped cosine wave

vy = damping or decay factor for the cosine wave

Pictorially, this spatial correlation function appears as shown in Figure 16.

2wt
X

cas

/‘\

> e

N

Figure 16, Damped Cosine Spatial Correlation Function

The only difference between the problems defined in Case 1 and Case 2

is the spatial correlation density which, for this problem, is given as

PP
_ T1va 2mé -v€
G(:u:1 ) Xy wo) = =3 cos @ cos — e o{w- coo) (4.85)

The mean square response can be represented symbolically as

y2 x) = L2 2k (4.86)
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where

20,60 0, 0H o i ()] fo) gme kemy

= 5 sin 7 sin T

a, =
ik 2 _2 2
M mj mk
j k
2mg -vE 'nJ 1 in k“XZ + sin i sin T2
+ plpz COS8 @COS e si r s 7 7 7
{4.87)
2 j kmx
N Py ™ 2
3 sin — sin —
For the j = k terms, Eq. (4.87) yields
2 2 2 ) . .
= 2¢j (X)|Hj(wo)| Pl in’ JT‘X1+ COs cosﬂge_vg sin J“-xl sin Jﬂxz
T T 2 RGBS L T x T 1
W,
J
{4.88)
" 2
. jmx, _ 17}:2 p2 2 _}wxz
+ sin sin + -— sin ——
J4 J i 2 )

The absolute value of the square of the modal magnification factor [IHj(wO)IZ]
is given by Eq. (4.61) whereas the product of a modal magnification factor
and its conjugate [H;k(coo)] [Hj(wo)] is given by Eq. (4.35).

In addition to those parameters listed in Case | which affect the mean

square response, three additional quantities are introduced by the correlation

function of Case 2.

. the rate of decay of the damped cosine term (y)
[ the spatial separation of the two loadings (§ = x, - xl)
[ the wave length of the damped cosine term ()\)

In contrast to altering the phase angle (%) between the applied loads, these

loads now can become uncorrelated if they are positioned at

g:n:’f , n=1,3,5,... {4.89)



Equation (4.89) defines the zero value crossings in the damped cosine plot of
Figure 16. The correlation function becomes negligibly small if the
exponent of the decay term is very large. This condition can be described by

the sketch shown in Figure 17.

Y

vE = constant

Loading
Decay
Coefficient

Spatial Separation

Figure 17. Sketch of the Damping Coefficient|y) versus the
Spatial Separation (£) for the Decay Term ofthe
Damped Cosine Function

This sketch shows the relationship between vy and £ is hyperbolic. In the
limits, zero correlation occurs either with rapid decay (y is very large) or
by widely separating the loads (§ is very large). For given positions of the
applied loads (£ is then a constant), the curve yields the minimum ¥y to insure
zero correlation between the loads. Alternatively, given a fixed value of
decay, the hyperbolic curve yields the spatial separation beyond which the

loads are uncorrelated.
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Case 3: Conditions of Case 1 except that each load is applied at a
different frequency.

In contrast to Eq. (4.50), these loading conditions can be written as

— : . - 3 1
pl(t) = p, sin wot ; P, = P, sin mot (4.90)

The value for the spatial cross-correlation functions may be calculated as

T

srrreayr O U | o
pl(t) pz(t) = lim 5T P1p2 sin wot sin c.oot di

T—>wx -T

sin (w - @"}T sin (w + w' )T
) 1 o o o o}
=p pz lim 2T = =0 (40 91)
1 T—s00 wo - mé) w0+c.o:)

The autocorrelation functions yield mean square values of

— Pz — p2
2 1 2 2
p{th=—— ;s p, = = (4.92)

Note the correlation densities are Fourier transforms of the correlation

functions; that is, in symbolic form

Q0

Glx, x', @) = f e T Ll ) plx’, £+ 1) dr (4.93)
-0
0,

Gf(x, x, W)= e_wT plx, thplx, t+r) dT {4.94)
-

Interpreting Eqs. (4.93) and {4.94) for the loading conditions of this problem

yield the following spectral densities for the correlation functions
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Glx )1 %y, © m’o) = (4.95)

2
Py
Gf(xl,xl, w} = 2—6(m- w ) {4.96)
2
G, bx s 2 e o) (4.97)
e ¥ % T T YT Y '
The frequency terms of Eq. (4.32) now can be written as
oo}
&
ij(w) Hj (ew} H.k {w) dw =
0
2 pf jmx)  kmx) #
W —- sin 7 sin — HJ (w) H.k(w) &{e- wo) duw (4.98)
“ % 0
2 .
Pz jmx, - km, 2 .
+ 5— sin ; sin y Hj (w) H.k(w} 8{lw- wo) dw
0

The mean square response is given by Eqg. (4.58) which is repeated here as

(e o]
2 . P
y (x) ); E ¢j(x)¢k(x)f0 H, (o) H (o) L (o) dw-ij);{ 2 (4.99)

where



by ) e 2 | Amy
ajk: JZZ 5 [Hj(wo)][Hk(mo)]pl sin 7 sin ;

ijwk

{4.100)
j X kmx
+ H*(w')][ (o )l p2 sin i sin 2]
j o Hk o 2 Ji £
For the j = k terms, Eqg. (4.100)} provides
62 (x) ; ;
{x jmx jrx
_ 2 2 .2 1 2 2 .2 2
ajj % |Hj(w0)| p, sin —— +|Hj(w0)| p, sin —; (4.101)
My

The absolute value of the square of the modal magnification factor [IHJ (mO)Z I]
is given by Eq. (4.61) whereas the product of a modal magnification factor and
its conjugate [H;z(wo) Hk(wo)] is given by Eq. (4.35).

