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For some considerable time research effort has been directed
at determining suitable stiffness characteristics of triangular plate
elements in bending, spurred on by the necessity of dealing with
irregular boundaries, doubly curved shell problems and others. The
success of the direct deflection approach in establishing these proper-
ties for rectangular elements using simple polynomials (References
1 and 2) and an iniiiul failure of a similar approach of dealing with
triangular elements (Reference 7) led to some unjustified conclusions
concerning necessary convergence criteria. In particular, much has
been said about the absolute need for displacement and slope conformity
throughout the boundary between adjacent elements as a ‘sine qua non’
for convergence to correct solution. The authors suggest that another
condition is in fact the only necessary one and that it is possible to
achieve convergence without the rather difficult conformity require-
ment. This new condition is that of the displacement function being
capable of representing constant curvature (strain) states throughout
a finite element irrespective of its sizé or shape.

In dealing with the triangular plate eiement the authors present in the
paper several alternative derivations based on various explicit types of
displacement functions. In 2ll, the new requirement of ‘constant curva-
ture’ is in fact, satisfied and, in addition, all but one satisfy completely
the compatibility conditions. The displacement functions use the so~called
‘area coordinates’ to ensure symmetry and simplicity of statement. The
new formulation is applied to the solution of some typical static and
dynamic plate problems,

Good convergence and accuracy is achieved by the new stiffness
matrices. The results are of comparable accuracy with those attainable
by the use of rectangular elements. The ‘non-compatible’ type of solu-
tion appears to give better accuracy than the compatible one for practical
element sizes,

INTRODUCTION

Considerable interest exists in the derivation of a suitable stiffness matrix tor a triangular
plate element subject to bending and interconnected with other elements at the nodes foimed
by the apices of such a triangle. Theobvicus need for such a solution is (a) to allow the treat-
ment of irregular boundaries in plate bending problems, and more importantly (b) to permit
the formulation of suitable programmes for solution of arbitrary doubly curved shelis.
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While in the solution of plane elasticity prohlems the simplest formulation arises with an
element of triangular form (:nd indeed sucl. elements were the basis of the first useful
solutions utilizing the finite element method) this does not appear to be the case with problems
of plate bending. Workable solutions for rectangular plate elements have been published
repeatedly (References 1 to 6) while the only reported stiffness for a triangular element has
been a failure (References 7 and 8),

The reasons for this are not at all obvious, though perhaps an intuitive difficulty may be
immediately observed when polynomials in rectangular Cartesian coordinates and with
selected terms (Reference 7) are used to represent displacement conditions in an arbitrarily
oriented triangle.

In Reference 7 the author attributes the unsatisfactory results to the use of functions not
complying with slope continuity along the sides of adjacent elements. How is one to explain
the fact that this condition, not satisfied in any of the rectangular elements shape functions
used in the References 1 to 6 does, apparently, lead to convergence? Perhaps the difficulties
are due to another cause,

In this paper a non-conforming function will be given with some derived numerical results
demonstrating an apparent convergence and good accuracy. In addition corrective terms will
be established for this function which permit complete continuity to be achieved.

SOME CONVERGENCE CRITERIA

In the finite element formulation the deformation of the complete structure is expressed in
terms of certain displacement components at points called the nodes, The deformation function
within a particular polynomial element bounded by lines joining adjacent nodes is uniquely
defined by the values of the displacements at these nodes. The so~called ‘equilibrium equa-
tions’ derived from the element ‘stiffness matrices’ are simply a statement of the minimiza-
tion of the total energy of the system,

In the above formulation the strain energy contribution is evaluated by (itegration of the
infinitesimal strain energies, expressed in terms of appropriate deformatica functions, over
the area of each element individually, If the deformation function leads to no singularities
or infinities within an element and at the junction with other elements leads to no infinite
stresses (i.e. in case of plates satisfies both displacement and normal slope continuity),
then clearly with an increasing number of parameters as the subdivision gets smaller con-
vergence to the correct energy level, i.e., to the correct answer must occur, providing:

(a) the displacement function is such that self-straining due to a rigid body motion of the
element is not permitted.

(b} that the displacement function within each element is such that it can express constant
‘strain’ conditions.

