AFFDL-TR-66~-80 '
NONLINEAR STRUCTURAL ANALYSIS; TENSOR FORMULATION
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Using the approach of the stiffness method of matrix structural
analysis, the mathematical model of a general nonlinear structure is
derived in Cartesian tensor notation. Included in the formulation are
temperature expansion,pre-stresses,pre~-strains,and general anisotro-
pies. The basis of the derivations is the fundamental strain expression
of nonlinear theory of elasticity which allows rotations of arbitrary
magnitude, Consequently, the method may be used for the analysis of
highly flexible structures or even elastic linkages, The structural ele-
ments used are topological simplexes, i.e. bars, triangles, and fe-
trahedrons; their linearized models are compared with previously known
results. Due to the discrete point and element representation of numer-
ical methods, some non-tensor properties evolve whichrequire a gener-
alization of tensor algebra. The resulting index notation allows a direct
translation into computer program languages and provides several
computational shortcuts over matrix notation. The system equations are
of the third order in the displacements, Stability criteria are derived
and suitable iteration schemes for a static solution are discussed using
a simple example problem for illustration. .

INTRODUCTION

Nonlinear structural analysis in its modern form is an outgrowth of aircraft, missile, and
space applications. Due to the complexity of most problems, numerical methods provide the
only practical tool to arrive at meaningful solutions. Nonlinearities in the relation between the
applied forces and the displacements may be attributed to two sources: material behavior and
geometric changes. The first one, the material nonl nearity, is independent of the magnitude of
the displacements but solely dependent on the magnitude of the strains in the structural mem-
bers and their stress-strain relations. The second one, the geometric nonlinearity, has nothing
to do with the magnitude of strains but is only dependent on the geometric change of the
structure due to the displacements. In many cases, both phenomena may be observed simul-
taneously, however, it should be understood thatthey represent independent mechanisms. This
point may be further elucidated by comparing the respective mathematical models.

P= Al K AU

(in matrix notation) gives the dependency of the forces P on the displacements U for a linear
structure (References 5 and 10}, The matrices A and K are constants. For material nonlineari-
ties, X which is a function of the stress-strain relation of the structural members, becomes
dependent on the strains (Reference 11) and possibly time (Reference 12). In the case of
geometric nonlinearities, A as a function of the geometry and topology of the structure,
becomes dependent on the displacements (Reference 7).

Physically, every structure possesses at least geometric nonlinearities because even the
smallest load produces displacements which necessarily change the initial geometry. In many
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cases, the influence of these changes may be discarded as small of higher order. Generally,
this simplification is made from the very beginning in the fcrmulation of a method, however, it
may also be made afterwards in a formulation which includes geometric nonlinearities. There-
fore, the equations to be developed in this paper may always be simplified for linear appli-
cétions without loss of accuracy. On the contrary, when linearizing at the end rather than at the
beginning, the relative importance of nonlinear terms tobe omitted may be evaluated to justify
the step.

Material nonlinearities will not be dealt with explicitly. In the following developments it
should be understood, though, that the stress-strain law of the structural elements can be, at
all times, a function of the magnitude of the strains as well as time, The form of the equations
remains complelely unaffected and suitable iteration procedures to include this effect can be
easily incorporated. Since these are nonlinear procedures, simple superpositioning may not be
employed, i.e., geometric and material nonlinearities may not be evaluated separately and the
results added. '

NOTATION

The linear matrix algebra is at its best in the treatment of linear structural probiems. For
nonlinear applications, especially for structures with large deflections, matrix algebra becomes
an unhandy tool because its symbolism has to be extended beyond its intended realm of appli-
cation, Although it is always possible to state in an equation that a matrix, say M, is a function
of some vector, say v, as M(v), it is impossible within the matrix notation itself to describe
this dependency. Mathematically, such dependencies are given as summations over repeated
indices (References B and 9) or by defining some three-dimensional matrix symbolism (Ref-
erence 13); in the computer, some pseudo-matrix operations are easily set up which, for
instance, convert a vector into a diagonal matrix (Reference 15), No matter, what the adopted
symbolism may be, the matrix notation forces the equations into a linear form which is then
provided with some flags to signal the connection with some side equations, not of the matrix
form, which account for the nonlinear influences,