As contrasted with the ajk and ajj coefficients in both Case 1 and
Case 2, the mean square coefficients for this problem (see Eqs. (4.100) and
(4. 101) ) contain no coupling due to correlation between the loads. However,
as with both of the previous problems, the mean square response may contain
contributions due to the coupling of the external loads by the structural modes.
This modal coupling is evidenced in the j # k terms of Eq. (4.100) and the
magnitude is noted to be dependent upon the product of the mode shapes, the
masg squared of the structure, the product of the square of each of the modal
frequencies, the position of the applied loads, and the product of a modal
magnification factor and its conjugate. The magnification factor term will
contain quantities identical in form to Eq. (4.64) so that the value of the modal
damping {gj and Lk) and the ratio of the driving frequencies to the meodal
frequencies ( wol wj R molwk , mol/wj , w(;/mk) also are important to the magnitude

of the a. coefficients.
jk



Problem 4, 2: The mean square response at any point x of a simply

supported elastic beam subjected to uniformly distributed

white noise.

Pictorially, the problem is depicted as shown in Figure 18,

prre o
. )

Figure 18. Simply Supported Elastic Beam Excited by
Uniformly Distributed White Noise of Density GO

The beam is assumed as homogeneous, to obey Hooke's Law, and its defor-
mation is given by small deflection theory. The dynamic properties of the
beam are described by Bernoulli-Euler theory. Note that the units associated
with the magnitude of the spectral density (GO) are force per unit length
squared per radian per second.

The mean square response 1s noted as

[ o]
YZ(X)=Zj ); ¢j(x)<1>k(x) fo ij(w)H;:(w) H (<) de  (4.102)
where 1 ¥
1
L, (@) = ———— G (x, x', @) ¢.(x) . (x') dx dx'  (4.103)
jk —— 2 2 ,[f £ i k
Mijwj w070

The values for the mode shapes ¢j(x) and c’pk(x), the generalized masses M,
J

and M, , and the modal frequencies wj and @, are given for the simply

supported beam in Problem 4. 1, For white noise, the spatial

correlation densities are expressed as
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Gf(x, x', w) = Go(w) o(x - x') (4.104)

Equation {4.104) states that white noise is completely uncorrelated for any
two positions (x # x') on the beam and the ordinary spectral density at any

position {x) is of magnitude G0 over all frequencies.

Due to the property of the delta function,

!
fo Go(c.o) ¢j(x) 8(x - x'Ydx = Go(w)dpj(x') (4.105)

Thus, it follows that

knxt

yi 1 2
fon(x, x',m)d:j(x)dzk(x')dx d_x'=2.G0 '!:j(;sm———— sin 7 dx dx! (4.106)

O\ﬁh

Due to the orthogonality property of sine functions, the integral of Eq. (4.106)

has nonzero values only when j=k. Hence, Eq. (4.106) reduces to

.

2 2
G f[ sin” 4= dx dx = G_ (4.107)
o 0“0 o]

The L'k terms of Eq. (4.103) can now be written as
J

1 2 Go
L.-= Gt =—s5— {4.108)
s > >
J) M2w4 © m m‘_{l
J ] J
The mean square response then becomes
y (X) ¢ (X) (w)H (w)H (w) dw (4.109)
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In expanded form, the integrand of Eq. (4. 109) appears as

[e.0]
1 Gy 1
dew = , (4. 110)
A .

G
0
2 4

m w,
J

Note that the I/ZLj term appearing in (4. 110} is the Q value for the jth mode

(Q.). Thus, the mean square displacement response can be written as
J

2 "G (% L2 T Q 2 an+Q3 2 3T 4. 111)
y (x) = 5§ —% sin 7 7~ sin 7 3 in .
m W) W, w,

Equation (4. 111} suggests a procedure for calculating the mean square response
of a distributed elastic structure to white noise. The frequency response
function at position (x) is assumed to have well defined modal peaks and the
magnitude of the mode shape corresponding to the modal peaks is assumed
known. The Q wvalues corresponding to each of the modal peaks then can be
obtained using the half power points as implied by Eq. (l.14). Knowing the
mass density of the responding structure (m}, the magnitude of the spectral
density of the noise excitation (GO}, the rﬁean square displacement response

can be calculated by

TG Q,
S g )3 3] &7 (x) (4. 112)
J

Zm w, )
J
It is of interest to compare the expression for the mean square response
at any point {Eq. (4.111)) to a reference value obtained by averaging the mean
square response over the total mass of the structure. Powell (Reference 6,
page 194) calculates a similar reference value but averages the mean square

responge over the length or surface area of the structure. Averaging the
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mean square response with respect to the mass allows use of the orthogonality
properties associated with the generalized mass (see Eq. (2.5)). For this

problem, the averaged response spectra is given as

yi
E [G (x,w)] = —l—f G (x,w) mi(x) dx {4.113)
M* ¥y M o ¥
where the response spectra is
2 2
G (x,w = Z . L., H, 4.114
Jel = Eofeo Ly |5 (4.114)

In expanded form, Eq. (4.113) appears as

\Hl(‘”)lz Ly ()

£
(w) 5 ()
EM[GY(X"”)] = M j(; 4’12(") m(X)dx+lH °-’| -

f cb {x) m(x) dx.

