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ABSTRACT

Compound decision theory is shown to be powerful as a general theoretical
framework for pattern recognition, leading to nonparametric methods, methods
of threshold adjustment, and methods for taking context into account, The
finite-sample-size performance of the Fix-Hodges nearest-neighbor non-
parametric classification procedure is derived for independent binary patterns,
Classification of binary patterns based on Markov-chain assumptions that
account for dependence of a variable on a set of spatial neighbors is shown
to require the estimation of a much smaller number of parameters than the
general case, The most general nonparametric pattern-recognition problem
of "learning with a teacher' followed by "unsupervised' updating is
formulated as a distribution-free compound decision problem, Adaptive
threshold adjustment procedures for two classes with known distributions
but unknown a priori probabilities, are presented. The optimum (Bayes)
sequential compound decision procedure, for known distributions and
dependent states of nature is derived. When the states of nature form a
Markov chain, the procedure is recursive, easily implemented, and im-
mediately applicable to the use of context, A similar procedure, in which
a decision depends on previous observations only through the decision about the
preceeding state of nature, can (when the populations are not well separated)
yvield results significantly worse than a procedure that does not depend on
previous observations at all, When the populations are well separated, however,
an improvement almost equal to that of the optimum sequential rule is achieved,
.Further improvement is available through the use of nonsequential compound
rules, These results are illustrated by error -probability curves for the case
of normal densities,
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Section I

INTRODUCTION

1.1 PATTERN CLASSIFICATION

Classical decision theory [35, 3J , which has been successiully
applied to probiems in communication theory and in pattern recognition
ever since 1954 {30} and 1957 [4] , is applicable only when a single
decision must be made, When the same decision problem occurs
many times, advantages might be gained by considering the whole
collection of problems as a totality, Compound decision theory, intro-
duced by Hannan and Robbins [21, 10:] is powerful as a general
theoretical framework into which to imbed pattern recognition, It
can lead to methods of threshold adjustment, to methods for taking
context into account, and to nonparametric methods,

In most pattern-recognition systems EIS, 16, 19, 2, ?] , & set
of measurements characterizing a pattern is used to classify the
pattern into one of a finite number of categories, We assume that the
patterns which are to be classified can be represented by a finite set of
properties called observables, The values of these n observables
are real numbers, called measurements,

The identification of pattern classification with statistical decision
theory is made as follows, We identify a pattern with the outcome of an
experiment {(a point in a sample space), and the set of observables with
a vector-valued function defined on the sample space (a random vector),

Thus, the ordered sel of measuremcents (%), %;,...,%,), called a



pattern vector, is identified with the value x of a vector-valued ran-
dom variable X,

We shall not treat the problem of choosing the observables, but
only the problem of classifying the pattern vector,

let S be the {induced) sample space of values x of the {vector-
valued) random variable X, Let the parameter space 52 be an index
set for the probability distributions P,; on S, For a fixed w € BY. >
let py(x) = p(x/w) be a (multivariate) probability density® on 5. The
elements of S0 are called the states of nature [3].

The decision maker has at his disposal a set A of possible actions
and suffers a loss L{w,a) 2 0 if he takes action a £ A when nature is in
state w e §2, For example, if 52 is the set of letters in the English
alphabet, action ag may be to decide that w is a vowel and

L(CU', ao) = {

for w and j for a, and the loss function ‘L. becomes a rectangular matrix

1 if wis a consonant _ L
. . . If f2and A are finite, we write i
0 if wis a vowel

with elements I We shall identify the states of nature with the

j*
classesi=1, 2, ..., r from which the pattern vector x may have come,

The identifications we have made are summarized in the follow-

ing table:

* If pw(x) is a discrete probability distribution instead of a density,
all (multiple) integrals with respect to x become sums,

2



Pattern Classification Statistical Decision Theory Symbol

1, Pattern Outcome
Pattern space Sample space
2. Set of observables Vector random variable X(:Xl, oo Xn)
3. Pattern vector Value of random variable x=(x;,...,x.)
Measurement space Induced sample space S = {x}
4, Class State of nature wor i
Parameter space _Q:{w}= {1, 2yiees 1‘}
h. Classification Action a or j
Action space A={a]={1,2,...,5}

We shall only draw a distinction between items 1, 2, and 3 when there
is danger of confusion, Hence we shall generally write x instead of X
and call it a pattern, We shall sometimes refer to S as the pattern
space,

In a compound decision problem we have a vector 6 = (61, . ,QN)
of states of nature {(classes) and a corresponding vector XN T (xl, e xN)
of (n-dimensional) random variables (patterns)., In the Kth component
problem, we assume that for a given ka_ﬂ, X) is independent of the
other x's and 6's and we denote the probability density function of X
by pek(xk). Since a pattern classifier {a machine that classifies
pattern vectors) is not expected to be used only once, we identify the
problem of pattern classification with the compound decision problem

having a finite loss matrix,



1.2 THE SIMPLE DECISION PROBLEM

A finite statistical decision problem inveolves a set of states of
nature )= {1, 2,..., r} , and a set of actions A = {1, 2,..., s}. For
every i&f], jeA, the element Lij of the r x s loss matrix denotes the
loss incurred by action j when the state of nature is i, The action
chosen depends upon the value x€ S of an observable random variable,
and we assume that the distribution of x is Pi(x) when the true state of
nature is i€JL, A randomized decision function t{j/x) is for each,
x a distribution over A; t{j/x) is the probability with which action j is
selected when x is observed, If for every x, t{j/x) = 1 for one particular
action j = j{x), tis said to be non~-randomized. The risk function

R{i, t) is the expected loss incurred by the use of t,

S
R(i,t) = J. flwmmmﬂu. (1)
=1 48

Let g{i) = q; be an a priori probability distribution on f],
The average risk, or Bayes risk of t with respect to g is
Tr

-3
Rlq,t) = ¥ R(,t) g = j )}
i S =1

b
i=1 =

L Ly Hilx) pilx) q; dx (2)
i=]

A decision rule t9 that minimizes the Bayes risk ﬁ(q, t) is said to

be Bayes against q, Thus, a Bayes procedure t9 has t9(j/x) = 1 for
that j which minimizes the quantity

Lij pi{x) 95 . (3)
1

e



The function
R(q) = min R(q,t) = R(q, t9) (4)

is called the Bayes envelope, It is obtainable only if q is known,
The a posteriori probability q(i/x), is the conditional probability

of i, given x:

pil %) qj pi{x) q;
qli/x) = ——mr ! : (5)

P(x) P,{x} q

Since the denominator is independent of i, the Bayes procedure is

equivalent to choosing the action j which minimizes

r
)3 Li; q(i/x} . {3a)
i=1

For the special case where A = f], action j corresponds to deciding
that the st f nat 18 j dL“lifi#j the B isk i
a e state of nature 18 jJ, an 1JF0ifi:j . e Bayes risk 1s
equal to the probability of error and the Bayes rule consists of choosiné
the 1 that maximizes either q(i/x) or the product p(x, i} = p;{x) q;.
Example: Consider the classical problem of testing a simple
hypothesis against a simple alternative; nature is in one of two possible
states, denoted by 8§ = 0 and 6 = 1, Let the probability density of the
observed pattern bhe pe(x) under the hypothesis Hg. Let Lij be the loss
incurred if Hj is chosen when H; is true (i,j = 0, 1) let 9, = ¢ and
qg = l-q be the a priori probabilities of H) and Hj; respectively, and let

w = (Lyg - LM/ {Lpy - Log). Lett be a randomized strategy: t{1/x)



denotes the probability of chosing H), given x, and t{0/x) = 1-t(1/x).

By (3), the Bayes risk is minimized by choosing

1 if pj{x)/pglx) > (1-q)/wq
tq(lfx) = 0 ir < {6)

Y it

Rl

where ¥ (0< ¥ < 1) is arbitrary, In order to specify a unique, non-
randomized rule, we shall set ¥ = 0, We note that t9(1/x) can be

considered as the characteristic function of the set

pif 1 -
T:T(q)={x:-1_x.)—> ——-——3—}. {7
Po(x) wq

Thus the Bayes rule is to chose Hl whenever x € T, i,e., whenever
the likelihood ratio pl{x)/po(x) exceeds the threshold (1+-q)/wq,

Considering the simplified loss matrix (w > 0):

Action
1 M)
State of 1 0 w
Nature 0 1 0

the minimum risk (the Bayes envelope} ﬁ(q, t9) is the continus concave

function

R(q) = qw [1 - P (T)] + (1-q) Py(T) (8)

shown in figure 1 (P (T) Ef p(x) dx). If T' = T(q') is designed
T



against @' when in fact g is the true a pri:ori probability for state 1,

tho average risk is

g, t2) = qw (1 - P T+ (1 - q) Py(T", (9

which is linear in g and tangent to R{q) at g = q', Thus, if q is unknown,
the minimuwm risk cannot generally he achieved, Within the conlines of
classical docision theory, however, we can minirnize the maxirmuam ciak
by a "minimax' rule tg, for which R(1, to) = R(0, tO) = mitlx Mg}, This

"safe" procedure tg - tdo designs T, = T{qgg) against the maximum

point q, s0 that the average risk is constant:

R(q,1%0) = w1 - P (T )] = Po(Ty) | (10)

| R{q}

Figures 1 Average Risks and the Bayes Envelope



1.3 THE COMPOUND DECISION PROBLEM

A compound decision problem arises when one is confronted with
the same decision problem, called the component problem, not only
once, but N times. Thus, there exists a vector 8y = (6),...,6y) of
states of nature, and a corresponding vector Xy ° (xl‘ c s xN) of
random variables, where 8; denotes the state in the kth problem, and

the distribution of x| is Pek(xk). For a given §,, *1 is independent of

the other x's and 8's:

POt/ X s Xiea 15+« 05 X5 ON) = PU¥/OL) = Pg (xk) (11)
k
and hence P(?_‘k”_@k) = TT p(leej). We do not assume that the 8's are
=1

necessarily independent,

The loss in the compound decision problem is taken to be the
average of the losses incurred at each of the N decisions, and the
compound risk is defined correspondingly, If all observations XN
are at hand before the individual decisions must be made, one can

use a compownd decision rule tyy = (t,...,ty), where t;_ - (j/fN)

is for each x,; a distribution over A according to which the k™ action

=N
is chosen, If only the observations X, are at hand when the kth decision
must be made, one can use a sequential compound decision rule, where

t = t {ifx, ). A simple rule is one where t, = t,{j/x,), that is, one

where the decision about 8|, depends on x; alone. For a simple sym-

metric rule, t = t{j/x,) for all k, Classical decision theory is rcstricted

to using only simple symmetric rules, The risk for the compound rule

tnis



N
1 . . 5
RON 48~ 7 2 Rl 1 (12)
where

]
. N
R(B, t) ° jsN ‘Zl L, j tili/ ) pliy/0y) dx (13)
=

. . t : : .
is the risk for the k problem (the kth component risk), The integration

is over the N-fold Cartesian product of the measurement space, and

N
Plxp/Bp) * 271' pek(xk) . {14y

2,...,r; but that none of the

Ed

We assume that pi(x) is known for i = |
B, 's are known,

One can atso talk a0t a compound Bayes risk ﬁ(G,__t_N) with
respect to an a priori distriiahion G{fy) over _Q_N, the N-fold Cartesian
product of _Q The compound Bayes risk is