For example, the mathematical model of a geometrically nonlinear structure may be written
in matrix form as
P =

K A u

N
(X + % U)

T
Atx +u)
A(x +y) indicates that the matrix A is itself a functionof the vector X + U. Using indices, we
may write this function as

A = }E Biik (X +U),

Obviously, the mathematical model may be given in one equation, if we use indices through-
out, viz.
P = B.., (X L
, ?L%)lﬁg}% e (XU KB (Xt p Uy,

This equation is truly nonlinear, i. e, it happens to be of the third order in the displacements
U. This notation is as easily adopted to the use on computers as the matrix notation, In fact,
modern programming languages such as a revised Fortran IV or Algol will, or do already,
provide for more than three subscripts. But even with the use of older “software”, multiple
indices provide absolutely no difficulties on the computers (References 17 and 19).

Indices are the tool of tensor notation to identify the way in which different tensors are

combined. However, not every equation written in indices is necessarily a tensor equation, In
order to be a true tensor, an ordered array must obey the transformation laws specified for
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tensors (References 2 and 3). In this paper, both proper tensors and “generalized matrices®,
i,e. non-tensors, will be encountered. To separate these quantities conceptually, non-tensor
indices will be written in parentheses (Reference 3). For instance, 8ite will be a tensor quan-
tity a; i for every value of the index (e); however, the total array aii(e} is a “three-dimensional
generalized matrix”,

To avoid the frequent and repeated use of summation signs, tensor equations are generally
written with the Einstein summation convention (Reference 3). Since this convention does not
fit for all cases in which nontensor indices occur, a new summation convention is introduced
here:

An operation contains the summation over all possible values of an
index, if this index does not appear on both sides of an equation,

Lxceptions to this rule will be marked “no sum”, This statement contains as a special case the
Einstein summation convention.

Besides the fact that tensor notation allows a compact and straightforward representation
of a geometrically nonlinear structure, it offers the advantage of much greater differentiation
between tie components of an array than matrix notation. For instance, a displacement may bhe
doubly subscripted as u;,) where the first index determines the direction, the second one the
point at which it is measured; this property of the indicial notation is especially valuable when
the index counting the structural elements is introduced. Thus, the resulting equations are much
more compact and involve less computational steps than those built upon the common matrix
algebra. For comparison, see the linear stiffness statement of atetrahedron
(Equation 33 for ¢ = 3) and that given in Reference 12; they are exactly equal in content.

The greatest boon in using tensor notation lies in the fact that we can use the nonlinear
theory of elasticity as the basis of the formulation rather than any strength-of-materials
concepts. This has several conseguences;

a. General anisotropic stress-strain and temperature-expansion laws;

b, The formulation may be adapted for plastic and visco-elastic phenomena using
strain invariants;

¢. Unrestricted magnitude of the translations and rotations,

All equations are written in orthogonal Cartesian coordinate systems. Consequently, only
indices wriften as subscripts will be encountered. The field equations of Part 1 could have been
written in general curvilinear coordinate systems. However, the introduction of finite struc-
tural elements in Part II demands that Euclidian element spaces be employed, because other-
wise a perceivable curvature may exist in an element, which is not reflected in the equations.
Since the elements may be one- two- or three-dimensional in an external space of up to three
dimensions, only rectilinear, i.e. straight line, coordinates may be used. The whole formu-
Iation could have been given in oblique rectilinear (general Cartesian) coordinates, however,
their advantage over orthogonal Cartesian coordinates is so small that for thesake of
simplicity in the presentation, orthogonal Cartesian coordinates have been chosen,

PART F: FIELD EQUATIONS

COORDINATE SYSTE MS
The following orthogonal Cartesiun coordinate systems will be distinguished:
SRR S T S o) | internal (or element) coordinates before deformation
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XI ; I=1,2, ., . C)  external (or structure) coordinates before deformation
YI; {I=1,2...0C) external coordinates after deformation,

To conserve space in writing equations involving tensor indices, we will adopt the convention
that tensor indices designated by small letters assume the values 1, 2. . .C, whereas tensor
indices represented by capital letters go 1, 2. . .C, and omit these statements from the equa-
tions,

The internal coordinates x provide the space in which the c~dimensional, (c=1,2,3), structural
elements are described (Simultaneous elements may be of different dimension). The structure,
i.e, the assembly of elements, is described in C=-dimensional, (¢<C=1,2,3), space X. The
displacements U are given in the external coordinates X, such that

YI=(X+U)I (1)

(The index behind the parentheses indicates that both X and U carry this index.)

