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ABSTRACT 

A procedure is presented to design passive damping into large truss structures 

using viscously damped struts to enhance vibration attenuation or stability of 

controls system. A method is derived from the equations of motion using 

Rayleigh-Ritz method to relate the approximate contributions of a viscously damped 

strut to the system level modal damping ratios and frequencies. Strut placement 

locations, the total number of struts required · and the damping characteristics of 

struts can be easily identified and calculated. The procedure consists of three steps: 

1) extract structural characteristics from the undamped baseline finite element 

model, 2) on a mode by mode basis, perform damping design using the derived 

equations to meet system level requirements and 3) update finite element model to 

include damping mechanism and perform verification analysis using complex 

eigensolution. 
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INTRODUCTION 

Truss systems are often used for large space structures because of weight efficiency. These 
structures often have many flexible modes within the disturbance and control bandwidth. For 
stringent performance requirements, tight joints are required for precision truss structures. The 
intrinsic structural damping associated with this type of structure may be very low (less than 0.1 % 
equivalent viscous damping1) and the dynamic responses under operational forces can be 
significantly amplified. Passive vibration control is a cost effective and reliable way to suppress 
dynamic responses and also provide additional stability margin to the controls system. Struts with 
good stiffness and damping characteristics can significantly enhance the performance of this class 
of structure. 

Struts with imbedded viscoelastic materials have been successfully designed, tested, and 
integrated into truss structures2,3. Viscoelastic materials are often frequency and temperature 
dependent4. However, design procedure and approximate analytical methods5 for this type of 
structure have been quite well established. Test results from demonstration structural articles 
compared favorably with analytical prediction3. 

Precision struts with build-in fluid viscous damping chamber have been built and tested. They 
were demonstrated to be quite effective in provided stiffness and damping6. This class of struts 
can be characterized by a small number of frequency independent physical parameters. The 
dynamics of this class of struts is well understood7• The analytical methods for structures with 
viscous damping, though more complicated and not commonly used, has a solid mathematical 
foundation. This paper presents a simple three-step procedure to design viscously damped struts 
into a large truss structure. Based on the baseline undamped structural model, the most effective 
strut placement locations, the key stiffness and damping strut parameters and the number of struts 
required are determined. Only simple design iterations arc required to optimize the design. The 
engineering design is then verified by the rigorous analytical method. 

ANALYSIS OF DAMPED STRUCTURES 

It is essential to understand the analysis of a damped structure before designing such a structure 
to meet the design objectives. A complex structure is modeled by a finite element model with nxn 
matrices. The governing differential equations of a structure with viscous damping are given by: 

M ii+ C u +Ku = p g(t) (1) 

The damping matrix is due to viscous dashpots in the structure. The intrinsic damping is assumed 
to be negligible or added at the modal level. It is unlikely that the dashpot locations and 
characteristics result in a damping matrix which is mass or stiffness proportional, or satisfies 
Caughey' s orthogonality condition8• Classical normal modes do not provide uncoupled scalar 
equations to Equation (1). The solution to Equation (1) is often obtained in the first order form by 
rewriting the equation as: 

[ ~ ~] [ :1 + [ ~ _ t] [ ~] = [ g] g(t) (2) 
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In order to uncouple the matrix equation, a complex eigenvalue problem for the large 2nx2n 
matrices9 must be solved. 

(3) 

Both the eigenvalues and eigenvectors are complex. The corresponding undamped natural 
frequencies and modal damping can be computed from the complex eigenvalues: 

O>· = ✓ ').,R.2 + ').,I.2 
l l l 

- ').,R . l;i = _ _ l 
O>· l 

(4a) 

(4b) 

The modal damping is embedded in the real part of the eigenvalue. For a passive stable system, 
the real parts of the eigenvalues are always non-positive. The introduction of viscous ~pers in 
the finite element model also results in the presence of overdamped modes with zero vibratory 
frequencies and large damping coefficients. The techniques in selecting an accurate and efficient 
algorithm for complex cigensolution computation is quite important but not elaborated upon here. 

This procedure is mathematically rigorous and gives the correct solution to Equation (1 ). 
However, it is quite computationally intensive for large structures . Also, from the design point of 
view, it does not offer much insight into the behavior of the structures, and does not help 
synthesizing and optimizing passive damping design for structure. However, once the damping 
design is complete, the complex eigensolution should be performed to verify the passive damping 
design. 