The first condition is so obvious that it has seldom been explicitly stated, yet its violation
is easily achieved with certain form of deformation functions - a pitfall into which the authors
nave on one occasion fallen.

wne second condition (which in fact embraces the first) ts more rigorous. While many
runctions will satisfy it when elements are infinitesimal, the selection is more limited if it
i= aiso to be satisfied when the element is of finite size -~ and yet clearly the trivial case of
constunt strain should be capable of representation whatever the size of the element sub~

LLiviston. !
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For plate elements this constant-strain condition becomes one of constant curvature requir-
ing that the displacement function should be capable of representing a constant curvature
when the nodal displacements are compatible with this requirement.

The convergence conditions so far implied that the requirement of continuity across element
boundaries prevents the development of infinite strains and stresses there, For the case
of plates such a requirement presupposes that both lateral displacements and normal slopes
of these are continuous or otherwise infinite curvatures would be involved.

If such discontinuities at interfaces are, however, present in the nature of the displacement
functions assumed then, clearly, the true sirain energy is not obtained by restricting the
integration to the elements alone implied in the formulation. However it is still valid to
seek the solution minimizing the total energy computed on the previous basis providing also
the minimization of the discontinuities is also achieved. Possibility of such an approach was
presented by Jones (Reference $) by attempting to add to the functional, based on the general
Reissner formulation (Reference 10), an integral of the discontinuity terms multiplied by
suitable Lagrangean multipliers.

More simply, if the formulation of the functionsis such that as the element size decreases,
satisfaction of continuity conditions become more and more complete, the preceding formu-
lation of the finite element process {even though it ignores the strain energy stored at the
interface regions) must tend to the correct solution. If the ‘constant strain’ criterion is used
in the basic derivation of the displacement functionsthen as the elements decrease indefinite~
iy in size the continuity at the nodes will require a constant strain stat: to be reached in the
Limit within each element. This state of constant strain will automatically require that compat-~
:bility of the deformation exists across the interfaces.

While soluticns in which displacement continuity (conformity) is satisfied at all stages
gives by the well known energy theorem (Reference il) a bound on the total strain energy of
the true solution which in a non-continuous solution is not present; it is nevertheless possible
for the laiter type of solution to presentfor practical engineering purposes, a better approxima-
tion than that given by the former.

A NONCONFORMING DEFORMATION FOR A TRIANGULAR PLATE ELEMENT
‘Area’ Coordinates.

The use of a polynomial in Cartesian coordinates X and y to define the shape of a triangular
eiement with 9 degrees of freedom involves some arbitrary elimination of certain terms in-
.ulved in the full cubic (which contains 10terms) (Reference 7). For an arbitrary triangle this
is ‘aesthetically’ not pleasing, involving as it dogs, the choice of certain preferential direc-
..ons unrelated to the triangle shape.

Yo avoid this difficulty it is convenient to use so-called area coordinates specifying the
wusition of any point P inside an arbitrary triangle 1,2 and 3 as shown in Figure 1.

I these coordinates are called
_ - - }
L, = A/D, Lp = Ag/B and Ly = Az/A th
Ao e the fotat areact triangle is A, then itis easy to see that only two of these are indepen-

P .
EEL YL T

Li+L2+L3=I
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As the area of any triangle can be defined in terms of its apex coordinates as, for instanoce,

boox oy
2A = det | Ka ’ ya
| X3 y3

we can relate L ,L 2L 3 with the x-y coordinates as

L, = (g + bx +cly)/2A
Lo = (ap,+ byx + czy)IZAI
Ly = {oag+ bzx + cgy} /24
with
9 T Xp¥3 T X3 ¥p
B = ¥27Y3F Y3
¢ = (xz-x%53) = x5,

with others obtainable in changing sufficés in cyclic order 1-2-3,

It can be noted that solving for x and y we can define alternatively

X = lel +L2x2+L3 Xz

1]

y Ly +law + Lyyg

Elimination of Self-Straining (Relative Displacement)

The nodal dispacements in terms of which the displacement function w is to be

(2)

(3)

(4)

(5)

formulated are the three values of w and six values of the rotations of the nodal points.