STRAINS

The square of a small element of length ds, before deformation expressed in internal coordi-
nates is (References 2 and 3),

¥ = dx. dx,

(ds i i

o]

The dx are the projections of ds, onthe axes x. The square of the same arc length after de-
formation expressed in external coordinates is

(ds)? = dv; dvg
The coordinates Y are related to the coordinates x through
d¥p =Yg ; dx; (2)

where Yp ,; is the partial derivative of Yy with respect to Xj. The difference of the squares of
the lengths isnow

(ds,z _(dso)a =(YI,|YI..j _'8'1 )dxl

dx j

The Kronecker delta 8! =1 for i = j,and 8ij =0 for 1 #j. Theterm in parentheses provides
a convenient way to express the deformation of the medium relative to the internal coordinates
X. By definition of the Lagrangean form of the strain tensor (Reference 2)

=1
ij 2

If the external coordinates Y do not describe any deformation, the partial derivatives of
Equation 2 become orthogonal transformations such that

El'j = 0

€ (Y, Y -8, ) (3

I i

With Equation 3 follows the symmetry of the strain tensor

ij T € 4)
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STRESSES

A stress tensor o is related to the strain tensor € through a tensor k of rank four. If we in-
clude a temperature-expansion tensor @ with a tempcrature interval € and some possible pre-
stresses Op,a relation of the following form exists

T S Kk (€ T 9 91+ gy ( 5)
All quantities are measured relative to internal coordinates x, Besides Equation 4, these
tensors exhibit the following symmetries:

iy T T s Y9ij T Yoji
{ 6)
Qi; = 9
K .. = .. = .. =
ikl = ikl Kiilk Kelij

The third symmetry in k follows from the reciprocal theorem for conservative systems
(Reference 1), all others are consequence of this and Equation 4)

The material properties kand @ areintroducedhere as constants; their possgible dependency
on the strains, time, and temperature may be considered in a stepwise adjustment which is tied
to the iteration process of solution,

EQUILIBRIUM

The system is subjected to the external force field P, measured relative to the coordinates
X. When these forces act through the virtual displacements 3 U, the increment of the external
work is

SwW =‘PI SUI (7

The energy increment transmitted into the system by a synchronous deformation can be written
as (Reference 10)

Sw =_‘!;O'ij Seij dv ( 8

The integral extends over the total volume V of the system, The expression, (Equation 8) is
usually considered to be an approximation; however, it is exact if it is used as the defining
equation of the stresses (see “Physical Interpretation™),

"The strain increment Se can be expressed as a function of the virtual displacements 3U of
Equation 7. Observing that 8U is independent of location

8w=8u1fcr.—ai‘—j—dv (9
V'l aU]'_

Il the foree field P includes all external forces, reactions, and body forces and if the strains
oxpress all deformations including those of the constraints, the increments 3w and 8w must
be equil, i.e. represent an external and internal energy which is invariant under transfor-
mation, With Kquations 7 and 9 follows

o€
P, = . dv (10)
1 '!;GU dur
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where the virtual displacements have been omitted from both sides of the equation as arbitrary,
The structural system is now fully described by the field Equations 1,3,5, and 10.
PHYSICAL INTERPRETATION

In engineering mechanics, the strains are definedaslinear changes of lengths and angles, If
¢ defines adirect engineering straininx; - directionand ifyj» (i #]), stands for an engineerw
ing shear strain between the directionsx; andx j* the following relations hold for strains which
are small in comparison with unity € - e
ii i

1 C i (11)
€., = — , (i#])
¥ 2 i .

Allowing 1 percent strain error, (Equation 11) is valid (Reference 14) up to e = 14 percent and
Yij = 7 percent., This means that for most applications (metals, etc.) the engineering definition
of strains may be employed. Using Equation 1] does not limit the displacements themselves but
only their derivatives. Therefore, even within the engineering assumptions concerning the
deformation, the tensor representation allows for unlimited displacements and rotations, This
means, that highly flexible structures or even elastic linkages may be analyzed,