N

f— l —
RG, ) < ) G Rlep R Gleg - L RIG ) (15)
OnE k=1
where
RG, b - ) N REBy ) GO (16)
N

is the k!t component Bayes risk. A procedurc is compound Laye.
aysinst G if it minimizes E(G,_tN). Thus, the compound Bayes procedure

tNG is one that, for every k, minimizes



5
R(G, ) = IZ L Ly tlilmg) pleg/0y) Gley) dx™.  (17)
=16y

Hence th(jffN) = ] for that j which minimizes the quantity

Y Lgjplxp O = L Lgyj Pl 6y (18)
On O
where p(xp, fy) = p(fN‘l.s.N)G(eN)‘ For the special case where action j
L 1if 8¢ j
corresponds to deciding that 6 = j, and Lgj = { g if g = j th cheses
the value of O that maximizes p(xp, 6)). This is equivalent to

maximizing the a posteriori probability

Plxpy}

Since the denominator p(xy) = Z p(f‘NIEN) G(fy) is independent of 8.

on

N
When C—(_QN) = 7—}— qr(fy), i.e., when the states of nature are -

k=1
independently distributed as qk(i), a simple rule [14] will be compound
Bayes against G, A simple symmetric rule will be compound Bayes
against G when the states of nature are identically and independently
N

distributed, i.e. q,(i) = q{i) independent of k, and G(8y) = 1;]_}1' afey).
However, even in these cases, non simple compound rules have merit
because gq(i} may not be known, In the case when the states of nature
are identically and independently distributed according to an unknown

a priori distribution q{i), one may use an Empirical Bayes decision

procedure [22] whereby one employs a '"simple" procedure which is

10



Bayes against a consistent estimate of g, Since such an estimate of q
is based upon observations associated with the component problems,
such a procedure is really compound,

Thus, in the case of known distributions, there are two distinct
situations in which compound decision rules are needed, First, when
the states of nature are not independent (e, g,, when context may be
halpful as in recogaizing characters in English text), Second, when an
a priori distribution is not known (or does not exist), We shall treat
the second situation first,

1.4 ASYMPTOTIC SOLUTIONS
For a simple symmetric rule with ty = t(j/x)) Equation (12) be-

comes

N
RONN) % L R(But = L MO RELY=Rea L0, (19

where R(-,t) and R(-,t) are defined by Equations (1) and (2) and g (i)
is the fraction of the N @'s that are equal to i, Thus, the simple sym-
metric procedure which is Bayes against the empirical a priori distribution
N,. L . N .
q (i), would minimize the compound risk R(fn, ty). 1f we knew q in
advance, we could, by using a simple symmetric rule th(j/xk) that
chooses action j to minimize the quantity
r
% Lij pilx) 9 (0) (20)
e 1] 1 k q b}
1=1

obtain the Bayes envelope R(qN). But qN is not known, To escape this

11



predicament, we use the observations XN to obtain an estimate a\N of
qN and use the compound rule t (j/xy) = taN(j/xk) to choose the kfh
action,

For known densities, but unknown G, we may take one of two
approaches, The empirical Bayes approach of Robbins [22, 26, 23]
assumes that the 8's are independent and identically distributed according
to an a priori distribution g(8) over f1 and examines convergence of the
Nth component Bayes risk, I—{-(G, ta7), to R(q}). A procedure Bayes against
a consistent estimate of the a priori distribution g(8) will be asymptotically
optimum in this sense, The compound approach of Robbins and Hannan
[21, 10] , 1s to consider the uniform convergence of the compound risk,
R(QN,_t_N), to R(qN) for any sequence .G_N' Hannan and Robbins [1 0, 24]

~ A A .
have shown that the rule_EN = (tl, c e tN), with

T = eNEN) (7 (21)

Bayes against the consistent estimate of qN given in Equation {25} below,
is "optimal in the limit", i.e,, given any & > 0, there exists N, such

that for all N > N,
~
R(8,t) - RIGY) < € (22)

uniformly for all EN £ __Q_N, where R{q) is the Bayes etvelope, Com-
pound rules that satisfy Equation {(22) are said to be asymptotically

subminimanx,

12



Van Ryzin [31, llj has shown that the rate of convergence of
~
R(QN,_tN) to R(qN) is at least of the order VN; for there exists a

constant ¢, independent of @, and of N such that

1/2

R( R(g™) £ eNTH /4 (23)

EN ’_tN) -

With restrictions on p;(x}, even faster rates of convergence are
obtainable,
If only the first k observations are at hand when the k™ decision
must be made, a sequential compound decision rule, _t_;\;, introduced by
A
Samuel [‘27, 24, 28, 29] is used, where t:(j/fk) = tqk'l(j/xk). This
rule is also optimal in the limit, and there even exists a constant ¢
independent of 8 and of N such that Equation (23) is satisfied [32]
Since tk*(j/_:_c_k) does not depend on N, the sequential compound decision
function_tN* = (tl*, .. tN*) may be used without knowing N in advance,
Let us return to case of the 2 x 2 loss matrix, the problem is
to decide for each k = 1,..., N whether Qk = or 1.

Let h{x) be a bounded unbiased estimator of 6 and for any Xy

k>0, let
|k
h(x) = ‘Z h(x) . (24)

Letting

13



0 if hy < 0
Fa) R _ .
Qelx) = h if0<h <1 (25)

1 if h, > 1
be the "truncated' estimate of

k
k. —— 1
= I m— : 2
qa® = By = — i; 0 , (26)

the rule

Pplad 1 - an(=n)

! for —— —_ =
n Po (1) WaN(EN)
VENE (27)

0 otherwise
satisfies Equation (22) [10, 24] and Equation (23) with the constant
¢ depending on the second and third absolute central moments of h and
on the value w, but independent of 8y and of N [1 l} .

In the sequential case we use at the P decision rule [2?, 28]

Pl(xk) 5 1"Clk_1

1 for ~
pg (xk} W dy
Ay 1 (1)
t};k(llf_k) =g U= = (28)

0 otherwise

with g = 1/2,
Using a constant threshold {corresponding to q'), the compound

risk as a function of §N lies along a straight line R(EN, 14 ) as in

14



Figure 1 {see Equation (19) }. With the proccdurc described above

R{ ) approaches the Bayes envelope R(é-N) 5 R(é_N,tql}, for

O
any sequence ?—N {(regardless of whether or not the Qk's are independent),
1.5 SCOPE OF THIS WORK

In this section we identified pattern classification with statis-
tical decision theory (Section 1, 1}, describad the simple and compound
decision problems (3ections 1,2 and 1, 3), and summarized some
asymptotic solutions to the compound decision problem that have
appeared in the statistical literature (Section 1, 4}.

A simple Bayes solution to the compound problem cannot be
found if either a) the probability densities p;(x) are unknown, b) the
a priori distribution G(_@_N) is unknown (or does not exist), or ¢) the
states of nature are not independent, These situations are treated
in Sections II, III, and IV,respectively,

In Section II the probability distributions are unknown, After
discussing '""nonparametric" or distribution-{ree classification pro-
cedures (Section 2, 1), we investigate the finite sample-size perform-
ance of the simplest version of such a procedure applied to an apparently
easy problem (Section 2, 2), We then show how a Markov-chain assumption,
resulting in a classification function with a small number of parameters,
can be used to account for spatial dependence in physical patterns
(Section 2, 3)., In Section 2,4 we extend the formalism of Section I

by formulating the distribution-free compound decision problem,

15



In Section Illthe densities are known but the a priori distribution
is unknown, The results summarized in Section 1, 4 specify a class
of procedures that are asymptotically subminimax, Restricting the
discussion to the case of hypothesis testing, specific procedures for
adjusting the decision threshold on the likelihood ratio are presented
in Sections 3, ! and 3, 2,

InSection IV both the densities and the a priori distribution are

N
known, but G@.N) # kﬂ; qk(ek). Compound decision procedures for
dependent states of n;ture "take context into account!, Section 4,1
presents a heuristic discussion of the use of context in print reading,
In Section 4, 2, the optimmum (Bayes) sequential compound procedare
is derived, For the case of Markovechain dependence between consecutive
states of nature, this procedure can be easily implemented, In
Section 4, 3, we analyze error probabilities for this rule and for a sub-
optimmum "decision-directed" rule suggested in Section 4,1, Section 4.4
extends the analysis to non-sequential compound rules,

In Section V we assume a two-class problem with normal densities
and actually calculate and graph the error probabilities analyzed in
Section IV. Section VI is a list of conclusions,

When specific procedures lend themselves primarily to particular
applications, these are pointed out {Sections 2.3 and 4, 1), In general,
the application is pattern recognition, which includes character
recognition, speech recognition, speaker identification, photo inter-

pretation, medical diagnosis, signal detection, weather prediction, etc,

-

16



Section II

NONPARAMETRIC CLASSIFICATION

2.1 THE FIX-HODGES PROCEDURE AND WINDOW CARPENTRY
Whea even the fuactional forms of the underlying probability
density functions are not known, techniques based only on observations

of patterns of known classification must be used, In this section,
distribution-free techniques for the direct estimation of the values of
the deonsity functions used in a likelihood ratio or Bayes procedure are
described,
For the case of two classes, the nonparametric (or d:stribution
free) classification problem is often stated as follows:
Given a sample of size N| from a (n-variate) distribution P,
a sample of size N, from a (n-variate) distribution P;, and a
single observation x either from Pl or PZ; decide from which
distribation x came, when neither P, nor P;, nor even their
parametric form is known,
In 1951, Fix and Hodges [8] presented the following procedure:
Choovse K, a positive integer which is large,but small compared
to the sample sizes, Specify a metric in the sample space, for
example, the ordinary Euclidean distance, Pool the two samples
and count, of the K values in the pooled samples that are nearest
to %, those thatare from Pl; call this QI' Let QZ = K-Q1 be the

number that are from P;. Proceed with likelihood ratio dis-~



crimination using however Ql/Nl in place of p{x) and Q2/N2

in place of pz(x)_ That is, assign x to P, if and only if

Q. /N N
I s7. (1)

The threshold 7 depends on the losses and the a priori probabilities,
If the a priori probabilities q; and g = l-q) are not known, then
the nonparametric classification problem must be reformulated,
By Equation (6) of Chapter 1, the Bayes procedure for known

densities and known a priori probabilities is given by

Py (%) q
1 if — > 2w

P2 (%) 9
t{1/x) = (2)

or
.o q{1/x)
1 if ———2= . >W
ql2/x)
t(1/x) = (3)
0 otherwise
where

L - L

21 22

Liz - Lbnp

We consider the problem [14] of classifying x given a random

sample (of size N) XN = (xl, L IREE , XN) independent of x, If N, of the

18



x;'s turn out to be from P, then N1/N is a consistent estimate of q.