TRUSS STRUCTURES 

If a undamped truss structure has n degrees of freedom, the equations of motion are given by: 

Mu u1 + K 11 u1 = p g(t) (5) 

The small amount of intrinsic damping in the structure is inserted at the modal level. A few elastic 
struts are replaced by viscously damped struts to enhance the damping in the structure. For design 
purposes, it is assumed that the truss behavior is governed by the axial properties of the struts. 
Then, a typical viscous strut can be characterized by a three-node model with an internal dashpot7. 
The modified structure requires additional degrees of freedom to model the dashpots in the finite 
element model. Let the additional nv degrees of freedom be represented by u2. The governing 
differential equations are now given by: 

(6) 

Equation (6) describes the behavior of a structure yet to be designed. The damping design will 
entail the locations, number, mass, damping and stiffness properties of the viscous struts. Unlike 
the viscoelastic struts, all the structural properties specified in Equation (6) are frequency 
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independent. Using engineering assumptions, a design procedure can be derived to approximate 
the solution to these governing equations. 

In order to utilize the information of the baseline structure to help the damping design, it is 
important to recast Equation (6) into the same number of degrees-of-freedom as the baseline 
structure. Assuming the mass at the internal degrees of freedom of the struts is small and the 
internal dynamics of the struts is not important to the solution, then for a hannonic force input this 
condition is summarized as: 

[M'u ~ ] [~1] + [C :u C :12] [~•] + [K :u K :12] [u1J = [ P] eicix 
0 M 22 °2 C 21 C 22 U2 K 21 K 22 U2 0 

M'22 = 0 

(7a) 

(7b) 

The u2 degrees of freedom can be condensed out by using the second matrix equation of Equation 
(7a): 

u2 = (imC'22 + K'22)-1 (imC'21 + K'21 ) u1 (8) 

Backsubstitute u2 into the first matrix equation of Equation (7a) and collecting terms, Equation 
(7a) can now be represented by: 

M ii1 + K u1 = p eicot (9a) 

In this form, the stiffness matrix is complex: 

K = KR+ i Kl (9b) 

It is also a function of both the stiffness and damping characteristics of the struts (u2 degrees of 
freedom). Despite the dissimilarity in appearance, Equations (7) and (9) are identical descriptions 
of the same system. Equation (7) is the preferred form for analytical computation while Equation 

"' (9) is very useful to guide the damping design. For damping design, there is no need to form K 
explicitly. Instead, the contribution of each Strul element to it is evaluated individually. The 

contribution of each strut to system level damping can be assessed through its contribution to K1. 

STRUT CHARACTERISTICS 

In order to design damping at the system level, the damping and stiffness characteristics of the 
damped struts must be totally understood. A class of viscously damped struts can be represented 
by three frequency independent parameters 7 as shown in Figure 1. 

m p(t) 

c k2 
..... u

2
(t) 

Figure 1. 3-Parameter 2 OOFs Viscous Strut Model 
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The dynamic characteristics of this class of strut were derived based on a similar method such 
that the results can be used for system level damping design. The stiffness and damping 
characteristics of the struts are summarized here. The strut is represented by a complex stiffness: 

k = kR (1 + i Tt) 

where, 

kR = k1 [x:2k12 + (l+K)(cro)2] 
(cro)2 + x:2k12 

a2(cro)k1 

(10a) 

(10b) 

(10c) 

(10d) 

Normalized design curves, optimum strut damping and damping bandwidth can be found in 

Reference 7. The maximum loss factor, flop• is governed by K only: 

K 
Tlop = 

2~ 
(1 la) 

and the frequency at which this maximum loss occurs, ro0 p, is governed by the damping 
coefficient: 

K C 
mop=-~ k1 

'l l+K 
(1 lb) 

A simple 3-parameter viscous strut model allows a simple strut representation for system level 
design and a simple strut performance specification for component level design. 