The tensor k of Equation 5 describes Hooke’s law for a general anisotropic material. Owing
to the symmetries given in Equation 6, it possesses 21 independent coefficients for a three-
dimensional body, (c=3), six for ¢ =2, and one for ¢ = 1, For complete isotropy, the number of
independent parameters is reduced to two (Reference 4), {c>1):

(12)

ij TR TR IS

where A and j are the Lame constants (Reference 1), The non-zero coefficients of k in Equation
12 are, using £, Young’s modulus, and ¥, Poisson's ratio:

c=t c=2 c=3

£ E{1-v])
= E H )
kllll |?Vr {1+ )Y(1 —2 v]
k.... = - E H E
bijj o= (it v (1=-2v)
k.... = . = _ . E . E
ijij ijji altvv) ' 2{1+ v)

(i# j;nosum)

The tempuerature-expansion tensor o of Equation 5 describes a general anisotropic material,
It possesses six, three, one independent coefficients for ¢ = 3,2,1 due to the symmetry given in
Equation 6. For complete isotropy it has the form (Reference 4)

a, = 08” (13)

with the single coefficient a.
tguation 8 may be used for the definition of the stresses, it is then valid for strains and

stresses of arbitrary magnitude and the material tensor k will contain higher order terms in
thedisplacement derivatives. However, within the regime of small strains assumed in
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Fquation 11, the stresses may be defined as surface tractions on undeformed surfaces in
order to fulfill Equation 5. The connection with the engineering stresses is then

(J"ii = O
! (14)

o ='r”',(i#])

where O} are the longitudinal stresses parallel to x; and Tj; the shear stresses between x; and
xj. Within the range of validity of Equations 11 and 14,we may also introduce V of Equation 1v
as the undeformed volume of the structure.

PART II: DISCRETE POINT ELEMENT PRESENTATIONS
GRID

Except for very simple applications, it is impossible or impractical to employ the continuous
field equations directly to a problem, It is possible, however, to avoid often unsurmountable
mathematical difficulties by replacing the continuous structure by a finite gridwork of simple
structures (elements) which all by themselves obey these field equations. This step replaces
quality with quantity, i.e.the quality ofhigher mathematical functions (which may not even havo
peen invented yet) with the sheer quantity of numerical data, Modern computing facilities offer
the possibility to handle these datainareasonably short time and at a moderate cost, although
it happens every day that even the biggest present day computers are still too small and slow
for the more advanced applications, especially in the field of dynamics. Economy becomes a
major consideration in the development of a computational method and has been used as one of
the principal guidelines in the following breakdown of the continuous representation into a
 discrete, finite system of simultaneous equations.

An arbitrary and possibly completely irregular grid of points is laid over the entire
structure, its inside and its bourdaries. It is impossible for the general case, to give any
criterion concerning the fineness of the gridin relation to the desired numerical accuracy and
to certain geometric parameters of the structure, Generally, the greater the changes of
geometric and deformation characteristics become, the finer the grid has to be,

The number of grid (node) points is defined as N. The structure now possesscs CN degroes
of freedom instead of infinitely many for the continuous structure, Imbedded between the nod:
points are n volume elements of finite magnitude, each one of which may be considered te e 2
simple structure for which the field equations of Part I apply, They reprasent the influence of
the local material properties, All quantities measuredonthe (external) grid points are refeired
to the undeformed external coordinates X, whereas the quantities measured in the soruetral
clements are referred to internal coordinates x, , (e =1.2,..n), where each element
possesses its own set,

SIMPLEXN ELEMENTS

Assuming that we are given the deformed external coordinates Y and the undeformed inmer .
coordinates x, we need the partial derivatives of Y with respect to x for use in Equation 4.
Civen a node point (0} and several others (q) = 1.2, . .inits vicinity, we can approximate the
differentials of the coordinates by

d¥r = Yr(q) = Y1I(0)

dx; = Xi(q) 7 *i{o)
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This goes into Equation 2
Yi(q) ® R1* Y1,i%i(q) (15)

where
I ° Yoto) " Y1.i %i(o)

is an unknown vector. Equation 15 can be solved for Yy if (9) = 1.2.. .c+1 grid poinis are
employed. With the substitution ’

difq) = Xi(q) + (a=1,2, c+)