Using the Fix-Hodges procedure with K = K(N),a non-decreasing sequence

of positive integers such that

im K = 0 (4)
N+»m
lim K/N = 0, (5)
N—=w

then Q;/K is a consistent estimate of q{1/x) (and Q,/K is a consistent
estimate of q(2/x) ). An important theorem in empirical Bayes

hypothesis testing ‘_26] states that if f(x, Xy} is such that for each x
inN(x, XN) -——=» q(1/x) - Wq(2/x) in probability (6}

{where "in probability" refers to the distribution of Xyj), then the

decision rule

(7)

e j 1 if fy(x, Xy) > 0
I AR l

0 if fy(x, :’E.N) <0
has a Bayes risk that approaches the Bayes envelope,

lim R{q, t,,) = R{q) . 8
im Riq, ty) = Rla (8)

Thus the procedare of assigning x to P, if and only if

Q,/Q, > W (9

is asymptotically optimum.
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For the case of two classes with known g, we use (1) with fixed
N, and N, to approximate (2), For unknown g, we use (9) with fixed
N{N = N]+N5) to approximate (3). For the general case of r classes
{and unknown q), we choose a sample of size N, independent of x and a
positive integer K depending on N and satisfying (4) and (5). Of the K
values of the sample closest to x {in a specified metric) let Q3; be the

number from class 1,

We assign x to the class j which minimizes the quantity
T
.}:1 Lij Q . (10)
1=

From (2) or from FEquation (3) of Section I, we see that the
nonparametric classification problem {with known q) is basically one
of estimating probability densities, Van Ryzin* has shown that if
ﬁ(q, tq(f)) ) is the average risk for a procedure designed to be Baves
against the known a priori probahbilities q; and q, on the basis of
estimates f)\l(x) and 'Sa(x) for the densities, then for the case

Ly = Lpp = 0
0< R(q,tYP)) - R(a) < L, qlflfa‘l(x) - py ()] dx + Lglqgfjﬁztx)-pgtx)] dx.

In general [34] R

8 r
Rio. %)) - R@| < T T [ugyl a [[A00 - i)
=1 =1 "

J.R, Van Ryzin: "Bayes Risk Consistency of Classification Procedures Using
Density Estimation, ' Unpublished,
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The Fix-Hodges method is not the only way to obtain consistent
estimates of density functions, The following method of '"Window
Carpentry' is from Murthy's extension [18] of the work in
References [20, 25, 1?],

Let X; = (X51,... X; ), 1=1,2,...,N, be independent and

in
identically distributed n-dimensional random vectors with cumulative
distribution function F{x) = F(xl, cens xn) and density function f{x).

The sample distribution function
FN(XI' ... Xg) = 1/N (No, of observations X;, i =1,2,.,,,N such that
Xij < Xis j=1,2,...,n) is a binominally distributed random variable

whose mean and variance are given by

E [FN(X)J = F{x)

Var [FN(X}] = (1/N) F(x) [I-F(x)] .

As an estimate of f(x}, one might take

g o
i Xy - X -
1 - Y1 n "~ ¥n
fN(Xl,...,Xn): * K z ?
Lo oo hl- . hn hl h,
N
ot - e e ¥ *n = Xin
Nhy...h, 71 h h_

where K(xl, cens xn) is an n-dimensional "window' {or weighting function}
and the constants hj = hj(N}, ji=1,...,n, are positive functions of N

approaching zero as N=—#00 ,
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Let the window Ki(x) satis{y the conditions
(1} K{x) =20
(2) K(xl,...,xn): K(‘xll,...,'xnl)

(3) Ix31) = x| for alli =1, ..., n = K(x)) £ K{x})

(4) f"‘jK(x) dxy...dx, = 1.

Then at all points x at which f{x) is continuous, fN(x) is asymptotically

unbiased, 1,e.,

lim £ [f(x)] = 1),

and also

o0 a

1 = s » 8 2 EY

%\}TmNhl. ..h, Var [fN(x)] = f(x) fm f K={vy) dyl.. cdy,
- ~o0

If in addition to

lim hy(N) = 0,

N-’r)ﬂ

the positive constants hj = hj(N), ji=1,...,n also satisfy
lim Nh(N),.,h (N} =00 ,
lim Nhy(N). .. hy(N)

then fN(x) is a consistent (and asymptotically normal) estimate of f{x}
at all points of continuity of f(x).
Examples: Letn =2, leth; =h, = h, and let
1 if )< 1/2,i=1,2
K(x) =

0 otherwise
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Then, with this "square window of size h",

_h h h h
Frlx + 5, XZ+—Z_)'FN(XI'_Z_’ xz-_z..)

frgls=q, x,) =

NV=12 %5
he

If, in the Fix-Hodges fnethod, we choose the metric implied by the

I} min ] »

the procedure becomes equivalent to estimation with a square
window whose size is a random variable, If the Euclidean metric
2)1/2

with norm [x| = (= X5 is used, it is equivalent to a "circular"

window of radius h{h = h| = h, ... = h,}):
1 ifijxt <1
Kix) =
0 otherwise
with h as a random variable,
We note that for the case hy = h2 = ... =h,=h, the estimate

of f{x) may be written more compactly as

1 g ( x - Xj
falx) = K ——————
N = T L - )
with h —# 0 and Nh" —»m as N—s® , Some arguments have been

given (35] for taking h{(N) = o(n-1/(n+2)y
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Z.2 NEAREST-NEIGHBOR CLASSIFICATION OF BINARY PATTERNS

When K = 1, the Fix~.Hodges procedure is called the nearest-
neighbor method, For known q we chose N| and N, such that NI/N‘2 =
q;/q, while for unknown q we fix only N = N} + N, In either case,
we assign the unknown Lo the class from which its nearest neighbor
came,

Cover and Hart [6] have shown that in a large=sample analysis,
the probability of error is less than twice the Bayes envelope errecr
probability, R{q). If R=R(q), and R* is the limit of the nearest
neighbor error probability as N—»ao, then for r classes and L.lj =
1 - Jij’ they prove the theorem:

Let S be a separable metric space, Letp),p,,...,Ppy be

probability densities with respect to some probability measure g

such that, with probability one, x is either a) a continuity

point of PysP2s+«.s Py, OF b} a point of nonzero probability

measure, Then
R<R¥<R(2-(r/r-1) R),

These bounds are as tight as possible, in that they are achieved

with particular sets of densities,

For classifying binary vectors, we use Hamming distance as the
metric; the distance between two vectors is equal to the number of
components that differ, We shall assume a specific form for the

distributions, namely independent identically distributed components,
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and derive the probability of error (for two classes), first using a

parametric technique and second using the nearest-neighbor rule, We

shall assume equal a priori probabilities, qy = g2~ 1/2, throughout,
Let x = (xl, cees Xp) denote an observation from class 1, where

the xi's are independsznt,binary, and P{x-l = l} = for all i, Let

y = (yl, ..., ¥y) denote an observation from class 2, where the y;'s

are indzpendant,binary,and P {y-1 = l} =//g’ for all i, Assume further

that &= l-« . If & is unknown, itis estimated from N samples of

each class, X(l), . .,X(N); Y“), . ,Y(N) 48§
s 1 n (
- J) {
A= 3R E z X + 1-v J}
=1 1=1
We have
A m "
P{o(='é—‘;l-j = b(m; 2Nn, & )

where b{k;n, p) = (E) pk(l—p)n-k .

A sample z = (z(,..., 2,;) of unknown origin is found to contain
r ones and n-r zeraes, The likelihood ratic {or Bayes) decision is to
decide class 1 if

r<n/2 and o?< 1/2
or if A
r>unf2and d> 1/2,
and class 2 if a
r<n/2and > 1/2
or if A
r>n/2 and o< 1/2 ,
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Since 9, =93 = 1/2, the probability of misclassification is equal to

the probability of misclassifying a sample from class 1:

P, =P {r<n/2}P{d > 1/2)+ Py {r >0/ P{3< 1/2].

For n odd
; ™ ; 1 - -l
pife<nal T v L (04T (1-a0™T = B (B 0,e0)
r<nf?Z r<un/2
k
where B(k;n,p) = Z b(r;n, p), Thus the probability of error is
r=1

P, - B(“__gi 0, ) [1-B(Nn; 2Nn, )] + [1~B(P-i-£n,o< )] B(Nn-1; 2Nn,«)
for n odd, Theprobability of rejection (a tie) for n odd, is
Ry, = b{Nn; 2Nn,x ) ,

When we are faced with the preceeding problem without being
armed with the knowledge that the compounents are independent, we
might use the nearest-neighbor method, The error probability, Ple’
is then equal to the probability that the nearest to z is a y, given that
z is an x, Let P,(r} be the probability that the nearest neighbor to z
is a y, given that z has r ones, Then Ple is the expectation of P;(r)
with z distributed according to P,.

‘ 1

Ple = E| [Patr) |- Zo |3} (1= )T Py(a)

r=

Let hr{ J) be the probability that the Hamming distance from z to an
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x is g (given that z has r ones), It is the probability that x is the same

as z in n-é" places and different in Jplaces.
h(d) = Pid(x,2) =} .

Similarly, we define

ke(d) = P{d(y, 2) =J} ;

Ho{d) = P {d(x, z) gJ}:Z h(d)
d=0
. J
Kr(d) = Pldly, ) sd}= L ipla) .
Y d=0
Then
X N ~ N-1
Pz(r):N}: [1- ] 1k F-0]) T,
=0
whare
i ) Pl
he(d) = T bisir, 1-&) b{J-sin-r,x) =}, blr-sir,«) b(d-sin-r,«)
s=0 s=0
J 4 S J
HI(J)= Z }, P{r-sir,x) b{d-sin-r,a) = Z Z b{r-s;r,&) b{d-s;n-r )
d=-0 s=0 s=0 d=s
J /-5 S
= z bir-s;r,o) E b{t;n-r,a) = Z blr-s;r,«) B(;—s;n—r,a_),
s=0 t=0 s=0

with kr(;) and Kr(ﬂr) defined the same way but with & replaced b2y &.

