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ABSTRACT 

Harmonic responses of viscoelastic thick circular cylinders of infinite 
extent, subjected to harmonic radial and tangential boundary stresses are 
considered. In development of an analytical solution two dimensional elasto­
dynamic theory is employed and the viscoelastic material for the medium is 
allowed by assuming complex elastic moduli. The solution provides stresses and 
displacements at any point in the medium in terms of boundary stresses. The 
resonant frequencies for different circumferential fle xural (lobar) modes and 
their corresponding thickness modes are computed and satisfactorily compared with 
an available solution. The present solution is not limited to thin shells, and 
it equally treats thick cylinders with any values of hysteretic damping . Also , 
several design charts for estimation of resonant frequencies for a wide range of 
thickness ratio are developed . 
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INTRODUCTION 

The trend towards dissipating vibratory energy in cylindrical structures 
when subjected to circumferential flexural vibrations requires application of 
viscoelastic materials with high strength. Although many cylindrical structures 
can be analyzed using the theory of thin shells, thicker cylinders with 
hysteretic damping have to be studied using the general theory of elasticity with 
complex moduli. The first investigators to study the vibrations of an infinitely 
long traction-free hollow cylinder were Greenspon (1957), and Gazis (1958) . 
Armenakas et all (1969), in particular, considered the transmission of elastic 
energy by means of elastic waves, and formulated the eigenvalue problem fo r 
stress free cylindrical surfaces. He presented tables of natural frequencies for 
different ratios of mean radius/thickness and for different numbers of 
circumferential wave numbers. McNiven, Shah and Sackman (1966) considered the 
axisymetric vibrations of hollow cylinder utilizing "Three Modes Theory" . 
Gladwell and Vijay (1975) studied the three dimensional vibrations of a finite 
length circular cylinder with traction free boundaries, using a finite element 
approach. Svardh (1984) investigated wave propagation in a semi-infinite , 
hollow, elastic circular cylinder with traction-free lateral surface initially 
at rest and subjected to transient end loadings. Hutchinson (1980) developed a 
series solution of the general three dimensional equation of linear elasto­
dynamic problem . Hutchinson and El-Azhari (1986) extended Hutchinson's work in 
solid cylinders to include free hollow cylinders with finite length . Singal and 
Williams (1988) studied free vibrations of thick circular cylindrical shells and 
rings using the energy method and obtained a frequency equation to provide 
resonant frequencies for breathing and beam type modes. They also conducted 
experimental investigations to assess the validity of their analysis. 

The present study involve the development of an analytical solution to the 
harmonic response of infinitely long cylindrical structure with internal damping 
subjected to flexural vibrations around the circumference. 

GOVERNING ELASTO-DYNAMIC EQUATIONS 

For the isotropic homogeneous elastic medium shown in Figure 1, 

Figure 1. Reference coordina~es and dimensions 
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the governing equation of motion in terms of harmonic radial and tangential 
displacements amplitudes u and v are: 

-pp2 ur- (l+2G) r_E_e-2G_£_w ar ae z 
(1-a) 

and 

(1-b) 

where : 

(2-a) 

and 

( 2-b) 

i:: and Wz 

u and v 
p 

are the volumetric strain and elastic rotation about z axis . 
are radial and tangential displacement amplitudes. 

G and). 
p 

is the frequency of the harmonic excitation. 
are shear modulus and Lame's elastic constant. 
is the density of the medium. 

Differentiating equations (1-a) and (1-b) with respect tor and 8 and 
adding them together yields: 

-pp2re- (l+2G) [r__£:_e+_E_e+l:. Le] ( 3-a) 
ar 2 ar r aa2 

Differentiating equations (1-a) and (1-b) with respect to 8 and r, after 
arranging the results, yields: 

-pp rw - G - --c.> + -w + r--c.> 2 l1a2 a a2 j 
z r ae2 z ar z ar2 z 

Introducing two parameters g andµ such that 

Substituting 62 and µ 2 in equation (3-a) and (3-b) they become: 

r 2 __£:_e+r_E_e+r 2 JPe--Le 
ar 2 ar ae2 
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(3-b) 

(4-a) 

(4-b) 

(5-a) 



(5-b) 

Considering the boundary conditions, the solution to these equations are: 

e(r,8) - ~::>~n(r,8) 
n-o 

wz(r,8)-1:wzn(r,8) 
n-o 

where: 

Jn and Yn are first and second kinds of Bessel functions of n th order. 

MODAL DISPLACEMENT AND STRESS COMPONENTS 

(6-a) 

(6-b) 

Substituting equations (7) into equations (1), modal displacement 
components will become: 

Un (r18) --~ [AnJn ( l3r) +BnYn ( ~r)] cos (n8) 
+ (2n/r) [CnJn(µr) TDnYn(µr)] cos (n8) 

vn(r18)-n/r[AnJn(~r) +BnYn(l3r)] sin(n8) + 

-2µ [CnJn(1.i.r) +DnY.'.l(µr)] sin(n8) 

(8-a) 

(8-b) 

Amplitude of stresses on the plane normal to the radial axis in the elastic 
medium, in terms of volumetric strain e and elastic rotation wz are: 

a o -i..e+2G-u 
rr ar (9-a) 

a 
~ -2G[-v-w ] r, ar z 

(9-b) 

substituting from equations (8) and (7) into (9), component of stresses will be 
presented as : 

(10-a) 

(10-b) 
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In the above equations, En, Fn, Gn, Hn, En*, Fn*, Gn*, and lL* are functions 
of Bessel functions, where: 

( 11-a) 

(11-b) 

(11-c) 

Hn (r) -4Gnµ/ rYn (rµ) -4Gn/ r 2 Yn (rµ) (11-d) 

(11-e) 

(11-f) 

(11-g) 

H; (r) --4Gµ2 Y11 (rµ) -2Gµ 2 Y:, (rµ) (11-h) 

Functions Jn' (x), Jn"(x), Yn' (x) and Yn"(x) are first and secor.i derivative of 
Jn(x) and Yn(x) with respect to x. 