: (16)

dc:+l(q) =1

and the definition of a matrix “a” as the inverse transpose of the matrix “d” i.e. if “a” obeys
the equation

dr(q) 9s(q) © 8rs i (rys,q= t, 2, .¢c+l)
(17
we get from Lquation 15
Ioi T %) g ¢ 9T L2, .oet) (18)

If we postulate that a structural element possesses only one average strain tensor, the condition
for the solution of Equation 15 leads tothe conclusion that a c-dimensional structural element
is un ordered c-dimensional topological simplex (Reference 23), i.e. a c-dimensional poly«
hedron with c+1 vertices (node points)}. Consequently, in an external space of C=3 dimensions,
we may encounter structural elements of ¢=1,2,3 dimensions, i.,e, bars, triangular plates, and
tetrahedrons. These structural elements will be called simplex elements,

kquation 18 is not yet in the desired form for the application, because the coordinates Y arc
meusured on the N points of the assembled structure rather than the ¢+ points of an element,
Introducing the index (e)=1,2. . .n to separate the structural elements, we can write

Yl(qe) ® t{Ch:w}YI(Ql (19)
(g =1, 2,...c(e)+l; e= |, 24...n; Q =1, 2,...N)

where “t” is a homomorphic mapping function (coincidence matrix) which maps the external
point set into the individual element poiul sets, Since it establishes identities, its derivation is

t{Qqe}: 1 if node point Q of the assembled structure conincides with node point q of
element ¢;

=0 in all other cases,

The coincidence matrix t possesses very many zero elements, In large scale computer appli~
cations, it is advantageous to replace the multiplicative operation Equation 19 with a simple
“buokkeeping” procedure,

The integral BEquation 10 oxtends over the entire volume of the structure; it may be broken
aown into o sum of intcgrals, each one over the volume of a simplex element. Since stresses
wod strians ave constants within a simplex element, the integration yields the element volumes
SeinselvesAeeording to the observation made under “Physical Interpretation” we may assume
these to e tire initial volumes, We find (Refercnce 3) '
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v

4 b
(e} '(c—fld”(e) (20)

where
{d) © is the ahbsolute value of the determinant of the matrix d of element e

b(e) =1 for C(e) =3

= glement thickness for ¢ =2

(e)
= element cross section for c(e} =1

The volume v,y will be zero if d = 0; i.e, if the matrix d is singular. This is true for de-
generated elements, for instance, if the four node points of a three~dimenslonal element fal)
into a plane.

For the computation of the matrices “d” and “a” of Equations 16 and 17 the knowledge of the
internal coordinates xi(q) is essential, Sometimes, another way of computation is more
practical,

Assuming that the partial derivatives Xjp j (diection cosines) of the external axes Xywith
respect to the internal axes x| are given, and also the external coordinates Xuq,which may he
computed through Equation 19 a statement analog to Equation 15 exists:

gy S N Y AL Xug

The vector r is unknown, however, when evaluating the matrix “a” and the determinant of “d”,
only the differences of x Itq) survive. Therefore, we may give r any desired value, say zero,
and compute x”q, from

X

These values of xi(q) are used as before in Equation 16,
COLLECTED EQUATIONS

The field equations developed in part I are adapted to a structure composed of simplex
elements: Constant date (Equations 16, 17 and 20):

di(qe) = %i{qe) ch{qe)

dr(qe)as(qe) i} 8rs(a)
‘o = (arlal), .
Ailer © ui(clel'{'Qq'el

{i= I,2,..c{a); q.r,s= 1,2, ..c(e) +1;

e=1,2,..n; Q= L2,. N}
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If the internal coordinates X jige) have to be computed from the external coordinates and thc
orientation of the element (Equation 21):

*ilqe) X1 ite) YQqe) X1(q) (23)

Variable data (Equations 1, 18, 19, 3, 5 and 10):

YI = (X +U)I
I ited T Aitee) YIfQ)
- _ (24)
€ijtey = 2, Yo~ 8 (e
_ - 6
Tiite) = [kijkl Cey ~9y Yt ](e)
iy ° By Y1, % e
{iyj, k,i=12, ..c(e’ s I=1L,2,..Cfe=1,2,..n;Q=1,2,..N)
The internal forces P may be obtained from the last Equation(24) before the summation
over the index (e) is performed. The last three equations of Equation 24 when combined into
one yield: {
L@ YAt Y1,
(25)
. L L
["ijkl (gYJ,lYJ,k 70y ~ay 8) Toij ]}M