Thus, for the nearest neighbor method, the probability of error is

P, = ) b{rin,x) Pyr),

27



where

n by N
Po(r) =N ¥ [1- 5 b{r-s;r,x) B(J-s; n-r,o()]
4=0 5=0

d-1
.[1_ Z b(r-s;r,/S) B(J-I-S;n-r,g)

N1
5=0 ]

b
.[ >: b{r-s;r,3} b(J-s;n-riﬁ)]} .
s=0

The probability of rejection (with 8= 1-4) is
18t
Pp=1- 3 [blrin,a)+ b(rin,B)] P,x) .
r=0
Even for this "trivial" problem, meaningful numerical results are
more easily obtained by computer experiments than by attempting to
evaluate the equations.
2.3 MARKOV-CHAIN CLASSIFICATION OF BINARY PATTERNS
In a variety of pattern-recognition problems involving the
classification of pictorial data, the gray-scale image is first
converted into a black-and-white picture by one of several
filtering techniques, The purpose of this preprocessing step is
to simplify the data for further processing and to remove the nuisance
variables of brightness and contrast so that consistent, detailed
binary pictures of the original image are obtained, The black-and-
white pictures can be considered to be two-dimensional arrays of

binary random variables,

28



Applying statistical classification procedures to joint distributions
of binary random variables has for the most part invoked either the
assumption of statistical independence of the variables,or the as-
sumption that their joint distributions are multivariate normal, The
first assumption, while leading to - simple results, obviously is ver:
limiting, The multivariate normal approach is also limited and requires
special development when the sample covariance matrices are singular,
This present section developes a general procedure for the classification
of patterns of binary random variables when neither of the above as-
sumptions is invoked, In this sense, the procedure is "operationally"
nonparametric,

Let S denote the set of 2" states of x = (xl, Kosens ,xn), each x;
taking on values 1 and 0, When a pattern x can belong to cne of two
groups with probability distributions p{x) and q{x) respectively, the
logarithm of the likelihood ratio, log L{x} = log p(x) — log q(x), is
widely used as an optimal classification function. If the 2™-1 probabilities
associated with each of the n-variate binary distributions were specified
and nonzero, then the classification function would be specified,

Generally, obtaining and storing allthe 2"-1 probabilities
associated with each of the alternative distributions will be out of the
question, even when n is of moderate size, To overcome this, it

seerns there is no choice other than to sacrifice the generality of our
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formulation and impose restrictions on the nature of the dependence
between the n binary random variables, After independence, the next
step is to consider Markovian dependence, The following shows how such
dependence can be converted into the type of spatial dependence of
interest in the problems being considered,

Assume a first-order Markov chain:
P/ %) %50 v %y 1) = PUXE/ X 1) (11)
for k= 2,3,.,.n. A well-known property of such a chain is that
plx fx) %5, . .xj) = p(xk/xj] {12}
for all j < k, A not-so-well-known property is that for k< n

P(Xl- .o Xn)

P I XIX20 0 e ¥l ] X1 v - X)) =
POXp e e Xy Ky y e oo %)

Pl Vo, /%)) o ey /g )P0y 1 /%)« Pl /5 ) -

p(xl)p(lexl)- - p(Xk+l/xk_l). .e p(Xn/Xn_I]

plx/ Py /%)) Pl 1)POxg /3y IP0xey /%)

Pl 1 /%) PO )Py I )

POy o X X 1)
Plxp 1 %)t 1)

30



so that any point is dependent on only its two nearest neighbors, one

on either side, Similarly, for the rthoorder Markov chain,

p(xk/xlx?_._.xk_l) = p(xk/xk_r...xk_l) , (14)
we have
Pxy /X X500 e X1 K ) e oo X)) T PARR Kpe e v XU 1 Kpgp [0 0 e Kpey ) {15)

The converse is not, in general, true; i,e,, the assumption
of dependence on the r nearest neighbors on each side does not imply
an rtheorder Markov chain, The chain is a special case of dependence
on the 2r nearest neighbors, Cousider the following example, Let
r =1andn =5, that is, we have five variables, Let x; = 0 or | and
p(00011) = 1/2 and p(11000) = 1/2 with all other states having probability
zero. Then we find that Equation (15) is satisfied but p(xy = 1/x] =

xz = 1, x3= 0) = 0 while p(x, = 1/){3 = 0) = 1/2 hence
p(X4/xlx2'x3) # plxy/x3)

and (11) is not satisfied,

For the first-order chain {Equation 11) let
;= plx; = llxi_l = 0)
Ai = plx; = l/xi-l = 1) (16)

It is convenient to define X, = Ofori<landi >n so that
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A = p(xl = 1)

and A1) = 8,41 = 0. There are now 2n-1 parameters rather than
201, If ®; and #; were independent of i (which is not the case here),
one would have a stationary chain,

Expanding the joint probability:

p(xle"‘x = p(xl) p(lexl)-..P()Cn/Xn_l)

)
%Xj.1(1-%5)

X1 1__..-.x1n Xio1%
=ot (1-ap) TR (1-4;)
i=2

Lo (LoD (1-xi.1) tl—xn}_

i (1-4.) (17)
Taking logarithms and collecting terms, we obtain:
n n
log p(XIXZ' . ,xn) = A + Z Ajxy + z Bix;_1%; , (18)
' i=1 i=2
where
n
Ag= ) log(l-ay)
i=1
1 -8,
Aj +1
Aj = log —2—  + log ——— (19)
1 -a -
3 oy
B; = log - log —n
1 - Bi 1l - O(i

For independent variables, o = /Si and hence B; = 0,
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For the second-order Markov chain (dependence on the four

nearest neighbors), let

D(i = plx; = l/:»:i'_2 =0, X 7 0)
@i = plxg = 1x_p= 0, x_) = 1)
. (20)
{i = p(xg = 1‘/Xi-2. =1, ;1 =0
Ji = plx; = l/xi_z =1, X = 1)

Since x; = Ofori<landi>n, ] = p()f;1 = 1), a(z = p(xz = l/xl = 0),
52 = p{xp = l)"x1 = 1) and there are now 4{n~-2) + 3 = 4n -~ 5 parameters,
The terms in Equation {20) are all zero for i > n,

Expaunding the joint probability:

Plxx,. .. x b = plx )i, /3 )p(x g/ % x5) . oL plx /2%, 1) (21)

aking logarithms and collecting terms, we obtain

n n
log p(x)xp...%x,) = Ay + }: Arxy + Z Bix;_ 1%
i=1 i=2

(22)
n n

+ 2 Cixi_zxi"'z Di%y 2%.1% »

1=3 1=3
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where

Lok
Ag = Z 108(1"0(1)
i=1
¥
°< 1-61""1 1 - i+2
A-l = log ——— + log + log
1 - & L=y L=y,
&; o 1 - Ji+1 1 -8
B; = log - log + log - log
1 -4 1 - -0 1= %
¥; Ay
C; = log - log
-7 l - o(i
Ji ¥ A o
D, = log——— -log—— -log——— + log ,
1-J; 1-7; 1 - @, l- «

Setting Z(i =0 and Ji = /3, reduces Equation (22) to Equation (18},
The assumption of a third-order chain would lead to summation of x,
X 1% Xjo2%is Xo3%is XX X X5 3% 1% ¥ _3¥i_2% and
X;_3%¥{-2%j_1%; in terms of 8n - 17 parameters, In general, an rth_
order chain (which gives dependence on the 2r nearest neighbors)
results in an expansion of the lorarithm of the joint probability up to
products of r + 1 adjacent variables, with 2f(n-r+1)-1 parameters,
Classification is obtained by thresholding the difference between two
such expansions,

The Markov assumption of nearest-neighbor dependence, Eq-

uation {14), implies a one-dimensional process or sequence, For the
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classification of two~dimensional patterns, one must scan the pattern
and apply the chain assumption to the scanned output, Since we

assume that a point depends on only the r points on either side along

the scan line, the scan line must be so constructed as to remain as

close as possible to a given point for the r succeeding (as well as
preceding) points, Heunce, for r > 1, we should scan the ‘pattern with a
continuous curve that, while passing through each point in a rectangular
array, is as crimpled as possible, An example of such a curve® is
illustrated in Figure 2, The limit of the curves f, as m—wa3 is a
continuous curve, called a space-filling curve, [13] that passes through
every point of a given arca. The curve f;; scans a 2™ x 2™ array of
points,while never maintaining the same direction for more than three
consecutive points, Whenever it has strayed three points in a straight
line, it turns around and comes back,

The curves of Figure 2 do not provide for all spatial dependencies
that exist, However, the dependencies that are assumed do get con-
verted into spatial dependencies, Hence, we are assured of doing
better than by the simple assumption of independence, A larger class
of spatial dependencies is taken care of by extending the Markow=chain
methods to two dimensions, The two-dimensional analog so obtained

is called a Markov mesh, and is discussed in Reference [2.]

* These curves were first presented by David Hilbert [13] in 1891,
Tothe bestof our knowledge, they have not found application until now,
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In pattern-recognition problems, the number of variables in
the array is usually larger than 25 and often in the thousands., For
n binary random variables using the Markov-chain assumption, one
only has to estimate on the order of 2%n parameters, with r taken to
be 2 or 2. This is much smaller than 2%, it is also smaller than the
parameters that the normal as sumption requires, for in that case
we have to estimate n means and an n x n covariance matrix. KEquip-

1:h--order chain

ment designed for classification on the basis of an r
assumption can be used for any chain of order less than r by merely
equating certain parameters.
2.4 THE DISTRIBUTION FREE COMPOUND DECISION PROBLEM

For unknown densities pj{x) {(as well as unknown G) one may take
one of two approaches, The nonparametric empirical Bayes approach
of Johns EM{J assumes that the 8's are independent and identically
distributed and examines convergence of the component Bayes risk to

N

R{q) for the case G(fn) = 77_ q(6y). It has been assumed in the non-
parametric problem that wi;i the ktP decision must be made there are
at hand the true values of all the previous states of nature and a sequential
compound decision rule with t) = tk(jigk_l,zg_k) is used. One may use
9x-1 and x;._; to obtain consistent estimates of Pj(x) for alli £ JL
and act as if these were the true densities to define a procedure ''Bayes"’
k-1

against the known empirical a pricori distribution g Such a procedure

is asymptotically optimum in the empirical Bayes sense. Johns [ 14j uses
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the Fix-Hodges procedure [8, 9] while Van Ryzin [33] uses "Window
Caprentry”[ZO, 18].

Van Ryzin [34] has shown that his above-mentioned procedure
te({i/Bk .1, x,) is also optimum in the limit in the sensc that the com-
pound risk converges to R(qN) for any sequence —B-N' However, the
problem he considers is repetitive play in statistical games and it
would be artificial to apply his formulation directly to pattern
recognition, He assumes that the true value of Gk is given to us
after each decision is made and examines convergence of the average
of the component risks, In a nonparametric pattern-recognition
problem oae must be given "training samples' from which to estimate
the densities, but we should not be concerned with whether or not
the risk of a rule applied to these samples converges, What must be
examined is convergence of the risk applied to the samples we wish to
test and whose true classification is never known, This is done in
the empirical Bayes approach, i,e., one investigates convergence of
the NI component Bayes risk given N-~1 training samples. However,
this approach has two major limitations, [t assumes that the states
of nature are independent and it assumes that only one pattern need
really be classified.

In a pattern-recognition problemthereis a series of design
samples X © {Xl’ Cens xm) with known classification, 1i,e,,

= (8

< ERRRE 0,,) is known. There is then a sequence of test samples
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m .
XN = (Xm+1’ .. ’xm+N) with unknown ENm = (Ot s eees G +N) -

What really matters is convergence of the compound risk R(_G_Nm,_tN)

for the test samples, The design samples can be used to estimate the

densities {learning with a teacher) and the test samples may be
used (in a sequential compound rule) to estimate their empirical
distribution and possibly to improve the estimates of the densities
(unsupervised updating), Unsupervised adaptation has been demon-
strated under certain conditions when the distribution functions of
the classes differ only in location by Cooper and Cooper [5} .