For an element 1,2 and3, the vector with nine components defines the nodal deformations as
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{s)

(6)

o
[pt)

with P
(6 = (-§%) () = ($L) et (7)

To eliminate the possibility of any self-stressing it is convenient to deal with displace-
ments w*, relative to a rigid body translation of the whole plate element with nodal displace-
mentsw | , W, andw 3, which we shall denote asw .

Thus
wt* = w - wFR (8}

and in terms of area coordinates w R is simply given by
wRoz w +wply + owsls (9}

which is a linear function in x and y and gives the required nodal displacements,

As w®must have zero values at the nodes its form can be defined in terms of six slopes
imposed at the nodes, (8§ *)€

»
Bxl
%
9,;
8 »*
(8™ ° = x2 (10)

*

Byz
9:3

»*

= L
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with

and

* * R
= . 9w ow”

8, oy 8, + e
* _ ow _ _ 9wk

% = % ¢ &-5r

On using Equation 9 it is easy to show that

9:; = le + (CIW’I + Czwz + Cs'ﬂs) /2A

= 8

6 y

*
y

Thus (8)%and (8™fcan be related simply as

in which T is a 6 x 9 transformation matrix given as

(8*)% = 7 (8)°

C c
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3
25 ' ©
bz
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it 18 convenient to use this matrix in the numerical computations.

~olynomial Function for w

*

(an

(2}

{i3)

(t4)

s)

The function w™ has to be uniquely (and linearly) defined in terms of the six components of

(8*)8 or
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x . * * * * * * | ‘
who= Ry ax.l + ’;I ayl + FxZ 8x2 + F;'Z %2 + F;c3 9:3 + Fy3 8y3 {16}
has to be found with the ‘shape functions® F being such that for instance,
ani
Fg =0 = 3x all nodes
oF,

—ay—- O ot nodes 2 and 3

R
a = -I at nodel
y

ar

If polynomial expressions are to be used, the simplest function which satisfies the above
conditions appears to be

) 2 2
i = Y LT L +yzliLg

The verification that the appropriate conditions are satisfied is easily obtained by simple
algebra.

Similarly the other functions could be obtained, e.g.

Fel

- 2 2
T Xg L! Lz + x3|L| L3 etc,

Unfortunately it will be found that the above functions will not satisfy the ‘constant curva-
ture’ conditions which is one of the Lasic requirements. To remedy this, the functions
Lo Lgol zcan be added in any desired proportion asthisparticular function gives zero slopes
and deflections at all nodes. Finally, therefore, we shall write

F

0T Y Lf Lo+ alilals) + yallf L+ allply). e

and

- 2 ‘
B = sl Lo+ @b Lyly) +xg (LELg+ @l L,Ly) us)

with the others defined similarly.

To be able to represent any constant curvature within the element we must be able to ex-
press w® as a simple quadratic equation

*
woo = AI L2L3 + A2L3LI + A3LI L2 (19}

in whichA| ,A5,A3 can take on any prescribed values (other quadratic terms like L ;2 ete.
are not admissible asw* is zero at nodes). From Equation 19 it is evident that for constant
curvature the nodal slopes hecome

8. = - (Age, +A,c,) /24

x| "'(A3K|3+ A.x }/2&

2721

8'I

On substituting into Equation 16 we have
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%
28w = A (x5 Fup +¥)p Fp~%3 Fg + 3y Fig)
*Ax(xzpfig +yp3fzxpFy * 2 Ry )
*hAsl-xz B +ygify — xa3afe + ve3 Fp)
When expressions (Equations 17 and 18} are substituted into the above it is found simply
that Equation 19 can be obtained only if @ =—.:;- and that then the constant curvature condition
1s possible*. Conversely also if slopes of the correct kind are imposed on Enuation 16, a

constant curvature solution must be obtained,

A CORRECTION FOR SLOPE CONFORMITY

The displacement functions derived for w* (orw) vary along any side of the iriangle as a
cubic and as this variation isuniquely defined by the nodal values it will therefore be the same
for an adjacent element and conformity of ‘w’ is satisfied. However the variation of the normal
slope to any line is parabolic and, as a parabola is not uniquely defined by two end values,
a discontinuity of slope will generally occur between elements.