(4.115)

For the simply supported beam, the integrals of Eq. (4.115) reduce to the total

mass of the structure so that

EM[Gy(x,m)] = IHl(w)IZ L () + IHZ(m)'ZLZZ(w) + ... (4.116)

The mass averaged mean square response value is denoted as

A Qo
A 2
YM = EM{Y (X)] =j0 EM [Gy(x, (.D)] dw (4.117)

For this problem, Eq. (4.117) is written as

2 | 2 f 2
Ve Lll,{o Hl(w)| dcu+L22 A lHZ(w)l dw + ... (4.118)

1

which can be resolved to yield

115



2 0 1 2 3
YM:22 sttt (4. 119)
m 0)1 |'.AJZ (.03

Equation (4. 119} is noted to differ from Eq. (4. 111) in the absence of the
2
mode shape squared term [rbj (x)].
Considering only the response of the lowest mode, the ratic of the mean

square response at x to the mass averaged mean square response is

2
= 2 sin IE

(4. 120)

Equation {4. 120) is observed to vary from zero to two depending only upon
the spatial dimension x. Hence, if this mass averaged value were used as
an estimate of the mean square response of the structure, it would be accurate
only at positions x/f = 1/4 and 3/4. All other positions would be in error
ranging with the mean square response at the supports being zero and twice
the mass averaged value at the mid-span.

Including all of the modes for the simply supported beam, Eq. (4. 120)

appears as

Ql .2 TXx QZ,ZZTrx Q3 .2 3mx
2{——— sin T+ 3s1n + sin ——+ ...

> 3 2 3 Z
W w
1

y (%) i 3 (4.121)

2 Q Q Q
v 1 2 3

M { Pt et }

“1 w2 “3

Since the individual terms in both the numerator and denominator of (4. 121)
vary inversely with the cube of the modal frequency, the higher modal frequencies,

in general, have a minor effect in contrast with the lower modal frequencies.
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Problem 4. 3: The mean square response of a base excited cantilevered

beam. The excitation is white noise.

Using simple beam theory, the equation of motion for a cantilever

beam excited at the base with a sinusoidal forcing function is

4 2
» t ) t » .
g y(J; Yy o aya(f )4 m E_X%_t) = -my, sin wt (4. 122)
ax ot
where y = beam elastic deformation
'ir'o = base acceleration

By assuming the beam as homogeneous and uniform, the coefficients of

(4. 122) are constants. The modal solution is written as

yix,t) = 0 ) a1 (4. 123)
j

Substituting Eq. (4. 123) into Eq. (4. 122) and imposing orthogonality conditions

results in

. my,
'cIJ(t) + Zgjmj qj(t)+ wjz qj {t) = - E/{_—f $.{x) dx sin wt (4. 124)

The Fourier transform of Eq. (4. 124) yields

HL&J) e
Q(w) = - = 6,6 ax- ¥ (w) (4. 125)

M, w,
J )

Making use of Eq. (4. 123) and (4. 125), the Fourier transform of the response

appears as

) H (o) ¢ o
Yix, @) = ¢ (X)Q {w) = Z¢> (x) —f $.(x) mY _(w) dx (4. 126)
J 0
mJ M_] 0
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The correlation between the response at points x and x' is given as

(e 6]

1=
3 PU— 1
lim 5T Y (%, w) Y{X', o) dw (4. 127)
0 T—w

=

y(x) y{x'} =

In terms of the spectral density between the response at points x and x',

Eq. (4. 127} may be expressed as

y(x) y(x') = fG (x,%x', o) dw (4. 128)
0 ¥y
where
1
G {x,x",0) = lim, ——— Y (x, w) Y{x', w (4. 129)
y 2wT
T—co

From Eq. {4.126), the cross~-spectral density of the response is written as

H (o) H, {e)

Loy oo f
Gy(x,x,w)-}J:Z;cbj(x)d»k(x)mM S ) (4. 130)

ik w_] “k
where the spectral density of the generalized force is
Szj.f( w} =jjf m{x') &, (x') m{x} ¢.(x) G (x,x', o} dx dx' (4. 131)

and the cross-spectral density of the external loading {acceleration) is

denoted as

Ga {(x,x', ) = lim =— Y _(x,w

1
T 0 {x', w) (4. 132)
Ts00

Equation {4. 132} is noted to define a power spectral density of the base

acceleration. For white noise, the excitation is uncorrelated with spatial
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position so that the Fourier transforms of Eq. {4. 132) are independent of
the positions x and x'. Requiring the structure to have a constant mass

per unit length (m), (4. 131} now can be written as
¢

jk

where the spectral density is written as

[0

and Go(a) has the units for acceleration squared per radian per second.

Since
£

Equation {4. 133) then reduces to

2

r27jfj(w) - mZGo(a) 2 (4.

In terms of the L, parameter, the cross-spectral density of the response

jk
is
G, "1 o) - 53: E 0.60) 0, 6) HL(0) B (@) Ly () (4
where
Lyfo) = ———— ¥ () (4.
Mj Mk wj cuk

For this problem, the L.

ik expression has meaning only when j = k and

appears as

119

2
f (w) = mZG (w)‘[f ¢k(x')¢_(x) 5(x-x') {4.
“ 0 J

G (x,x', w} = GO(Q) B(x~-x') (4.

j $.(x) 8lx-x') dx = & (x') (4.
) j
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(m0°G @) G, la)

— 4 - 4
M ,Z w, w,
J A

The mean square response at point x is noted as

2 2 2
yx) = }J: b/ ) ijj(w) |,

where the square of the absolute value of the modal magnification factor

[IHj(co12 ]is given by Eq. {4.61). The integrand of (4. 140) reduces to

TG (o) G _{a) Q,
0 i i 0 J

’ L. () H.(m)'z de = L _ .
o M , ] 2 “’j3 Zgj 2 wj?,

and, as shown in (2. 37), the mode shape for the cantilever beam is

¢.{x)=cosh Ax - cos A\ X - g, (sinh Ax - sin A x)
J J J J J J

where cos A +cosh ) f
o, = : !
j sin A £ + sinh A, £
] J
and
4
4 mi 2
£) = ——— w
R

(4.

(4.

(4.

(4.