A distribution-free sequential compound decision rule is
denoted by t, = (tl’ - es tyg)swhere t = tk(j/gm’fn'ﬁk) {its non-
sequential counterpart has t, = t (j/0_,x _.n) ). If infinitely many

design samples from each class are available, then the densities can

be estimated exactly and the sequential compound procedure described

in Chapter | {which estimates the empirical distribution qX-1) is
optimal in the limit; R(?.N’ t\I*) — R(qN). If we assume a cost of
sampling C; for each design sample from class i, the compound risk

for the rule tyy with ty = tk(j/grn' .Jf.rn+k) is

m
m 1
Renl@menstn) = ROy 5 )+ 2 Cg -
=1

. 1
1

For finite m, Rppn(B4notn) — R{q} if and only if R(8y™, ty) —=Rlq
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Thus we wish to know under what circumstances it is possible to

find a rule such that for some .Elm

ROy, ) = R(q )

N
uniformly for all Q_Nm & J17. In other words, is there some design
procedure and some set of design samples for which the compound
risk for the test samples converges to its minimum possible value-

for any sequence of test samples?
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Section III

ADAPTIVE THRESHOLD ADJUSTMENT

3.1 THE TWO-THRESHOLD METHOD

We return to the problem of Section 1,4, page 15, where A =[] =
{O, l} and only the a priori probability ¢ = q; is unknown {q_ = 1-qg).
The sequential compound rule of Equation (28), Section 1,4, which

chooses class 1 if

Fal
Pk} Ly, - L L - qp .
N 0l 00 ] 0
A
Po(%) Ligp - L SI

is asymiptotically optimum when ak is a consistent estimator of g,
Van Ryzin has shown [32] that this rule even satigfies Equation {23)
of Section 1,4 if ak is given by Equations (24) and (25) of Section 1.4,
i, e,

A o 2
qk-l'(.)f-k-l) - ihk"‘l (fk-—l)} Truncated =

7.‘"»—-

k
h(xg) = == ) hix,), (3)
i=1

and h(xk) is a bounded unbiased estimator of Sk. Since Ehy = éFk

and Var hy £ (1/k) max Var h(xi), hk is a consistent estimator of
1

Qk‘ It remains for us to specify h{x).
Hannan and Robbins (10] have found the h{x) that minimizecs
the variance of hy . Their h(x} is given implicitly in a pair of sim-

ultaneous integral equations., Samuel [27, 2,4J presents an h(x) that iy

much simpler, She sets
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fr(x) - Po(T)
h(X) = » (4)
P(T) - Py(T)

where T is a set in 5 for which P (T} # Pl(T) and fT(x) is the

characteristic function of T, Since
Efp(x) = PG(T) = QPI(T} + (1-9) PO(T). {5)

it follows that Eh({x) = 6. (We have omitted the subscript k from the
class Oy and the pattern x, 6 is either 0 or 1,} It now remains for
us to specify the set T,

We shall {irst prove that the set T that minimizes the variance

of hy is given by a threshold on the likelihood ratio:
T={x p(x/p(x) > T ] (6)

Since E fp(x) = Pg{T), we have Eh{x;} = 8;, Ehy = Q_R, and

Varfp(xi) = Pgi(l-Pei) = 8; P1{1-Py) + (1-6;) Po(1-Pg). Thus

k
'Zl Var fp(x;) 61 P [(1-P )H(1-8,)P(1-P)
1=
Var hk = =
2
2 [Pl‘Po] k(P,-Pg)?
{7)
Hence - > >
Gk(Pl-Pl -PO+P0 ) + Po(l-Po)
k Var hk =

(P}-Pg)*
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1-(P +Pg) Po(1-P)

k Var hk = Bk

(P-Pyl (P|-Pg)°

Let T minimize Var h . Let Po(T") = Py, P,(TH) = P|*. Without

loss of generality we may assume Pg < Pl+. Consider the set

T* = {x: P1{x)/potx) > 2, Po(T) = PO] .

By the Neyman-Pearson lemma, Pl‘J" < Pl*. Therefore, (Pl*-PO) =
{Pl+-P0) and since both sides are positive, (PI*-PO)Z p=d {Pl"'-PO)Z.
Furthermore, 1 - (P;" + Py) < 1 - (P,"+ Pg). Thus k Var h* <

k Var hk+‘ But, since Var hk+ was assumed to be the minimum,

ohe
bt

Var hk* = Var hk+ and the set T* minimizes the variance,
From (7) we see that to minimize the maximum (over gk)
variance of hy, we must choose © such that PO(T) = l—Pl(T). From
Equation (10) of Section 1,2 we see that this is simply the threshold
for minimax probability of error in the simple decision problem
(Lij = 1- ‘;ij implies w = 1).
In the two~class pattern-recognition problem we somehow
implement the likelihood ratio as a classification function [1 9]_ We
set two thresholds on it, a fixed threshold (6) and an adjustable
decision threshold {1), The fixed threshold, T , is set to give a minimax

probability of error, Letting T(fk-l) be the fraction of times the

fixed threshold was exceeded, we use

#% This proof is due to T, J. Harley, Jr., Philco Corporation,
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A (Tp{xK-1) - Po(T)
U1 Xka1) = (8)
P (T) - Py(T)

Truncated

to adjust the decision threshold in Equation (1), where gy = 1/2.
This procedure has the advantage of being easily implemented,
and our choice of T yields a minimax variance for the unbiased
quantity in brackets in Equatioun (8).

The following section presents an alternate choice for the
estimator ak-l‘
3.2 THE BAYESIAN APPROACH

Let us assume that the a priori probability, q, is distributed
according to an a priori deunsity, f(q), on the unit interval, The
conditional average risk for the k+15t decision, given the first k

patterns is

i
Eq [R(q, tk+1)/3<_k] = fR(q. L) fla/x ) da (9)
]

where R{q, tj ) is defined as in Section 1,2, Itis minimized by

choosing tk+l(llxk+1) = 1if

A
Pl(xk+1) ‘LO]. - L'OO 1 - qk(_}fk)
- - , (10)
PolXypq) L1g - L11 Ul )
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where

f
ak = Egla/xy) = fq Hq/ %) dq. (11)
o

The density used in (11) to compute q) can be defined itteratively

. A
in terms of f(q/fk-l) and Ay _y*

,alx /q} £ X
Halx) P{xp, a/xp ) ] plxy /q) fla/x,_})

HE Y fp(xk/q) f(a/xy ) dq

(12)

(9 Py (ad + (1-9) po(xi)] falx, )

Fat Pl
Qr-1 PlxE) + (1-q, ;) Polxy)

where f(q/i(.O) = f{gq). The denominator in {(12) is a normalization

factor to insure ff(q/zc_k) dg = 1, In closed form,

i k
qu(q) T [q pil{x) + (1-q) pg(xi)] dq
i=1

A P2

dalx) = K
j’f(q) T [q P (%) + (1-q) po(xi}] dq
i=1 -

4

(13)

Thé first procedure {Section 3.1) for obtaining gy, though
consistent, is not very efficient for small k; al(xl), for example,
can only take the values 0 or 1. Thus, t?_*(l/ic_z) does not even
depend on x;. The estimate a\k depends only on whether or not
the likelihood ratio, for each X exceeds a fixed threshold, and
not on by how much the threshold is exceeded,

The second procedure, though not as simple, can be im-

plemented iteratively by Equations {(11) and {12), Letting
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aj = py{x)/polx;) - 1

and assuming f(q) = 1, Equation {13) becomes

ok

jq_ﬂ— [1+ai q] dq
[T

[4

FaY
RN

) {(14)

~ =l
—

[1 +a, q]dq

-
i

A .
Thus q4 = 1/2, 1/3 cal(xl) £ 2/3, and in general q,(x,) depends

on the values of Kiseoes Xy with

R “ k+ 1 .
————— & — t
ez S 4l S o (15)
The choice of a uniform a priori density for q, leading to aO =1/2,
is reasonablewhen the Bayes envelope has its maximum at q = 1/2,

since the first decision is then minimax,
In this chapter, the densities, p;{(x) were assumed to be known.
In the following chapters, we treat the case where the a priori dis-

tribution, G(QN), is also known,
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Section IV

COMPOUND PROCEDURES FOR DEPENDENT STATES OF NATURE

4.1 USE OF CONTEXT IN PRINT READING

The objective here is to obtain as accurate and complete
character recognition as is possible, by using context to assist in
deciding character identity, The redundancy of the English language
makes such an approach not only feasible, but extremely promising,
As a "quick fix'' for an existing character reader, one is tempted to
adjust thresholds to allow greater rejection (lowest error rate) and to
use context in identifying only the rejected characters, However, if
optimal recognition is to be obtained, no character should ever be
identified without regard to context, Similarly, no rejected
character should be identified solely by context and without regard
to "what it looks like',

Let x be an observation of what may be a character of the’
Eunglish language, i,e,, a vector in the pattern space S, Let 6 be
a character of the languape {including a '"‘space"}, i,e., a pattern class
or a point in the parameter space, J1. Suppose we have a method for
computing the approximate conditional probability of an observation
given the clasgs, i,e,, we can compute p{x/8) (the probability function
or density of x, given that x is an observation on character 8). For

a given x, p{x/6) is called the likelihood of B,
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Assuming a "constant'" loss matrix L‘ij = 1- the Bayes

ijo
decision {minimum risk) is to choose that character & which maxi-

mizes either

p(x/8) p(6)
p(x)

p(8/x) = (1)

or the product p{x/8) p{6), where p(8) is the a priori probability
of 8,

When the a priori probability of & depends on the context, c,
{assuming that x is independent of ¢ when @ is given, p(x/8, c) = p(x/6))

Equation (1) becomes

_ p{x/8) p{8/c)
p(B/x,c) = 5{%7<)

, (2)
so that the decision is based on the product

p(x/8) p(B/c) . (3)

The calculation of p(x/6) in (3} has been examined, for example,
in references [2, l6, 19] . The Markov chain (discussed in Section 2.3
in relation to the calculation of p(x/8) ) can be used very effectively
in the calculation of p(8/c). For example, a tabulation of trigram
frequencies can be converted into a description of the language in
terms of a second-order Markov chain, For such a chain the probability
of each character is conditioned on its four nearest neighbors, two on
each side, If Gk denotes the kth character, and if a second-order chain

is assumed, then
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p(ek/au the other characters) = p{@kl'ek_z, Ok-1+Opp1s Oran) - (4)
For sequential (rather than compound) processing
p{6y/the previous characters) = p(Sk/Qk_Z,Qk_l} . (5)

This Markovian development is less complicated than in Section 2, 3,
since hare the chain is stationary, For an alphabet of 27 characters,
a table of trigram frequencies coatains about 6, 000 nonzero entries
out of a possible total of 2757 20, 000 possibilities,