SEPARATION OF INITIAL AND FINAL STRAINS

So far, the undeformed coordinates X and the displacements U have been added in Equation 1
respectively in Equation 24, For the numerical accuracy, it is better to separate the possibly
large coordinates X, from the displacements U which may be relatively small in the vicinity
of the unloaded configuration, At the same time we will assume that the initial coordinates
describe some intentional or unintentional deformation and the displacements are measured
starting {rom the initially deformed state. Using an asterisk to signify these modified defini-
tions, we get instead of the first three Equations of 24

* 2 *
X1, i(e) Aitqe) * L)

* = *

UI,ite) * Aitqe) YTia)

(26)
= L * * -
€oij(e) 2 X1 %1, "% e
x = dy% = *  y®
€iile) 2{x1,iux,'+“l.ix1,j 0T,V e
- *

“tey "l g T e hite)
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If all elements fit without deformation into the grid provided by the coordinates X*, the initial
strains €,will be zero; this fact may be usedas a check for the compatibility of the input data.
The strains €* are those measured above the initial strains; the sum of €, and €* gives the
total strains €, Stresses and forces will be computed in the last two Equations of 24, where

_ - * »* 27
YI.ile) (x* 4y M1 iGe) (27)

The combined equations analog to Equation 25 are
Pz = 18 @), e (28)

. el ® * -
[kijkl((x FEUN R e ey )+ i ]}(e’
LINEARIZATION -

The Equations 25 or 26 are developed into a Taylor series with respect to the independent
variables and truncated after the linearterms. Theincrements A of the variables at any givea
load configuration are related as:

Ap = A

I(Q) S1(Q)I (R} +AP(E,0)

UJ(R) I1(Q) (29)
(I, = 1,2,.C,Q,R=1,2,..N)

where

SHa)R) = Oij ["“ito)“j(m i ](e)

+ [va g Li M Yo Aury Jie) 30)

AP (8,0, )1 (qy 3["“”0) i (A"oij "Xk Y AB)]M

In these equations the modified material laws k' and @' have been introduced, They are de-
fined similarly to a “tangent” modulus in the deformed state, whereas k and @ assume the role
of “secant” moduli between the origin and the deformed configuratioa. For linear matoriul
behavior, k' =k and @' = a ,

When linearizing the equations for the undeformed configuration, the first term of the stifincss
matrix § vanishes hecause o = 0; for the remainder follows with U = 0 that Y] ite) ~ }{I TIE
] ?

For the nonlinear force-displacement relation, a Maxwell reciprocity does not exist: fake
two arbitrary directions Xy and X, and two arbitrary points Q and R, then Equation 23 or 1%
shows that the symmetry condition

{Su (S )

Prar °%iri ' ® By ®VY1(q)

for non-small displacement increments 8U R) = 3U71(Q)is not fulfilled. It holds, however, for
small variations; therefore, the stiffness matrix S of Equation 30 is symmetric:

Sriavuiry 7 SiRII Q) (31)
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STIFFNESS MATRIX OF A SIMPLEX ELEMENT

For comparison with known results, the stiffness matrix of an undeformed simplex clement
is derived. For this purpose, let the entire structure consist of one element only and let the
numbering of internal and external node points coincide. With the first equation of 30 follows
for the undelormed state:

k X

SLia)dte) = Y%itg)y X1, %ijkr Xook %0(r) (32)

Civikyt=t,2, . ¢;I,d=1,2,..C;q,r= 1,2, .c+1)

This is the stiffness matrix of a simplex element in arbitrary orientation, Rotation of the ex-
ternal frame such that X; coincides with X, for I = ¢ yields

Sitaic(ry T Y% ita) Mk %) (33)

This element stiffness matrix s is identical with previously obtained formulations: for ¢ =1
it describes a bar undergoing longitudinal deflections; for ¢ = 2 it agrees with the formulation
given in Reference 6 for a triangular plate element in general orientation; for ¢ = 3 it is
identical with the stiffness matrix of a tetrahedron of Reference 12,

PART III: SOLUTION

BOUNDARY CONDITIONS

The equations may be solved numerically for any system of unknowns provided that the
necessary and sufficient input is available.To limit the discussion of the “load” conditions, we
will agsume that the entire initial geometry, the material behavior, the temperatures, and the
pre-stresses are known. The external coordinates which are used to measure the forces and
displacements are partitioned into the following classes:

(1) known forces

(2) known displacements,

Each one of these classes may be partitioned again for zero and non-zero components to
reduce the amount of computations; however, this is avoided here so as not to confuse the
issue, This second partitioning may be introduced anytime into the final equations, if desired.