(4

139)

140)

141)

. 142)

143)

. 144)

To compute the rms stresses in the beam, the rms bending moment must

be determined. The relationship between the rms stress level [s ms(x)] at

position x at the rms bending moment [Mrms(x)] at position x is given as

h
Srms(x) T Mrms(x)
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where h is the vertical distance from the neutral axis of the beam and I is
the area moment of inertia of the beam cross section about the bending axis.

The rms bending moment is written as

2
M (x) = M” (x) (4. 146)

From simple beam theory, the bending moment at x is

2
M(x) = EI —8—3-%-1 (4. 147)
ox

The second order partial expression may be written in terms of the mode

shapes and generalized coordinates as

o (x)
M) = B L —— g
I ek j

Following the derivation procedures in Sections 4. 1 and 4. 2, the mean sguare

bending moment appears as

0% ) ot ) [

Mi) = (B L T ——L— - . f Lol Bl H, (o) do (4. 148)
j k 0

ox ox

For the conditions of this problem, Eg. (4, 148) reduces to

2 2
m wj ox

2 2
G 2 Q. 9 4. x)
MZ(X} = 9 (.]il) ’ JZ ——-%- ..._¢’.3_ (4. 149)

The partial derivative terms of (4. 149} for the cantilever beam are to be
found tabulated by Felgar in Ref. 8. For other than homogeneous elastic

structures with the simpler boundary conditions and geometry (such as a
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simply supported rectangular plate or beam), accurate mode shapes - let
alone their second derivative - are difficult to obtain in functional form.
Consider now the derivation of an expression for the mean square
acceleration response of an arbitrary linear elastic structure to stationary
random excitation. In terms of normal modes [q)j(x)] and generalized

coordinates [qj (t)] » the displacement response is expressed by Eq. (4. 1)

yie,t) = Y, 4 5x) q,(0 (4. 150)
j

The acceleration is defined as the second time derivative of (4.150) and may

be written as

Vi, t) = Y ¢, (1) (4. 151)
j .

where the double dot notation is defined as

2

»e d
()= (2) (4. 152)
dt
Only when the generalized coordinate is a harmonic function in time will
us Z
vix,t) = -w y{x,t) (4. 153)
For the condition where the excitation is random, the simple expression of
Eq. (4. 153) relating the acceleration and displacement no longer is valid.
The Fourier transform of the displacement response in the jth mode
is
Yj(w) = d)J.(x) Qj(w) (4, 154)

For zero initial conditions, the Fourier transform of the acceleration

response in the jth mode is, however,

122



Y w) = b.0x) O.() = 6.(x) o Q.(w) (4. 155)
J J J J J

From the derivation in Section 4. 1 and Eq. (4. 155), the Fourier transform

of the acceleration response may be written as

(w) :

2 H(w

Yix, ) = ): dp.(x)(i) _._i__f F{x, w) ¢.{x) dx (4. 156)
FRRRC e L V J

J

and, the mean square acceleration response becomes

Qo
. B 4 B
y (x) = );_': ); ¢j(x) cbk(x)'{ w ij(co) HJ. (w) H {¢) do (4. 157)

In contrast to the mean square displacement response of Eq. (4. 18), Eq.

(4. 157) is noted to contain an w4 term in the integrand. This can introduce
serious convergence problems when evaluating the integral expression shown

in (4. 157). For the conditions of this example problem, the integral expression

appears as

4
o > G (i)
o w,
f w4L..(co) 'H.(m)lz dew :f Q > ] 5 dw {4. 158
S B e
B wj t"j w

Therefore, the mean square acceleration is of the form

4
W
Go(a)(-—w,)

Vi) = ¥ ¢J.2(x> i de
j

*EE e 2]

J J

If GO(Q) is bandlimited white noise, the integral of (4. 159) can be evaluated;

otherwise, (4. 159) is bounded without limit.
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Problem 4. 4: The mean square response of a simply supported elastic

beam subjected to a continuous loading spatially correlated

over the length of the beam.

It is the intent of this problem to illustrate a procedure for repre-
senting a continuous,spatially correlated loading as sets of correlated
discrete loadings. This approach is analogous to a lumped parameter model
for a distributed structure and is but an approximation of the distributed
loading. However, computational advantages are to be gained in that integral
functions can be evaluated as algebraic summations as will be illustrated
here.

As shown by Eq. (4.18), the mean square displacement response at
any point x of a continuous elastic structure subjected to stationary random
excitation is

0

2 *
y x) = }J: Zk¢j(x)¢k(><)£ ij{w) Hj{w) H (o) do (4. 160)

Consider now a distributed load p(x,t) over a one dimensional structure

such as a Bernoulli-Euler beam. The quantity ij(w) is then

I3
1
L. (w) = fG(x,X',wW.(X)fb {x'} dx dx' {4. 161)
jk —— 2 2[ £ j k
MM, wq” D0
where
G, %", ) :fne'“"t P, t) plx', t) dt (4. 162)
0

Generally, the spatial correlation function of the loading [p(x, t) p(x', t)]can
be expressed as a function of the spatial difference ‘x-x‘]. For many practical
problems, the spatial correlation function of the loading tends to decay as

a damped cosine function with increasing values of |x - x‘l-
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Often, due to the complexity of the mode shapes [cl)_(x)] as well as
the spatial correlation function, a direct analytical integl'}ation of the double
integrals given in Eq. (4. 161) is difficult or even impossible. In many
applications, it is expedient to evaluate the double integral numerically.
One such procedure is to replace the distributed load p(x,t) by a set of

concentrated loads as
plx,t) = Pl(t) &(x-xl) + pz(t) 6(x—x2} + ps(t) 6(x-x3) + ... (4. 163)

where 6{x—xi) is a delta function which is zero everywhere except at x =%, .