The trouble with the preceeding development is that, in practice,
the neighboring characters are not known, The context ¢ is only
available through observations on preceding characters, Even if

the character ensembles form a Markov chain, itis by no means true that

replaced by the decisions made on the last two observations, If
context were used in this way, errors would tend to "propagate'’,
What is needed is the optimrnum (minimum risk) sequential compound

decision procedure for dependent states of nature,

4.2 THE SEQUENTIAL COMPOUND BAYES PROCEDURE
FOR DEPENDENT STATES OF NATURE

The optimum (Bayes) sequential compound decision procedure
for known distributions and dependent states of nature is derived

below. The decision on the kP state O, given the first k observations
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X]»e..s Xy, does not depend on the unknown values of 6,..., ek_l
nor on the decisions about them,

We shall show that when the 8 's form a first-order Markov
chain, the kth decision depends on Kseoas Xy} only through quantities
which had already been calculated in order to make the previous
decision, The calculations needed to decide on the kth state will be
defined recursively in terms of x, and quantities previously calculated
for the decision on 8, . Since the first decision is simple, the pro-
ceduare is well defined and easily implemented,

Let §) = {1, 2,004, r} be a set of states of nature and
A=4l,2,..., S:ﬁ be a set of actions, For i€, jeA, Lij denotes the
loss incurred by action j when the state of nature is i, In a compound
decision problem, there exists a vector QN = (61, ce e QN) of states
of nature and a corresponding vector xy = (%}, ..., xy) of random
variables, where 0 denotes the state of nature in the Kkth component
problem, and the probability density of xy is p@k(xk). For a given

Ok, X is independent of the other x's and 0's:

P(Xk/XI, ] Xk_l: Xk+1: 8.y XNJ -e—N) = p(xk/ek) = pek(xk) 3 (6)

k

and hence p(ic_kfgk) = n_ p(xj/6;). We do not assume that the 8's
i=1

are independent,

1f only the first k observations, X T (xl, . xk) are at hand

th . :
when the k™ decision must be made, one can use a sequential com-
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pound decision rule ty = (tl, e ,tN), where t, = tk(j/fk) is for
each X a distribution over A according to which the kth action is

chosen, The risk for such a rule is

N
Rovi = D Ry

th

whereby Equation (13) of Chapter 1, the k™ component risk is

5
ROy &) - f Y L tlifxg pley/Oy) ax
FrooS

(7

8
= f _Xl Lekjtk{jifk) plx, /8y) axk = R(6y, ty) .
J:

We assume that pi(x) is known for alli € JL , but that none of the 8's
is  known,
The compound Bayes risk with respect to an a priori distribution

G(6N) over _QN is

N
—N - -

where

R(G, t}) = Z R(Ops ty) G(Oy) -
e S

P

A provedure is compound Bayes against G when it minimizes ﬁ(G,t .

G

Thus, the sequential compound Bayes procedure ty- is the one that

K th

minimizes the component Bayes risk, for every k,
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R(G, f) = ) R(Bty) GlEN) = 2. RI8, ty) GO
N Sk

5
— - k
= 1L Lg iplx/8,) GlB) t (i/x) dx ,
6 6d Tk 2k k' Tk
e,

. . k
where G(f)) is the (marginal) a priori distribution over JU”. Hence

t,9(j/x) = 1 for that j which minimizes the quantity

s Plx, /6,) GlOy) . (9)

Theoretically, the problem is solved, Practically, itis not., We

K . .
have a sum of r terms,where k may be in the thousands.. Letting

p(xy, B)) = plx/8y) GIEy) ,

Q= L Lgjplxe8)= L Lo ;plx, 8 . (10)
6k O

We note that for the special case where action j corresponds to

1if 84 j
deciding that 8 = j and Lej ={0 Tf ) * ‘] . th chooses the value of Qk
i =

that maximizes p{xk, O1). This is equivalent to maximizing the a

posteriori probability

G(ek/zﬁk) = —— s
Pxy)
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since the denominator, p(_}_{_k) = Z p(icklgk) G{B) is independent of
%
Ox.

In Equation {10) (making repeated use of {(6) ) ,

P(xp, Oy) = Plxi/6,) Pl 1, 0)) = plxg/8,) 3. plxg_18y)
6
-k-1

= Plx /B ) §, Pl /8y 1) G(Ey) ¢
-1

L‘_CD

—

= p(xk.{ek) 'y G(ek/gk-l) p(ﬁk-.l’g.k—l) .
k-1

If the states of nature form a Markov chain,
GO, /8y _1) = G(6, /0_1) > (12)

with known transition probabilities G{w/y), for wand) in 51, then
r
Pxe 00 = P (x) ) GIO/6, ) elx .8 ). (13)
2, =1

k-1
Note that p;(x) and G(i//) are known and p(X) 1,8 _y) is defined
recursively in terms of p(xl,el) = pel(xl)G(Ql). The kth decision
th(j/_}_{_k), depends on x) and a function of ek—l which had already
been calculated in order to make the previous decision, It does not
depend on the (unknown) value of 8 _; nor on the decision about it,

Weincidentally note thatif the states of nature are independent,

G(ek/gk_l) = q{6,), then
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P(Ek: ek) = pektxk) q(ek) p(ik-l) .

Since p(ik l) does not involve 8, we have a simple decision problem;
r

the quantity to be minimized is z L‘ij p;{x) q(i).

1=1]
Example: For a 2 x 2 1oss matrix A = Jl= {’0, 1} (a binary alphabet),
with w = (L, g - Ly])/1g;/Lggl, we decide 6, = 1 if wp(xy, 1) > plxy, 0),

where (when the 8, 's form a Markov chain)
Pl 1) = Pyl [GLE/0) plxic, 0) + GLI/ ) Pl D] 5 820,15 k=2, 3. .,

and p{El,i) = pi(=q) G{i).
4.3 SEQUENTIAL RULES FOR MARKOV-CHAIN DEPENDENCE

For a non-randomized decision, let di (xy) denote the value of
j € A for which tk(j/ﬁ() = 1; the decision function dy maps sk into A,
i.e, dk(_}ik) = jeA. Such a function dy determines {(and can be considered
as) a partition of sK into mutually exclusive sets T'k(j) = {Ek:dk(f’f.k) = j} =
{fk:t(j/fk)- = 1} whose union is 8K, If X is an element of T (),

kth problem,

action j is taken in the
For the square loss matrix Lij =1 'Jij {action j corresponds to
deciding that 8y = j} the kth component Bayes risk
R(G, t) = [k Z ) Lg, j Plxy, i) ti/x,) dx
487 j=1 8y

becomes the probability of error, e, = Pr {dk # Gk}:
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r
e = R(G,t) = 1 - 3 [ p(x,. J) ax®
=1 T

where p(fk’ +} for a first-order Markov chain is given by

Plxy, B) = Plx /6y ) § GlOR/6, ) plxy 126, ) - (13)
Ok-1

The error probability is minimized by choosing dk(xk) equal to
the value of 8 that maximizes the expression in Equation{13),

that is,
T = { %P0 0) 2 BUx,, Oy) for all B € R},

Since p{xy, 8 /%, 1) = p(x, Qk)/p(_zik_l), this rule is equivalent to

choosing dy{x,} equal to the value of 8 that maximizes

plxp, O/ x 1) * plx /6)) GIB /% 1) . (14)

An alternate (sub-optimum) rule (suggested in Section 2,1} would be

to choose dk-r(ik) as equal to the value of 6 that maximizes

P, O, /a1 (1) ) = Plxic/ By Gloy/dily) . (15)

Letting ey and elr represent the error probabilities for d and d,:

respectively, we have e, < ekf, Let e| represent the error probability
for the simple rule tl(jlxk),which does not take context into account

but merely chooses dl(xk) equal to the value of 8, that maximizes
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plxy, O)) = plx /6y) GO} . (16)

- tely - . t.

We note that for k = 1, dl(fl) = dlt-}fl) = dl(xl) and hence e, = €;.

By expanding the class of possible decision functions, error
probabilities less than e, can be attained, For example, if d|

is allowed to depend on Ek as well as x;, the minimum error probability

of a rule di (8, %) is zer0,as is easily seen by letting d1 {6, 1(_1{) = 0.

We define the general kth-component risk as
R(G: tk) f Z Z Lek.] tk(J/ ’_N) P(_N _N) dX {17)
oN

where tk(j/QN’EN) is a general decision rule, For the case where

A = f)and Lij = 1= Jij’ ﬁ(G, ti) is the probability of error for the kth
problem:
— r N
R(G, ty) = [N 3 g t 3/ O Xy) Plx By) dx
S —Q-N j=1

r
“[SN 3 ; <§gkj t (37 8nps X0y} PUx O) dx

ey (18)

N
f Y 81/ B 1) Pl Byy) 9%
sN g ~N’ =N

For a non-randomized decision rule, tk(ek/GN, %) is the characteristic

function of the set of @.N‘EN) £ _fLN x sV for which di = 8. Since the
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average value of the characteristic function of a set is the probability

of the set?
R(G,ti) = 1 - Pr{d = 0, 1. (19)

By identifying a randomized decision rule tx with an equivalent

prohbability distribution over the class of decision functions dk(ﬁN’.)iN)’

tel§/ By Xpy) = Pr{dy = if’?.Nsi‘.N}’
the same result
R(G, ty) = Prid #0, ] (20)

is obtained,
We define a general sequential decision rule by tk(j/GN,_}_cN) =

tk(jlek_l,ik), For such sequential rules, the risk becomes

w

_ _ k
R(G, ti) =j;k T T Loy plx 00 Wil x) dx . (2)
J=1 B
Obviously,
min R(G, t; ) £ min R(G, )

where the left~and right-hand sides are the kth~comp0nent sequential

Bayes envelopes for known and unknown Q.k-l’ respectively,
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S
RGud= [ T Gl ) & T Loy plxe 6/ ) i/ o) dx
Jgk 6 1 =1 6,

) r
= 1 G(_e.k—l)jk Pg_1/8k)) 2 2 Lgyj plx/0 )
0, 5 =1 6y=1

el 318y 1K) AXS (23)

the sequential Bayes rule for known 0y ) has tk(jlek_l,i:_k) =

tk(jfg_k_l,xk) = ] for the value of j that minimizes

T Ir
L Loy Plxe0/8c ) = L Lgj Plxic/6) GOK/By 1) (24)
Bk =1 kal

For the case of a Markov chain, t1(j/8) _1,x.) = ) {i/0k_1, %) = 1
for the value of j that minimizes
2. Lo, j plxi/6k) GlOK/Ok.1) . (25)
Ok
For this ti (call it t;*)

] T
Z GOy _y) I z Lekj p(xkfek) G(leek_l)
Ok-1 S j=1 f=1

— ¥

(/O ) » ¥ie) Ay

r

Ir =]
Loa | L L Lypa GOY) Hi/Y, %) dx, (26)
y=1 S j=1 i=1

1
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where t(j/ ¥ ,x) = 1 for the value of j that minimizes
Z Lij pi(x) G{i/v ) .
i

Hence, when the states of nature form a stationary Markov chain,
the kth component sequential Bayes envelope for known 6 _ is
independent of k,

For the case where A =§] and Lij = 1 - 5 Equation (22)

ijs
becomes

e. < e , (27)

where eq is the minimum probability of error for the th decision
when 8 1 is known, The sequential Bayes rule for known &, _;

is nonrandomized, with dk(ﬁk—l’fk) = dk(ek_l, xk) independent of

X _] and 8y _p and equal to the value of Qk that maximizes

p(xy, By /Oc_1) = plxy/B)) GO, /6, ) - (28)

Now e) may be considered as the minimum error probability
of the rule tk+l(j/x2, .. Xk+1) (we have assumed a stationary Markov
chain) and hence is not less than e, ., the minimum error probability
of the rule tk+l(j/x1, s Xk+1)' Hence e 2ep2...2e 2epy 12€., {ek}
is a monotonically non-increasing sequence bounded below by e_ and
hence has a limit e with e, £ e < ey.