APPROXIMATE ANALYSIS OF DAMPED STRUCTURES 

From a practical standpoint, if a few struts are replaced by damped struts to increase system 
damping, say to around 10%, the basic undamped structural characteristics should not be changed 
significantly. Based on this assumption, the Rayleigh-Ritz method can be used to compute the 
approximate solution to Equation (1)10. This not only expedites the computation significantly but 
it also provides a direct physical insight into the "modal" damping synthesis of the structure. The 
undamped normal modes are used as the basis vectors (generalized coordinates): 

m 

0 = I 4>, qi = ct> q 
i=l 

(12) 
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where the eigenvalue problem is perfonned at a selected frequency of interest: 

(13) 

In practice, the mode shapes of the baseline structure are used to start the design process. Then 
Equation (9) is approximated by: 

(14) 

For design purposes, assume the coupling between generalized coordinate does not significantly 
affect the dynamic response. The approximate uncoupled equations of motion are therefore: 

<I>? M <l>i cii + <I>? K <l>i qi = <I>? P g(t) 

[(-co2q,tM<l>i + <l>iTK.Rq,i) + i (q,iT Kl q, 1)] qieirot ... cl>iT peirot 

(15a) 

(15b) 

The equivalent "modal" characteristic of the generalized coordinate can be found by equating the 
complex stiffness to a single degree of freedom system at resonance frequency: 

(16) 

The "modal" frequency of the modified structure can therefore be approximated by: 

ci\ = (17) 

but the change in structural weight of the struts with respect to the overall structural and non­

structural weight is often very small such that <l>?M<l>i = 1. The equivalent damping near 
resonance can therefore be approximated by: 

(18) 

ELEMENT MODAL CONTRIBUTION 

Based on this approximate analysis method, it is possible to assess the contribution of a 
viscous strut at a given location to the system level damping and stiffness change. Decompose the 
global stiffness into element stiffness contributions (ne = number of elastic elements and nv = 
number of damped struts): 

(19) 

GCC-6 



The "modal" stiffness is given by: 

(20) 

The normalized "modal" stiffness contribution of the j-th viscous strut to the system is given by: 

-R 
- <l>iTk J<!>i E .. -

lJ fi1:2 
l 

(21a) 

The normalized "modal" stiffness contribution is also identical to the "modal" stain energy (MSE) 
ratio: 

The "modal" damping ratio contribution of the j-th viscous strut to the system is given by: 

The system level damping from all the viscous struts is therefore simply given by: 

l nv 

~ i = 2 L, Ei(1lj 
j=l 

(21b) 

(22) 

(23) 

The assumptions used in deriving these approximations provides a very simple concept for 
damping design. It is clear from Equation (23) that there are three key parameters in system level 

modal damping design: the strut locations, Eij• the strut loss factors, llj, and the total number of 
viscous struts, nv. For a given mode, the strut location with the highest strain energy ratio is the 
most effective location in providing damping. This location has the maximum relative 
displacement, hence relative velocity, to activate the viscous damper. The strut with higher loss 
factor also provides higher system level damping. The contribution of each damped strut to the 
system level damping is proportional to the strut loss factor and the modal strain energy ratio. 
System level damping can also be increased by incorporating more struts. Of course, as the most 
effective locations are occupied, the effectiveness of an additional strut is diminishing as the modal 
strain energy ratio is declining. 

SYSTEM LEVEL DAMPING DESIGN PROCEDURE 

In the beginning of a design cycle, the baseline structure is modeled and analyzed. The 
performance of the structure is not satisfactory and higher damping is required in a few modes to 
reduce the dynamic responses or stabilize the control system. Consequently modal damping ratios 
are specified as design requirements. The modal properties of the baseline structural model can be 
used to start the design process. The modal strain energy ratio of each strut member is computed: 
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Figure 2 Modal Strain Energy Distribution 
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Figure 3 Rank Modal Strain Energy 

(24) 

A typical modal strain energy distribution is shown in Figure 2. For the mode of interest, rank 
strut members in descending order of modal strain energy ratios as shown in Figure 3. The order 
of the struts should be noted as shown in Table 1. 

Table 1 Strut Modal Strain Energy Data 

Strut Order 1 2 3 4 5 6 7 8 9 10 11 12 
Strut No. 17 15 18 9 12 8 13 16 11 14 7 10 

MSE 0.170 0.143 0.105 0.()()8 0.077 0.073 0.073 0.061 0.052 0.034 0.027 0.027 
Cum MSE 0.170 0.314 0.418 0.516 0.593 0.666 0.739 0.800 0.852 0.886 0.914 0.941 

If only one type of strut, with component loss factor T\, is used, compute the cumulative sum 
of the the ranked modal strain energy ratios: 

1 

Eil = L Eij 
j=l 

A typical plot of the cumulative strain energy of the ranked struts is shown in Figure 4. 