The double integral shown in Eq. (4. 161) now appears as
{Gf(xl, X w)¢j(Xl )¢k(xl)+ Gf(xl,xz, m)¢j(xl)¢k(x2}+ Gf(xl,:x3)¢j(xl)¢k(x3) ...
P Cgligrxy ©)6 0 )0 b I¥ Grlocyaxgn )50y )0, B,) + Gyl iy, ), (e, ), Gg)

F Oy, 9 e3) &, ) + Gyl 3, 008 ()6, )+ } (4. 164)

where Gf(x3,x2, «), is the correlation density at frequency  between

the loads positioned at X3 and x5 The calculations indicated in (4. 164} 'tan
most conveniently be carried out using a digital computer. In this example,
however, a hand computation is illustrated using four concentrated loads and
four normal modes.

Assume the spatial correlation of the loading is a triangular function

shown by the sketch in Figure 19.

Figure 19. Loading Spatially Correlated as a Ramp Function and Distributed
Over the Length of a Simply Supported Elastic Beam
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The loading for this problem is to be concentrated or "lumped" at four

positions shown in Figure 20,

? 9P @ 9

L/4 :

»¥
, J

A
'2/8

-—- -

Figure 20, Assumed Discrete Loading Positions for the Distributed
Load Acting Over the Length of the Simply Supported Beam.

In functional form, the loading of Figure 20 is denoted as

pix,t) = pl(t) S(X-xl) + pz(t) B(X—XZ) + P, {t) 6(x—x3) + p4(t) 6(x—x4) (4. 165)

In a matrix format, Eq. (4. 161) can be expressed as

_—_ 2 2
MJ Mk u.z] 9 ij(w) :{q)j(xn) . . } [G(n,m, w}] {bk(z.cm)} (4. 166)
(o)

{ (X),¢(X)¢(X)¢(X)} (4. 167)
b, (x,)

{¢k(xm§ ( K¢ k (4. 168)
6, (x3)

e y
¢, )
L<1>k(X4U

where
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G(l,1) G(1,2) G{(1,3) G{l,4)

G(2,1) G{2,2) G(2,3) G(2,4)
[G(n, m, w)] = (4. 169)

G(3, 1) G(3,2) G(3,3) G(3,4)

LG(‘!:,l) Gi{4,2) G(4, 3} (3‘1(4,4)_J

Equations (4. 167) and (4. 168) define the magnitude of the j and k modes at

positions x, , x, , x, and x,. Equation (4. 169) describes the spatial corre-

1 2 3 4
lation of the applied loading and is assumed jn this problem to be triangular

in shape (see Figure 19) and have the magnitudes shown in (4. 170).

G m=1}] 2 3 4
n=1 1 3/41 1/2 i/4 r
[G(n, m, c.o)] = 2 3/4 1 3/4 1/2 (4. 170)

3 1/2 [3/4 1 3/4

4 1/4 | 1/2] 3/4 1

Note that the table shown as Eq. (4. 170) describes a symmetric matrix,

Consider, in detail, the evaluation of the ij(m) expression of Eg.
(4.161) when j = k = 1. The loading positions and spatial density function
appear as shown in Figure 21. For the assumed ramp function, the
magnitudes of the spatial densities are the altitudes of the triangular function
at the four spatial positions. It is recalled that the mode shapes for a simply

supported beam are

¢j(x) = \[? sin J-ILX— (6. 171)
dpk(x} = ‘\/—2— sin -kjﬁi
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Figure 21. Loading Positions and Spatial Density Distribution
for the Simply Supported Beam

For j =k =1, Eq. (4. 166) yields

E(.1465) + 3/4(.357) + 1/2(.357) + 1/4( 1465) +
M2w14L11(w) 3/4(357) + 1(.853)  + 3/4(.853) + 1/2(.357) +
- (4. 172)
2 /1\2 1/2(.357) + 3/4({.853) + 1(. 853) + 3/4(.357) +
vz’ (&)
1/4(, 1465) + 1/2(.357) + 3/4(.357) + I(. 1465)]

The £/4 term in (4. 172) is the incremental length over which the distributed
loading is lumped and the radical is due to the assumed mode shapes of the

beam.

Adding the terms of Eq. (4, 172) allows Lll{ w) to be written as

L () =0.64 = — (4. 173)

Consider, now, the evaluation of le(w). In expanded form, Eq. (4. 166)

may be written as
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L, (e =|:1¢1(x1)¢2(x1) 2 b )0 be)) + 20 b )by be) + 30 e )b (x,)
b 26 (6,00, 0)) + 16,00, (x,) + 6, 6,00, (x) + 26 )0, (x,)
b3 6,00, ) + 20 B be,) 19 by b) o b6, bx,)
b e )6, () +ob be Vo () + 2 ()0, (x,) + 1¢1(x4)¢2(x4)]

(4. 174)

The magnitudes of the first and second mode shapes evaluated at the four

loading positions are shown in Figure 22,

. 924 . 924
L 707 L 707 . 383 92 9 . 383

A ' Pa) y A\
-.707 4. 707

Second Mode = sin Efz- First Mode = sin %?

Figure 22. Magnitude of the First and Second Modes for the
Simply Supported Beam

Given that the density function is symmetric, the summation of the product

of an odd and even mode totals zero. In numerical form, Eq. (4. 174) appears

" 271 + 3 653) + L 653) + L 271
[ : 7(-683) + =(.653) + {.271)
3 3 1
+=(.271)+ .653) + =(.653) + =(. 271)
3 4 4 2
L W= —S5—— (4. 175)
12 2 2 2 1 3 3
m e e, -3(271) - 7(.653) - .653 - (.271)

1 1 3
-0 271) - 5.653) - Z(.653) - .27l ] =0
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From the form evidenced in FEq. (4. 174), LZl(w} = L. ,{w). The remaining

12
fifteen terms can be evaluated in a similar manner and appear as Eq. (4. 176).