Using the rule of Equation (15), when the k-15t decision is correct
(i.e., when d,]_) = 0x_) the probability of error is e;, The probability

that dktl = Bp_1is 1 - ektl- Let e, be the probability of error
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when the k-15% decision is wrong, Then

ekT: ek-tl e, + (1 - ektl) e. » (29)

and, since €. is the minimum error probability for known 91<_1'

Since Os_ecgeegl, 0 ea-ecsl - €. Thus ee-ec=1

if and only if e . = 0 and e, = 1. For this case e]:= ek-r_l = . ..7€e].
Otherwise, 0 < eg - e, < | and hence, lettinga = e, - e.,

1
€41 aep+ €.

[

akel+(l+a+az+_,,+ak'1) €c
k

=akel+ _t-a" e, .
1 ~a

Thus e{ converges to a limit el given by

= ——— 30
I - (ee - ec) ( )
Since ey £ e for allk, e e . Since

.r
€lp] = (ee = ec) eg+ eq , (31)

we obtain

Il -(e, -e.)| e; -e e—eZT
el_eT:[ e C] 1 C= 1 (32)

1 -{e. ~e.) 1 - (e, - eQ)
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Hence, ef< ey if and only if e2T< e].

For the case of two classes, Qk =0Qor i,

I - G{1
di(xy) = 1 if PL () > 0 {l6a)

Po (xk} G(1)

+ pl(xk) 1 - G(l/dk-r'\l)
d (_}Ek) = ] if > = , {15a)
Pq (Xk) C‘(l/dk_]_)
and by (14)
l - 1

dilx) = 1 if L) Sl /fk'”, (14a)

po(xk) Gk“/}f_k-l)

where Gp(l/x.) = G(ek:”.).(_m)' For all k > 0 we have
SIS =S |

and

ec S e < el

In the next chapter we will treat the example of normal populations
and show, in Section 5,1, that when the populations are not well

separated eg—> e; for all k > 1, while when they are well separated

1—

ek< el.

4.4 NON-SEQUENTIAL COMPOUND RULES
h

A procedure is compound Bayes if it minimizes the kth-com-

ponent Bayes risk,

61



R(G, i) = I R(By. ti) GlON)
0

N
: N

= _Zlg Lo, j ficti/xn) P/ ) GOn) dx (33)
J=1 9y

for each k, In Section 4.2, we derived the Sequential Compound
Bayes procedure, The compound Bayes procedure choses tk(jfch)

equal to one for that j which minimizes

O N Ok

We note that the minimum Nth-cornponent Bayes risk is the same in
the sequential and non-sequential case, The minimum kthvcomponent
risk for k < N for the non-sequential case is less than or equal to the

corresponding minimum for the sequential case,

Let us consider the case N = 2, A =}, and L‘ij =1~ J;J The
kth-component Bayes risk is equal to the probability of error
RIG, ty) = e (35)
and the compound Bayes risk is equal to the average probability
of error
— el + ez
R(G, 1) = — <e>, (36)
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The compound Bayes procedure chooses dl equal to the value of 6‘1
that maximizes

plx,,8)) = plx,/6)) % p{x,/6,) G(8),6))
2

and d; equal to the value of 8, that maximizes

plx,,6,) = p(x2/6,) ) plx,/687) G(6,6;) .
1

We note that d; is the same as in the sequential case, From (33),

the component risks are

) 2
= 1) fz "kl x,) plxp, Ba) dx
9, /s
In particular

2
ey = 1 - z > tZ(eZ/E’EZ} p(ffZ,’eZ) dx
8 /5

If G(8},8;) = G{6,,0/), then e, = ey = <e> for the compound Bayes

procedure,

Let ey be the minimum error probability for the kth decision

(37)

(38)

(39)

(40)

using a sequential compound procedure. The average error probability

N

(the compound Bayes risk) is then <ep> = 1/N }: ex. If G(8y)
k=1

is symmetric, the minimum error probability for the kth decision

using » compound procedure is ek* = ey for all k and hence <eN*> = ey-

In such a case, G{fy) is stationary, and as in Section 4, 3, e, is
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monotonically non-increasing with the limit e, Therefore <eN*>

and <eN> are monotonically non-increasing with the same limit, e,
e A
In general, however, e £ep and hence, <ey > < <eyny>.

In the next chapter we analyze, in more detail, the error

probabilities discussed in this chapter.
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Section V

THE TWO CLASS PROBLEM WITH NORMAL DISTRIBUTIONS

5.1 SEQUENTIAL RULES FOR MARKOQV -CHAIN DEPENDENCE
Let pl(x) and pg{x) be univariate normal densities with the
same variance, ()‘Z, and with a difference 1n means, . = by =HQ > 0,
Thus
} 2
- 1 (:\‘H-i)
p:{x) = é[(x- )/(}"J = —— . pTm ——
L " Ver o 20°
and there is no loss of generality in assuming ug = 0 and ) = .
The set T in Equation (7) of Chapter 1 is given by

pp (%) 1 -gq
T(q):{x: — 7 ] =[xx> c} ,

Pg (x) q

where
¢ = (G 2%/ 10g[(1~q)/q] tpll.

Then

P.(T) = fwé [(x—;.Li)/O'] dx = 1-$[(C-Hi)/r}
c
PO{T) = 1-#(c/T) = 1= [(7/p) log { (1-q)/q) + p/20
P(T) = 1-b(c-p] = 1m0 [(670) log ( (1-a)/q) - wi2e]
Letting m = /¢ , the probability of error given that 6 = 1 is

pla) = 1-P (1) = @ [(1/0) 108 ((1-a)/q) - m/2]
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and the probability of error given that & = 0 is

Po(T) = & [(1/m) log (a/(1-q) ) -m/2] = 3(1-q) .

We consider the Markov chain in Section 4, 3. Let

q=G(1), & =G(1/0), and &= G(1/1}). Since

q = G(1) = G(1/0) G{0) + G{1/1) G(1) = &x(1-q) +Sq ,

we have
et
17 T 8%«
and
_1-8
l-q = 1 - 3+

From Equation {9) of Chapter 1 and Equation (23) of Chapter 4

R(q, t9) = R{q)

|

€]

e. = (1-q) R{e,t7) + q R(&, t¥)

e, = (1=q) R(«, t°) + q R(6,t%)

where

R{q,t2) = q 3(a") + (1-q) H(1-q")
We shall assume o= 1-/Q so thatq = 1/2, Then

ey = 3(1/2) (1)
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1
1

u{?(d)+(1-c<) 7(1-0{) (2)

and

4]
(44
{

{1-9}) 7(«)'*‘0\}(1-0\). (3)

From (2) and (3) we see that e (&) = ec(l-o(), (%) = e (l-A), and

cemee = (1-24) [3(=) - 4(1-a)] (4)
where

}(«):cb[u/m) tog ( (1-o)/o() - m/2] . (5)
and

3(1-4) = 1-¢[(1/m) IOg((l-d)»’o(Hm/Z]- (6)

The case where pl(x) and po(x) are multivariate normal
densities with the same covariance matrix but different mean
vectors is the same, but with m =@, defined by Blackwell and
Girshick [2], page 158,

From (1) we calculate
e} = 1-®(m/2), (7}

and using (5} and (6) in (2} and (3) we compute ec(o<) and ee(o().

We compute ef(o() and eg—(o() from Equations (30} and {(31)of
To ol

Chapter 4 with ef—= ey For o= 1/2 we have e. =€) = e =€ = eg,
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while for {= 0 (or®= 1) we have e. =0, e =e’ =e’, ande, = I,

For all other &, the results are highly dependent on the separation,

m,
For exiremely smallet (as well as for small m), we have

m/2 < < (1/m)[1og (1~¢)/=<} ,

so that
?(o()n-,l- ?(l—p”.

Thus
e % o+ (1-24) 7(1-4)

and

~
ea-€, .,l-ZeC_

2
Hence for d< < 10™™  (very roughlyl),

and

eTzes+ (1-2eg) ey = e + ecll-2e)) = e + [20(m/2)-1] e_ > e.

The limit e+ has a discontinuity at £= 0 (and &= 1) with e*(O) = e
and eT(0+) = 0.5, A proof of lim e («) = 1/2, using L'Hospitals rule,
o0+

1s given below:

Since e {e«() = R{«) and

- dR(q"
R(q, t4") = R(q") + ___%%_L (a-q"),
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we have

eo(x) = R(1-,t%) = e () + (1-2%) e '(() -
where e '{a) = de.()/de, Hence, by (4)

e.! (&) = 7(0{) —'3(1—“).
From (2)

ectla) = fla) + o 3(et) - F(L-at) - (L) 1-ol)
and hence

o(?'(o«.) = (1-«) 7‘(1—«) .
From (4)

ectle) - eelen) = 2[304) - 31t} ] = (1-20) [3(e0) + 511 -o0) ]

1 - 24
= I - 1
Ze ) - T 9.
From Equation (30) of Chapter 4
e (0] 1
Iim e+(o(): ¢ () = ——
of >0 ec'(0) - e,"(0} 2

since e .'{0) = | and 7'(0) = 0.

For large m {(as well as for w very close to 1/2} such that
m/2 > > (1/m) log {(1-«')/4]

we have from Equation (4)
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and even

ezdr = e. + (e -e e e,

In Figures 3 through 6 we see (roughly)that while ec < e] <
ek+.§e+$ee when m = 1, e, <et <ot < e] < eg when m = 2 or 4,
We further note that for m = 4 convergence of ek+ to et is extremely
rapid, with e31':\‘: et foro{> 0.02, The reversal of the inequality
ek-’— <ejtoe)< ek": which occurs for < 0,2 in Figure 4,0ccurs for
all m, but cannot b2 seen in Figures 3,5 and 6 because of the scale
({for m = 2 tha reversal occurs for o< 10'3), Figure 7 illustrates
the relationship between e and ek'|' as a function of m for a fixed .

With 0 <= < 1/2 and m > 0, suppose

ez+$el.