It is possible to devise functions €,, €, and €, such that, for instance €, has
(a) zero values along all sides of the triangle
{b) gives zero values of slopes at all nodes
(c) has zero normal slopes along sides |2and |3
{d) has a parabolic variation of normal slope along side 2 3.
with €, and €, obeying similar conditions with respect to the other nodes.

Clearly the addition of these functions in any proportion to the original displacement func-
zion will not affect the nodal values of w or its slopes.

If the departure from linearity of the normal slope defined by Equations 16 to 19 is calcu-
lated at some typical point along each of the three sides of the element (conveniently taken as
the midpoint) then,clearly, by adding suitable proportions of €,, €, and €,it will be possible
to eliminate this and ensure a linear variation of the normal slope. This obviously will now
result in continuity between adjacent elements.

*The coefficient of Al becomes )
(Lyly + @LLyLy) (x, Yyg + xgpy, ) 720

2
+(L3 L2 + aLI |.2 L3) (x3|y32+y3| "23} 724

ard as the second term is simply the determinant 2 this gives

(L2+ L +2aL|)

Loly 3

weon & only equivalent to LplLz when @ = 'tf *

uis incidentally shows that the first expression proposed for functions F would not have
~.wslied the constant curvature criterion.
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As the calculated departure will be a linear function of the imposed nodal rotations the
corrected displacement function will not admit ‘self-straining’ (see Section 2). In addition,
as the original function admits the congtant curvature condition during which the normal
slope already varies linearly, the correction term will, under such conditions, be zero.
The corrected function therefore will also satisfy the ‘constant strain’ criterion,

At this stage it is convenient to rewrite the displacement function F as defined in Equations
17 and 18 as

Rl * Y2 Yo * %3 ¥i3 (17a)

Bl = % Vo + %3 W (18a)
in which

o * "12 Ly + %-Ll Lols

with the other functions being obtained by a suitable permutation.

With the € function defined in scale so as to give the maximum value of -;—:—' at midpoint of
i

the appropriate side as —;-, it will be found that the displacement function corrected for slope
conformity, w™* can stiil be defined by the same Equations 16, 17a, and 18a if

= L2 ‘ ! 3
¥p = LT, %LIL2L3-— T+ 36 + 3 Ky €, etc. {20
with
Yo oz tya) + %, (x 04 x o)
23 3 T2l T23” Mal e (20
X +y
12- " iz

The algebra involved in proving this is reasonably straightforward if lengthy and has there-
fore been omitted.

A possible alternative to lineari zing the normal slopes is to admit the value of the normsl
slope (absolute not relative slope now) at some point along the side as an additional variable and
retain this value in computations as an additional nodal variable. Such s formulaticn would
follow a similar pattern utilizing the same € functions, but this procedure is not desirable as it
iniroduces additional variables and special nodes into the final formulation,

It will be noted when the various € functions are considered in detail that the curvatures are
not uniquely defined by them at the actual nodal points (though they do not tend to become
ini.iate) (Reference 13). This can be shown to be a necessary corollary of the linearslo.c
requirement and the resulting singularities cause some difficulties in the stress computation,

Three different € functions will now be considered:

(i) The simplest set of corrective functions € is given by

2, 2
E{a)= Ll L2 L'3

—
b L ey B1S forcy ond ey (22)
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It iz readily seen that this function has zero values at all sides and that it tends to zero at
the nodes.

Similarly by differentiation it can be shown that

de de,
dxl * Ty = 0 at all nodes and along sides 12 and 13 of the

triangle,

Near side 23 the Equation 22 behaves like Ly Ly Llzand therefore has normal slopes varying
parabolically as required,

(ii) The function
LE LA LS
(L|+L2](L2+L3)(L3 *L, )

{23)

gives zero value and slopes along all sides of the triangle and therefore can be added without
affecting the basic considerations.

It was thought desirable to be able even with the corrective functions present to be able to
reduce the function to a cubm form. If the second form of corrective function is defined as

2 2 2
o) @, Litats (24)
- 3
1 2 (L|+Lz )(L2+L3)(L3+L, )
then it can be verified that the combination:
{p) (b) (b} _
el + 52 + 63 = LI L2 L3

and is therefore capable of reducing to an ordinary cubic.