MODAL HARMONIC RESPONSE 

Considering the boundary stresses in inner and outer surfaces these 
stresses can be presented as : 

En(a) Fn(a) Gn(a) Hn(a) ~n} {o rrn(a)} 
E;(a) F;(a) G;(a) H;(a) n -rze,.(a) 

E,. (b) F,. (b) Gn (b) Hn (b) Cn o rrn (b) 

E; (b) F; (b) c; (b) H; (b) Dn -r zen (b) 

(12-a) 

or 

(12-b) 
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where: 
an is a vector containing radial and shear stresses on the :.nner and outer 

surface of the medium. 
an is a vector containing arbitrary constants. 
Tn is a square matrix containing the coefficients in t::rms of Bessel 

functions. 

To provide displacement and stress components at any point :.n the cylinder, 
equations (8) and (10) can be arranged in the following matrix =quation. 

ro Ir, 8) /cos (n8) I -PJa(Pr) -PY0 (Pr) l:E.J (µr) 2n y (µr) 

[ 
I n I a 

V
0 

(r,6)/sin(n6) E. Ja (Pr) E.yn(Pr) -2µJn (µr) -2µYn(µr) (13-a) 
Orm (r, 6) /cos (n6) • 

r r 

~nln (r,6)/sin(n8) 
E"(r) Fn(r) Gn(r) Hn(r) 

E; (r) F;(r) G; (r) H; (r) 

The above matrix equation can be abbreviated as: 

(13-b) 

where: 
Rn(r) is a vector containing components of radial and tangent:.al displacement 

and stress. 
Sn(r) is a coefficient square matrix. 

Arranging equation (12-b ) and (13-b) they result in 

(14) 

where: 

(15) 

For given lobar boundary stress components, Equation (14) can provide the 
displacement and stress components at any point in the medium. 

RESULTS AND DISCUSSION 

The frequency response for different lobar modes of vibrations can be 
computed for any cross sectional geometry of the elastic or viscoelastic 
cylinders. Figure 2 illustrates the lobar vibration forms for the first three 
modes. Computations were conducted to determine the resonant responses of the 
first three lobar modes (n - 2 to 4) and five of their corresponding thickness 
modes (m - 1 to 5). Results presented in Figure 3 provide the non­
dimensionalized resonant frequency (frequency factor) versus thickness ratio for 
the lobar modes (n - 2,3 and 4) of elastic cylinder. Figure 3 demonstrate 
coupling between the different thickness modes, at particular tl:ickness ratios. 
These results are computed for Poisson's ratio - 0 . 33 . 

HBB-6 



/ 

' ' / ----
n=2 

I 
I 
I 
I 
I 

n=3 

Figure 2. Lobar Vibration Forms 

n=4 

To verify the validity of the present results, compu: :c• :l resonant frequency 
were compared with Armenakas et al (1969) results . 'f:-_-= comparison of the 
results for different thickness ratios indicates satisfact:=y agreement between 
them. It is believed that the present results are more acc·.::=ate than Armenakas' 
results. This is due to the fact that in his computation , only a few terms in 
expansion of the Bessel functions are assumed, however , the present results are 
obtained by utilizing higher accuracy for the Bessel :::'-.:.mctions of complex 
arguments. 

Table 1. Comparison of present resonant frequency factors with Armenakas 
(1968) natural frequency factors for different thic:trness ratios 

n.m h/a = 0 .1276 . h/a = 0 .1739 h/a = 0 .1978 
Present Armenakas Present Armenakas Pr?.sent Armenakas 

2 , 1 0.0101 0.010 0 .0175 0 .0176 0 . :J230 0 .0223 
2 ,2 0.2408 0 .2414 0 . 1800 0 . 1763 0 .3600 0 .3604 

3, 1 0.0240 0.0270 0.0480 0 .0490 0 .:3078 0.6152 3 ,2 0 .3360 0 .3411 0 .4440 0 .4530 0 .5040 0 .5084 

4 , 1 0.0530 0.523 0 .0910 0 .0914 0 . 1140 0 . 1145 
4,2 0.4440 0.4442 0 .5880 0 .5895 0 . :3600 0 .6611 

Frequency responses of maximum radial displacment f~,r a cylinder having 
thickness ratio of 0.5 and poisson's ratio of 0.25 , subject~ d to harmonic radial 
stress from inside, for three damping factors of r, - 0 . :; , 0. 05 and O .1 are 
presented in Figure 4 . 
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Figure 3. First five resonant frequency 
factors for different thickness ratio 
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Figure 4. Frequency response of a point with maximum radial displacement 
on a cylinder having thickness ratio of h/a = 0.5 and Poisson's 
ratio of 0.25. Excited by a harmonic Internal radial stress with an 
amplitude of 104 psi for three different damping factors. 

CONCLUSIONS 

Harmonic lobar vibrations of thick viscoelastic cylinders were considered 
and a general solution based on two dimensional wave propagation was developed. 
Design charts for estimation of the Non-dimensional resonant frequencies were 
provided and results were compared with available data and satisfactory agreement 
was established. 
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