The classification of coordinates is of importance in Equation 29 because, with suificient
coordinates in class (2) toprovidethe constraints, it may be solved directly for the increments
of the unknown displacements:

{1 (n)

Ay * Frisinta (34)
. (t) f2) (2) (v
8% 10) ~STi@rem AVlir) ~AP6. g ]

| .
The superscripts indicate the boundary classes; e.g. AU,((()S) describes the displacement in-
crements in those directions Xk at those points S for which the forces are given, Obviously,
within each partitioned array, the indices do not run through all those values which they were
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allowed to assume before partitioning. The array F“” is the flexibility matrix in the co-
ordinates of the known forces; itis obtained by inversion of the corresponding gtiffness matrix:

(n} {n) ; Stu}
Fris1T(Q) S1(Q)J(R) ° K(S}J{R) (35)

STABILITY

A nonlinear structure may possess more than one equilibrium configuration for a given
load system, Two consecutive equilibrium positions must be separated by an unstable region
in which no additional forces have to be applied to produce finite deformations. By detinition,
this applies only to coordinates in which the forces, not the displacements, are controlled.
An increment of work done on the entire structure by the action of an increment of the con-
trolled forces is

{1) ()
Sw = (P+8P)I(m SUI(Q)

As long as the structure is stable under the action of the forces P, the external work must
represent a minimum, therefore, the stability criterion may be written as

{+) (1}
du >
5 (@ °Yrey 7O
valid for the immediate neighborhood of the equilibrium configuration, i.e. for small in-
crements. For this purpose we ma‘y linearize the force-digplacement relation at a given point
and use Equation 34 to express SUM as a function of Sph

{(n) (1 {1) (36)
>0
Frigro(r) 2Pr(a SPu(R)
This must be valid for any arbitrary force increments; therefore, Equation 36 is a condition
on FMM . the structure is stableif the flexibility matrix Fl) , which corresponds with a given
deformed state, is positive definite (Reference 2).

A necessary, but not a sufficient condition for Equation 36 to he true is the test of the
diagonal elements of FOu .

{u)
FI(Q)I(O) >0 ;3 (nosum) | (37}

which will suffice for most practical applications. A complete test is provided by the Sylvester
determinant (References 24 and 25), i.e. the corner minors of the matrix must all be positive.
The o(x;hhogonal instability modes are the eigenvectors associated with the negative eigenvaluey
ol Y :

(H1}) .
Instead of subjecting the flexibility matrix F to the stability test, the stiffness mairix
s may be chosen. However, the incomplete test analogous to Equation 37 is of little value
for global instabilities.

ITERATION PROCESSES FOR STATIC SOLUTIONS
The nonlinear equations are of the third order in the displacements as can be verified in

Equations 25 and 28, A practical way of a direct analytical solution does not exist for simu’--
taneous systems of any significant order. Therefore, trial and error methods have to b
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employed which, when combined with some rational error reduction scheme, are called
iteration processes, There are at least two different possible kinds of iteration processes:

diréct iteration
progressive iteration

A direct iteration process aims immediately at the solution for the full values of the indepen
dent variables, whereas a progressive process reaches the final solution via approximate
intermediate solutions which are more or less evenly distributed between the initial and final
configurations. Besides giving valuable information about the behavior at intermediate load
levels, the progressive processes may provide the only means of solution for cases in which
instabilities occur. An uneiable structure processes more than one equilibrium configuration
for a given load level, and to decide which one represents the correct solution of the problem
requires the knowledge and the use of the time history of the independent variables. This is
most conveniently simulated in a progressive iteration process,

As a simple example for the explanation of the various iteration processes, a plane two~bar
structure (Figure 1) will be employed. The structureis loaded by a single force P; temperature
and pre-stresses are omitted, Equation 28 describes the behavior of this structure as