The third possibility is that due to Clough (Reference 15). Here each of the three €, func-
tions is represented by three different expresslons withinthe triangle, Dividing the trlangle into
three smaller triangles I-2-P, -3 -Pand 2- i! P where P represents the centroid

of the triangle it can be shown that the function e defined as below satisfies all the neces~
sary requirements,

Triangle {c)

A - 2_
2-3-P GI = L’l (5L| 3L| + GLILZ)IS
Triangle (c) 2
|-2-P € = Lz (3L3—L2)/8 {25)
Triangle
=3P - L3(3L,- L) /6

Jhe other two functions are defined in a similar, piecewise, manner, It is easy to verify
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@, © (&
€ €5 +e3 = LI L2L3 everywhere.

STIFFNESS AND STRESS MATRICES

Once the displacement functions are specified the determination of stiffness and stress
matrices for elements follows the usual procedures,

In terms of relative displacement the nodal force vector consists of six couples

erl—

Myi

* My2 *, o % €

M™= = K(87) (26}
y2
Mx3

My3 |

where K* can be obtained by the usual methods (Sce Reference 2 or 7). The full force matrix
corresponding to the absolute displacements 8€ has nine components, as given by

’_Wl ]
Mxl

My
(F)® y

(27)

As the work done by cither systen has to be identical
(BT m*e - (5T e

and as this is true for any nodal displacements we have from which by use of Equations
26 and 14 that
F& = 77 k™1 8¢ (28)

thus relating the absolute stiffness matrix to K*
Similarly if the internal moments or stresses are found in the relative coordinate system

o = g* g*e (29}

the use of Equation 14 gives
s* r 8¢ (30)
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Integration of the expressions in the stiffness matrix can be carried out in a variety of ways.

For the ‘nonconforming’ functione it was found most convenient to expand the shape func-
tions or polynomials in x and y and use simple integration expressions available,

For the conforming solution explicit integrals are not simply obtainable and use was made
of numerical integration techniques,

EXAMPLES OF SOLUTIONS BASED ON THE NON-CONFORMING SHAPE FUNCTION
Square, Isotropic, Plate

The relatively simple problem of a square isotropic plate under various conditions of sup-
port and loading is a convenient test example as numerous ‘‘exact’’ solutions are available
in standard texts.

The finite element solutions were so designed that the effects of the shape of elementary
triangles and the fineness of the subdivision could be studied. Figure 2 shows the six different
subdivisions used in a quarter of the plate (only symmetrical cases of support and loading
were considered). Five of these are based on the square module to permit direct comparison
with finite difference solutions and solutions of Reference 2, but as different orientations
of elementary triangles are possible here for any given size of division a variety is obtained.
The last subdivision is based on an arbitrary subdivision into 16 elements which is as nearly
equilateral as possible and represents a division slightly coarser than that of the {(6x6) mesh.,

Edges of the plate were taken alternatively as simply supportei and clamped, and the loads
represented either a single concentrated load P at center or a uniformly distributed loadq.
The allocation of the distributed load to the nodes was not done using the ‘consistent load
matrix’ as time did not permit its integration. The ‘natural’ way of taking one~third of the
load acting on any element and assigning this to each node was followed. Figures 3to 5
summarized some of the results.

Figure 3 shows the deflection on the center line obtained for various meshes together with
the ‘exact’ center values (Reference 12). In all cases excellent convergence is obtained*
with even the coarsest subdivision giving results of the right order of magnitude.

Figure 4 shows the actual distribution of digplacements on the finest mesh (8x8) for the
clamped edge conditions. This case was studied extensively by finite difference and for
comparison solutions obtained by Vaisey and Fox (Reference 13) on a 16x16 mesh are shown.
1i is seen that these are almost identical,

Figure 5 shows some of the bending moments computed on the center line using the finest
miesh solutions. Values plotted here are the averages of nodal ones and these averages again
are very close to the exact values where such have. been computed. The dotted lines show the
sctual linear variation of moments through the element indicating the considerable nodal dis-
¢oatinuities, simiiar to those obtainable in plane stress analysis. It is interesting to note that
. e solution by rectangular elements suchdiscontinuities were much smaller (Reference 2).

squnre Clamped Plate With a Circular Opening

~his example for which no exact solution is available was chosen to illustrate possible
w2plicaaon to a problem where other numerical solutions present special difficulties.