Then

ec+ {ee - ec) ] £ €)
o) + (1-%) F(1=of) +3(1/2) (1-200) [ (o) -7(1-e0)] 3(1/2)
K+ (1-24) 21/ [30) - 7(1-4)} < 3(1/2) - 3(1-20)

o + (1-‘2«)?(1/2) <

P(m/2+{1/m)log((1-&) /) - $(m/2)
P(m/2+(1 /mlog({1-) /) - F{m/2-(1/m)log((1- =}/ )
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*See list of symbols on page vil.
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Since 9(1/2) = 1-6(m/2) < 1/2,
2H1/2) < 3(1/2) + [1-2 Z(I/Z)]o( =o+ (1-24) 9(1/2).

Hence

B(m/2 + b) - B(m/2)
Hm/2 + b) - Hm/2 - b) ’

1-8(m/2) <

where b = (1/m) log {(l-q)/d,] >0, For fixed, this can occur only
if m is sufficiently large, For fixed m, it can pccur only if « is
sufficiently large (b sufficiently small),
Thus, we see that for small m (and/or small® ) the decision
fuaction of Equation {15) of Chapter 4 actually gives worse results
than a rule that does not-account for context, Hence, in such a
situation, the use of the sequential Bayes decision function of
Equation (13) or (14} of Chapter 4 is mandatory, However, if m is
large (and # is not too small), the decision rule of Equation {15)
(Chapter 4) is quite adequate, For m > 5 (signal to noise ratio > 14
db), EZT would be indistinguishable from e, for any practical value of &,
5.2 THE SECOND-COMPONENT SEQUENTIAL COMPOUND BAYES RISK
For a sequential compound decision rule, tk(j/?_N’ffN) =

ti (i/x)), we obtain from Equation (18) of Chapter 4,

ep=1-Y jN ti(O1c/ 230) Ploxngs Eg) A
-B-N S
(8)
g 75

k
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By Equation (13} of Chapter 4,

Pxi, Ok) = Pl /68 ) T Pl 1 /0p_1) GLO_y, By (9)
k-1
for the case of a Markov chain, For k = 2 Equations (8) and (9)

become

e;=1- ) fk tz(ezlle p(xz, 67) .:ix2 (10}
6‘2 s

and

P(x,,62) = B(x,/6,) 2. plx;/6)) G(6,,8;) . (11)
3

These are Equations (39) and (38) of Section 4,4, For a stationary

Markov chain G(8)) = G(8;),s0 that

G(GI/GZ) = G(QZ/GI) G(QIHG(GZ) = G(BZ/BI)
and

G(8,082) = G(6,/6;) G(8)) = G(8,/6,) GI8) = G(6;,0)) .

The following calculations give us, as e;, both the second-com-
ponent sequential compound Bayes probability of error for a stationary
Markov chain {Section 4, 3) and the compound Bayes probability of
error for the case N = 2 with G(Gl,eg) = G{02,0)) (Section 4,4). We
make the assumptions of Section 5,1: f1= {0, 1} and G(6,,83) is
giveu by G(0, 1) = G(1,0) = «/2, G(0,0) = G(1,1} = (1.-0()/2; i, e,

G(O)] = 1) =G(8, = 1) = 1/2, Gl = 1/8, = 0) =&, and G(6,,8,) =

G{6,,8,). Letting
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TH1) = fxpitplifg) = 1} = {32100, 05 = 1) > p(x2,62 = 0}  ,

we have by (10),

1

e, G(92=0)f7_' plx7/6,=0) dx% + G(6,=1) p(x,/62=1) dx”
2

(1) T2 10)

1

Pr{0,=0" Pr (d,=1/6,=0}+ Pr {6,=1] Pr [d,=0/6,=1}
By {11} and the assumptions

T3(1) = {01, %2):p (x2) [omotoey H(L- ) 1 x13] > Bolie) [ (11pgtxvote (x1)] }

and

XY T 6)

:ff Pg(x3) [(l-d)po(xl) +p{pl(x1)] ax, dx, .
] (1)
2

Let p;{x) be univariate normal with mean p; and variance J7, and with
M= pgmpg > 0. Letting

(x1) = (1-a) Po(x1)+°<P1(x1)
TV Cpolxy) + (1-0) prlxy)

r Pl(xz)
2 0'72
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where

clxl) = (O'Z/p) log [y(xl)] + /2.

Then

[y j
€5 = JX ‘(l-of)po(xl) + ¢ pl(xl)] [x >C(Xl) PO(XZ) dxz.! dxl.
1 2

Since

P

J-' plx,) dxy = 1 - 4 [c{xl)/f]: 1-8[ {0/ p)log ylx,) + w/ 20|
xz‘«*c(xl)

= @{(l/m)log [l/y(xl)] - m/Z} ,
where m = /0~ , we have

AT ) X $(x}H{1-&) p(x-m) _m
€2” j [(1-2)800) +alx-mfP (L 108 1727 g1 + ad (o)~ 2

-0

) dx.

(12)

For &= 1/2, e, = P(-m/2) = 1-P(m/2) as in Section 5,1, For

& = 0,
ey e [ 80y bk tog_Bleml m gy
2 J—ao m = &{ x) P
B(x-m) . _2mx - m®
b(x) 2 '
€, = ;f B(x) B(x-m) dx = H(-m/V2) = 1-3(m/V2)
for d= 0,
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Considering the problem of Section 4.4 where N = 2, for
& = 1/2, both the compound and the sequential compound Bayes
procedure give the same results as a simple Bayes procedure,
namely an average error probability of e = $(-m/2). At the
other extreme, & = 0, the compound Bayes rule for N = 2 gives an
average probability of error of e, = &(-\2m/2), aun increase in signal-
to-noise ratio of 3 db. The sequential Bayes rule gives an average
probability of error equal to the average of the two, <e> = (el+e2)/2.
Figure 8 shows e; and e; as a function of m for X = 0,
5.3 NON-SEQUENTIAL RULES FOR MARKOV-CHAIN DEPENDENCE
Consider the Markov-chain problem of Section 4,3, We
bounded the probability of error for a sequential rule by

ec £ ek £ e}, where

]
H

o= L Glo_) min Pr{d #6,/6,_} (13)

k-1

Y ali) R{A)

i€SL

withel; = G(6,/6, _| = i). With the assumptions §2= {0, 1} ,

ol = G(1/0) = G(0/1) we obtained

ec=—-;— Rit) +._.;_ R(l-) .

For the normal case treated in Section 5,1, R(1-&} = R(&)} and hence

e. = R@).

80



A311198qo 1 uoTIsuLLy
CI37Z UM SDATIPUIIIY |BWION I0]
juswasejdsy] °SA sa1jrjiqeqoid I0Iiixy

NOILVHYd3S

g 2Ind1 g

HOHY3 40 ALINISVEONd

81



Similarly, we bound the probability of error for a non-sequantial

compound rule for the case of a stationary Markov chain by

ec* & ek* < ep. In this case™

% : "

et = Z G(8) _ |+ By ) min Pr {dkfgk/ek_l, 9k+1} , (14)
(O é’k+1) :

where
GlO-1>Bies1) = L GlOyeyy /1) Gli/8y_)) Gl ) (15)

€N

and

Pr{di # O1/Oc_1: Os 1} = R [GLOL/O_1.6441)] . (16)

with G(eklek_l, Gk_H) = G(Bk_}.llek)G(QkIGk_l)/G(Bk_l,8k+1). For the
case ¢ = {0, 1} and &= G(1/0) = G{0/1) we have G(1) = 1/2,and the

guantities of interest are tabulated below:

(Br-1s O 1) G(By_15 Ot 1) G(1/6, 1,6, ,)
2 2 2
(0,0) _g._i'i%_:‘i)___ :_%_ ~A(1-a) . ol .
X o+(1-oA)
(0, 1) o{1-a) 1/2
(1,0) a{1-a) 1/2
2 2
(1, 1) o +2“'°O = % -o¢(1-ef) (1-9()2
oot (1-a)°

i

We use the fact proved in Section 2, 3 that G(leel. ces B,
Bt se O = G{O, /0, _.0,4;). Equation (14) follows from
Equation {33) of Chapter 4 exactly as (13) followed from
Equation (23) of Chapter 4,
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Thus, for the normal case under discussion,

e * = Y RIAZI) + (1-9) R(1/2)

where J,E 9(2 + (l—d)z. Hence, curves of ec*(o() can be calculated
from the curves of ec(a(-) = R(ot) plotted in Figures 3-7, These are

shown in Figures 9 to 11, To be explicit,

) = @ [ tog 35 - B 1) {10 [ tog 432 5}

m X 2
and
R R e R &)

+(1-4)2 {1-¢> [_11; log il_}éli + EZE]}

Figures 9, 10, and 11 show e, €; ate( = 0, e_{f), and
ec*(e() for m= 1,2, and 4, Figure 12 shows €1,€., and ec* as

a function of m foraf= 0, 2.
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Section VI

CONCLUSIONS

The preceeding chapters represent a theoretical study of pattern
recognition as a compound decision problem, Chapter 1 is mostly
tutorial while Chapters 2 through 5 are mostly original, Some of
the results of the original investigations are listed below;

®The evaluation of the finite sample-size performance of the
Fix-Hodges nonparametric procedure is very cumhersome
for multivariate distributions (Section 2, 2),

®#The difficulty that an excessively large number of parameters
need be estimated to represent general probability functions

of many variables can be overcome by assuming that the

variables are drawn from a Markov chain (Section 2, 3),

#The most general nonparametric pattern-recognition problem,
which includes learning without a teacher, may be formulated

as a distribution-free compound decision problem (Section 2, 4),

#Two specific procedures for adaptive adjustment of the threshold
on the likelihood ratio have been prescribed, Using the
sequential procedures of Chapter 3, the threshold rapidly
approaches its optimum setting,

sCompound decision theory provides the optimal sequential

procedure for taking context into accound in a classification
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problem, The procedure described in Section 4,2 is almost
as casily implemented as the simplest (non-optimal) procedure
accounting for context,

®The non-optimal procedure, using the previous decision to
account for context, performs very poorly when the populaticnas
arce not well separated, Under such coaditions, it performs
even worse than a procedure that makes no attempt to
account for context, When the populations are well separated,
it can vield an improvement almost equal to that of the optimal
sequential rule,

#Furiher improvement may be made through the use of non-
sequential compound rules,

The following prohlems are suggested for further siudy:

#Develop procedures for estimating the parameters in the Markov-
chain expansions of Section 2, 3,

eEvaluate the Markov-chain procedure experimentally,

#investigate the distribution-free compound decision problem
defined in Section 2, 4.

eCompare the two threshold-adjustment procedures prescribed
in Chapter 3, by Monte-Carlo simulation,

Modify the procedures in Chapters 5 and 6 totake intoaccount

various factors peculiar to particular languages,
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Action, 2, 3,54
Average risk, see Bayes risk
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sequential 49, 51-53, 58, 59
Bayes risk, R{q,t) 4-7
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Bayes rule, see Bayes procedure
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Character recognition 47
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Component problem 3, 8
Component risk, R(Oy, ty) 9, 51
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Compound decision problem 3, 8, 38
Compound decision rule 8, 10, 56
distribution free 37-40
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Pattern classification 1-3, 28, 38
Pattern recognition, see Pattern classification
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