2 2
W), wk
=L @ k=1 k= 2 k=3 k = 4
m 1]
-1 64 0 . 042 0
=2 0 . 0117 0 .00138 (4.176)
=3 . 042 0 00134 0
= 4 0 .00138 0 . 00049

These terms are noted to be in agreement with the conclusions of Reference 11,
Equations 41,42, and 43. That is, for the uniform beam under stationary and
homogeneous random excitation, the response is statistically correlated in
two odd modes or two even modes and is uncorrelated (zero) between an odd

mode and an even mode.

The mean square response may now be written as

oo
2 S
y (%)= JZ ); d?j(X) ¢k(x)ij L H, (whHy (w) dw (4.177)
For the diagonal terms only, Eq. (4.177) reduces to
o)
yox) = L e 2L, f Ve, o |? aw (4.178)
7 i o4t
g0 that
p T2 ™,
= . L.. — 4.17
y (%) j¢3 (=) i 4€’j { 9)
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Using the numerical values from Eq. (4.176) and assuming a constant damping

ratio for all modes, the mean square displacement response of Eq. (4. 179)

yields
2 ' .bdxw 2 2 2 2
V (x)= ———=— (b, (x)+.1432¢, (x} +.0252¢_(x)+.0122¢  (x) (4. 180)
2 3 1 2 3 4
4fm w
Problem 4. 5: Modification of the response of a continuous elastic

structure due to mass loading.

Pictorially, this problem is represented in Figure 23.

f(x, t)

e »

Figure 23. Representation of the Primary Elastic
' Structure and the Attached Mass

Figure 23 depicts an arbitrary uniform elastic structure acted upon by the
forcing function f{x,t}, At position X, , mass mlis attached to the primary
structure, It is intended to derive the expressions needed to calculate the
effect of the attached mass on the displacement response of the structure.

Expressed in terms of the normal modes, the displacement response
is given as

ylx,t} = jzcbj(x) qj{t) (4. 181)
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L ]
The mass at X, introduces an inertial force —rnl'y(xl, t) on the structure so that

the equation for the generalized force becomes

Q(t)+2§. wq(t)+w q(ﬂ-'——j f(xt)¢(X)dx

g (4. 182)
1 [ ] ]
- o) my 5; b bx)) & (1)
j
where
_ﬁ—l—¢(x)2¢ (x,) § (1)
(4. 183)

!

:—¢j(xl) ¢1(X1)Hl(t]+¢2(xl)ﬁ‘z(t)+- .

Note that Eq. (4. 183) has the effect of coupling the generalized coordinates via
terms of generalized accelerations. To rigorously calculate the mass loading
effect, therefore, one must solve these coupled equations for each of the
generalized coordinates, then substitute into Eg. (4. 181) to calculate the
effects of the mass at x, on the displacement response. This approach is
done most effectively using a digital computer.

If only the first mode is considered in the mass coupling term, Eg. (4181)

reduces to

2 I
mb ) x)) 2 1
L4 = Y 0 + 2L 0, & (1) + wq () = :—j fx,6) ¢ () dx (4. 184)
M, M, %0
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This is equivalent to changing the first natural frequency from w to

1 | (4. 185)

1 = z_,l' (4. 186)

and the generalized mass is increased to

2
— m by x)) 1
M {1+ ———=) = (4. 187)
M,

zl

With these modifications, the structure loaded with ml , has the

equation

¥
- r 2 1
'c.fl{t)+2§,1 W ql(t)-l-f.n1 ql(t)xﬁi;~ fof(x,t)CPl(x)dx (4. 188)

and the random vibration problem can be treated in the usual sense with the
primed coefficients. Considering the complexity of the general problem, these
assurnptions may well provide an acceptable approximate solution if the con-

vergence for the series with higher modes is rapid.
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Case 1: Moment of inertia effects in addition to mass loading.

Aside from the change in mass, damping, and frequency of the previous
case, further modifications are introduced due to the generalized force

associated with Jl which is

£
.MI_- l‘m(x,t)ad; V)= [b,60)] Be-)) ax
J

(4. 189)
J
_,M_}J_ 2 [er6)] )lgdix [6,6,0] a0

Again using a single mode approximation, Egq.(4. 189) becomes

zl|.

]

I 4 2
E{[tbl(xl)]} ay (t) (4. 190)

Using the same format as with mass loading, the primed coefficients for mass

loading and retary inertia effects appear as

: 1
U (4. 191)
e M o2 . Ty a ]2
ﬁ;q’l(xl) ‘M_l ax 186!

i ’;l
& -~ (4. 192)

o2 1 4 2
L gy )t e 1)



2
m., ¢ (x,) J 2
! 1711 1 d
= —_—— F o _ 4-
1\’11 - Ml Lf Ml ¥ Ml dx [d‘]l(xl)] (4.93)

The solutions presented here are functional in form and illustrate the procedure
to be followed in calculating the displacement response effects for any specific
problem.

For mass loading alone, the modification factor is noted as

™2

Assuming the modal mass M, is normalized to equal the mass of the structure,

1
the magnitude of the modification factor is dependent upen the product of the
mass ratio and the square of the mode shape magnitude at the attachment
location,

For other discussion on the mass loading problem, the reader is directed
to Section 9. 3 of Reference 5. If the attached mass is small compared to the
mass of the structure, the modification factor will be approximately unity
providing the mode shape magnitude < 1. On the other hand, attaching a
large mass at a nodal position [rbl(xl) = 0] is seen to produce no effect on

the displacement response. Similar comments can be made for Case 1.
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5. CONCLUDING REMARKS

5.1 SUMMARY OF THE THEORY

The conclusions of this report are appropriate to linear, time invariant,
homogeneous elastic structures. Small deflection theory is assumed and two
classes of forcing functions are considered: (1) steady-state harmonic
conditions and {2) stationary random excitation.