-~ of the central load P with simply supported condition shows the biggest divergence from
it v of 560 x 10-(’ !%‘— quoted by Timoshenko, This vaiue obtained by the Ritz method

in. aowever, approximate and slightly suspect,
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The loading consists of a pair of concentrated loads P to retain symmetry conditions.
Figures 6 to 9 show the results obtained,

In Figures 7 and 8 the contours of the slopes obtained by the finite element solution aie
shown side by side with an experimental solution by Moire methods of the same problem.
The Moire fringes which again show the lines of constant slope indicate both gualitative and
quantitative agreement despite the fact that in estimating the fringe constant experimental
accuracy only of +5 percent can be expected. '

COMPARATIVE SOLUTIONS BASED ON CONFORMING SHAPE FUNCTIONS

Concurrently with the preceding work based on a computor program in which exact
integrated expressions were used, an alternative pro grdam based ona numerical integra-
tion was written, in which the virious € - corrections restoring conformity could be incorpo-
rated. This programme allowed the special case of mid-side nodes to be used if desired ain
also the programme based on the nonconformity function could be reproduced by simply making
€ = 0. This incidentally served as one of the checks on accuracy of programming.

Numerical integration was performed by using 16 and 256 integrating points but the accu:acy
of the first sub~division was found to be adequate (within about 1%). Time allowed only one of i
cases of section 7 to be investigated. This was the case of the square plate with uniform ana
central loadings. The results are summarized in Tables 1 and 2,

These results are remarkable. While the conforming types of solution converge monotonical-
ly to the correct answer underestimating the deflexions for all subdivisions, the nonconforming
type of solution gives at all the stages investigated a better approximation (although the
convergence in this case is not monotonic and does not give any ‘bounds’).

For fairly coarse subdivision the nonconforming type of solution is so much superior that
some doubts existed in the authors’ mind about the correctness of the various subroutines.
These have, however, checked out in a variety of ways so that the chances of an error can be
eliminated.

VIBRATION PROBLEMS

The new stiffness matrices were incorporated in a program by which the natural fre-
quencies and nodal shapes of plate vibrations could be found. Such programs were described
by some of the authors in a previous paper (Reference 16) in which rectangular shuped elements
were used,

In the computations the mass of the plate was assigned to the nodes by a method which
ensured correct amounts of virtual work being performed during any virtual mofion. The
derivation of such ‘consistent’ mass matrices isdescribed in general terms in both References
2 and 16 and need not he repeated here.

Figure 10 shows the results of sucha vibration analysis carried out for a simple, cantilever
plate, for which results were available in literature (Reference 17). A very coarse divizion
into only four triangular shaped elements was used. Once again the superiority of the answers
obtained by using the nonconforming shape functions is demonstrated. These give errors in
frequencies for the first four modes of the order of, -2.5, +2.5, ~1.7 and +1.6 percents respec-
tively.

With the use of the conforring solutions the best answers are obtained with the iivst type
of corrective function. The respective errors are now +2,5, +18.0, +3.6, +33.1 percents,
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As expected all frequencies are overestimated (i.e. bounds are obtained once again}, The

results are however, again inferior in accuracy.

(a)
(b)

{c)

The modal shapes plotted in Figure 10 are those obtained by solution € = € .

CONCLUDING REMARKS

The new function introduced into the study of triangular plate elements show that:

Conforming type solutions are possible,

a simple nonconforming type function is capable of giving better engineering accuracy,

providing sucha function satisfies the so-called ‘constant strain’ criterion. This was previously
demonstrated on rectangular shaped elements where similar functions were used.

Methods which will ensure a further improvement in accuracy particularly with regard

to stress representation, are being worked upon, but it is clear that a stage is now reached
where solution to all plate and shell problems can be simply achieved,

1.

e

j=p)
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TABLE 1 CENTRAL LOAD ON SQUARE PLATE

Values of Dwmax/l{)-5 pL2

a. Simply Supported Edges.