P = E2E (u-nitfu-niu

3 (38)

where b and E are the cross section and Young’s modulus of the two bars. The load deflection
curve has the two extremes

3
2bEh |
P = —=—a— for U=h(l -~ — }
max 3033 3
2bER®

|
for U =z=hi{l+ —)
3

P, = e
min 323 /3

Between these values of the displacement U, the structure is instable, The stiffness matrix {in
this case a single coefficient) follows from Equation 2.16 as

2bE
£3

For the computations, the numerical values

S

[3U(é—U—h) + h? ]  99)

2bE
3

will be used,

The simplest progressiveiterationprocess (Reference 18) is obtained by using the linearized
FEquation 34 with the stiffness matrix computed from Equation 30. In this process, the tangent
(Equation 30) to the nonlinear load-deflection curve is used in Equations 35 and 34 to find a
displacement increment for an assumed forceincrement, The displacement increment is added
to the previous displacement and a new tangent (Equation 30) is computed,

In Figure 2, this iteration is carried out in six steps (r=2to 7). As long as the nonlinearity
is not too pronounced and step size is sufficiently small, the results stay reasonably close
to the theoretical values, In regions of stronger nonlinearity, the cumulative error builds up
to unacceptable levels and in regions of instability, the process fails completely (stepT= 7 in
Figure 2),
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“n improved progressive iteration process (Lefererce 18) is obtained when oflc. b for-
s.id step on the tangent to the load-deflection curve, a back-substitution into the nouline.. -
2quations is added which restores the accuracy. This implies the use of Equations 30, 35, aar
34 as before, however, when the new displacements have been found, they are put into ihe =o*
of Equations 24 respectively Equations 26 (or Equations 25 respectively Equation 23} 1o
compute the true forces which are needed to sustain the deflected shape of the structure. Th.
force increments for the next iteration step are then computed on the basis of the antiai
sustained forces. :

In Figure 3, this iteration is carried outin six steps. In the first four steps the path foilows
the theoretical curve very closely. In the fifth step it overshoots the point of the beginni.;:
instability so that the sixth step moves in the wrong direction with a positive load incremar:
Although all points of back-substitution represent true solutions, the process is inhe remdiv in
capable of passing beyond the zone of instability in a rational manner,

In a process that is laid out to pass through an unstable region (Reference 18}, set g
additional provisions have to be made The first and most important one is that before the los
increments are applied to the tangent equation, a check is made (for most applications Equati .
37 should be sufficient) if the structure is stable. If it is not, arbitrary load increment: .
selected with the signs reversed from those priorto the instability and applied to the unsi.-i
coordinates (those coordinates for which test (Equation 3V} is not fulfilled), This aveids .-
type of failure encountered in the two previous iteration processes. In addition to this, thog.
has to be some device to limit the magnitude of the increments of the variables, This i«
necessary hecause with nearly horizontal tangents, i.e, nearly singular matrices, exceedingly
large displacement increments may be encountered for moderate force increments, Also, large
force increments may occur when the force level has been temporarily decreased in or after
an instahility,

In Figure 4, this iteration process is carried through the entire unstable region of the ex.-
ample problem, The bounds on the displacement increments were selected as 0,3, If this value
was exceeded (steps after T =4, 5, 8, 9) the magnitude of the forward step was reduced to this
value and the next step would not carry a higher intended load, Also bounded were the
differences between intended load level and the load level found in the back-substitution, If
this value exceeded 0.02 (steps after 7=4, 9, 10, 11,), the intended load level for the next steys
was not increased,

This relatively complicated iteration scheme, of which only the most tmportant aspects 1re
given here, will follow the behavior of a structure through an unstable region in compleialy
automatic fashion, However, the selection of the force increments and bounds on the {oioe
deviation and displacement increments requires some insightinto the pehavior of the structure
prior to the computer iteration, '
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Figure 1. Example Problem for the Demonstration of the Iteration Processes

Figure 2, Progressive Iteration Without Back-Substitution
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r 0,3

0,2

Figure 3. Progressive Iteration With Back-Substitution

0,3

~(, 2

Figure 4. Progressive lteration With Back-Substitution and Provisions for Instabilities
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