Although basic dynamics theory {Section 1) and random process theory
(Section 3) are discussed, prime interest is focused upon classical theory for
computing the response properties of distributed elastic structures to both
harmonic and random loadings. It is found that the partial differential equa-
tions defining the dynamics of many structures are of a form compatible with
the Sturm-Liouville conditions. This fact guarantees the orthogonality of the

structural modes and may be defined for a one-dimensional structure as

A 0
j;m(ij{xmlgx} dx = (5.1)

constant , j=k

As shown in Section 2, the orthogonality condition is used to enormously
simplify the mathematics by uncoupling the modal equations for the elastic
sysatem,

The displacement response for distributed elastic structures to
deterministic excitation is assumed to be expressable as a summation of
the product of the normal modes of the structure and the generalized

coordinates. This is written as

%, t) = & b.(x) q (t) (5, 2)
J ] J

The generalized coordinates are definitions with convenient mathematical
properties and need not correspond to the physical coordinates of the
structure. Indeed, in classical mechanics, momenta often is used as
generalized coordinates. The example problems of Section 2 illustrate
responge calculations for uniform beams subjected to distributed and discrete

deterministic loadings.

136



For the distributed structure subjected to stationary random loadings,
it is improper to speak of calculating the instantaneous displacement time
history. As explained in Section 3, the response properties must be
expressed by quantities which have statistical meaning. One such expression

is the mean square response at any point x which appears as

a0

2 #

y {x) = ?%; ¢, & (%) j; Lo (@) H (@) H («) & (5.3)

where
42
l t ] t
ij(m) = .y wzmz ’I;‘[O Gf(x, x', w)cbj(x)cbk(x ) dx dx (5.4}
ik k

and

H;‘(Q;Hk(w) - - 5

1 - i"—-—) - 2L, (i) 1 - (——“—’——) +i2 (—“’—)
\mj k| wj w, c’k K

(5.5)

The ¢'s represent the mode shapes, the H{w}'s are the modal magnification
functions, and the ij(w) term denotes the spectral properties of a generalized
force. ij(w) is closely related to the joint acceptance function and is thus
a measure of the effectiveness of a forcing field in exciting a given mode of

vibration.

5.2 PROBLEMS IN THE APPLICATION OF THEORY

As shown in the illustrative problems of Section 4, one prime difficulty
in calculating the mean square displacement response is the evaluation of
L.k(w). This expression requires the mode shapes of the structure, and for
other than idealized structures, the mode shapes may be extremely difficult

or impossible to obtain either analytically or experimentally., Ewven for
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idealized structures, these mode shapes may not appear in simple analytical
form as is noted by comparing the mode shapes for a simply supported beam
to those for a cantilevered beam. The simply supported beam has sinusoidal
mode shapes whereas the cantilevered beam has mode shapes defined by both
trigonometric and hyperbolic functions.

In computing the mean square displacement response, it is seen that the
higher order modes contribute very little to the total response as compared to

2 2
the lower order modes [note the wj w term in the denominator of Eq.(5. 4):,.

k
However, for computing other properties such as mean square stresses, the

derivatives of the mode shapes are required rather than the mode shapes, per se;.

For computing the mean square acceleration, the higher order modal quantities
are important in that the response spectral density is a function of the fourth
power of frequency (see Eq. (4.157}).

Another nontrivial problem is to obtain by calculation, measurement, or
even assumption, the spatial correlation density Gf(x, x', w) for the loadings
at position x and x' at the frequency w. The spatial correlation functions
for four acoustic pressure fields are obtained from Reference 12, page 63
and are shown here as Figure 24, These spatial correlation functions are
observed to vary from a simple cosine expression for acoustic pressure of
discrete frequency and fixed incidence to a relatively complicated exponential
cosine term for acoustic pressure in the near field of a jet engine. Upon
substituting the expressions for the mode shapes and the spatial correlation
density function into Eq. (5. 4), the resulting integral expression for L,

Jk(
may be impractical to evaluate, References 12, 13, and 14 illustrate the

w)

complexities of evaluating such an integral.

By expanding the correlation function as a Fourier series, Mayer
(Reference 12) computes the generalized loading for simply supported beams
and plates excited by the pressure fields of Figure 24, Reference 13 suggests

representing a correlated distributed loading as sets of concentrated correlated
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a) Acoustic Pressures of Discrete Frequency and Fixed Incidence
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b) Acoustic Pressures of Discrete Frequency and Random Incidence
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d) Acoustic Pressures in the Near Field of a Jet Engine
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Figure 24, Spatial Correlation Functions for Four Typical Pressure Fields
{(Reference 12.)
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forces with the discrete loadings defined by use of delta functions. This
procedure is illustrated in Problem 4. 4 of this report.