€=0 € =¢ (o) € =¢e'b) € =¢lo)
2 x 2 mesh 1302 855 854 798
4 x 4 mesh 1176 1057 1056 1039
6 x 6 mesh 1211 - 1117 1116 110%8
S x 8 mesh 1165

Conforming solutions

Exact value 1160.

b. Clamped Edges

€= 0 € =E{al E=€(b) . 26(,-)
2x2 521 193 186 169
1x4 589 474 472 461
6 x6 283 511 510 503
5x8 572

Exact value 360.
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TABLE 2 DISTRIBUTED LOAD ON A SQUARE PLATE

I -5 gLt
Values of I)wmax/m qL

a. Simply Supported Edges

€=0 £=€(a) €=‘:_(b) €=€(c)
2x2
4x 4 413 378 376 371
6 x6 413 384 384 382
8x8 405

Exact value 4086,
b. Clamped Edges

€= 0 e=e(°) e=e(b] £=em
2x 2 172
4x4 157 123 123 120
6x6 135 117 117 116
8x8 134

Exact value 127,
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IRREGULAR

Figure 2. Square Plate - Element Divisions
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LOAD P HERE

Figure 9. Square Plate with Hole. Values of Myx/P (Averaged at Centroids of Elements.)

571



AFFDL-TR~66-80

1 st. MCOE.

846
826
861

862
854

2 nd. MODE.

3638
3,728
4,293
4,300
4,369

3 rd. MODE.

5266
5157
5456
5478
6,578

4 ih, MODE.
11,870
12,055
15,813
15,564
16,585

Values of frequencies are given in the Data:-

following order:- 6 ‘
(1) Exact (ref. 17}, Steel E = 30x10" p.s.i.

(2) Non conforming € = O thickness of plate = 0.1 in.
(3 e e": v=03

4y € = €
(5 €= €°

vy

‘Conforming

Figure 10. Vibration of a Cantilever Plate Divided into
Four Elements, Modal Shapes.
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ADDENDUM
1, Introduction

The theoretical interest of these results centers on what happens in the limiting case, with
a very fine mesh of nonconforming elements. Experiments have been done to clarify the situa-
tion: they avoided using an extensive mesh by postulating a repeating pattern, and reproducing
analytically the conditions for large-scale constant curvature.

The numerical results indicate that certain mesh patterns converge correctly, whereas
others do not, and theory confirms and amplifies this conclusion. Thus in Figure 10 fig.
(a) converges, while {d) and (e) do not. The more general patterns (b) and (c) assure con-
vergence for aelotropic rlates, with or without conformity, provided only that the individual
elements can accept constant curvature,

2. A Non-Converging Solution

The mesh of Figure 10(d) is regarded as a recurring pattern of squares containing 4, 8,
or 16 triangular eleln%ents » 88 shaded in the diagram, Assuming that the mesh deforms on a
large scale to w = 3x, %y, or xy , and that the nodes are unloaded, one can apply symmetry
and recurrence relations to discover the local perturbations, These falsify the effective bending
flexibilities and anticlastic effects for a fine-mesh continuum, which are now summarized for

v=0.3,

Wyx =  [rLoi7z - .2823 ] My
Wyy -.2823 10177 0 My
Wy ) 0 0.651 Lwm,]
instead of [ -v o 1 [m]
-V | 0 My
L -0 0 1+ -M,,J

Evidently mesh (d) doesnot converge: for the typical triangle (1) the local deviations from pure
bending are shown in table (j).

3. Proofs Concerning Constant Curvature Regions

We now prove that perturbations donot occur in pattern {b). Consider the minimum paraliel-
ogram mesh of (f). If the eight outer nodes are given slopes and deflections corresponding o
constant curvature, it s desirable that the central node automatically takes slopes and
deflection giving constant curvature in all four elements. It then follows that a larger region
of elements (b) accepts any constant curvature that the boundary nodes dictate.