(25) 

Assuming a realistic strut loss factor, and working with realistic static and dynamic strut 
stiffnesses, find the suitable k1 and k2 by using Equations (10) and (11). Determine the frequency 
characteristics of the strut by defining the c parameter in Equation (1 lb). Iterate if necessary to 
optimize the strut design. Compute the dynamic stiffness and loss factor at the frequencies of 
interest. A typical strut loss factor curve is shown in Figure 5. 
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Figure 4 Cumulative Strut Modal Strain Energy 

The system level modal damping for 1 number of struts is given by: 

(26) 

The system level damping is a product of strut loss factor and contributions from participating 
struts, i.e. higher strut damping requires less members and vise versa. Iterate to determine the 
necessary component loss factor and number of struts to meet the design requirement on a mode by 
mode basis. Candidate struts for each modes are identified. 

Candidate struts from all the modes are included in the final design to meet the design 

requirements. The modal strain energy ratios, Ei, of these struts are computed as shown in Figure 
6. The approximate system level damping is given by: 

~ 1 
~i = 211 ~ 

j 0.3 

=i 
j 
~ 
~ 0.2 

0.3 
.g 
~ 
1,1.l 
; 0.2 

fl 

g 
en 0.1 

(27) 
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Figure 5 Strut Loss Factor vs Frequency 
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Figure 6 Struts MSE Ratio vs Mode Number 
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The system level damping is a prcxiuct of the strut loss factor at the mcxial frequency and the 
participation of the selected struts at the system level. The modal strain energy ratios with respect 
to frequency are shown in Figure 7. The system level damping curve, Figure 8, is simply the 
prcxiuct of Figures 6 and 7. 
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Figure 7 Struts MSE vs Frequency Figure 8 Predicted System Level Damping 

The approximate system frequencies can be predicted by considering the "modal" stiffness 
contribution of the viscous struts and the relative change in dynamic axial stiffness: 

(28) 

As can be seen from the derivation of this procedure, quite a few assumptions were used in 
order to establish this simple procedure. As in any design process, iterations are required to refine 
the initial design. The number of struts and the strut parameters may be optimized. Also, for 
better damping prediction at different frequency ranges, the baseline finite element mcxiel can be 
updated to reflect the dynamic strut stiffness in accordance with Equation (10b) so that the strain 
energy distribution is better represented at the frequency ranges of interest. The effect of modal 
damping coupling can also be evaluated if necessary. However, it may be more expedient to let the 
verification analysis provide the final verdict. Generally speaking, if the damping is well 
distributed, it is closer to a proportional damping case. However, if only a few dampers are used 
to provide a substantial amount of damping to the system, the damping matrix can be quite non­
proportional. If the strut placement also changes the mcxie shapes of the structure substantially, the 
original mcxie shapes are not a good approximation. An updated finite element model should be 
used as the baseline mcxiel. 

When a good, practical and balanced damping design is in hand, the finite element model is 
updated to include all the viscous struts which are mcxieled by elastic and viscous elements as 
shown in Equation (6). This model removes all the assumptions imposed during the design 
process and provides the best engineering predictions of the behavior of the structure damped by 
viscous struts. The system damping and frequencies of the passively damped structure can be 
computed from the complex eigenvalues using Equations (4a) and (4b). The verification analysis 
is an important step to the design process. 

There can be many variations to the methcxi presented. Different struts with different stiffness 
and damping characteristics can be added to the structure due to the geometric difference of struts 
to be replaced. If damping is to be optimized over a wide frequency range, struts with different 
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frequency characteristics can be used. However, the basic principles are still the same. The 
procedure can be modified to accommodate such special circumstances. A summary of the design 
and analysis procedure is provided in Table 2. 