Reference 14 discusses the calculations for the joint acceptance
squared for flat rectangular panels with the sides simply supported and then
with the sides fully clamped. The excitation consists of a sinusoidal pressure
wave propagating over the surface of the panel. The normalized pressure
amplitudes are defined by an exponential which decays with increasing spatial
correlation. From the discussion of Reference 15, this spatial correlation
length is shown from experimental measurements to be the distance from
maximum correlation (zero separation) to the first zero crossing, and not
the distance between the first two zero crossings, Figure 25 (Reference
14, page 54) g.ives the numerical results for a rectangular panel simply
supported on all four sides. The joint acceptance squared terms are for the
integer mode numbers m =1, n=1,2,3,4, and 5; the decay constant
c0 = oo, 20, and 1 where £ is the panel length and ¢ equals the velocity of
sound propagation, Note also it is assumed that small motion theory applies,
that the modes are widely separated in frequency, and that the damping is

small,

The curves of Figure 25 show that as the spatial correlation decreases,
the panel mode shapes lose their wavelength selectivity and the joint acceptance
becomes uniform for all modes. This behavior is due both to wavelength
relationships that imbalance the force distribution and to the decaying spatial
correlation which resuits in the noncancellation of harmonics as evidenced by

.2
the asymptotic approach to a 1/w decrease in j w
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Figure 45
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5.3 OMISSIONS IN THE THEORY

The analytical effort yields important parametric results which, in
general, can be accurately applied only to idealized structural elements such
as homogeneous plates and beams., Experiments can be readily conducted
to verify the theoretical results for such simple structures (see Reference 16}.
However, it is not at all clear how to extrapolate the results for these
component structures to predict the response behavior of typical aircraft
and missile construction. Two well-known deviations between simple panel
experiments and typical vehicle structure are (1) the vibration characteristics
of a stiffened cylindrical fuselage cannot be represented as a single panel, and
(2) many correlation patterns in the noise field ara difficult and even impossible
to reproduce by a single speaker or siren.

Moreover, the analytical models often neglect the effect of the surround-
ing medium in deriving the equations for structures excited by random
pressure fields. If the medium is moving in phase with the acceleration of
the structure, a slight increase in the effective mass of the structure is
expected. If the medium is moving in phase with the velocity, a damping
force is created in which the structure acts as a radiator of acoustic energy.
As implied by the work of Reference 17, the acoustic radiation effects may
not always be ignorable. Another consideration is that internal air reso-
nances for air trapped in compartments of the vehicle may couple with the
response of the structure. Still another task is to analytically include the
internal damping of the material itself as well as the structural damping

due to fricticon at the jeints.
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5.4 COMPROMISES WITH THE THEORY

It becomes apparent that an analytical model which includes the
effects of the surrounding medium, the varicus damping mechanisms, and
details of complex structures would appear extremely complex and may be
impossible to solve. To obtain answers for engineering use, it is necessary
to sacrifice detail for tractability in creating a simplified method for
predicting a type of average vibration for a complex structure. Two such
suggested techniques are (1) a modal density-energy approach, and
(2) the use of dynamically similar scaled models.

' The modal density-energy concepts are discussed in detail in References
17,18, and 19. This approach uses statistical ideas and concepts from room
acoustics to gain an approximation for the multi-mode response of an elastic
structure subjected to reverberant acoustic fields. It is assumed that the
energy contained in a structure vibrating at some mean square velocity is
uniformly distributed and that the structural modes do not overlap. The
latter assumption implies that the vibrations of the various modes are
statistically independent and energies do not interact but may be summed
directly. Terms such as modal density, average modal energy, mechanical
resistance and absorption coefficients are synonomous with this approach
and must be evaluated empirically for other than the simpler elastic struc-
tures. Although not fully developed, this technique holds promise as a
useful tool.

The use of scaled models as a prediction tool is discussed in References
20 and 21, In general, physical size is the main scaling parameter so
that the test. model can be constructed by model builders after studying
the drawings for the full scale vehicle. However, scaling the actual
pressure fields is no small task, and carrying out the scaled experiments
is expensive in time and dollars. Other problems involve the control of
damping and the physical scaling of such items as rivet holes and honey-

comb construction. Reference 20 shows acceptable agreement for
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several frequency response functions and power spectra for both full scale
and test models of the SNARK missile fuselage. Reference 21 provides

a general discussion of scaling laws and presents SATURN and SCOUT

data for models and full-scale vehicles which bolster the argument for using
scaled models.

Reference 22 describes an experimental program to study the modal
behavior of typical aircraft structures excited by acoustic pressures. The
structure considered is an aft section of the Caravelle. The excitation
is provided by a Rolls Royce Avon engine. By considering the stress
spectrum for the various panels, the fuselage frames,and stringers as
well as the correlation spectrum between panels, the modal behavior of
the Caravelle structure is determined,

As an example of typical data from Reference 22, consider Figure 26
which shows the power spectra and correlation spectrum for panels 2 and
10. Panels 2 and 10 are adjacent panels across a frame and show a very
low correlation at the major panel resonance of 715 cpe. It is concluded
that the panels are vibrating independently of one another and that the inter-
mediate frame can be considered to be a rigid boundary. If the correlation
were 0.9 ar greater, then the panels would be considered to be vibrating
in phase as part of a gross mode of the structure. For a more complete
discussion of the correlation function and its application to structural

response, the reader is urged to read References 9, 10, and 23.
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5.5 FUTURE CONSIDERATIONS

Although much useful analytical and experimental work has been done
to develop a tool for predicting structural response to random excitation,
no technique can accurately predict the life of the structure at the drawing
board stage. Prototype and proof-testing still are essential and perhaps
always will be. It appears that a linear analytical model which accounts
for most physical effects will be overly complex to be of practical use to
the engineer. For nonlinear effects, this complexity is compounded. Hence,
the desired technique is one which must compromise mathematical rigor
and incorpoerate experimental results to approximately predict the struc-
tural response and the related stress levels and fatigue life. Such a
technique has yet to be developed.

More analytical and experimental work must be done to quantitatively
predict the behavior of structures in a combined environment, the thermal-
vibro acoustics environment being one example. Additional effort should
be given to empirical correlation studies in order to parametrically analyze
actual flight data and then to extrapolate results from structural component
testing to predict properties for actual vehicles. In this area, the use of
structural models such as the passive element electrical analog may he of
considerable use. Attentior dlso should be given to parametrically isolating
the factors which significantly affect structural behavior in a nonstationary

random pressure field in a manner similar to that shown in Reference 24,
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