We therefore show that if mesh (f) is given unit curvatures Wxx.W yy and Wxy in turn,
he inaer node O remains unloaded, A plate having the most general elastic properties gives the
strain energy:

¥ ["’xx Wyy Wyy ] D | wy | dlarea)
Wyy
ny

where D is positive definite: six independent bending moduli are implied. Due to unit curvature
w xx for exampie the force W, is
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[ Oax My w"’] D [17 diarea)
dw, dw, Ow, o

0

Therefore it is sufficient to show that the nine integrals typified by

ow d
(a) ffﬁf d (area) (b) ffa%:)i d (area)

integrate to zero over the four elements. ‘Consider the sum of the contributions to (a) from
equal elements of area at points A,B, C and D. The sum of the values of w,, at these four
points is equal to the w,, in an element whose four vertices all have unit w and zero slopes.
But an element that respects constant curvatures moves as a rigid body under these condi-
tions: therefore 2 wyy = O and the integral is zero. Similarly, (b) is zerc because the values
of w,% due to unit (bx) at O are equal and opposite at symmetrically opposite points like
F andG .

The availability of constant curvature regions is clearly a necessary condition for conver-
gence: it will also be shown to be sufficient. Meanwhile, it is interesting to attempt the same
proof with the mesh (d) which is known not to converge. From the minimum mesh {g) it is
clearly valig to pair the contributions from K and L, so that the slope iniegrais
like awxy/ (ex)o are zero as before. Pairing contributions from K and M shows that the
integral of dw /dwo is zero. However, no such pairing is possible when integrating

X
awufdwo and ’aw y/Ow, . This accords with the numerical result that isotropic mesh re-
sponds correctly to gwist‘, w = xy , but not to bending.

Another non-converging mesh is illustrated in (e). Here the pairing of R and § is valid,
but the pairing of R and T is not. Only the integrals of

Oy 0(6y)ys Owyy/dwy, O, /0(8,), I, /3(8),

are zero, that is, only four out of the nine required. Thus convergence is most unlikely, and
this case has not been investigated numerically.

4. Proof of Convergence

It is now argued that the physical problem is perturbated in various ways by a finite element
solution as depicted in Figure 11(d). Consider the real plate, with a mesh of parallelograms,
each of ruling dimension d, marked out over its surface. Assume that the nodal slopes and
deflections are as in the real plate. (Elsewhere they are different.) The perturbations are
treated under three headings:

1) Nodal forces, To deduce the order of magnitude of these, they are expressed as e.g.

Owy, Ow Ow
- -—x! Y
W, ff (M, Jwg + My 3—22% + 2M,, T, ) d{orea)

Two cases must be distinguished: (1) if w cannot express constant curvature, hence constant
bending moments, over a region, as in meshes (d) and (e). The nodal forces W, are of order
M, and the nodal moments are of order Md. (2) if w can express constant bending moment
over a region, as in meshes (a), (b) and (c). The nodal forces Wy are of order M'd, where
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M'is a derivative of M » and the nodal moments are of order M'dz.,Because in a problem
with constant bending moment (a) gives an error of a few percent, and the nodal perturbations
(b) are of lower order if d is small, the error vanishes with d .

it) Element forces. First, spurious body forcesin the finite element solution may be calcuiated
from the equations of equilibrium. Because o= con stant on the surface is available, and & is
nearly constant over the element, the body forces are of order ¢, (One can therefore argue

the boundaries between elements (indeterminate in a finite element solution) as taking their
values in the real plate: this defines the tractions as stress-adjusters of order o'd. Together,
these element forces are in equilibrium with any external body forces over the element: we
must show that they are equivalent. By St, Venant’s principle, they are equivalent a few ele-
ments away. The strains in the element itself an and its immediate neighbors are of order
€'d ., Therefore the error decreases with d,

lii) Hinging between elements. To assess the effects of a small misfit, we apply it after the
structure is fully loaded, and calculate the work done. Here, the strain energy per element i:
of order pMdz. The hinging angle is of order P'd%, and the work done by the misfit is of
order Mp'd3. Thus the tota] effect of hinging is insignificant with smalld : also the effect of
each misfit is small compared with a typical element contribution.

5. Conelusions

has shown that triangular meshes drawn to no particular pattern give results acceptable

ness changes. It would be an easy matterto enforce slope conformity only, for example, along
a discontinuity of thickness, thus minimizing the constraints and using mostly the model known
to give rapid convergence. The authors intend to use nonconforming elements exclusively,
unless practical results enforce 4 reappraisal of such mixed metheds,
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Figure 11. Diagram of Mesh Patterns
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