Table 2. Summary of Design and Analysis Procedure 

1. Understand damping design requirements. 

2. Perform eigenvalue analysis of baseline structural model to get roi and q,1• 
Compute modal strain energy ratios of strut members, Ei.j· 

3. Rank strut members in descending order of modal strain energy ratios for modes 
of interest. 

4. Compute cumulative sum of the ranked modal strain energy ratios, Ei1 , for modes 
of interest. 

5. Assume a physically achievable strut loss factor, llj• Estimate required dynamic 
stiffness. Iterate to find the k1, k2 and c parameters to obtain static stiffness, 
maximum loss factor and frequency characteristics of struts. Compute the loss 

factors at the frequencies of interest, 11 ( roi). 
6. Find the number of struts required to meet the damping requirements for the given 

modes. For each mode, locate the struts. The set of viscous struts is all the 
members required for all the modes. 

7. Compute the modal strain energy ratios of the set of viscous struts, Ei. 

8. Compute the predicted system level damping, ,i(roi)Ei. 
9. Iterate upon the number of struts, strut locations, and strut parameters as necessary. 

10. Iterate upon the accuracy of mode shapes and modal strain energy distributions at 
selected frequencies if necessary. 

11. Update finite element model to include dashpots and perform complex eigenvalue 
problem to verify damping design. 

12. Iterate as necessary to correct for any deficiency from complex eigensolution. 

TRUSS DESIGN EXAMPLE 

A small example is included here to illustrate the method. A 3 bay truss with 13 nodes and 60 
active degrees of freedom is used. The first two bending modes of the structure are 21.3 Hz. The 
goal is to design 5% viscous damping into the system. For the mode of interest, a bottom 
longeron member has significant amount of modal strain energy. One damped strut is used to 
replace the original strut. The damped strut is designed to have k1 = 110,491 lb/in, k2 = 114,955 
lb/in, c = 839.88 lb-sec/in. This corresponds to a loss factor of 0.36 in the member at the 
frequency of interest. The updated finite element model now has 122 equations in the first order 
form. The solution from the complex eigenvalue problem is summarized in the Table 3. The 
results are very satisfactory considering that only very little amount of computation required to 
arrive at this design. 

Experience in working with large truss structures showed that the design procedure is quite 
effective and the design prediction and analytical solution are often quite close. 
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Table 3 Comparison of Design Prediction and Analytical Solution 

Parameters Design Goal Eigensolution Error 

Frequency 21.3 Hz 21.95 Hz 3% 

Damoing 5% 5.45% 9% 

CONCLUSION 

A comprehensive design and analysis methcxl for integration of viscously damped struts into 
large precision truss structure is presented. The methcxl is based on an approximate solution to the 
governing differential equations using the Rayleigh-Ritz methcxl. Simplification to a practical 
design procedure is facilitated by making relevant engineering assumptions for the struts and the 
truss behavior. The methcxl effectively uses the mcxlal data from the baseline structural mcxlel. A 
simple design procedure is use to determine the strut placement locations, the strut stiffness and 
damping parameters, and number of struts required to meet the design objectives. Upon 
completion of a damping design, a rigorous verification analysis is performed to check the passive 
design. Therefore all the assumptions used in the design process will not affect the accuracy of the 
analytical prediction. The methcxl is simple, efficient and accurate, and has been used for large 
structures with good success. 
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NOMENCLATURE 

Symbols 

C,c = viscous damping matrix, coefficient 
g = forcing function 

i = imaginary unit, ~ 
I = identity matrix 
K,k = stiffness matrix, stiffness coefficient, strut axial stiffness 
M,m = mass matrix, mass 
p = spatial force vector 
t = time, second 
u = displacement vector 
w = element strain energy 

~ = non-dimensional frequency parameter for viscous strut 

E = strain energy ratio 

<I>, Cl> = eigenvectors, eigenvector matrix 

11 = loss factor 
1C = non-dimensional stiffness ratio viscous strut 

~ = viscous damping ratio 

'A.,A = eigenvalue, eigenvalue matrix 
0) = forcing frequency or natural frequency when used with index, radian/second 

= denoting modified elements 

Subscripts 

1 

j 
1 
m 
0 
op 
V 

u 
u 
~ 
1 
2 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

for the i-th mode 
the j-th strut element 
number of viscous struts in descending order of modal strain energy 
number of modes in solution 
single degree of freedom system, pertaining to original component 
condition at maximum loss factor 
viscoelastic 
displacement 
velocity 

damping ratio 
baseline degrees of freedom, or outer spring of viscous strut 
additional degrees of freedom for dashpots, or inner spring of viscous strut 

Superscripts 

I = Imaginary 
R = Real 
T = matrix transpose 
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